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Guiding and Shadow Rays
Importance sampling of many light sources

� sampling proportional to integrand

– requires to include visibility

p ∼ fr cosθ

p ∼ Lefr cosθ

� goals
– massively parallel

– linear in number of paths

– constant time

2



Guiding and Shadow Rays
Importance sampling of many light sources

� sampling proportional to integrand

– requires to include visibility

p ∼ fr cosθ p ∼ Lefr cosθ

� goals
– massively parallel

– linear in number of paths

– constant time

2



Guiding and Shadow Rays
Importance sampling of many light sources

� sampling proportional to integrand
– requires to include visibility

p ∼ fr cosθ p ∼ Lefr cosθ

� goals
– massively parallel

– linear in number of paths

– constant time

2



Guiding and Shadow Rays
Importance sampling of many light sources

� sampling proportional to integrand
– requires to include visibility

p ∼ fr cosθ p ∼ Lefr cosθ

� goals
– massively parallel

– linear in number of paths

– constant time

2



Guiding and Shadow Rays
Previous work

� sorting lights by their unoccluded contribution, keeping record of their average visibility
– Adaptive shadow testing for ray tracing [War91]

� potentially visible sets
– Visibility computations in densely occluded polyhedral environments [Tel92]

� spatial subdivision referencing important lights per stratum (besides many other useful things)
– Monte Carlo techniques for direct lighting calculations [SWZ96]

� contributing light sources determined by photons
– Efficient importance sampling techniques for the photon map [KW00]

� contribution of light sources estimated by sampling some paths across the image
– Interactive global illumination in complex and highly occluded environments [WBS03]
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Guiding and Shadow Rays
Previous work

� importance resampling
– Importance resampling for global illumination [TCE05]

� cache points referencing contributing lights
– Importance caching for complex illumination [GKPS12]

� probabilistic traversal of light hierarchy
– Efficient sampling of many lights [Ces14], see https://ompf2.com/viewtopic.php?t=1938

� caching importance records
– Probabilistic connections for bidirectional path tracing [PRDD15]

� generalization to guiding by probability hierarchies
– The Iray light transport simulation and rendering system [KWRSvAKK17]
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Guiding and Shadow Rays
Previous work

� refined bounds and clustering
– Importance sampling of many lights with adaptive tree splitting [CK18]

� cache points referencing lights accounting 97% of the energy
– The design and evolution of Disney’s Hyperion renderer [BACDHKKKT18]

� learning importance of clusters in a hierarchy combined with separation of the main part
– Bayesian online regression for adaptive direct illumination sampling [VKK18]

� data structures
– Efficient data structures and sampling of many light sources for next event estimation [Mik18]

– see https://github.com/AndiMiko/masterthesis/releases
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Importance Sampling
Partial cumulative distribution function (CDF)

� index set I := {i1, . . . , ik} ⊆ {1, . . . ,n} of references ij to (point) light sources

� probability density function storing only the qi for i ∈ I

pi :=

(1−b) ·qi + b · 1
n for i ∈ I

b · 1
n for i 6∈ I

� sampling
– proportional to qi with probability 1−b, using cumulative distribution Qk := ∑

k
j=1 qij

– uniform with probability b

� discrete density simulation, see https://arxiv.org/abs/1901.05423
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Importance Sampling
Finding the probabilities qi

� qi as normalized accumulated flux

Φ =
max{cosω,0} ·L(x ,ω)

p(x) ·p(s,ω)

– probability p(x) of selecting location x (unless point light source)

– probability p(s,ω) of selecting direction ω in shading point s

� learning probabilities qi during path tracing
– simple inclusion of path guiding for scattering

� photon-based next event estimation
– origins of photons within search radius to determine set I of (point) light sources
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Efficient Implementation
Linear complexity

� store one partial CDF per hashed cell

� stochastic interpolation

� accumulate probabilities similar to Massively Parallel Path Space Filtering
– see https://arxiv.org/abs/1902.05942
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Efficient Implementation
Hashing instead of searching

� descriptors for selected vertices include

world space location x

� storing and loading data using hashed quantized descriptors

– trade a larger hash table size for faster access (proportional to number of paths)

– use a second hash of the descriptor instead of storing full keys

– linear probing for collision resolution
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Efficient Implementation
Stochastic interpolation to resolve quantization artifacts

input average per cell

� jitter descriptor (xi , ...) on store and load
– resulting uniform noise amenable to (existing) post filtering
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Efficient Implementation
Stochastic interpolation to resolve quantization artifacts

input average per cell with jittering

� jitter descriptor (xi , ...) on store and load
– resulting uniform noise amenable to (existing) post filtering
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Efficient Implementation
Linear instead of quadratic complexity

� finding the hash table location i

l ← level_of_detail(|pcam−x |)
x ′← x+ jitter(n) · scale ·2l

l ′← level_of_detail(|pcam−x ′|)
x̃ ←

⌊
x ′

scale·2l ′

⌋

i ← hash(x̃ , . . .) % table_size

v ← hash2(x̃ ,n, . . .)

for both averaging and querying

� jittering before quantization hides discretization artifacts in uniform noise
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Results
Comparison at 16 paths per pixel

� uniform sampling
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Results
Comparison at 16 paths per pixel

� multiple importance sampling combining partial CDF including visibility and light hierarchy
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Results
Comparison at 2 paths of length 3 per pixel with 4 shadow rays each bounce

� uniform sampling vs. light hierarchy vs. new method
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Results
Comparison at 8 paths of length 4 per pixel

� light hierarchy vs. partial CDF
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Results
Comparison at 8 paths of length 4 per pixel

� light hierarchy vs. partial CDF with path space filtering
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Guiding and Shadow Rays
Sampling proportional to integrand including visibility

� level-of-detail hash of partial CDFs
– light hierarchy as fallback

� stochastic interpolation
– for both accumulation and sampling

� probabilities determined by either path tracing or light paths (photons)

� up next
– learn b by gradient descent

– include bidirectional scattering distribution function
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