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Fig. 1. Equal-time (5 s) comparison of basic multiple importance sampling with the balance heuristic (Basic MIS), resampled importance sampling (RIS) and
our (normal-independent) method applied to image-based lighting computation. While RIS performs similarly to Basic MIS here, our method achieves 2.75×
lower normalized mean square error (NMSE) by redefining the pdf of one of the sampling techniques, while taking into account that MIS is being applied. The
pdfs are shown in the bottom row. The pdf optimization presented in this paper is general and can be applied in any MIS estimator.

Multiple importance sampling (MIS) has become an indispensable tool in
Monte Carlo rendering, widely accepted as a near-optimal solution for com-
bining different sampling techniques. But an MIS combination, using the
common balance or power heuristics, often results in an overly defensive
estimator, leading to high variance. We show that by generalizing the MIS
framework, variance can be substantially reduced. Specifically, we optimize
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one of the combined sampling techniques so as to decrease the overall
variance of the resulting MIS estimator. We apply the approach to the com-
putation of direct illumination due to an HDR environment map and to the
computation of global illumination using a path guiding algorithm. The
implementation can be as simple as subtracting a constant value from the
tabulated sampling density done entirely in a preprocessing step. This pro-
duces a consistent noise reduction in all our tests with no negative influence
on run time, no artifacts or bias, and no failure cases.
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1 INTRODUCTION
Multiple importance sampling (MIS) has become an essential tool in
Monte Carlo rendering, since it provides a simple yet robust means
for combining sampling techniques [Veach and Guibas 1995]. Not
only has MIS enabled the development of advanced bidirectional
rendering algorithms [Georgiev et al. 2012b; Hachisuka et al. 2012;
Křivánek et al. 2014], it is also an indispensable tool for robust com-
bination of the fundamental building blocks of any production path
tracer, e.g. direct illumination sampling from area lights and envi-
ronment maps [Pharr et al. 2016], subsurface scattering [King et al.
2013], free-flight sampling in participating media [Kulla and Fajardo
2012], etc. As such, MIS has been one of the enabling technologies
behind the “path tracing revolution” in the computer animation and
VFX industries [Keller et al. 2015; Křivánek et al. 2018]. While MIS
had originally been introduced in computer graphics, it has made
an impact in other fields as well [Cornuet et al. 2012; He and Owen
2014; Owen and Zhou 2000].
The original MIS formulation [Veach and Guibas 1995] bases its

near-optimality arguments on the assumption that the sampling den-
sities and the sample count for the combined sampling techniques
are given upfront and fixed. The degree of freedom left for optimiza-
tion are the weighting functions used to combine samples from the
individual techniques. The balance heuristic weighting has become
a popular choice for its simplicity and tight optimality bounds when
only non-negative weighting functions are considered [Veach and
Guibas 1995]. Truly optimal MIS weighting functions were proposed
recently [Kondapaneni et al. 2019]. Other works investigate the sam-
ple allocation among the sampling techniques [He and Owen 2014;
Sbert and Havran 2017; Vorba et al. 2019].
To the best of our knowledge, no previous work has addressed

designing the sampling densities themselves in the context of MIS.
We show that such a modification of the MIS framework provides a
previously unexploited potential for variance reduction.We consider
an MIS combination of several sampling techniques, but unlike in
previous work, we allow the probability density function (pdf) of
one of the techniques to take any shape. Subsequently, we find the
pdf of that ‘free’ technique that decreases variance of the resulting
MIS estimator. This optimization can be done upfront, before the
sampling starts, and does not rely on any adaptive updates [Cappé
et al. 2008]. In contrast to previous research, such as various product-
sampling methods [Herholz et al. 2016; Rousselle et al. 2008; Talbot
et al. 2005], we do not devise a specialized sampling technique that
would make the free pdf match the integrand closer. Our method can
actually do the opposite, but in such a way that the overall variance
of the entire MIS estimator is still decreased. We call our approach
MIS compensation, because its net result is, so to say, sharpening of
the ‘free’ technique’s pdf, that effectively compensates for the pdf
averaging induced by the balance heuristic.
While our general result has various potential applications, we

verify its usefulness on two problems. First, the image-based lighting,
i.e. computation of direct illumination due to a high-dynamic-range
(HDR) environment map on a surface with an arbitrary bidirectional
reflectance distribution function (BRDF). The traditional approach
would combine sampling techniques with pdfs proportional to the
individual factors, i.e. the HDR map and the BRDF. We show that

this approach is overly defensive, and use our MIS compensation to
redefine theHDRmap sampling density in away that reduces overall
variance. The improved sampling technique is defined by a simple
analytic formula used to modify the tabulated pdf in a preprocessing
step. Its simplest form can be used in any renderer relying on MIS
for HDR map sampling without any modifications of the sampling
routines themselves. Our method has been deployed in a production
renderer, yielding a consistent performance improvement.

Second, we apply our method to path guiding [Vorba et al. 2019]
in the path tracing algorithm. Path guiding combines direction
sampling proportional to the BRDF with sampling according to
a learned guiding density. By optimizing the guiding density we
improve the performance of the algorithm by Müller et al. [2017].

2 RELATED WORK
Multiple importance sampling (MIS) [Veach and Guibas 1995] gen-
eralizes the idea of sampling from a mixture of distributions [Hester-
berg 1995; Torrie and Valleau 1977]. The MIS framework represents
a family of estimators, parametrized by weighting functions used to
combine samples from different sampling techniques. One example
is the balance heuristic; Veach and Guibas show that no estimator
in the MIS family (with non-negative weighting functions [Konda-
paneni et al. 2019]) can have significantly lower variance. Despite
this result, they develop alternative weighting functions, such as
the power or cutoff heuristics, that perform better when one of
the sampling techniques is a good match to the integrand. How-
ever, performance of any weighting functions, including the optimal
ones [Kondapaneni et al. 2019], is limited by the fixed sampling den-
sities. We lift this limitation and instead of modifying the weighting
functions, we optimize directly one of the sampling densities.

Numerous other works have investigated possible improvements
of MIS. Owen and Zhou [2000] show that using a mixture of the sam-
pling pdfs as a control variate allows reducing the variance bound in
MIS. Fan et al. [2006] applied this work in rendering and Kondapa-
neni et al. [2019] linked it to optimal weighting functions for the MIS
family. Elvira et al. [2015; 2016] analyze random vs. deterministic
assignment of samples among sampling techniques and propose a
clustering of techniques to reduce computational overhead.

Sample allocation in MIS. A widely studied direction is sample
allocation among the sampling techniques. Pajot et al. [2011] pro-
pose optimized sample allocation based on a heuristically defined
representativity. Subsequent works cast optimal sample allocation as
a minimization of variance or of a related functional. A closed form
solution is yet to be found, so a variety of work-around ideas have
been proposed instead. Lu et al. [2013] approximate the variance
using a truncated Taylor expansion, yielding sample allocation in a
closed form. He and Owen [2014] prove convexity of variance in the
number of samples, and employ convex optimization to determine
optimal sample allocation. Havran and Sbert [2014] and Sbert et
al. [2016] show that the optimal sample allocation must equalize
the second moment of the weighted estimates corresponding to the
individual sampling techniques. Sbert and Havran [2017] follow up
with an approximate solution based on variance estimates and Sbert
et al. [2018] introduce new balance heuristic variants better than the
balance heuristic with equally allocated samples. Cappé et al. [2008]
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and Lai et al. [2015] optimize mixture densities in the population
Monte Carlo framework.

The above methods all require pilot samples or an adaptive sam-
pling scheme, which could involve a significant intervention into a
rendering system, limit its interactivity, and be susceptible to sam-
pling errors. In contrast, our method optimizes the sampling density
without requiring any MC samples to be taken up front.

Image-based lighting. MIS combination of BRDF and HDR en-
vironment map sampling is a standard approach to image-based
lighting in Monte Carlo renderers [Pharr et al. 2016]. Whereas the
sampling pdf for the HDR map is usually proportional to its lumi-
nance, we show how to modify the pdf so as to reduce variance.

Other ideas on image-based lighting include stratification of the
environment map [Agarwal et al. 2003] and sampling from the prod-
uct of the BRDF and the environment map. Resampled importance
sampling approximates product sampling at the cost of extra sam-
ples [Burke et al. 2005; Talbot et al. 2005]. Hierarchical methods
build the product distribution on the fly [Clarberg and Akenine-
Möller 2008b; Clarberg et al. 2005; Jarosz et al. 2009; Rousselle et al.
2008]. While the product sampling methods redefine the sampling
procedure itself and often come with a substantial computational
and memory overhead, our MIS compensation does not require any
modification to a standard MIS-based environment map sampler.

Path guiding. Learning incident illumination in a scene for im-
portance sampling has become known as path guiding [Vorba et al.
2019]. These methods learn the guiding density either through re-
gression modelling [Lafortune and Willems 1995; Müller et al. 2017]
or density estimation from particles obtained in a preprocessing
step [Herholz et al. 2016, 2019; Jensen 1995; Vorba et al. 2014]. In
our second application we use MIS compensation to optimize the
guiding density in the Müller et al.’s [2017] method.

3 REVIEW OF MULTIPLE IMPORTANCE SAMPLING
Consider a nonzero integral F =

∫
X f (x) dx of a non-negative func-

tion f (x). An unbiased Monte Carlo estimator ⟨F ⟩ for the inte-
gral can be constructed by taking n random variables (samples) Xi ,
i = 1, . . . ,n generated by a sampling technique with the probability
density function (pdf) p(x), and setting ⟨F ⟩ = 1

n
∑n
i=1

f (Xi )

p(Xi )
. Vari-

ance of the estimator depends on the number of samples and on how
‘similar’ the pdf p(x) is to the integrand f (x). Whenever p is exactly
proportional to f up to a normalization constant, i.e. p(x) = f (x)/F ,
the estimator has zero variance [Veach and Guibas 1995].
Finding a single pdf that closely approximates f under all cir-

cumstances may be difficult, but we may have multiple sampling
techniques t ∈ T , each with a pdf pt (x) approximating some im-
portant feature of f (e.g. BRDF sampling and HDR map sampling).
Multiple importance sampling (MIS) provides a general framework
for constructing a combined estimator given multiple sampling tech-
niques. Suppose we take nt = ctn independent samples Xt ,i from
each technique, where ct denote the respective fractions of the total
sample count. The multi-sample combined MIS estimator (ms) then
reads

⟨F ⟩ms =
∑
t ∈T

1
nt

nt∑
i=1

wt (Xt ,i )
f (Xt ,i )

pt (Xt ,i )
. (1)

In the one-sample (os) variant, a single sample Xt is drawn from the
technique pt (x) chosen with probability ct :

⟨F ⟩os = wt (Xt )
f (Xt )

ctpt (Xt )
. (2)

The weighting functionswt (x) provide a degree of freedom that can
be used to optimize the estimator’s variance. The balance heuristic,

ŵt (x) =
ctpt (x)∑

t ′∈T ct ′pt ′(x)
, (3)

is the optimal choice for wt (x) in the one-sample variant and a
provably good choice in themulti-sample variant in the sense that no
other set of non-negativeweighting functions can yield amuch lower
variance [Veach and Guibas 1995]. Negative weights can further
decrease variance beyond the guarantee for the balance heuristic
given by Veach and Guibas. The optimal weighting functions for
the multi-sample variant, minimizing its variance, are in fact often
negative [Kondapaneni et al. 2019]. However, performance of any
weighting functions, including the optimal ones, is limited by the
fixed set of sampling densities. We lift this restriction and open up a
new, previously unexplored opportunity for reducing variance.
Plugging the balance heuristic (3) into the general MIS estima-

tors (1) and (2) yields the combined estimators in the form

⟨F ⟩ms =
1
n

∑
t ∈T

nt∑
i=1

f (Xt , j )

peff (Xt ,i )
, ⟨F ⟩os =

f (Xt )

peff (Xt )
, (4)

where peff (x) =
∑
t ′∈T ct ′pt ′(x). This shows that the use of the

balance heuristic effectively corresponds to a regular MC estimator
with samples drawn from a mixture density peff (x). Note that this
effective mixture density is known only for the balance heuristic
and cannot be readily expressed for other weighting functions.

4 MIS COMPENSATION
While the balance heuristic is near-optimal within the MIS family,
the MIS combination of a given, fixed set of sampling techniques
may not yield a particularly good estimator. As shown in Fig. 2
the effective mixture density may be too defensive, which causes
the high-value areas of the integrand to be undersampled and the
low-value areas to be oversampled. We significantly improve the
result by directly optimizing one of the sampling techniques. Its pdf
is ‘sharpened’, i.e. has pronounced peaks and deep valleys, so as to
compensate for the effect of pdf averaging induced by the balance
heuristic. Hence the method name, MIS compensation.

Problem statement. Consider an MIS combination of a given set T
of sampling techniques t ∈ T with sample fractions ct > 0. One of
the sampling techniques, τ , is designated as free. The objective is to
find the free pdf pτ (x) that will minimize variance of the combined
estimator with the balance heuristic, Eq. (4).

MIS-compensated solution. In an ideal case, both the multi- and
one-sample MIS estimators from Eq. (4) should have zero variance.
A necessary condition for this to happen is that peff (x) is exactly
proportional to the integrand f (x), i.e., peff (x) = f (x)/F . Assuming
the balance heuristic, it holds that peff (x) = q(x) + cτpτ (x), where
we have separated pdfs of all the fixed techniques under a single
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a) Original setup b) Original MIS

c) Setup with the optimized technique d) MIS with the optimized technique

Fig. 2. An example motivating our work. a) We would like to integrate
function f (gray). We cannot sample it directly but we are able to sample
according to the two factors forming f : the techniques p1 (yellow) and
p2 (green). b) Since it is difficult to predict which of the techniques p1, p2 is
better, we take equal number of samples from both of them and combine
them using the balance heuristic. We can see that the effective mixture
density (purple) is too defensive and causes the high-value areas to be
undersampled and the low-value areas to be oversampled (see the red
arrows). c) We redefine technique p1, taking into account the fact that some
parts of the integrand are already well-enough sampled by technique p2,
yielding a new technique p̃1 (orange). d) Combining the optimized p̃1 withp2
yields an effective mixture density (red) that is much closer to the integrand.

term q(x) =
∑
t ∈T \{τ } ctpt (x). Simple algebra then yields

pτ (x) =
f (x)

cτ F
−
q(x)

cτ
. (5)

This definition, however, does not ensure that pτ (x) is a pdf, i.e. that
it integrates to one and pτ (x) ≥ 0. To achieve a valid pdf, we clamp
negative values and re-normalize to obtain the final result

p̃τ (x) = 1/b max{0,pτ (x)}, (6)

where the normalization factor is b =
∫

X max{0,pτ (x)} dx .

Discussion. MIS compensation can be seen as minimizing the
overlap between the free pdf and the remaining fixed pdfs, because
sampling a part of the integrand that is already well sampled by
some other technique in the MIS combination is a waste of effort.
The best choice of the free pdf is therefore the ideal pdf minus all
the fixed pdfs, i.e. Eq. (5).
Although the MIS-compensated solution requires knowledge of

the target integral F , this does limit its use in practice. A suitable
approximation is the key, and we present several practical solutions
in Sections 6 and 8.

The MIS-compensated pdf maintains unbiasedness: The MIS esti-
mators from Eq. (4) are unbiased if peff (x) > 0 whenever f (x) > 0.
For every x such that f (x) > 0 the MIS-compensated pdf p̃τ (x) can
be zero only if q(x) is nonzero. Conversely, should q(x) be zero,
p̃τ (x) must be nonzero, as the subtraction in Eq. (5) vanishes.

The MIS-compensated pdf as derived thus far provides no guar-
antee of the resulting p̃τ (x) being a variance minimizer, because

of the ex post use of the max operator and the re-normalization.
In the following section we rigorously derive a truly optimal free
pdf that provably minimizes variance of the one-sample estimator
under the problem statement above. Furthermore, we show that the
MIS-compensated pdf p̃τ is often close to the optimal result.
Since our practical applications are based solely on the MIS-

compensated solution, readers may prefer to skip the theoretical
discussion in the following section and continue directly to Sec. 6.

5 OPTIMALITY DISCUSSION
To assess the quality of ourMIS-compensated solution, we first derive
the optimal solution to the minimization problem stated in Sec. 4.
We then discuss the relation of the two solutions.

5.1 Optimal solution
To find the pdf p∗τ (x) of the free technique τ ∈ T that provably
minimizes variance of the one-sample estimator (Eq. (4)), we write
the variance as J [p]−F 2, where the functional J [p] is the estimator’s
second moment. Since the integral F does not depend on the pdf,
all we need is to minimize J [p] with respect to p:

p∗τ (x) = arg min
p

J [p], J [p] =

∫
X

f 2(x)
q(x) + cτp(x)

dx . (7)

To avoid the ad hoc use of the max operator and normalization after
the minimization, we subject the minimization to the constraints

p∗τ (x) ≥ 0, and
∫

X
p∗τ (x) dx = 1. (8)

In Appendix A we use the Karush-Kuhn-Tucker (KKT) conditions
to derive the optimal pdf p∗τ (x) in the form

p±τ (x) =
f (x)
√
cτ λ

−
q(x)

cτ

p∗τ (x) =max{0,p±τ (x)}
(9)

where the Lagrange multiplier λ ensures normalization.
Due to the presence of the max operator in Eq. (9), there is no an-

alytical formula for computing λ, so one has to resort to an iterative
method to find just the right value of λ that ensures a normalized
pdf p∗τ (x). This makes the optimal pdf rather impractical. But should
the MIS-compensated solution p̃τ (x) be close-enough to the optimal
one, it could be used instead. We show that this is often indeed the
case, and sometimes the two solutions are even equal.

5.2 Bounding the MIS-compensated solution
To demonstrate the similarity between the optimal pdf p∗τ (x) and
theMIS-compensated pdf p̃τ (x), we first derive the following bounds
of the Lagrange multiplier λ

cτ F
2 ≤ λ ≤ (1/cτ )F 2. (10)

Derivation of this result in Appendix B also shows that if p±τ (x)
(Eq. (9)) is non-negative, λ is in fact equal to its lower bound cτ F 2.
In that case p̃τ (x) = p∗τ (x). This suggests that the MIS-compensated
pdf is often not far from the optimal one. In the next section we
verify this result on an example.
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For the cases where p̃τ (x) differs fromp∗τ (x) onemay be interested
in how the resulting MIS estimator variance increases if we use
p̃τ (x). We prove in Appendix C that the estimator’s second moment
can increase at most by a factor 1/cτ over using the optimal pdf.
Since this bound might not be tight enough, we have searched for
the actual worst case that would yield the highest increase of the
estimator’s variance when using ourMIS-compensated pdf instead of
the optimal one. In our experiments the variance has never increased
more than 1.6 times (see the supplemental material for details).
To summarize, we have shown that while the MIS-compensated

pdf p̃τ (x)may differ from the optimal pdf p∗τ (x), they are often simi-
lar. Since computing the optimal pdf is expensive (requires repeated
integration of p∗τ (x) for different λ values until the integral is one),
we recommend using theMIS-compensated pdf instead (requires just
one integration, the target integral F , which can be often efficiently
approximated). We follow this recommendation in our applications
discussed in the next sections.

6 APPLICATION I: IMAGE-BASED LIGHTING
Here we apply the MIS-compensated solution derived in Sec. 4 to
the image-based lighting (IBL) problem. We compute unoccluded1
direct illumination from a high-dynamic-range (HDR) map on a sur-
face with an arbitrary bidirectional reflectance distribution function
(BRDF), see Fig. 3. This translates to the following integral

Ldir(x,ωo) =
∫

H (n)
LI(ωi) ρ(x,ωo,ωi)|ωi · n|+ dωi, (11)

where x is the position on the surface, n is the surface normal at
x, ωo is the outgoing (view) direction, and H (n) is the hemisphere
centered on the normal n. The HDR map emission coming from
direction ωi is given by LI(ωi), and ρ denotes the surface BRDF. To
simplify the notation we have defined |ωi · n|+ = max{0,ωi · n} (i.e.
the positive part of the cosine of the angle between ωi and n).

Monte Carlo estimation of Ldir(x,ωo) usually relies on two tech-
niques: sampling of the HDR map and sampling of the product of
the BRDF and |ωi · n|+. These techniques are then combined using
MIS with either the multi- or one-sample estimator, Eq. (4).
To reduce the estimator’s variance, we optimize one of the sam-

pling techniques as discussed in the previous sections. Sampling
from the HDR map is usually implemented using a tabulated pdf
pI(ωi), while sampling of the BRDF-cosine product is an analytical
formula derived from a pdf pρ (ωi |ωo, x) (which generally depends
on the outgoing direction and surface position). Since modifying a
tabulated pdf is simple in practice, we choose to optimize pI(ωi).
Note that optimizing both of the pdfs at once would yield the

obvious zero-variance pdf with no practical recipe how to use it.
With more sampling techniques it could be possible to optimize
more than one, but we are not aware of a practical setting where
this would be useful. Therefore, we always optimize just one pdf
and we choose the one that is the simplest to modify.

6.1 General MIS-compensated solution
We get the MIS-compensated pdf p̃I for the IBL problem by plug-
ging the integrand from Eq. (11) and the BRDF sampling technique
1While we ignore occlusion in our derivations, it will likely influence variance of our
IBL estimators in practice.

Fig. 3. Image-based lighting concerns itself with the computation of re-
flected radiance Ldir(x, ωo) at a point x on a surface with the BRDF ρ
given an outgoing (view) direction ωo. Illumination given by the HDR map
LI(ωi) is modulated by the BRDF ρ and the cosine of the angle between
the incoming direction ωi and the surface normal n.

pρ (ωi |ωo, x) into Eq. (6). This yields

p̃I(ωi |ωo, x) =
1
b

max
{
0,

fI(x,ωo,ωi)

cILdir(x,ωo)
−

1 − cI
cI

pρ (ωi |ωo, x)
}
, (12)

where we have simplified the notation by defining fI(x,ωo,ωi) =
LI(ωi) ρ(x,ωo,ωi)|ωi · n|+. The normalization constant b then en-
sures that p̃I(ωi |ωo, x) integrates to one.

6.2 Practical solution
The solution in Eq. (12) is difficult to use in practice, because the
pdf p̃I(ωi |ωo, x) depends on both ωo and x, and we would need to
tabulate the pdf for each view direction and surface position. We
now present a practical, albeit approximate, solution.

Normal-dependent pdf (nd). First, we assume a Lambertian BRDF
with unit albedo, ρ ≡ 1/π , yielding

pnd
I (ωi |n) =

1
bnd

max
{
0,

fnd(ωi, n)

cI
∫

H (n) fnd(ω , n) dω
−

1 − cI
cI

|ωi · n|+
π

}
, (13)

where we have defined fnd(ωi, n) = LI(ωi)|ωi · n|+/π . Since the pdf
now depends only on the surface normal n it can be easily precom-
puted (including the integral in the denominator) for a number of
normal directions. This is already a solution applicable in practice,
although it requires additional memory for storing the precomputed
pdfs and possible changes to a particular renderer implementation.

Normal-independent pdf (ni). To obtain an even more convenient
result that can be readily applied in existing renderers, we remove
the dependence on n by averagingpnd

I (ωi |n) over all possible normal
directions (see Appendix D). This yields our second approximation

pni
I (ωi) =

1
bni

max
{
0, LI(ωi) − 2(1 − cI)L̄I

}
, (14)

where L̄I is the mean HDR map luminance and bni ensures that
pni

I (ωi) integrates to one. This solution is as simple as subtracting a
constant value from the tabulated HDR map pdf and re-normalizing.

In the rest of this section, we compare the derived formulas on a
simple example. Sec. 7 then analyzes them in aMonte Carlo renderer.

6.3 Empirical test
Wenow empirically investigate the relation of our practical solutions
(the normal-dependent pnd

I , Eq. (13), and the normal-independent
pni

I , Eq. (14)) to the general MIS-compensated solution p̃I, Eq. (12),
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Fig. 4. Original pdfs used in our flatland setup. The BRDF sampling tech-
niques use pdfs proportional to the product of the BRDF and the cosine
term |ωi · n |+. The diffuse BDRF (left) corresponds to 1/π , while the sharp
BRDF (right) corresponds to a normalized Phong lobe [Phong 1975] with
exponent 20 shifted by π

8 away from the normal.
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Fig. 5. Comparison of the practical normal-independent (ni) pdf pni
I (Eq. 14),

the practical normal-dependent (nd) pdf pnd
I (Eq. 13), the general MIS-

compensated pdf p̃I (Eq. 12), the optimal pdf p∗I (Eq. 9), and the original un-
modified HDR map pdf pI. The two cases (left, right) differ by the BRDF (see
Fig. 4 for their definition). This figure demonstrates that the optimal andMIS-
compensated pdfs are almost identical, even though theMIS-compensated
pdf only uses the approximate formula Eq. (6). Note that for the diffuse
BRDF, the practical-nd pdf is the same as the MIS-compensated pdf.

and also to the provably optimal solution p∗I , Eq. (9). We consider
a simple flatland setup as depicted in Fig. 3 with a 1D HDR map
and two different BRDFs. The pdfs of the corresponding unmodified
sampling strategies are shown in Fig. 4.

To compute the pdf for the optimal solution, we need to find the
Lagrange multiplier λ, making p∗I integrate to one. Since the norm
of the pdf is a monotonous function of λ, the value normalizing
the pdf can be found using a simple iterative bisection root-finder
within 100 iterations.

Pdf shape comparison. Fig. 5 shows comparison of the practi-
cal normal-independent, practical normal-dependent, general MIS-
compensated, and optimal pdfs, for the two different BRDFs.

A first important observation is that the generalMIS-compensated
and the optimal pdfs are virtually identical. We have tested more
different combinations of BRDFs and HDR maps and we have not
been able to find any case where the MIS-compensated and optimal
pdf would appreciably differ (the difference, measured as normalized
MSE, was less than 10−5). This is additional evidence that the MIS-
compensated pdf is a reliable approximation of the optimal result.

On the other hand, the two practical pdfs are similar to the general
MIS-compensated pdf only for the diffuse BRDF, since a diffuse BRDF
is an assumption used in their derivation. The two versions of the
practical pdf, the normal-dependent (practical-nd) and the normal-
independent (practical-ni), are similar, but practical-ni has some
non-zero values for angles outside of the [− π

2 ,
π
2 ] interval.
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weights [Kondapaneni et al. 2019], 
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Fig. 6. Log-log normalized mean square error plots for different estimators.
Two estimators use only one sampling technique each (Original HDR map
and BRDF, respectively), while the other estimators use MIS. The Original
HDR map pdf corresponds to the unmodified pdf based on HDR map
values, while the practical-ni, practical-nd, MIS-compensated and optimal
pdfs modify the original pdf as described in the text. The two columns (left,
right) differ by the BRDF used (see Fig. 4). The first row corresponds to
the one-sample estimator, the second row to the multi-sample estimator.
For the one-sample version, only the balance heuristic is used (since it is
optimal), while multi-sample additionally shows the result for the optimal
MIS weights [Kondapaneni et al. 2019]. Note that for the diffuse BRDF, the
practical-nd pdf is the same as the MIS-compensated pdf.

Estimator error comparison. Fig. 6 shows error plots when using
the different pdfs to estimate image-based lighting Eq. (11) in the
flatland setup (Fig. 3). We show results for the two different BRDFs
and for the one-sample and multi-sample version (Eq. (4)) of the esti-
mators (additional measurements are provided in the supplemental
material). We first discuss the one-sample case.

For the diffuse BRDF, usingMIS with the original pdf is roughly as
good as sampling just from the HDR map. By using our practical-ni
pdf, we decrease the normalized MSE 3.7 times. The practical-nd,
MIS-compensated or optimal pdf reduces the MSE 7.5 times. In the
sharp BRDF case, using any of our practical pdfs does not improve
over baseline MIS, but, importantly, it does not make the result any
worse. This shows that we can use even the simple practical-ni pdf
without risking any negative impact. Using the MIS-compensated or
optimal pdf for the sharp BRDF reduces error 847 times compared
to sampling the BRDF and 4809 times compared to MIS without
optimized pdfs. This provides an incentive for futurework on finding
better practical approximations of the MIS-compensated pdf.
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Results for the multi-sample estimators are similar to the one-
sample case. The biggest difference is visible for the sharp BRDF,
where the various MIS combinations perform better than in the
one-sample case, and are close to sampling from the BRDF only.
This is in line with the known fact that multi-sample estimators
have lower variance than their one-sample counterparts [Veach and
Guibas 1995]. In the multi-sample case the balance heuristic is no
longer the optimal choice for the MIS weighting functions, there-
fore we show also an MIS combination using the recently derived
optimal weights [Kondapaneni et al. 2019] (not to be confounded
with our optimal pdf discussed in Sec. 5). In our setup the optimal
weighting provides only a minor improvement over the balance
heuristic because no linear combination of the sampling pdfs is a
good approximation to the integrand [Kondapaneni et al. 2019].
Nonetheless, the important point is that performance of any

weighting, even the optimal one, is still limited by the use of a
pre-defined, fixed set of sampling densities. In contrast, using the
MIS-compensated pdf reduces the variance much more and suggests
that optimizing sampling densities offers an additional opportunity
for variance reduction over optimizing the MIS weighting functions.

7 RESULTS I: IMAGE-BASED LIGHTING
In this section we experimentally verify our theoretical results on a
mix of production and synthetic scenes. We implement our practical
method in a production path tracer2, where we use it as a part of next
event estimation carried out at each path vertex. All materials use a
GGX BRDF with a Fresnel-modulated Lambertian diffuse term [Hill
et al. 2016]. We render all results on a machine with an Intel® Core®
i7-5820K CPU (3.3 GHz, 6 cores, 12 threads) and 64 GB of RAM.

One-sample vs. multi-sample. We test both one-sample and multi-
sample estimators (Eq. (4)). For the multi-sample version the same
number of samples from the HDR map pdf and the BRDF pdf are
taken. For each sample in the one-sample version, one of the two
pdfs is first chosen at randomwith equal probability. The one-sample
estimator produces a slightly higher error in all our tests, otherwise
the results for both versions are very similar. Therefore, here we only
present the multi-sample version, while results for the one-sample
estimator are provided in the supplemental material.

MIS heuristics. For the multi-sample estimator the balance heuris-
tic weighting functions may not be the optimal choice. Therefore,
we also implemented the power heuristic with power factor β = 2,
the cutoff heuristic with cutoff threshold qmax = 0.1, and the maxi-
mum heuristic [Veach and Guibas 1995]. We then compared all four
in all our scenes using the original HDR map pdf (i.e. without our
method involved) with 160 samples per pixel. The balance heuris-
tic gave us the best results, with the power, cutoff, and maximum
heuristics producing, respectively, 3.14%, 0.03%, and 41.27% increase
in the normalized mean squared error (NMSE), on average (complete
measured data are provided in the supplemental material). Overall
differences were visually and numerically almost negligible, except
the maximum heuristic which performed much worse, in accor-
dance with Veach and Guibas [1995] observation. As a result, we
decided to compare our method only to the best performing balance

2We use Corona Renderer (https://corona-renderer.com)
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Fig. 7. Equal-sample (1 sample per pixel) comparison of image-based light-
ing on spheres with increasing BRDF glossiness and HDR map contrast. The
left half of each sphere is rendered with regular MIS, and the right half with
our practical normal-independent solution. The most visible improvement is
achieved for a diffuse BRDF with a high-contrast HDR map (top-left corner),
while in no case does our method make the result worse.

heuristic. The recently introduced optimal weights [Kondapaneni
et al. 2019] were not compared as their implementation is available
only for computing direct illumination at the first bounce (so we
could use it in our empirical tests in Sec. 6.3, but not in a path tracer).

7.1 Normal-independent solution
Implementation. We implement our practical normal-independent

solution (practical-ni) by simply modifying the tabulated pdf for
sampling from the HDRmap according to Eq. (14). This is done once
in the preprocessing step, no other modifications of the path tracer
are required. As a result, the method has virtually no overhead
and marginal impact on the time per sample. To verify this, we
have rendered all our scenes with 160 samples each, observing
that on average our method increased the rendering time by 0.23%,
including the time needed to modify the pdf (see the supplemental
material for details). This means that equal-sample comparisons are
also equal-time comparison for the practical-ni method.

Synthetic test. To systematically investigate the factors influenc-
ing the method’s performance, we organize test cases into a two-
dimensional space with BRDF glossiness and HDR map contrast as
its axes. The results in Fig. 7 show that the method performs best
for diffuse BRDFs and high-contrast HDR maps. The corresponding
sphere is rendered with 8.26× difference in the NMSE. Our method
makes only a marginal difference for highly glossy BRDFs, which
render almost noise-free in the first place. A remarkable thing to
note is that our method never makes any of the results worse, despite
the assumption of a diffuse BRDF in our derivation.

Real production scenes. Next, we test our method in three real
production scenes. Pills, a still-life scene shown in Fig. 1, Room, a
typical interior architectural visualization scene lit by an exterior
HDR map, combined with a weaker interior light, and Car, an auto-
motive model with a glossy material on a diffuse background lit by a
low-contrast map (8 bits per pixel, non-HDR photograph). The latter
two are shown in Fig. 8. For all three scenes equal-time comparisons
are presented, after 5 seconds for the Pills and Car scenes and 50
seconds for the Room scene.
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Fig. 8. Equal-time comparison of basic MIS with the balance heuristic (Basic MIS), resampled importance sampling (RIS) and our practical normal-independent
solution applied to image-based lighting computation in real scenes. In the Room scene (50 s) our method visibly improves the noise level. The Car scene (5 s)
on the other hand uses a low contrast non-HDR environment map and, subsequently, the differences are less visible in the side-by-side comparison. The
bottom row shows the corresponding HDR maps and the used pdfs. The RIS method performs worse than Basic MIS in both scenes.

Our method consistently decreases the normalized MSE (NMSE)
in all cases. Specifically, the error is 2.75× lower in the Pills scene,
1.75× in the Room scene, and 1.16× lower in the Car scene. These
error reductions correspond to respective reductions of rendering
time needed to achieve the same error. The key factor influencing
performance of our method is the HDR map contrast – it performs
best in the Pills scene featuring high contrast HDRmap lighting. Our
method has slightly lower benefit in the Room scene. We believe this
is because there are additional variance sources, namely significant
global illumination and shadowing. The Car scene is designed as
a case in which our method does not provide a significant benefit
due to the uniform lighting lacking contrast. Even there, we do not
observe any NMSE increase; our method still improves convergence,
albeit in amore subtle amount. From these results, as well as from the
results of synthetic scenes, and our previous hands-on experience,
we conclude that our practical normal-independent method is safe to
be applied in any renderer for all scenes where image-based lighting
is computed. See the supplemental material for a full comparison.

Comparison with an alternative IBL method. Besides MIS combi-
nation with the original HDR map pdf, we compare our method
also with another IBL approach – resampled importance sampling
(RIS) [Talbot et al. 2005]. Instead of using MIS, RIS approximates a
sampling density proportional to the product of the HDR map and
BRDF densities and draws samples directly from it. It first takes a
set of M initial samples from one density, computes their pdf val-
ues in the other density, and then picks one sample from the set
proportionally to these values. With increasing number of initial
samplesM , the resulting density approaches the product, but also
the overhead of creating and storing the samples increases.

In our implementation we take the initial samples from the orig-
inal HDR map pdf and then resample according to the BRDF pdf.
We have foundM = 8 to perform best for a given amount of time.
This number is quite low since the overhead grows rapidly (for
M = 8 it is already 60% on average, see the supplemental material
for measurements). As a result, the RIS method does not provide
any improvement over the original MIS combination.

We do not include hierarchical product sampling methods [Clar-
berg and Akenine-Möller 2008b; Jarosz et al. 2009; Rousselle et al.
2008]. These are difficult to apply in production rendering (our tar-
get application), because BRDFs can be given by shaders and cannot
be easily represented in a wavelet or spherical harmonic basis.

7.2 Normal-dependent solution
Implementation. We implement our practical normal-dependent

solution (practical-nd) as well. We select 512 directions uniformly
covering the sphere and for each of them we precompute one tabu-
lated pdf for sampling from the HDR map according to Eq. (13). For
a given shading point we then first pick a direction closest to the
normal at that point and then use the associated stored pdf. This
incurs 10% overhead on average in our scenes (see the supplemental
material for measurements).

To conservememory, the precomputed tabulated pdfs for different
normal directions have a fairly low resolution of 32×16. These pdfs
are used to sample a region of the environment map. Inside the
region we then sample only according to the normal-independent
practical-ni pdf. This hybrid approach requires only about 1 MB
memory in addition to storing the HDR map, while providing an
effective approximation for sampling from practical-nd.

Results. Fig. 9 shows an equal-time comparison (5 s) in the Pills
scene. To understand how much variance reduction comes just from
including the normal dependency (without the MIS compensation)
we tested also a method that for each normal direction only pre-
multiplies the original HDR map pdf by the corresponding diffuse
BRDF, i.e. computes Eq. (13) without the subtraction. Such a method
mainly avoids sampling back-facing bright regions in the HDR map.
It achieves 1.59× lower variance than the original MIS but still 1.73×
higher than the normal-independent practical-ni pdf.
We can see that our MIS compensation, even in the simplest

possible form (practical-ni) still offers better results than including
the normal dependency alone. The full normal-dependent practical-
nd method then performs the best, decreasing the variance 3.28×
in comparison with original MIS, and 1.19× in comparison with
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Fig. 9. Equal-time (5 s) comparison of the effect of MIS compensation
versus including the normal dependency in the Pills scene. Just including
the normal dependency (bottom left) improves over the basic MIS (top left)
but the normal-independent MIS compensation (top right) is actually better.
Combining both the normal dependency and the MIS compensation then
yields the best result (bottom right).

practical-ni, yet at the cost of a slightly more complicated implemen-
tation. We provide a full comparison in the supplemental material.

Note that the not-compensated normal-dependent method corre-
sponds to approximate product sampling on diffuse surfaces. Yet,
adding the MIS-compensation further improves the result. This is
because we compute MIS with the BRDF sampling and the com-
pensation avoids wasting the product samples on directions al-
ready well sampled according to the BRDF. Sampling using the
not-compensated method only (without MIS) could perform better
on diffuse surfaces but would fail on highly glossy ones.

8 APPLICATION II: PATH GUIDING
Next we apply theMIS-compensated solution to path guiding [Vorba
et al. 2019]. Instead of unoccluded direct illumination in the IBL
problem we now compute full global illumination, i.e. the integral

L(x,ωo) =
∫

H (n)
LG(ωi, x) ρ(x,ωo,ωi)|ωi · n|+ dωi. (15)

The only difference from the IBL integral in Eq. (11) is that the HDR
map emission LI(ωi) is replaced by total radiance LG(ωi, x) arriving
at the surface position x from the direction ωi. Note that while the
former does not depend on the surface position the latter does.

Path guiding approaches usually combine sampling of the BRDF-
cosine product and sampling proportionally to a learned approxima-
tion of LG(ωi, x) using the one-sample MIS estimator (Eq. (4)). We
choose the method of Müller et al. [2017] since it uses a practical
discrete approximation of LG(ωi, x) stored in a 5D spatio-directional
tree structure. A pdf pG(ωi |x) of the corresponding sampling tech-
nique is therefore again tabulated and suitable for being optimized
by our method while the BRDF sampling pdf pρ (ωi |ωo, x) is held
fixed. Note that this time the tabulation is done not only for direc-
tions ωi but also for surface positions x.
By applying the exactly same steps as in the IBL problem in

Sec. 6.1 and 6.2, it is easy to derive the MIS-compensated pdf p̃G,
practical normal-dependent pdfpnd

G and practical normal-independent
pdf pni

G . Since the first two would require additional tabulation for
outgoing directions ωo and normals n, respectively (i.e. 7D table

instead of 5D), we focus solely on the normal-independent solution

pni
G (ωi |x) =

1
bni

max
{
0, LG(ωi, x) − 2(1 − cG)L̄G(x)

}
. (16)

Here L̄G(x) is the mean radiance arriving from all directions to the
surface position x and bni ensures that pni

G (ωi |x) integrates to one.
When sampling the direction ωi at the surface position x, Müller

et al. [2017] first descend a binary tree dividing the 3D spatial do-
main to find a leaf box containing x. It stores a quad tree dividing
the 2D directional domain. Each of its leaf quads Q contains an
estimate of the total incident radiance L̂G(Q, x) arriving from all
directions represented by Q to the leaf box containing x. One of
the leaf quads Qi is then selected proportionally to these estimates
and the represented directions are sampled uniformly to obtain ωi.
The practical normal-independent pdf for sampling the leaf quads is
obtained by integratingpni

G (ωi |x) over all directionsωi inQi yielding

pni
G (Qi |x) =

1
b ′ni

max
{
0, L̂G(Qi, x) − 2(1 − cG)|Qi |

∑
k

L̂G(Qk , x)
}
, (17)

where |Qi | denotes the area of the leaf quad Qi.

9 RESULTS II: PATH GUIDING
Now we test our path guiding solution in rendering. We use the
latest Mitsuba implementation of the Müller et al.’s method [2017]
provided by its authors. It runs in iterations: samples taken in one
iteration update data in the 5D tree structure which then guides
sampling in the next iteration. To apply our MIS compensation, we
perform one pass over all quad trees in the structure at the beginning
of every iteration and modify the quad pdfs according to Eq. (17).

Our MIS compensation results in better guiding pdfs: Not only is
variance reduced, but paths are generally shorter as they reach a
light source sooner and the path tracing time decreases (we observe
7% rendering time decrease, see the supplemental material).

Fig. 10 shows an equal-time comparison (150 s) in two scenes
with complex indirect illumination. The Kitchen scene contains
various glossy materials and is lit by sunlight entering through a
window, reflected off a glass tabletop. The Pool scene features diffi-
cult specular-diffuse-specular light transport (e.g. refracted caustics)
inside the pool. While the Müller et al.’s algorithm performs well
in these scenes, our solution can improve its performance even fur-
ther. It optimizes the guiding pdf so it omits the directions that are
already well sampled by the BRDF technique and focuses on the
most important regions only. This leads to a visible noise reduction,
specifically the error is decreased 1.38× in the Kitchen scene and
1.6× in the Pool scene. The improvement is not as high as in the IBL
problem because global illumination at a point has typically lower
contrast than direct illumination. In summary, the modification is
simple to implement, it decreases both variance and time per sample,
and we have not observed any failure cases. A full comparison is
provided in the supplemental material.

10 LIMITATIONS AND FUTURE WORK
Number of samples. We use equal sample allocation among the

sampling techniques in all our tests. Optimized sample allocation [He
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Fig. 10. Equal-time (150 s) comparison of the path guiding method by Müller et al. [2017] and our practical normal-independent solution applied on top of it.
The bottom row shows false color visualizations of the guiding pdf over directions on a sphere as used at a surface point in the middle of the corresponding
inset. By optimizing the pdf our method achieves visible noise reduction.

and Owen 2014; Lu et al. 2013; Pajot et al. 2011; Sbert and Havran
2017; Sbert et al. 2019; Vorba et al. 2019] may yield further im-
provement. Joint optimization of both the free pdf and the sample
allocation presents an interesting open problem.

Occlusion. Our derivation for the IBL problem ignores occlusion.
Including it would require a position-dependent pdf and learning
occlusion in the scene. An interesting idea for future research is to
account for occlusion via Control Variate approaches [Belcour et al.
2018; Clarberg and Akenine-Möller 2008a].

Better approximation. While our current approach significantly
reduces the estimator variance, it is based on a crude approximation
of theMIS-compensated pdf derived in Sec. 4. The example in Sec. 6.3
shows that the MIS-compensated pdf can achieve orders of magni-
tude better variance reduction than the currently used practical pdf.
This is due to the practical pdf ignoring the BRDF and the viewing
direction. Incorporating some of these features should result in a
more efficient estimator.

Analytic pdfs. While optimization of tabulated pdfs is straightfor-
ward, the same is not true for analytic pdfs. Successful application
of our optimization to analytic pdfs may, therefore, involve some
non-trivial approximations. A possible direction could use finite
function spaces as a pdf representation and optimize directly the
respective coefficients.

Applications. The general pdf optimization derived in Sec. 4 can
be applied to a wide range of other problems relying on MIS, such
as free-flight sampling in heterogeneous media [Kulla and Fajardo
2012], light sampling [Georgiev et al. 2012a; Vévoda et al. 2018], or
path connections sampling [Popov et al. 2015]. All those methods
feature empirically constructed pdfs combined with one or more de-
fensive techniques and should lend themselves well to our method.

11 CONCLUSION
We extend the arsenal of tools available for variance reduction in
combined estimators by optimizing one of the sampling densities
itself. Given a multiple importance sampling estimator with the bal-
ance heuristic weighting functions, we derive an MIS-compensated
pdf for one of the sampling techniques that reduces the overall vari-
ance of the MIS estimator. We show that this solution is bounded
by the provably optimal, yet more expensive pdf.

While we apply our MIS compensation to image-based light-
ing and path guiding, yielding significant variance reduction, the
technique is more general and can be used in other applications,
potentially even outside of computer graphics. Thanks to its sim-
plicity, efficiency, and robustness, we have been able to use it in a
production renderer without encountering any failure cases.
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A DERIVATION OF THE PROVABLY OPTIMAL PDF
Here we discuss minimization of the functional J [p] from Eq. (7)
under the constraints Eq. (8). We solve the problem by satisfying the
Karush-Kuhn-Tucker (KKT) necessary conditions, which generalize
Lagrange multipliers to inequality contraints [Ruszczynski 2006].
We start by rewriting the constraints as primal feasibility conditions

k1[p] =
∫

X
p(x) dx − 1 = 0, k2[p] = −p(x) ≤ 0. (18)

Given KKT multipliers λ ∈ R and µ(x) ∈ R → R, we must satisfy
the stationarity condition

λ∇k1[p] + ⟨µ |∇k2[p]⟩ = −∇J [p], (19)

where ⟨v |u⟩ =
∫

X v(x)u(x) dx is the standard L2 inner product. The
gradient ∇J [p] can be computed from the directional derivative as

⟨∇J [p]|dp⟩= d
dp

∫
X

f 2(x)
q(x)+cτp(x)

dx =
∫

X
dp −cτ f

2(x)

(q(x)+cτp(x))2
dx

∇J [p]=
−cτ f

2(x)

(q(x) + cτp(x))2
. (20)

Similarly, we compute∇k1[p] = 1 and ⟨µ |∇k2[p]⟩ = −µ(x). Plugging
these results into the stationarity condition, Eq. (19), we get λ −

µ(x) = −
−cτ f 2(x )

(q(x )+cτ p(x ))2
, which yields the solution

p(x) =
f (x)√

cτ (λ − µ(x))
−
q(x)

cτ
. (21)

Finally, due to the complementary slackness condition µ(x)p(x) = 0,
we know that µ(x) must be equal to zero whenever p(x) > 0, and
therefore we can write the solution as

p(x) = max
{
0, f (x)√

cτ λ
−
q(x)

cτ

}
. (22)

The KKT multiplier λ now remains the only unknown, but we know
that it must ensure k1[p] = 0 (i.e. the resulting pdf must integrate to
1) and thus we may find λ using an iterative root-finding method.

B DERIVATION OF BOUNDS ON λ

Here we derive bounds of the Lagrange multiplier λ from the optimal
pdf solution in Eq. (9). We start by defining the subspace Xτ ⊆ X

Xτ = {x ∈ X |p±τ (x) > 0}. (23)

Given Xτ the integration constraint from Eq. (8) can be rewritten
using p±τ (x) defined in Eq. (9) instead of p∗τ (x), which eliminates the
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max operator and allows us to bound λ from above as follows

1 =
∫

Xτ
p±τ (x) dx =

∫
Xτ

f (x)
√
cτ λ

−
q(x)

cτ
dx

√
λ =

∫
Xτ

f (x)
√
cτ

dx −

√
λ

cτ

∫
Xτ

q(x) dx

√
λ =

∫
Xτ

f (x )
√
cτ

dx

1 + 1
cτ

∫
Xτ

q(x) dx

λ = cτ

( ∫
Xτ

f (x) dx

cτ +
∫

Xτ
q(x) dx

)2

≤ cτ

( ∫
X f (x) dx

cτ

)2

=
F 2

cτ
. (24)

Before deriving the lower bound, let us realize that the following
inequality holds directly from the definition of Xτ , since for every
x ∈ X \ Xτ the pdf p±τ (x) is not positive∫

X \Xτ

f (x)
√
cτ λ

dx ≤

∫
X \Xτ

q(x)

cτ
dx . (25)

Note that if X equals Xτ the above is an equality, since we integrate
over empty set. Now we can derive the lower bound on λ from F

√
cτ

F
√
cτ =

∫
Xτ

f (x)
√
cτ dx +

∫
X \Xτ

f (x)
√
cτ dx

≤

∫
Xτ

f (x)
√
cτ dx +

∫
X \Xτ

q(x)
√
λ dx

=

∫
Xτ

f (x)
√
cτ dx +

√
λ

(
1 − cτ −

∫
Xτ

q(x) dx
)

=

∫
Xτ

(
f (x)

√
cτ −

√
λq(x)

)
dx +

√
λ(1 − cτ )

=
√
λcτ

∫
Xτ

(
f (x)
√
cτ λ

−
q(x)

cτ

)
dx +

√
λ(1 − cτ )

=
√
λcτ +

√
λ(1 − cτ ) =

√
λ, (26)

i.e. F 2cτ ≤ λ. We have used Eq. (25) and
∫

X q(x) dx = 1 − cτ . Note
that if X equals Xτ , Eq. (25) becomes equality and λ equals F 2cτ .

C BOUNDING ESTIMATOR’S SECOND MOMENT
Here we derive the upper bound of one sample estimator’s second
moment (Eq. (7)) for the MIS-compensated pdf. We make several
observations: given the bounds on λ (Eq.(10)), we can write

√
cτ λ as√

cτ λ = kF , cτ ≤ k ≤ 1. (27)

We observe that normalization constant b of p̃τ (x), Eq. (6), can be
bounded from above as follows

b =

∫
X

max{0, f (x)
cτ F

−
q(x)

cτ
} dx ≤

∫
X

f (x)

cτ F
dx = 1

cτ
(28)

and also from below (where we use the lower bound F 2cτ ≤ λ)

b ≥

∫
Xτ

max{0, f (x)
cτ F

−
q(x)

cτ
} dx

≥

∫
Xτ

max{0, f (x)√
cτ λ

−
q(x)

cτ
} dx = 1. (29)

We first prove that the effective pdf peff is greater or equal in
X \ Xτ if we use theMIS-compensated pdf instead of the optimal pdf

peff (x) = q(x) + cτ p̃τ (x) ≥ q(x) = q(x) + cτp
∗
τ (x), (30)

where we have used the fact that p̃τ (x) ≥ 0 and p∗τ (x) = 0 in X \ Xτ .
Now we bound the same effective pdf peff in Xτ

q(x) + cτ p̃τ (x) = q(x) +
cτ
b
(
f (x)

cτ F
−
q(x)

cτ
)

=
k

bcτ

(
bcτ − cτ + k

k
q(x) + cτp

∗
τ (x)

)
≥

k

bcτ

(
q(x) + cτp

∗
τ (x)

)
≥ cτ

(
q(x) + cτp

∗
τ (x)

)
, (31)

where we have used Eq. (27), the fact that bcτ − cτ ≥ 0 due to the
lower bound of b in Eq. (29), and k/(bcτ ) ≥ cτ due to lower bound
of k in Eq. (27) and upper bound of b in Eq. (28).
If we now put Eqs. (30) and (31) together we get the following

inequality for all x ∈ X : q(x) + cτ p̃τ (x) ≥ cτ (q(x) + cτp
∗
τ (x)). From

this we immediately get the inequality for the second moment of
the one-sample estimator (Eq. (7)), J [p̃τ ] ≤ 1

cτ J [p
∗
τ ].

D DERIVING PRACTICAL HDR MAP PDF
Here we derive the final pdf for practical sampling from an HDR
map, Eq. (14), by integrating the pdf pnd

I (ωi |n) defined in Eq. (13)
over all normal directions with positive cosine term |ωi · n|+.

∫
H (ωi)

1/bnd max{0,

P1(ωi,n)︷                     ︸︸                     ︷
fnd(ωi, n)

cI
∫

H (n) fnd(ω , n) dω
−

1 − cI
cI

P2(ωi,n)︷    ︸︸    ︷
|ωi · n|+

π
dn.

Since the above integral cannot be evaluated analytically, we move
the integration inside the max operator and integrate P1 and P2 from
the above equation separately.We can see that

∫
H (ωi)

P2(ωi, n) dn=1
and we approximate integration of P1(ωi, n) as∫

H (ωi)
P1(ωi, n) dn =

∫
H (ωi)

fnd(ωi, n)

cI
∫

H (n) fnd(ω , n) dω
dn

≈

∫
H (ωi)

fnd(ωi, n)

cI
∫

H (n) LI(ω )/π dω
dn

≈

∫
H (ωi)

LI(ωi)|ωi · n|+/π

2L̄IcI
dn

=
LI(ωi)

2L̄IcI

∫
H (ωi)

|ωi · n|+/π dn =
LI(ωi)

2L̄IcI
, (32)

where we have used that the mean L̄I of the tabulated illumination
LI is roughly equal to 1/(2π )

∫
H (n) LI(ω ) dω . We can now put the

above results together and we get∫
H (ωi)

pnd
I (ωi |n) dn ≈ 1/bnd max{0,

LI(ωi)

2L̄IcI
−

1 − cI
cI

}. (33)

Finally, we can remove the factor 1/cI, multiply by 2L̄I, and normal-
ize the pdf to get the final result, Eq. (14).
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