

CONFERENCE 4 – 7 December 2018 EXHIBITION 5 – 7 December 2018 Tokyo International Forum, Japan SA2018.SIGGRAPH.ORG

Selective guided sampling with complete light transport paths

Florian Reibold, Johannes Hanika, Alisa Jung, Carsten Dachsbacher

Karlsruhe Institute of Technology, Germany

Path tracing can efficiently handle the majority of

rendering problems in practice (Fascione et al. [2017])

What about the rest?

What about the rest?

T Unproblematic light transport

Difficult light transport outliers

T Unproblematic light transport (**unguided sampling**)

Difficult light transport (guided sampling)

Recent related guiding methods

- Vorba et al. [2014], Müller et al. [2017], ...
 - path guiding using incident radiance information
- Product sampling (Herholtz et al. [2016]) and application to participating media is not straight forward

Path Integral

Monte Carlo Integration

Illustration in 1D

Importance sampling?

• Create samples $X_i \sim p_u$

Keep outliers

Place a Gaussian around each outlier

Define guided PDF as sum over all Gaussians

• Iterate by sampling p_u and p_g

• Keep outliers wrt. p_u and p_g

• Update p_g

• In each iteration, sample paths from p_u and p_g

Keep outliers with highest contribution

- Add paths to the set of guide paths
- Compute Gaussians using neighbourhood information

ide paths neighbourhood

- Guided sampling:
 - Choose guide path randomly and
 - Sample Gaussians incrementally

 Guided and unguided sampling combined with multiple importance sampling

Reference

Path tracing

Guided path tracing

Reference

Path tracing

Guided path tracing

Path Correlation

Specular/glossy

Rough/diffuse

 Compute Gaussians for sampling using nearest neighbours

Guide path

Nearest neighbours

 Compute Gaussians for sampling using nearest neighbours

Nearest neighbours

New path

Sample 3D Gaussian at next vertex?

Guide path

- Nearest neighbours
 - New path

Sample 3D Gaussian at next vertex?

Guide path

- Nearest neighbours
 - New path

Compute 6D covariance matrix for path segments

- Nearest neighbours
 - New path

- Compute 6D covariance matrix for path segments
- And conditional Gaussian using x

- Nearest neighbours
 - New path

- Compute 6D covariance matrix for path segments
- And conditional Gaussian using x

- Nearest neighbours
 - New path

- Compute 6D covariance matrix for path segments
- And conditional Gaussian using x

- Nearest neighbours
 - New path

Sampling next vertex

Next vertex in volume

Sampling of Gaussian

Sampling of **BSDF**

Next vertex on surface

Sampling next vertex

Next vertex in volume

Sampling of Gaussian

Sampling of **BSDF**

Next vertex on surface

Sampling next vertex

Next vertex in volume

Sampling of Gaussian

Sampling of **BSDF**

Next vertex on surface

Sampling next vertex

Next vertex in volume

Sampling of Gaussian

Sampling of **BSDF**

Next vertex on surface

Sampling next vertex

Next vertex in volume

Sampling of Gaussian

Sampling Of **BSDF**

Next vertex on surface

Guided PDF

- Many guide paths could sample the same path X
- We have to sum up all individual probability densities For fast evaluation, we truncate
- Gaussians ($\approx 3\sigma$)
- Acceleration structure for fast pruning

Selecting Guide Paths

- Outliers \neq samples with high contribution
- Outliers classification: Density based outlier rejection (DBOR, Zirr et al. [2018])

Remaining outliers

- Outliers contribute fully to the image
- We remove outliers with DBOR to get clean images

Outliers removed

the image BOR to get clean images

Pool

Reference

Pool - 30min Path tracing

PT

Pool - 30min

Guided path tracing

104k guide paths (\approx 310MB)

Guided PT

PT

Pool - 30min **Guided path tracing + DBOR**

104k guide paths (\approx 310MB)

PT

Guided PT+DBOR

Pool - 30min

Path tracing + DBOR

guided PT

PT + DBOR

PT

guided PT+DBOR

Dragon

Reference

Dragon - 10h Path tracing

2012

ΡΤ

Dragon - 10h

Guided path tracing

69k guide paths (\approx 207MB)

Guided PT

PT

Dragon - 10h **Guided path tracing + DBOR**

69k guide paths (\approx 207MB)

PT

Guided PT

Guided PT+DBOR

Dragon - 10h

Path tracing + DBOR

Guided PT PT

PT + DBOR

Guided PT+DBOR

Results

More results in the paper/supplemental document

Limitations & Future Work

- When every path is an outlier, no path is an outlier
- Impossible to cover all of path space with guide paths

lier, no path is an outlier *(ij)* bath space with guide paths

path tracing

guided path tracing

4405spp, RMSE 1.30

7921spp, RMSE 0.75

Limitations & Future Work

Temporal stability is challenging

Limitations & Future Work

Temporal stability is challenging

Improvement: Resample guide paths from previous frame

Conclusion

- Data driven path sampling with local exploration behaviour
- Path construction using information of multiple existing paths
- Other Monte Carlo samplers possible as the unguided sampler
- Similarities to Sequential Monte Carlo
- Guide paths could be hand picked (artist) or from Markov Chain without detailed balance

4 – 7 December 2018 CONFERENCE 5 – 7 December 2018 EXHIBITION Tokyo International Forum, Japan I O K Y O SA2018.SIGGRAPH.ORG

Thank you!

Discarded Ideas

- Constant Kernel
- Repeated 3D search for NN
- Metropolis Hastings to resample guide paths
- Relaxation of guide paths (photon map-style)

N ample guide paths (photon map-style)

guided PT

ΡΤ

guided BDPT

BDPT

HSLT

MMLT

Recent Guiding Methods

Vorba et al. [2014]

Vorba et al. [2014] ours

Recent Guiding Methods

Müller et al. [2017] 256spp

260spp

ours

Illustration in 1D

Uniform sampling

Illustration in 1D

Importance sampling

Guided path tracing - iteration 1

Guided path tracing - iteration 2

Guided path tracing - iteration 3

Guided path tracing - iteration 4

Guided path tracing - iteration 8

Guided path tracing - iteration 16

Recent related guiding methods

Recent related guiding methods

Conditional Gaussians

 $\mu_x = \mu x$ $\Sigma_x = \Sigma | x$

Conditional Gaussians

$\mu_x = \mu_1 + \Sigma_{12} \Sigma_{22}^{-1} (x - \mu_2)$ $\Sigma_x = \Sigma_{11} - \Sigma_{12} \Sigma_{22}^{-1} \Sigma_{21}$

Selecting Guide Paths

- DBOR: DeCoro et al. [2010] / Zirr et al. [2018]
- Framebuffer cascade with histogram
- Samples split according to throughput

$C \in [0, 8^1]$

 $C \in [8^2, 8^3]$

 $C \in [8^3, \infty)$

Remaining outliers

- Either: stop adding, clear the framebuffer and restart rendering.
 - Outliers possible because of yet unexplored lighting features or gaps between guide paths.
- Or: keep adding, don't clear the framebuffer
 - Outliers will remain in the framebuffer and won't converge away in reasonable time.

reference

path tracing

guided path tracing

guided path tracing + DBOR

RMSE 0.0345

RMSE 0.0435

path tracing + DBOR

RMSE 0.0345

RMSE 0.1170

RMSE 0.0435

Pool - 30min

guided path tracing + DBOR

RMSE 0.3162

RMSE 0.2550

RMSE 0.1238

Dragon - 10h

guided path tracing + DBOR

RMSE 0.2121

RMSE 0.5012

RMSE 0.6143

path tracing

ed path tracing

guid

removed by **DBOR**

Pool - 30min

reference

ours

removed by DBOR

path tracing

guided path tracing

Dragon - 10h

reference

ours

removed by DBOR

Swimming Pool

Difference

Reference

Guided path tracing + DBOR

Difference

Scene

Learning time

3min

33k

Number of

guide paths

3min

3min

104k (≈300MB)

69k

Pool DBOR Cascade

guided path tracing

path tracing

Guided path tracing - iteration 1

Guided path tracing - iteration 2

Guided path tracing - iteration 3

Guided path tracing - iteration 4

Guided path tracing - iteration 8

Guided path tracing - iteration 16

Limitations & Future Work

Temporal stability is challenging

Limitations & Future Work

Temporal stability is challenging

Guide path sampling

• Pick guide path X_i randomly using weights w_i

- Then in iteration k: $p_g^k(X) = \sum w_i^k p_g^k(X|X_l)$
- Choosing $w_j^k = \frac{C^k(X_j)}{\sum_l C^k(X_l)}$

with
$$C^k(X_i) =$$

circular dependency $\alpha p_u(X_i) + (1 - \alpha) p_g^k(X_i)$

Guide path sampling

• Pick guide path X_i randomly using weights w_i

- Then in iteration k: $p_g^k(X) = \sum w_i^k p_g^k(X|X_l)$
- Therefore $w_j^k = \frac{C^{k-1}(X_j)}{\sum_l C^{k-1}(X_l)}$

with
$$C^k(X_i) = -\frac{\alpha p_i(X_i)}{\alpha p_i(X_i)}$$

oscillation

 $\alpha p_u(X_i) + (1 - \alpha) p_g^k(X_i)$

Guide path sampling

• Pick guide path X_i randomly using weights w_i

• Then in iteration k: $p_g^k(X) = \sum w_i^k p_g^k(X|X_l)$

with
$$C^k(X_i) = -\frac{\alpha p_i(X_i)}{\alpha p_i(X_i)}$$

• Therefore $w_j^k = t \cdot \frac{C^{k-1}(X_j)}{\sum_l C^{k-1}(X_l)} + (1-t) \cdot w_j^{k-1}$ $\alpha p_u(X_i) + (1 - \alpha) p_g^k(X_i)$