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Welcome to our presentation about optimal multiple importance sampling
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Goal: Low noise in short time
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• In Monte Carlo rendering, images contain noise.
• Eventually, given enough time, that noise will go away.
• Our goal is to minimize the time it takes to arrive at a converged image.
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MIS: Two wrongs can make a right

Technique A Technique B Combined (MIS)
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• There are different algorithms for rendering images.
• Each has benefits and disadvantages.

• <click> In the example on the left, the direct illumination on the wall is 
handled poorly <click> while in the example on the right it is captured nicely

• The glossy reflection on the ball is the exact opposite : <click> it is captured 
nicely on the left example, <click> but it is poor on the right.

• <click> Fortunately, MIS can be used to combine both, achieving a nice image
overall.
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Veach and Guibas:
“Optimally Combining Sampling Techniques for Monte Carlo Rendering.” 
SIGGRAPH ’95.

MIS: Essential for the path tracing revolution
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• MIS was invented in 1995 by Veach and Guibas

• It had such a tremendous impact that Eric Veach was awarded the Scientific 
and Engineering Award in 2014. 
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MIS: Increases robustness, may reduce efficiency
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MIS with the 
balance heuristic
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Can we do better?

• But MIS is not perfect.
• In this example, we combine two techniques to render the scene on the left.
• <click> One is almost perfect on the wall above the stairs, the other performs poorly 

there.
• <click> Unfortunately, MIS with the balance heuristic keeps some of the error of the 

worse technique.
• <click> So the question is: can we somehow do better than that? 
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MIS: Increases robustness, may reduce efficiency
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MIS with the 
balance heuristic
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MIS with our 
optimal weights

10x better!

• And indeed, we can.
• We derived the optimal MIS weights.
• In this case, they keep the lower error of the almost perfect technique.
• and the image in overall has a ten times lower level of noise.
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Contributions

• A: Balance heuristic’s variance bounds reconsideration

• B: Optimal weights derivation

• C: Control variate interpretation

• D: Practical implementation
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• (Entry) The complete list of our contributions starts by 

• showing that the balance heuristic is further from the optimum than believed 
so far.

• Deriving the new optimal weights that provably minimize an MIS estimator 
variance.

• Proving that the optimal weights are equivalent to a control variate.

• And last, we show that the optimal weights are not a mere theoretical 
construct, they lend themselves to a practical implementation in light 
transport.
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Background and Related Work

• Before explaining you our approach, let me give you some high-level background on 
MIS.
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∫          𝑑𝒙

Light transport simulation

Pixel

𝒙

𝐼pixel =     𝑓(𝒙)

Contribution

Path 𝒙
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• When we perform light transport simulation,
• <click> we have to find a light path incident with a pixel,
• <click> take its contribution
• <click> and integrate over all such paths. To estimate that integral efficiently by 

Monte carlo, we use the importance sampling approach.
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Importance sampling

𝑓
𝑝

𝑋௜ ~ 𝑝
𝑋ଶ,௜ ~ 𝑝ଶ

𝑋ଷ,௜ ~ 𝑝ଷ
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𝐹 ෍
𝑓(𝑋௜)

𝑝(𝑋௜)
=

1

𝑛

∫          𝑑𝒙𝐹 =     𝑓(𝒙)

• (Entry) Consider a simple integration problem, where we integrate a function f

• <click>To estimate its integral we use an importance sampling technique p and we 
draw samples according to it

• <click>Finally, we obtain an estimate of the integral by combining all samples. The 
better we sample important parts of the integrand the lower the variance of the 
estimator is. But what if we cannot find a single technique that would sample f well?
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𝑋ଵ,௜ ~ 𝑝ଵ

𝑋ଶ,௜ ~ 𝑝ଶ

𝑋ଷ,௜ ~ 𝑝ଷ

Multiple importance sampling

Weighting functions

𝐹 =  ∫ 𝑓 𝑥

Veach and Guibas [1995]
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𝑓
𝑝ଵ

𝑝ଷ

𝑝ଶ
𝐹 ଵ

𝑤ଶ𝑤ଵ𝑤ଷ
𝑋ଵ,௜ ~ 𝑝ଵ

𝑋ଶ,௜ ~ 𝑝ଶ

𝑋ଵ,௜ ~ 𝑝ଵ

1

𝑛ଵ
෍

𝑓(𝑋ଵ,௜)

𝑝ଵ(𝑋ଵ,௜)
=

𝐹 ଶ

1

𝑛ଶ
෍

𝑓(𝑋ଶ,௜)

𝑝ଶ(𝑋ଶ,௜)
=

𝐹 ଷ

1

𝑛ଷ
෍

𝑓(𝑋ଷ,௜)

𝑝ଵ(𝑋ଷ,௜)
=

𝑤ଵ 𝑋ଵ,௜

𝑤ଶ 𝑋ଶ,௜

𝑤ଷ 𝑋ଷ,௜

𝐹 =

+

+

• (Entry) Then Multiple importance sampling can help us. 

• <click> There might be another technique suited for sampling a different part of f.

• <click> It generates another set of samples and <click> defines another estimator.

• <click> And a third technique, <click> with its samples and <click> estimator.

• <click> Now we introduce a set of weighting functions, one weighting function for 
each sampling technique.

• <click> Finally, we form an MIS estimator by re-weighting the contributions of 
individual estimators by means of weighting functions. That will yield a more robust 
MIS estimator.
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Previous attempts to improve MIS

• Sample allocation
• Pajot et al. [2011]
• Lu et al [2013]
• Havran and Sbert [2014], Sbert et al. [2016], 

Sbert and Havran [2017], …

• Weighting functions
• Georgiev et al. [2012]
• Elvira et al. [2015; 2016]
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1

𝑛ଵ
෍

𝑓(𝑋ଵ,௜)

𝑝ଵ(𝑋ଵ,௜)

1

𝑛ଶ
෍

𝑓(𝑋ଶ,௜)

𝑝ଶ(𝑋ଶ,௜)

1

𝑛ଷ
෍

𝑓(𝑋ଷ,௜)

𝑝ଵ(𝑋ଷ,௜)

𝑤ଵ 𝑋ଵ,௜

𝑤ଶ 𝑋ଶ,௜

𝑤ଷ 𝑋ଷ,௜

𝐹 =

+

+

• The most of research effort in improving MIS falls into two categories:

• <click> One category represents optimal sample allocations among techniques, 
because fixed sample allocations have its shortcomings.

• <click> In the other category, people were investigating weighting functions which 
would improve upon the existing ones. 

• But one set of weights was always considered as almost optimal – the balance 
heuristic.
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Balance heuristic

• Simple weighting functions

• Close to optimal
• tight variance bounds by Veach and Guibas [1995]
• no other strategy can do much better

• ⇒ A de facto universal solution

But what about our 10x speedup?
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𝑤௜ 𝑥 =
𝑛௜𝑝௜(𝑥)

∑ 𝑛௞𝑝௞(𝑥)

We show that it
does not hold!

𝑛௜𝑝௜(𝑥)

• The balance heuristic weights are easy to compute. 

• <click> They are proportional to the sampling technique times the number of samples 
taken from it. 

• <click> So after normalization we get this simple formula.

• At the same time, these weights are close to optimal. According to the tight variance 
bounds derived by Veach and Guibas no other weights can achieve much lower 
variance.

• Therefore it has been used as a de facto universal solution.

• <click> But how could we get the 10-times speedup we showed you in the beginning?

• <click> Because the variance bounds do not hold!
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Exhibit A
Variance bounds do not hold

Realizing this is our first contribution. Let’s take a look on it.
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Variance bounds derivation

• V 𝐹 = M2 − M1ଶ

Veach and Guibas [1995]
Va

ria
nc

e
# samples

Balance
Heuristic (BH)

(Alleged) variance 
bounds for BH
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Step 1: Find 𝑤௜ that minimize 𝑀2

Step 2: Find upper bound

• When deriving the bounds Veach and Guibas considered the variance of an MIS 
estimator split into two terms.

• <click> By minimizing the first one the balance heuristic is obtained. We plot the 
variance of the resulting estimator vs. total number of samples on the right.

• <click> Then the authors bounded the second term from above and got the assumed 
variance bounds.

• <click> No alternative weighting functions can have variance in the red area.
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(Alleged) variance 
bounds for BH

Assumption: Positive weights

+∞

−∞

1

0

Unrestricted
weights

(our work)

Weight value

Positive weights
(Veach & Guibas)
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Va
ria

nc
e

# samples

Balance
Heuristic (BH)

???

• However, we investigated their derivation further and realized that 

• <click> they assumed only positive weights restricted to the interval 0 and 1.

• <click> But the MIS framework allows for weights which are not restricted! This 
simple fact has not been recognized up until now, 

• <click> Removing the restriction of positive weights invalidates Veach's bounds`.

• <click> and it opens up to possibility that the truly optimal MIS weights have much 
lower variance.
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Exhibit B
Optimal MIS weights

Now we know that the optimal solution can be much better than the bounds 
suggest. But how can we compute it?
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Derivation approach

• V[ 𝐹 ] = M2 − M1ଶ

Our work: 
Minimize the entire expression
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Va
ria

nc
e

# samples

Balance
Heuristic (BH)

Our optimal weights

Veach and Guibas: Find 𝑤௜ that minimize 𝑀2

• <click>

• Our starting point is again the MIS variance formula.

• <click> But instead of minimizing just the first part, we apply calculus of variations to 
minimize everything in terms of weighting functions.

• <click> That gives us provably optimal weights.
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𝑤௜ 𝑥 =
𝛼௜𝑝௜(𝑥)

𝑓(𝑥)
+

𝑛௜𝑝௜(𝑥)

∑ 𝑛௞𝑝௞(𝑥)
 1 −

∑ 𝛼௞𝑝௞(𝑥)

𝑓(𝑥)

Optimal weights formulation

Balance heuristic
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• (Entry) The optimal weights then have the following form

• <click> Note that they include the balance heuristic as part of their formulation. Also 
note that they include the integrand f itself in denominators, which is very 
uncommon among combination strategies widely used.
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𝛼ଵ

⋮
𝛼ே

𝑤௜ 𝑥 =
𝛼௜𝑝௜(𝑥)

𝑓(𝑥)
+

𝑛௜𝑝௜(𝑥)

∑ 𝑛௞𝑝௞(𝑥)
 1 −

∑ 𝛼௞𝑝௞(𝑥)

𝑓(𝑥)

Optimal weights formulation

𝑎௜௝ =  න
𝑝௜𝑝௝

∑ 𝑛௞𝑝௞
𝑏௜ = න

𝑝௜𝑓

∑ 𝑛௞𝑝௞

Balance heuristic
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𝑨 𝒃

𝑎ଵଵ ⋯ 𝑎ଵே

⋮ ⋱ ⋮
𝑎ேଵ ⋯ 𝑎ேே

=
𝑏ଵ

⋮
𝑏ே

𝑁 = # sampling 
techniques

• (Entry) The formula also contains additional coefficients, which we denote alpha.

• <click> There is as many of these coefficients as there is sampling techniques. And 
how do we compute these alphas?

• <click> These are the solution to the following linear system represented by a matrix 
A and a vector b, where the matrix A’s size is N-by-N and the vector b is a 
column vector of length N.

• <click> The individual elements forming the matrix A resemble projections of 
sampling techniques onto themselves, and elements of the vector b resemble 
projection of f into a system of sampling techniques.
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Our optimal weights

Summary
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No weights can be better
(for the same sample allocation)

Va
ria

nc
e

# samples

(Alleged) variance bounds 
for the balance heuristic

• To summarize: we obtained a closed form formula for provably optimal MIS weights, 
and no weights can be better in terms of variance for the same sample allocation.
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Exhibit C
Optimal MIS weights are 
Control Variates

Now we show a relationship between the optimal MIS weights and optimal 
control variates.

24



𝑓

Equivalence to optimal Control Variates
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MIS EstimatorOptimal 𝑤௜
Control Variate 

Estimator

𝑓 − 𝑔
𝑓

𝑔

𝐺 𝐹 − 𝐺𝐹

𝑔 = ∑𝛼௜𝑝௜

• (Entry) If we take the formula for our optimal weights ..

• <click> and plug it into the formula for an MIS estimator ..

• <click> the resulting estimator is equivalent to a control variate. 

• <click> This means that we estimate the integral of f indirectly, based on a known 
integral of a function g <click> to which we add an estimated integral of the 
difference between f and g <click> 

• <click> In our case the function g is a linear combination of the sampling techniques 
where the coefficients are the alphas.
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Owen and Zhou [2000]

• Setup
• MIS + control variate
• Form 𝑔 = ∑𝛽௜𝑝௜

• Result
• Optimal coeff. 𝛽௜

Our approach

• Setup
• MIS framework

• Result
• Optimal MIS weights
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Equivalence to optimal Control Variates

𝛽௜ = 𝛼௜

• Control variates of this form have been studied before, the most related work 
is by Owen and Zhou.

• They assumed the Balance heuristic <click> used together with Control variate. 
Then they limited themselves to CV formed <click> as some linear 
combination of the sampling techniques. 

• Then they found the optimal coefficients in this space <click>. of the linear 
combination which are our alphas.

• On the other hand <click>, we took the MIS framework and without any 
further assumptions we found the provably optimal MIS weights <click>.

• Moreover, <click> we show that all CVs of the linear combination form are 
equivalent to some MIS weights and that the optimal solutions to both 
problems are the same.
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Exhibit D
Optimal MIS weights are 
practical

• Knowing the optimal solution in theory is one thing. Now, we show that the 
weights can be actually used in practice.

27



How to compute?

𝑎௜௝, 𝑏௜ can be estimated from drawn samples
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𝛼ଵ

⋮
𝛼ே

𝑨 𝒃

𝑎ଵଵ ⋯ 𝑎ଵே

⋮ ⋱ ⋮
𝑎ேଵ ⋯ 𝑎ேே

=
𝑏ଵ

⋮
𝑏ே

𝑎௜௝ =  න
𝑝௜𝑝௝

∑ 𝑛௞𝑝௞
𝑏௜ = න

𝑝௜𝑓

∑ 𝑛௞𝑝௞

• (Entry) Recall the linear system we have to solve to obtain the alpha coefficients in 
the optimal weights.

• <click> The elements of A and b are defined as integrals

• <click> but they can be easily estimated from the samples we draw when computing 
the MIS estimator. 

• We suggest two possible practical implementations. 
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result 
 

← result/𝑴

𝜶  
 

← solve 𝑨𝜶 = 𝒃

Update 𝑨, 𝒃

result 
 

← result + 𝐹௢௣௧

given current 𝜶

Draw samples from all 
techniques

Progressive algorithm

𝜶 
 

← 0,  result 
 

← 0

𝑴 x
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• (Entry) The first one is called Progressive.

• After the initialization <click>, 

• we <click> first draw samples from all techniques.

• Then <click> we accumulate the MIS estimate using the optimal weights but 
computed with alphas estimated from all previously seen samples.

• We <click> update the linear system

• and <click> re-compute the alphas.

• <click> This is repeated several times,

• and finally<click>, after leaving the loop, we return average of all the estimates.
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Progressive algorithm

result 
 

← result/𝑀

𝜶  
 

← solve 𝑨𝜶 = 𝒃

Update 𝑨, 𝒃

result 
 

← result + 𝐹௢௣௧

given current 𝜶

Draw samples from all 
techniques

𝜶 
 

← 0,  result 
 

← 0

𝑴 x
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Observation

∑ 𝛼௜ is a (biased) estimator of 𝐹

• (Entry) The second approach how to implement the optimal weights is based on an 
observation that a sum of the estimated alphas forms also an estimator of the 
integral F. 

30



Progressive algorithm

result 
 

← ∑ 𝛼௜

𝜶  
 

← solve 𝑨𝜶 = 𝒃

Update 𝑨, 𝒃

𝑴 x
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Draw samples from all 
techniques

𝜶 
 

← 0,  result 
 

← 0

result 
 

← result/𝑵

𝜶  
 

← solve 𝑨𝜶 = 𝒃

Update 𝑨, 𝒃

result 
 

← result + 𝐹௢௣௧

given current 𝜶

Draw samples from all 
techniques

𝜶 
 

← 0,  result 
 

← 0

𝑵 x

Direct algorithm

• (Entry) We call the resulting algorithm Direct.

• <click> Here, instead of using the optimal weights formula for mixing the individual 
contributions, we just keep updating the linear system.

• <click> After leaving the main loop we solve the system for alphas and <click> the 
result is then formed as their sum.

• While this algorithm is slightly biased, it is consistent and more efficient than the 
Progressive one.
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Rendering results

• (Entry) Now we can show some of the results we were able to obtain with the 
optimal weights.
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Direct illumination applications

• Applications I – combining standard techniques
• Applications II – designing novel techniques
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• (Entry) We applied them to the problem of direct illumination and went in two 
directions: applying them to standard techniques and designing novel ones.

• <click> We start by showing the results for combining standard techniques.
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Combining standard techniques

• Show the scene,

Trained technique

Uniform technique

Light A

Light B
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• (Entry) For that we use our scene from the introduction.

• <click> The scene is illuminated by two lights.

• <click> When shading a point on the floor, we have to randomly select one of the 
lights. 

• <click> Suppose we have a technique, which samples the lights according to their 
unoccluded contribution. We call this technique Trained. We can see it works nicely 
<click> in places illuminated by both lights and much worse <click> when light 
occlusion occurs.

• <click> Now, if we distribute samples across the lights uniformly, we see the opposite 
effect: it works much better in shadows.
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Combining standard techniques

Balance heuristicOur optimal weights
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13x better

Trained technique

Uniform technique

• (Entry) Now we combine the two respective techniques using MIS.

• <click> By using the balance heuristic we obtain decent results, where we no longer 
see the excessive noise <click> from the Trained technique. But whenever the Trained 
technique performed good alone, <click> the result is now compromised by the 
uniform technique.

• <click> When using the optimal weights, we can see much better results. They even 
out-perform the individual sampling techniques where they performed good already. 
That is due to the optimal weights acting as the control variates.
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Direct illumination applications

• Applications I – combining standard techniques
• Applications II – designing novel techniques
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• (Entry) That gets us to why we felt motivated to design completely new techniques.
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Reminder: Optimal weights are control variates

Kondapaneni, Vévoda, Grittmann, Skřivan, Slusallek, Křivánek -- Optimal multiple importance sampling37

The closer 𝑓 − 𝑔 to zero, the smaller the variance

𝑓 − 𝑔
𝑓

𝑔

𝐺 𝐹 − 𝐺𝐹

𝑔 = ∑𝛼௜𝑝௜

• (Entry) To recap, the optimal weights represent a control variate formulation, where 
function g, formed by the linear combination of the sampling techniques, acts as a 
control variate for the integrand. And the closer the control variate g is to the 
integrand, the lower the variance is.
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Insight: “Bad” techniques can reduce variance
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Techniques Control variate

𝑓(𝑥)

𝑝ଵ(𝑥)

𝑝ଶ(𝑥)

𝛼ଵ𝑝ଵ 𝑥 + 𝛼ଶ𝑝ଶ 𝑥

• Therefore, we design sampling techniques in a way that improves their linear 
combination.

• Consider this illustration where the dashed line is the function f that we want to 
integrate.

• <click> For that, we have a uniform sampling technique, shown in orange

• To improve the expressive power of the linear combination, we add this blue 
technique <click>. For importance sampling, this technique is a horrible choice. 

• <click> For a control variate, however, we achieve a close to perfect linear 
combination, the red line on the right.

• Now we show how this can be applied in rendering.
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Example: Direct illumination
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Light (parallel)

Spherical
technique

Uniform area
technique

• (Entry) Consider we have a lambertian area light, and we want to apply our optimal 
weights to compute direct illumination on a diffuse surface.

• Also consider the following sampling techniques: the spherical technique <click>
which samples uniformly the light’s projection on the hemisphere, and the uniform 
area technique <click>, which samples uniformly the light’s surface.
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Comparison: Spherical projection, uniform area

Uniform area 
technique
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Spherical 
technique

• Let us compare these two techniques in a simple scene. The dining room shown here 
is illuminated by a single rectangular light above and parallel to the table.

• <click> The spherical technique produces a nice image overall

• <click> while the uniform area sampling has a higher level of noise throughout
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Combination better than spherical alone!
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1.7x worse 1.9x better

MIS: our optimal 
weights

(10 + 10spp)

MIS: balance 
heuristic

(10 + 10spp)

Spherical 
technique alone 
(baseline, 20spp)

• And now, instead of taking 20 samples per pixel from the spherical technique alone, 
we replace half of them by samples from the worse uniform technique and combine 
them using the balance heuristic <click>. As expected the resulting image gets worse.

• <click> With our optimal weights, however, the opposite is the case. The combination 
actually almost doubles the performance.
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Can we do even better?
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Light (parallel)
Light (at angle)

Spherical
technique

Uniform area
technique

Parallel
technique

• Now the question is, can we find a combination that works even better?

• If we look at this sketch, for a case where the light is not parallel to the 
surface<click>, the spherical and uniform area techniques will be similar. Their linear 
combination will have less expressive power.

• <click> So we introduce a completely new technique: sampling the parallel projection 
of the light source area.
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Can we do even better?
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• If we look at the individual rendering results, it is clear that the parallel projection is 
not a sensible technique on its own.

• The level of noise is significantly higher than with either of the two other 
techniques.
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Alone, the parallel technique is even worse

Uniform area 
technique
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Spherical 
technique

Parallel 
technique

• If we look at the individual rendering results, it is clear that the parallel projection is 
not a sensible technique on its own.

• The level of noise is significantly higher than with either of the two other 
techniques.
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Spherical 
+

Uniform area

With our optimal weights: even better

Kondapaneni, Vévoda, Grittmann, Skřivan, Slusallek, Křivánek -- Optimal multiple importance sampling45

1.7x worse 3.4x better

Spherical
+

Parallel

1.9x better

Spherical 
alone 

(baseline, 20spp)

• But if we look at the result when combining the parallel and the spherical technique 
via our optimal weights <click>, 

• the image is not only better than the spherical technique alone but on the surfaces
not parallel to the light <click> it is even better than the optimal weights combination 
with the uniform technique.
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Limitations

• Our approach also has its limitations.
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Limitations: Salt & pepper for few samples

2 spp 16 spp4 spp 8 spp
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Optimal weights / Balance heuristic

• When using either the progressive or direct version of our algorithm we can observe 
salt and pepper noise for very low sample counts. That is caused by instability of the 
linear system we need to solve for alphas. But this type of noise can be easily 
denoised if such low sample counts are really needed.
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Limitations: Overhead

• Overhead for a large number 𝑁 of techniques
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𝑎ଵଵ ⋯ 𝑎ଵே

⋮ ⋱ ⋮
𝑎ேଵ ⋯ 𝑎ேே

𝛼ଵ

⋮
𝛼ே

=
𝑏ଵ

⋮
𝑏ே

𝑁 × 𝑁 matrix

• Another issue is big overhead when using the optimal weights, as the linear system 
complexity is quadratic with the number of sampling techniques used.

• This is relevant for example in a bi-directional path tracer, where for each path length 
we have corresponding number of techniques which need to be combined.
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Summary & Future work 

• Let us wrap up our presentation with list of our contributions and possible future 
work.
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Contributions

• Balance heuristic bounds revisited

• Optimal MIS weights

• Connection to Control Variates

• Practical algorithms
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• <click> We revisited the bounds on variance of the balance heuristic,

• <click> which lead us to investigation what is the optimum in space of all MIS weights

• <click> and we found this optimum to be equivalent to a particular control variates 
formulation.

• <click> Finally, we showed the practical application of the optimal weights.
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Future work

• Path guiding, VCM

• Correlated samples

• Optimal sample allocation

• Simpler alternative heuristics:    𝑤௣௢௦௜௧௜௩௘ ≤ 𝑤?? ≤ 𝑤௢௣௧
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• (Entry) We admit that our applications are more a proof-of-concept, but we 
hope that our work will motivate further research.

• <click> For example application of the optimal weights in path guiding and 
bidirectional methods.

• <click> We see future work also in application to estimators with correlated samples,

• <click> and completing our approach by optimal sample allocation.

• <click> Also simpler alternative heuristics might exist, which would have lower 
overhead than the optimal weights but still outperform the ordinary heuristics.
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Example

𝑓 𝑝ଶ𝑝ଷ

𝑝ଵ
1.33

Balance heuristic Optimal

0.33

Variance

0.5

BH

Optimal

0.83

1 sample per technique
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• (Entry) Let me illustrate the issue with bounds on a synthetic example

• Suppose we have our integrand and sampling densities as depicted, and suppose we 
draw one sample per each technique.

• Then the weights for the balance heuristic used for the above problem will yield 
variance 1.33, and the bounds for balance heuristic computed according to Veach
and Guibass suggest that the best combination strategy shouldn’t achieve lower 
variance than 0.83

• But the optimal weights for this case as shown in the picture attain also negative 
values in some parts of the domain, and they achieve variance little over 0.3, which is 
much lower than suggested by the usual bounds.
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Comparison: Progressive and direct

# samples# samples

Variance Bias

Direct estimator Progressive 
estimator

𝐹 ௢௣௧
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• (Entry) Now, using some of our results from synthetic tests, we compare the 
progressive and direct estimators in terms of MSE and Bias versus number of samples 
used in their computation.

• We can see that the direct estimator achieves better MSE for low sample counts. This 
is because the first iterations of the progressive algorithm are weighted with 
too coarse estimates of alpha. The noise from these iterations is only gradually 
averaged out.

• On the other hand, the direct estimator is biased, but consistent, and on the right we 
plot its bias for increasing sample counts. The bias is introduced by the inversion of 
the estimated linear system used for computing the alphas. Contrary to that the 
progressive estimator is unbiased, as it forms an unbiased estimator for any alphas 
used in its formula. By choosing between Direct and Progressive algorithm we 
tradeoff a little bias for lower noise.
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Variance analysis

𝑉[ 𝐹 ௢௣௧] = 𝑉[ 𝐹 ௕௔௟]  − 𝑉[ 𝐺 ௕௔௟]

Zero when 𝛼 ∝ 𝑛ଵ, … , 𝑛ே
்
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• (Entry) Based on the control variate formulation, we performed a variance 
analysis of the optimal estimator ..

• and we reached to the following decomposition of variance into variance of 
balance heuristic and variance of control variate. 

• The second term is zero when the elements of the vector α are proportional to 
the number of samples from the individual sampling techniques. In that case, 
the balance heuristic is optimal.
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Zero samples can’t be killed

• Compute MIS even when  
𝑓 𝑥 = 0

• Because we use CV! Sampled 𝜔௜

Can’t kill when
𝐿௜(𝜔௜) = 0

Light source

Example: Next-event estimation
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• (Entry) Also the usual optimization approach of ignoring samples for which an 
integrand is zero can not be used, because we still need to compute Control Variates 
part for each of the samples. 

• This typically happens when we do next-event estimation, where the contribution is 
zero for a lot of BSDF samples! 
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Summary
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Balance heuristicOptimum

Veach and Guibas [1995]:

Variance

Room for improvement 

Weights in (0, 1)

• To sum up: variance bounds proven by Veach and Guibas make people believe that 
the balance heuristic is almost optimal and there is not much room for improvement.

• But the proof of the bounds assumes only weights between 0 and 1

• Removing this restriction invalidates Veach's bounds and opens up to MIS weighting 
with much lower variance that what's been believed so far to be possible.
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𝑋௢,ଵ, 𝑋௢,ଶ, … , 𝑋௢,௡೚
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Multiple importance sampling

Combination strategy

𝐹 =  ∫ 𝑓 𝑥

Veach and Guibas [1995]
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𝑓
𝑝௕

𝑝௢

𝑝௚
𝐹 ଴ =

1

𝑛ଵ
෍

𝑓(𝑋ଵ,௜)

𝑝ଵ(𝑋ଵ,௜)

𝑤௚𝑤௕𝑤௢

• (Entry) Then Multiple importance sampling can help us. 

• We have several sampling techniques, each possibly suited for sampling different 
parts of f, 

• and they form several estimators.

• Now we introduce a combination strategy which is a set of weighting functions, one 
weighting function for each sampling technique.

• Finally, we form an MIS estimator by re-weighting the contributions of individual 
estimators by means of weighting functions. That will yield a more robust estimator, 
an MIS estimator.

59


