Pre-computed Radiance Transfer II

Jaroslav Křivánek, KSVI, MFF UK
Jaroslav.Krivanek@mff.cuni.cz

Acknowledgement

- Mostly based on Ravi Ramamoorthi's slides available from http:// inst.eecs.berkeley.edu/ ~cs283/ fa10

Goal

- Real-time rendering with complex lighting, shadows, and possibly GI
- Infeasible - too much computation for too small a time budget
- Approaches
- Lift some requirements, do specific-purpose tricks
- Environment mapping, irradiance environment maps
- SH-based lighting
- Split the effort
- Offline pre-computation + real-time image synthesis
- "Pre-computed radiance transfer"

Assumptions

- Distant illumination
- No shadowing, interreflection
- Mirror surfaces easy (just a texture look-up)
- What if the surface is rougher...
- Or completely diffuse?

SH-based Irradiance Env. Maps

Reflection Maps

- Phong model for rough surfaces
- Illumination function of reflection direction R
- Lambertian diffuse surface
- Illumination function of surface normal N

- Reflection Maps [Miller and Hoffman, 1984]
- Irradiance (indexed by N) and Phong (indexed by R)

Reflection Maps

- Can't do dynamic lighting
- Slow blurring in pre-process

Analytic Irradiance Formula

Lambertian surface acts like low-pass filter

$$
E_{l m}=A_{y} L_{l m}
$$

Ramamoorthi and Hanrahan 01 Basri and J acobs 01

$$
A_{1}=2 \pi \frac{(-1)^{\frac{1}{2}-1}}{(l+2)(l-1)}\left[\frac{l!}{2^{l}\left(\frac{l}{2}!\right)^{2}}\right] \quad \text { l even }
$$

9 Parameter Approximation

RMS Error $=1 \%$
For any illumination, average error < 3\% [Basri J acobs 01]

SH-based Irradiance Env. Maps

Standard Eucalyptus Grove

Images courtesy Ravi Ramamoorthi \& Pat Hanrahan

SH-based Arbitrary BRDF Shading 1

- [Kautzet al. 2003]
- Arbitrary, dynamic env. map
- Arbitrary BRDF
- No shadows
- SH representation

(a) point light

(b) glossy

(c) anisotropic
- Environment map (one set of coefficients)
- Scene BRDFs (one coefficient vector for each discretized view direction)

SH-based Arbitrary BRDF Shading 3

- Rendering: for each vertex / pixel, do

$$
L_{o}\left(\omega_{o}\right)=\int_{\Omega} L_{i}\left(\omega_{i}\right) \cdot \operatorname{BRDF}\left(\omega_{i}, \omega_{o}\right) \cdot \cos \theta_{i} \cdot d \omega_{i}
$$

(

Environment map

BRDF
$=$ coeff. dot product

$$
L_{o}\left(\omega_{o}\right)=\Lambda_{\text {intp }}(\mathbf{p}) \bullet F\left(\mathbf{p}, \omega_{o}\right)
$$

SH-based Arbitrary BRDF Shading 4

- BRDF is in local frame
- Environment map in global frame
- Need coordinate frame alignment ->SH rotation
- SH closed under rotation
- rotation matrix
- Fastest known procedure is the zxzxz-decomposition [Kautz et al. 2003]

$$
R_{S H}=\left[\begin{array}{c:ccc:ccccc:c}
\mathbf{1} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \cdots \\
\hdashline 0 & \mathbf{X} & \mathbf{X} & \mathbf{X} & 0 & 0 & 0 & 0 & 0 & \cdots \\
0 & \mathbf{X} & \mathbf{X} & \mathbf{X} & 0 & 0 & 0 & 0 & 0 & \cdots \\
0 & \mathbf{X} & \mathbf{X} & \mathbf{X} & 0 & 0 & 0 & 0 & 0 & \cdots \\
\hdashline 0 & 0 & 0 & 0 & \mathbf{X} & \mathbf{X} & \mathbf{X} & \mathbf{X} & \mathbf{X} & \cdots \\
0 & 0 & 0 & 0 & \mathbf{X} & \mathbf{X} & \mathbf{X} & \mathbf{X} & \mathbf{X} & \cdots \\
0 & 0 & 0 & 0 & \mathbf{X} & \mathbf{X} & \mathbf{X} & \mathbf{X} & \mathbf{X} & \cdots \\
0 & 0 & 0 & 0 & \mathbf{X} & \mathbf{X} & \mathbf{X} & \mathbf{X} & \mathbf{X} & \cdots \\
0 & 0 & 0 & 0 & \mathbf{X} & \mathbf{X} & \mathbf{X} & \mathbf{X} & \mathbf{X} & \cdots \\
\hdashline \vdots & \ddots
\end{array}\right]
$$

SH-based Arbitrary BRDF Shading 5

Figure 3: Brushed metal head in various lighting environments.

(a) varying exponent
(b) varying anisotropy

Figure 4: Spatially-Varying BRDFs.

Pre-computed Radiance Transfer

Pre-computed Radiance Transfer

- Goal
- Real-time rendering with complex lighting, shadows, and GI
- Infeasible - too much computation for too small a time budget
- Approach
- Precompute (offline) some information (images) of interest
- Must assume something about scene is constant to do so
- Thereafter real-time rendering. Often hardware accelerated

Assumptions

- Precomputation
- Static geometry
- Static viewpoint (some techniques)

- Real-Time Rendering (relighting)
- Exploit linearity of light transport

Relighting as a Matrix-Vector Multiply

$$
=\left[\begin{array}{cccc}
T_{11} & T_{12} & \cdots & T_{1 M} \\
T_{21} & T_{22} & \cdots & T_{2 M} \\
T_{31} & T_{32} & \cdots & T_{3 M} \\
\vdots & \vdots & \ddots & \vdots \\
T_{N 1} & T_{N 2} & \cdots & T_{N M}
\end{array}\right]\left[\begin{array}{c}
L_{1} \\
L_{2} \\
\vdots \\
L_{M}
\end{array}\right] \text { in }
$$

Relighting as a Matrix-Vector Multiply

Output Image (Pixel Vector)

Input Lighting

Precomputed
Transport
Matrix

Matrix Columns (Images)

Problem Definition

Matrix is Enormous

- 512×512 pixel images
- $6 \times 64 \times 64$ cubemap environments

Full matrix-vector multiplication is intractable

- On the order of 10^{10} operations per frame

How to relight quickly?

Outline

- Compression methods
- Spherical harmonics-based PRT [Sloan et al. 02]
- (Local) factorization and PCA
- Non-linear wavelet approximation
- Changing view as well as lighting
- Clustered PCA
- Triple Product Integrals
- Handling Local Lighting
- Direct-to-Indirect Transfer

SH-based PRT

- Better light integration and transport
- dynamic, env. lights
- self-shadowing
- interreflections

point light

Env. light

Env. lighting, shadows

SH-based PRT: Idea

PRT Terminology

Relation to a Matrix-Vector Multiply

a) SH coefficients of transferred radiance
b) Irradiance (per vertex)

$$
=\left[\begin{array}{cccc}
T_{11} & T_{12} & \cdots & T_{1 M} \\
T_{21} & T_{22} & \cdots & T_{2 M} \\
T_{31} & T_{32} & \cdots & T_{3 M} \\
\vdots & \vdots & \ddots & \vdots \\
T_{N 1} & T_{N 2} & \cdots & T_{N M}
\end{array}\right]\left[\begin{array}{c}
L_{1} \\
L_{2} \\
\vdots \\
L_{M}
\end{array}\right]\left[\begin{array}{c}
\text { SH coefficients } \\
\text { of EM (source } \\
\text { radiance) }
\end{array}\right.
$$

Idea of SH-based PRT

- The L vector is projected onto low-frequency components (say 25). Size greatly reduced.
- Hence, only 25 matrix columns
- But each pixel/vertex still treated separately
- One RGB value per pixel/vertex:
- Diffuse shading / arbitrary BRDF shading w/ fixed view direction
- SH coefficients of transferred radiance (25 RGB values per pixel/vertex for order 4 SH)
- Arbitrary BRDF shading w/ variable view direction
- Good technique (becoming common in games) but useful only for broad low-frequency lighting

Diffuse Transfer Results

No Shadows/Inter

Shadows

Shadows+Inter

SH-based PRT with Arbitrary BRDFs

- Combine with Kautz et al. 03
- Transfer matrix turns SH env. map into SH transferred radiance
- Kautz et al. 03 is applied to transferred radiance

Arbitrary BRDF Results

Anisotropic BRDFs

Spatially Varying

Outline

- Compression methods
- Spherical harmonics-based PRT [Sloan et al. 02]
- (Local) factorization and PCA
- Non-linear wavelet approximation
- Changing view as well as lighting
- Clustered PCA
- Triple Product Integrals
- Handling Local Lighting
- Direct-to-Indirect Transfer

PCA or SVD factorization

- SVD:

- Applying Rank b:

- Absorbing $\mathbf{S i}^{\mathbf{j}}$ values into $\mathbf{C i T}^{\mathbf{i T}}$

Idea of Compression

- Represent matrix (rather than light vector) compactly
- Can be (and is) combined with SH light vector
- Useful in broad contexts.
- BRDF factorization for real-time rendering (reduce 4D BRDF to 2D texture maps) McCool et al. 01 etc
- Surface Light field factorization for real-time rendering (4D to 2D maps) Chen et al. 02, Nishino et al. 01
- BTF (Bidirectional Texture Function) compression
- Not too useful for general precomput. relighting
" Transport matrix not low-dimensional!!

Local or Clustered PCA

- Exploit local coherence (in say 16x16 pixel blocks)
- Idea: light transport is locally low-dimensional.
- Even though globally complex
- See Mahajan et al. 07 for theoretical analysis
- Clustered PCA [Sloan et al. 2003]
- Combines two widely used compression techniques: Vector Quantization or VQ and Principal Component Analysis

Compression Example

Surface is curve, signal is normal

Following couple of slides courtesy P.-P. Sloan

Compression Example

Signal Space

Cluster normals

Replace samples with cluster mean

$$
\mathbf{M}_{p} \approx \tilde{\mathbf{M}}_{p}=\mathbf{M}_{C_{p}}
$$

PCA

Replace samples with mean + linear combination

$$
\mathbf{M}_{p} \approx \tilde{\mathbf{M}}_{p}=\mathbf{M}^{0}+\sum^{N} w_{p}^{i} \mathbf{M}^{i}
$$

CPCA

Compute a linear subspace in each cluster

$$
\mathbf{M}_{p} \approx \tilde{\mathbf{M}}_{p}=\mathbf{M}_{C_{p}}^{0}+\sum_{i=1}^{N} w_{p}^{i} \mathbf{M}_{C_{p}}^{i}
$$

$$
\uparrow \text {, }
$$

CPCA

- Clusters with low dimensional affine models
- How should clustering be done?
- k-means clustering
- Static PCA
- VQ, followed by one-time per-cluster PCA
- optimizes for piecewise-constant reconstruction
- Iterative PCA
- PCA in the inner loop, slower to compute
- optimizes for piecewise-affine reconstruction

Static vs. Iterative

Equal Rendering Cost

VQ

PCA

CPCA

Outline

- Compression methods
- Spherical harmonics-based PRT [Sloan et al. 02]
- (Local) factorization and PCA
" Non-linear wavelet approximation
- Changing view as well as lighting
- Clustered PCA
- Triple Product Integrals
- Handling Local Lighting
- Direct-to-Indirect Transfer

Sparse Matrix-Vector Multiplication

Choose data representations with mostly zeroes
Vector: Use non-linear wavelet approximation on lighting

Matrix: Wavelet-encode transport rows

Haar Wavelet Basis

Non-linear Wavelet Approximation

Wavelets provide dual space / frequency locality

- Large wavelets capture low frequency area lighting
- Small wavelets capture high frequency compact features

Non-linear Approximation
" Use a dynamic set of approximating functions (depends on each frame's lighting)

- By contrast, linear approx. uses fixed set of basis functions (like 25 lowest frequency spherical harmonics)
- We choose 10 's - 100's from a basis of 24,576 wavelets (64×64×6)

Non-linear Wavelet Light Approximation

Wavelet Transform

Non-linear Wavelet Light Approximation

$\left[\begin{array}{c}0 \\ L_{2} \\ 0 \\ 0 \\ 0 \\ L_{6} \\ \vdots \\ 0\end{array}\right]$

Non-linear
 Approximation

Retain 0.1\% - 1\% terms

Error in Lighting: St Peter's Basilica

Output Image Comparison

Top:
 Linear Spherical Harmonic Approximation

 Bottom: Non-linear Wavelet Approximation

Outline

- Compression methods
- Spherical harmonics-based PRT [Sloan et al. 02]
- (Local) factorization and PCA
- Non-linear wavelet approximation
" Changing view as well as lighting
- Clustered PCA
- Triple Product Integrals
- Handling Local Lighting
- Direct-to-Indirect Transfer

SH + Clustered PCA

- Described earlier (combine Sloan 03 with Kautz 03)
- Use low-frequency source light and transferred light variation (Order 5 spherical harmonic $=25$ for both; total $=$ 25*25=625)
- 625 element vector for each vertex
- Apply CPCA directly (Sloan et al. 2003)
- Does not easily scale to high-frequency lighting
- Really cubic complexity (number of vertices, illumination directions or harmonics, and view directions or harmonics)
- Practical real-time method on GPU

Outline

- Compression methods
- Spherical harmonics-based PRT [Sloan et al. 02]
- (Local) factorization and PCA
- Non-linear wavelet approximation
- Changing view as well as lighting
- Clustered PCA
- Triple Product Integrals
- Handling Local Lighting
- Direct-to-Indirect Transfer

Problem Characterization

6D Precomputation Space

- Distant Lighting
(2D)
View
(2D)
Rigid Geometry
(2D)

With ~ 100 samples per dimension
$\sim 10^{12}$ samples total!! : Intractable computation, rendering

Factorization Approach

Triple Product Integral Relighting

Relit Images (3-5 sec/frame)

Triple Product Integrals

$$
\begin{aligned}
B & =\int_{S^{2}} L(\omega) V(\omega) \tilde{\rho}(\omega) d \omega \\
& =\int_{S^{2}}\left(\sum_{i} L_{i} \Psi_{i}(\omega)\right)\left(\sum_{j} V_{j} \Psi_{j}(\omega)\right)\left(\sum_{k} \tilde{\rho}_{k} \Psi_{k}(\omega)\right) d \omega \\
& =\sum_{i} \sum_{j} \sum_{k} L_{i} V_{j} \tilde{\rho}_{k} \int_{S^{2}} \Psi_{i}(\omega) \Psi_{j}(\omega) \Psi_{k}(\omega) d \omega \\
& =\sum_{i} \sum_{j} \sum_{k} L_{i} V_{j} \tilde{\rho}_{k} C_{i j k}
\end{aligned}
$$

Basis Requirements

1. Need few non-zero "tripling" coefficients

$$
C_{i j k}=\int_{S^{2}} \Psi_{i}(\omega) \Psi_{j}(\omega) \Psi_{k}(\omega) d \omega
$$

2. Need sparse basis coefficients

1. Number Non-Zero Tripling Coeffs

$$
C_{i j k}=\int_{S^{2}} \Psi_{i}(\omega) \Psi_{j}(\omega) \Psi_{k}(\omega) d \omega
$$

Basis Choice	Number Non-Zero $C_{i j k}$
General (e.g. PCA)	$O\left(N^{3}\right)$
Sph. Harmonics	$O\left(N^{5 / 2}\right)$
Haar Wavelets	$O(N \log N)$

2. Sparsity in Light Approx.

Approximation Terms

Summary of Wavelet Results

- Derive direct $O(N \log N)$ triple product algorithm
- Dynamic programming can eliminate log N term
- Final complexity linear in number of retained basis coefficients

Outline

- Compression methods
- Spherical harmonics-based PRT [Sloan et al. 02]
- (Local) factorization and PCA
- Non-linear wavelet approximation
- Changing view as well as lighting
- Clustered PCA
- Triple Product Integrals
- Handling Local Lighting
- Direct-to-Indirect Transfer

Direct-to-Indirect Transfer

- Lighting non-linear w.r.t. light source parameters (position, orientation etc.)
- Indirect is a linear function of direct illumination
- Direct can be computed in real-time on GPU
- Transfer of direct to indirect is pre-computed
- Hašan et al. 06
- Fixed view - cinematic relighting with GI

DTIT: Matrix-Vector Multiply

$$
=\left[\begin{array}{cccc}
T_{11} & T_{12} & \cdots & T_{1 M} \\
T_{21} & T_{22} & \cdots & T_{2 M} \\
T_{31} & T_{32} & \cdots & T_{3 M} \\
\vdots & \vdots & \ddots & \vdots \\
T_{N 1} & T_{N 2} & \cdots & T_{N M}
\end{array}\right]\left[\begin{array}{c}
L_{1} \\
L_{2} \\
\vdots \\
L_{M}
\end{array}\right]\left[\begin{array}{c}
\text { Direct } \\
\text { illumination on a } \\
\text { set of samples } \\
\text { distributed on } \\
\text { scene surfaces }
\end{array}\right]
$$

Compression: Matrix rows in Wavelet basis

DTIT: Demo

Summary

- Really a big data compression and signalprocessing problem
- Apply many standard methods
- PCA, wavelet, spherical harmonic, factor compression
- And invent new ones
- VQPCA, wavelet triple products
- Guided by and gives insights into properties of illumination, reflectance, visibility
" How many terms enough? How much sparsity?

