Pre-computed Radiance Transfer II

Jaroslav Křivánek, KSVI, MFF UK

Jaroslav.Krivanek@mff.cuni.cz

Acknowledgement

 Mostly based on Ravi Ramamoorthi's slides available from http://inst.eecs.berkeley.edu/~cs283/fa10

Goal

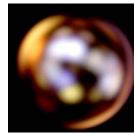
- Real-time rendering with complex lighting, shadows, and possibly GI
- Infeasible too much computation for too small a time budget
- Approaches
 - Lift some requirements, do specific-purpose tricks
 - Environment mapping, irradiance environment maps
 - SH-based lighting
 - Split the effort
 - Offline pre-computation + real-time image synthesis
 - "Pre-computed radiance transfer"

Assumptions

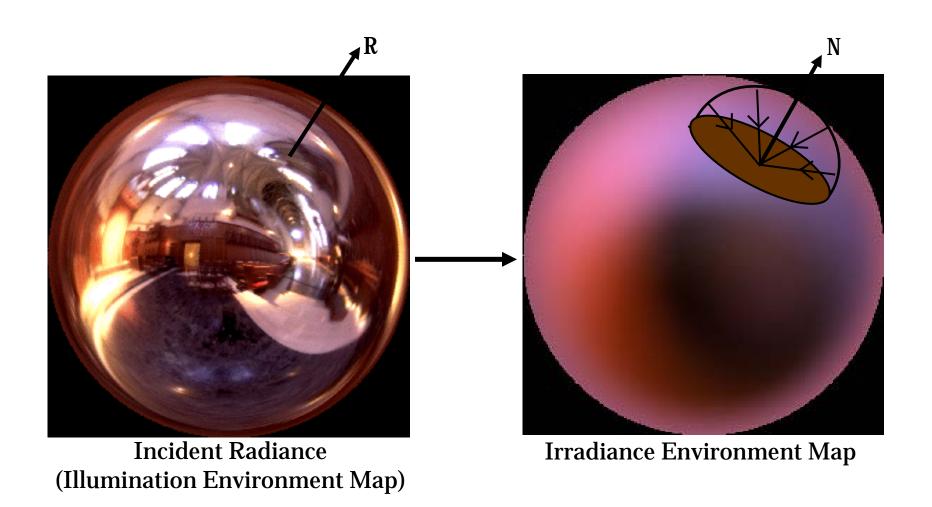
- Distant illumination
- No shadowing, interreflection

- Mirror surfaces easy (just a texture look-up)
- What if the surface is rougher...

Or completely diffuse?

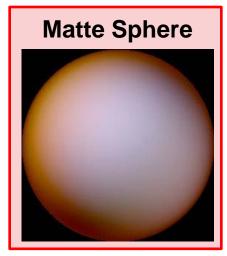


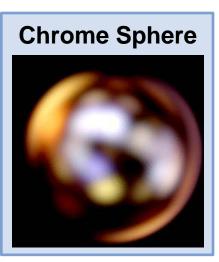
SH-based Irradiance Env. Maps



Reflection Maps

- Phong model for rough surfaces
 - ullet Illumination function of reflection direction R
- Lambertian diffuse surface
 - $lue{}$ Illumination function of surface normal N





- Reflection Maps [Miller and Hoffman, 1984]
 - □ Irradiance (indexed by N) and Phong (indexed by R)

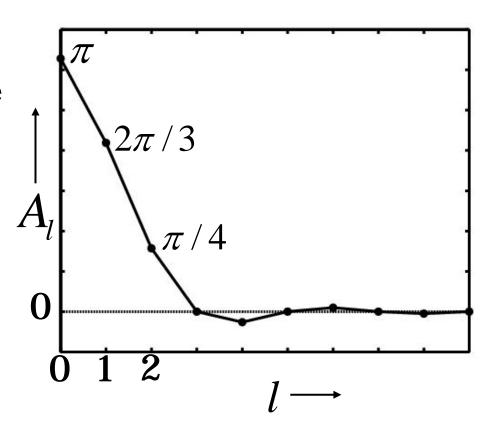
Reflection Maps

- Can't do dynamic lighting
 - Slow blurring in pre-process

Analytic Irradiance Formula

Lambertian surface acts like low-pass filter

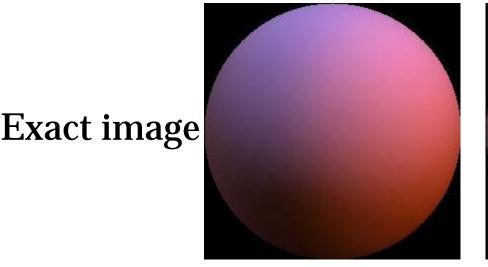
$$E_{lm} = A_l L_{lm}$$



Ramamoorthi and Hanrahan 01 Basri and Jacobs 01

$$A_{l} = 2\pi \frac{(-1)^{\frac{l}{2}-1}}{(l+2)(l-1)} \left[\frac{l!}{2^{l} \left(\frac{l}{2}! \right)^{2}} \right] \quad l \text{ even}$$

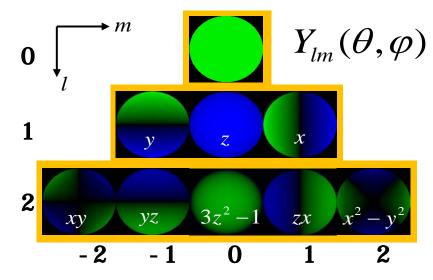
9 Parameter Approximation



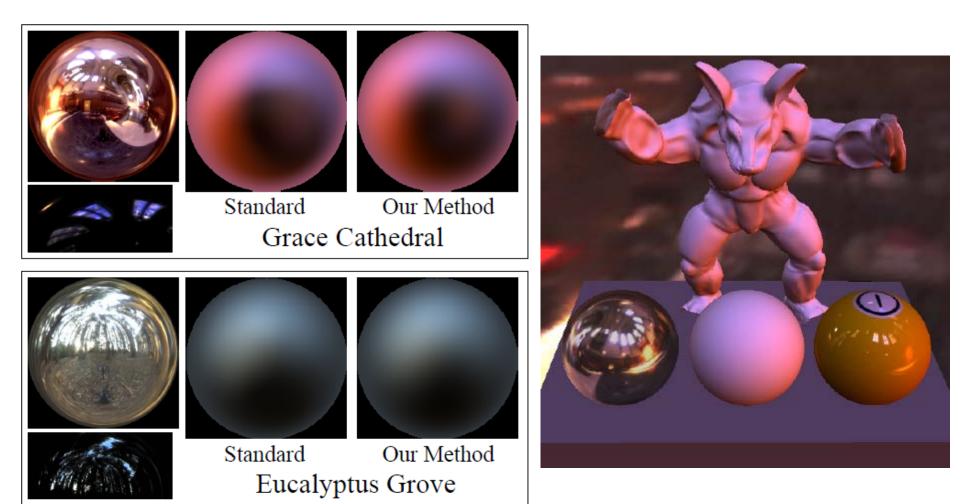
Order 2 9 terms

RMS Error = 1%

For any illumination, average error < 3% [Basri Jacobs 01]



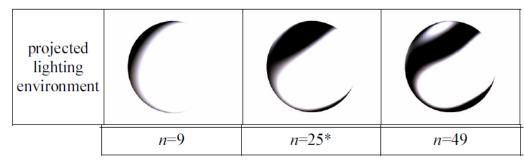
SH-based Irradiance Env. Maps



Images courtesy Ravi Ramamoorthi & Pat Hanrahan

- [Kautz et al. 2003]
- Arbitrary, dynamic env. map
- Arbitrary BRDF
- No shadows

- SH representation
 - Environment map (one set of coefficients)
 - Scene BRDFs (one coefficient vector for each discretized view direction)



Rendering: for each vertex / pixel, do

$$L_o(\omega_o) = \int_{\Omega} L_i(\omega_i) \cdot BRDF(\omega_i, \omega_o) \cdot \cos \theta_i \cdot d\omega_i$$

= coeff. dot product

$$L_o(\omega_o) = \Lambda_{\rm intp}(\mathbf{p}) \bullet F(\mathbf{p}, \omega_o)$$

- BRDF is in local frame
- Environment map in global frame
- Need coordinate frame alignment -> SH rotation
- SH closed under rotation
 - rotation matrix
 - Fastest known procedure is the zxzxz-decomposition [Kautz et al. 2003]

Figure 3: Brushed metal head in various lighting environments.

(a) varying exponent

(b) varying anisotropy

Figure 4: Spatially-Varying BRDFs.

Pre-computed Radiance Transfer

Pre-computed Radiance Transfer

Goal

- Real-time rendering with complex lighting, shadows, and GI
- Infeasible too much computation for too small a time budget

Approach

- Precompute (offline) some information (images) of interest
- Must assume something about scene is constant to do so
- Thereafter real-time rendering. Often hardware accelerated

Assumptions

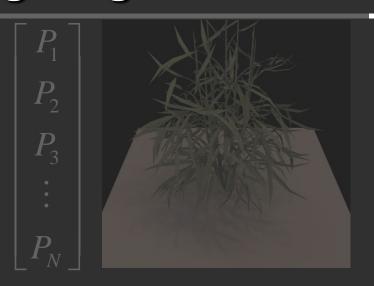
- Precomputation
- Static geometry
- Static viewpoint (some techniques)

- Real-Time Rendering (relighting)
 - Exploit linearity of light transport

Relighting as a Matrix-Vector Multiply

$$egin{bmatrix} T_{11} & T_{12} & \cdots & T_{1M} \ T_{21} & T_{22} & \cdots & T_{2M} \ T_{31} & T_{32} & \cdots & T_{3M} \ dots & dots & dots \ T_{N1} & T_{N2} & \cdots & T_{NM} \ \end{bmatrix}$$

Relighting as a Matrix-Vector Multiply



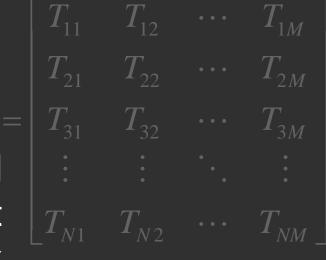
Output Image (Pixel Vector)

Input Lighting

(Cubemap Vector)

 $egin{bmatrix} L_1 \ L_2 \ dots \ L_{M} \ \end{bmatrix}$

Precomputed
Transport
Matrix



Matrix Columns (Images)

$$egin{bmatrix} T_{11} & T_{12} & \cdots & T_{1M} \ T_{21} & T_{22} & \cdots & T_{2M} \ T_{31} & T_{32} & \cdots & T_{3M} \ dots & dots & dots & dots \ T_{N1} & T_{N2} & \cdots & T_{NM} \ \end{bmatrix}$$

Problem Definition

Matrix is Enormous

- 512 x 512 pixel images
- 6 x 64 x 64 cubemap environments

Full matrix-vector multiplication is intractable

On the order of 10¹⁰ operations per frame

How to relight quickly?

Outline

- Compression methods
 - Spherical harmonics-based PRT [Sloan et al. 02]
 - (Local) factorization and PCA
 - Non-linear wavelet approximation
- Changing view as well as lighting
 - Clustered PCA
 - Triple Product Integrals
- Handling Local Lighting
 - Direct-to-Indirect Transfer

SH-based PRT

- Better light integration and transport
 - dynamic, env. lights
 - self-shadowing
 - interreflections
- For diffuse and glossy surfaces
- At real-time rates
- Sloan et al. 02

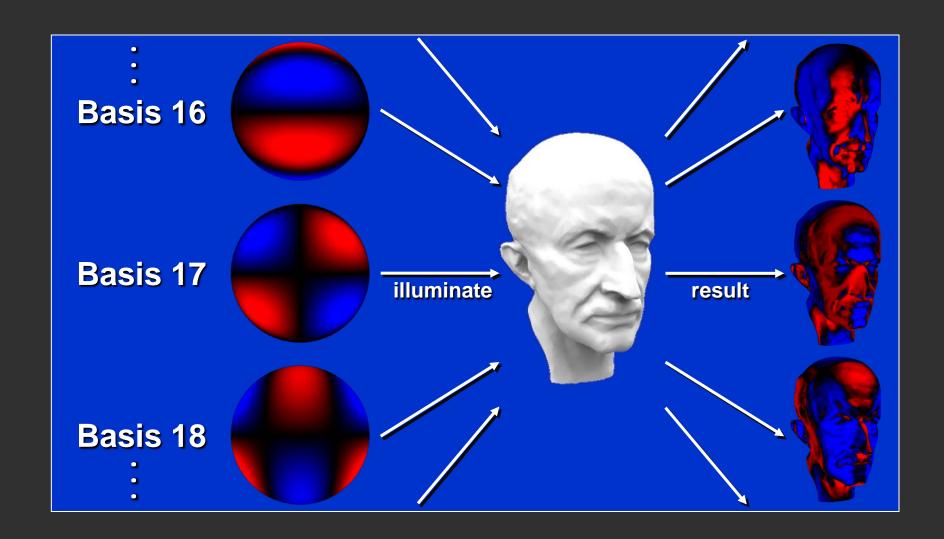
point light

Env. light

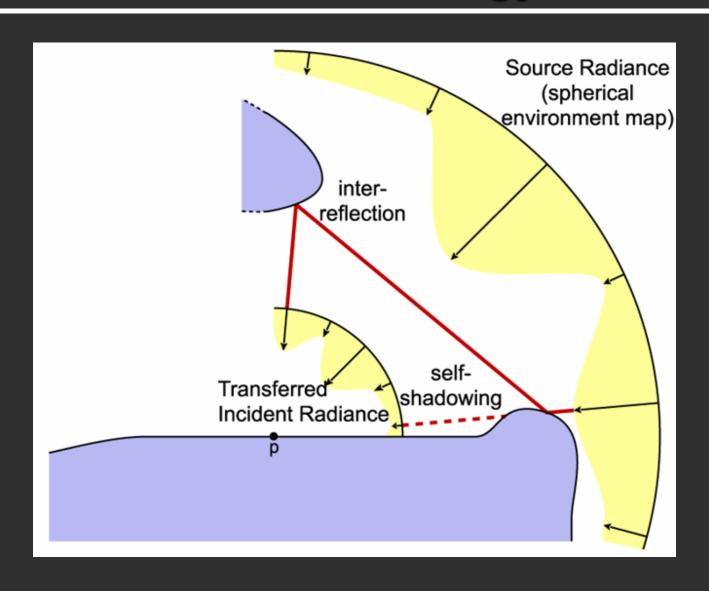
Env. lighting, no shadows

Env. lighting, shadows

SH-based PRT: Idea

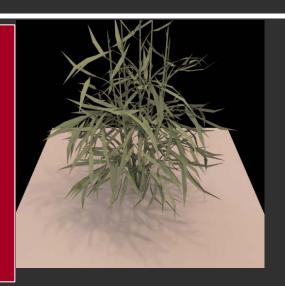


PRT Terminology



Relation to a Matrix-Vector Multiply

a) SHcoefficients oftransferredradianceb) Irradiance(per vertex)



$$egin{bmatrix} T_{11} & T_{12} & \cdots & T_{1M} \ T_{21} & T_{22} & \cdots & T_{2M} \ T_{31} & T_{32} & \cdots & T_{3M} \ dots & dots & dots & dots \ T_{N1} & T_{N2} & \cdots & T_{NM} \ \end{bmatrix}$$

 $egin{bmatrix} L_1 \ L_2 \ dots \ L_{M} \ \end{bmatrix}$

SH coefficients of EM (source radiance)

Idea of SH-based PRT

- The L vector is projected onto low-frequency components (say 25). Size greatly reduced.
- Hence, only 25 matrix columns
- But each pixel/vertex still treated separately
 - One RGB value per pixel/vertex:
 - Diffuse shading / arbitrary BRDF shading w/ fixed view direction
 - SH coefficients of transferred radiance (25 RGB values per pixel/vertex for order 4 SH)
 - Arbitrary BRDF shading w/ variable view direction
- Good technique (becoming common in games) but useful only for broad low-frequency lighting

Diffuse Transfer Results

No Shadows/Inter

Shadows

Shadows+Inter

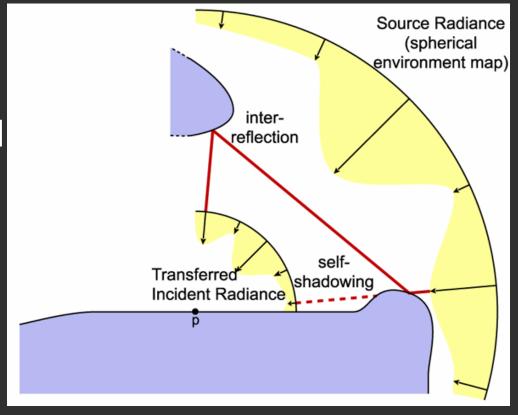
SH-based PRT with Arbitrary BRDFs

Combine with Kautz et al. 03

Transfer matrix turns SH env. map into SH

transferred radiance

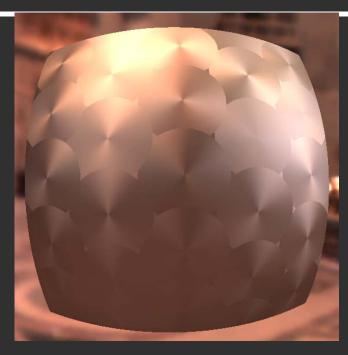
 Kautz et al. 03 is applied to transferred radiance



Arbitrary BRDF Results

Anisotropic BRDFs

Other BRDFs



Spatially Varying

Outline

- Compression methods
 - Spherical harmonics-based PRT [Sloan et al. 02]
 - (Local) factorization and PCA
 - Non-linear wavelet approximation
- Changing view as well as lighting
 - Clustered PCA
 - Triple Product Integrals
- Handling Local Lighting
 - Direct-to-Indirect Transfer

PCA or SVD factorization

• SVD:

$$\mathbf{I}^{j} = \mathbf{E}^{j}_{p \times p} \times \mathbf{S}^{j}_{p \times n} \times \mathbf{C}^{jT}$$
diagonal matrix
(singular values)
$$\mathbf{n} \times \mathbf{n}$$

• Applying Rank **b**:

• Absorbing **S**^j values into **C**^{iT}:

$$\begin{array}{c|c}
I^{j} & & \\
 & \mathbf{p} \times \mathbf{n}
\end{array}$$

$$\begin{array}{c|c}
\mathbf{E}^{j} & \mathbf{L}^{j} \\
 & \mathbf{p} \times \mathbf{b} & \mathbf{b} \times \mathbf{n}
\end{array}$$

Idea of Compression

- Represent matrix (rather than light vector) compactly
- Can be (and is) combined with SH light vector
- Useful in broad contexts.
 - BRDF factorization for real-time rendering (reduce 4D BRDF to 2D texture maps) McCool et al. 01 etc
 - Surface Light field factorization for real-time rendering (4D to 2D maps) Chen et al. 02, Nishino et al. 01
 - BTF (Bidirectional Texture Function) compression
- Not too useful for general precomput. relighting
 - Transport matrix not low-dimensional!!

Local or Clustered PCA

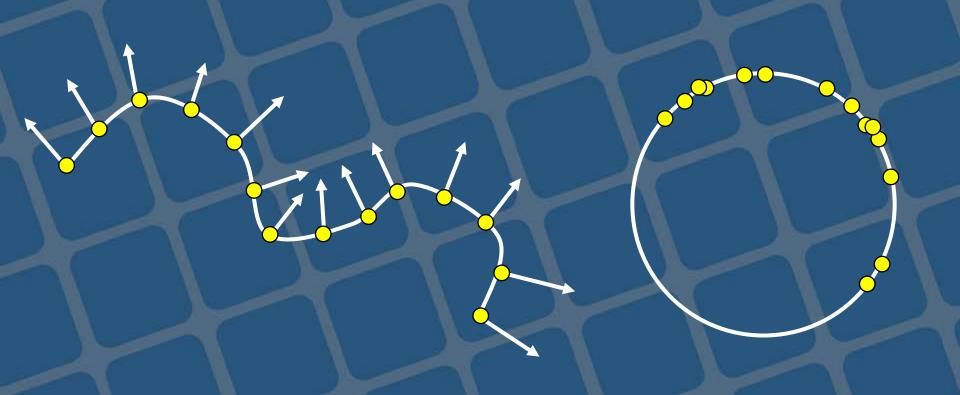
- Exploit local coherence (in say 16x16 pixel blocks)
 - Idea: light transport is locally low-dimensional.
 - Even though globally complex
 - See Mahajan et al. 07 for theoretical analysis
- Clustered PCA [Sloan et al. 2003]
 - Combines two widely used compression techniques: Vector Quantization or VQ and Principal Component Analysis

Compression Example

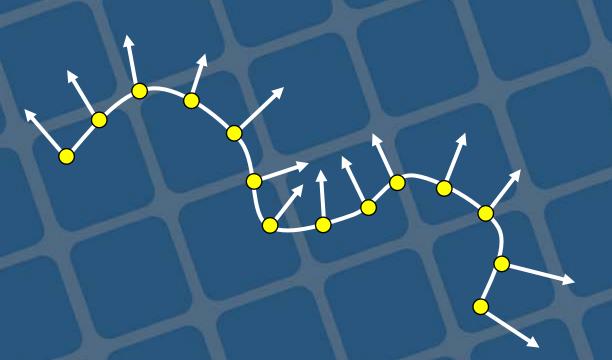
Surface is curve, signal is normal

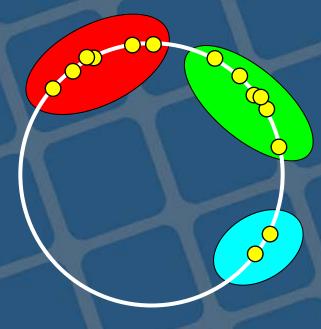
Compression Example

Signal Space



Cluster normals

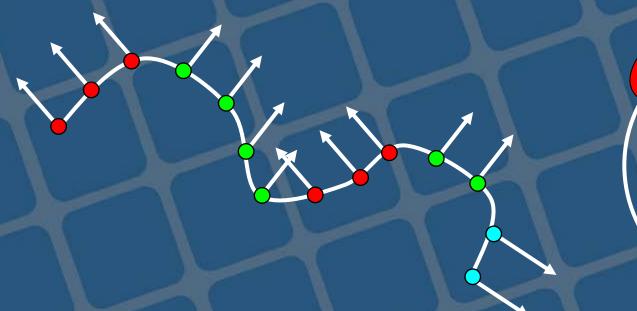


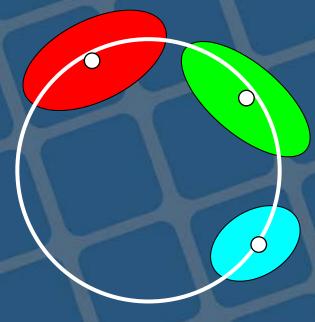


VQ

Replace samples with cluster mean

$$\mathbf{M}_p \approx \tilde{\mathbf{M}}_p = \mathbf{M}_{C_p}$$

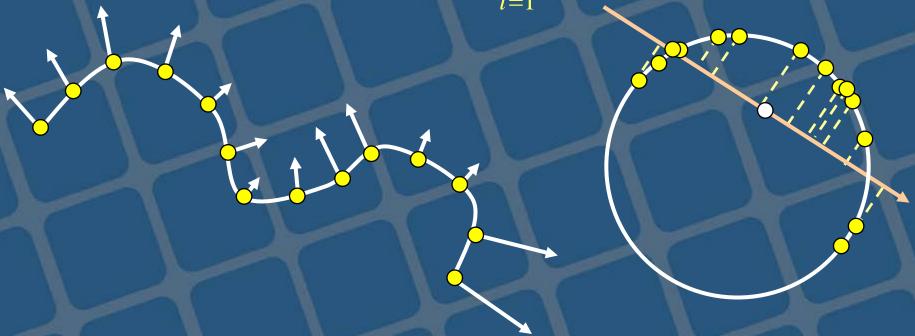




PCA

Replace samples with mean + linear combination

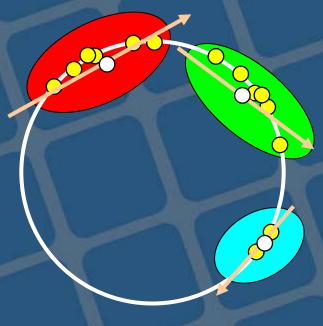
$$\mathbf{M}_{p} \approx \tilde{\mathbf{M}}_{p} = \mathbf{M}^{0} + \sum_{i=1}^{N} w_{p}^{i} \mathbf{M}^{i}$$



CPCA

Compute a linear subspace in each cluster

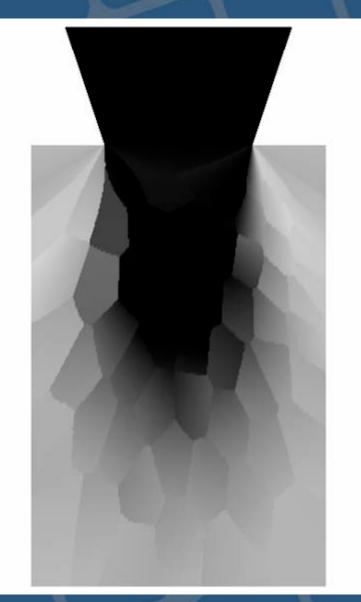
$$\mathbf{M}_p \approx \tilde{\mathbf{M}}_p = \mathbf{M}_{C_p}^0 + \sum_{i=1}^N w_p^i \mathbf{M}_{C_p}^i$$

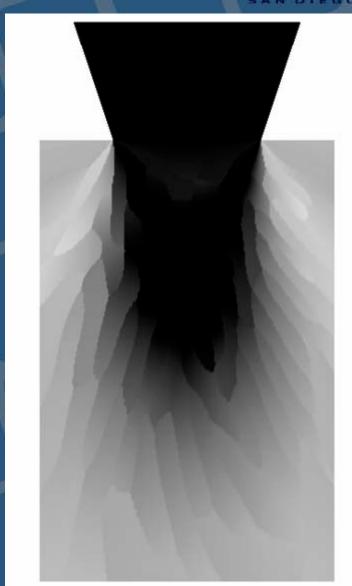


CPCA

- Clusters with low dimensional affine models
- How should clustering be done?
 - k-means clustering
- Static PCA
 - VQ, followed by one-time per-cluster PCA
 - optimizes for piecewise-constant reconstruction
- Iterative PCA
 - PCA in the inner loop, slower to compute
 - optimizes for piecewise-affine reconstruction

Static vs. Iterative





Equal Rendering Cost

Outline

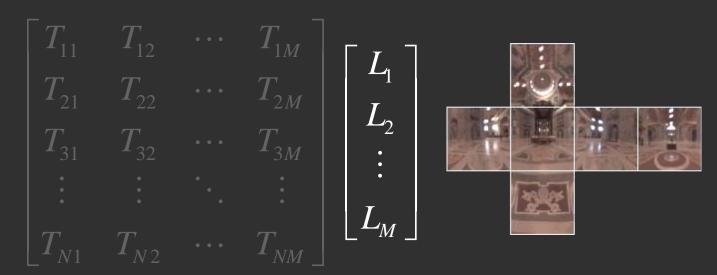
- Compression methods
 - Spherical harmonics-based PRT [Sloan et al. 02]
 - (Local) factorization and PCA
 - Non-linear wavelet approximation
- Changing view as well as lighting
 - Clustered PCA
 - Triple Product Integrals
- Handling Local Lighting
 - Direct-to-Indirect Transfer

Sparse Matrix-Vector Multiplication

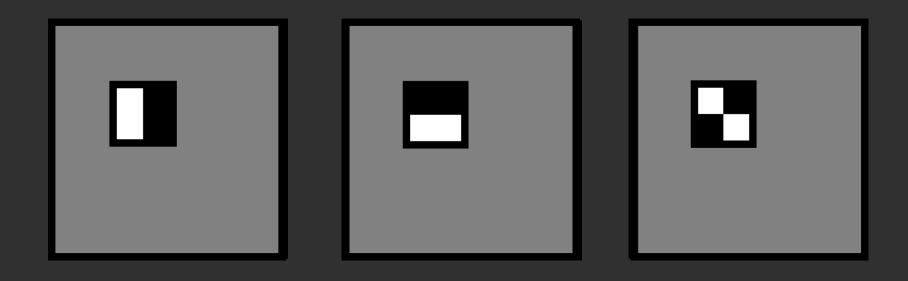
Choose data representations with mostly zeroes

Vector: Use *non-linear wavelet approximation* on lighting

Matrix: Wavelet-encode transport rows



Haar Wavelet Basis



Non-linear Wavelet Approximation

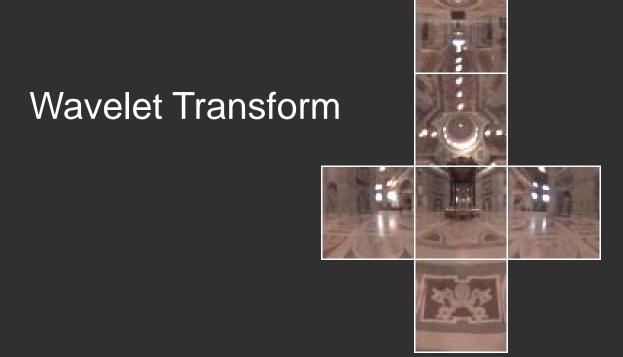
Wavelets provide dual space / frequency locality

- Large wavelets capture low frequency area lighting
- Small wavelets capture high frequency compact features

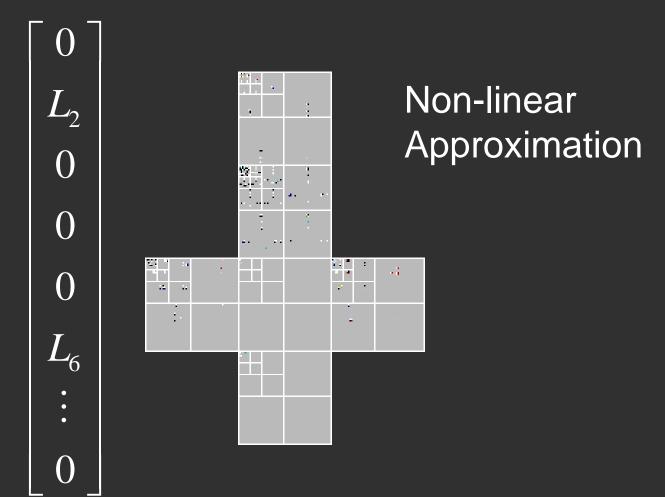
Non-linear Approximation

- Use a dynamic set of approximating functions (depends on each frame's lighting)
- By contrast, linear approx. uses fixed set of basis functions (like 25 lowest frequency spherical harmonics)
- We choose 10's 100's from a basis of 24,576 wavelets (64x64x6)

Non-linear Wavelet Light Approximation

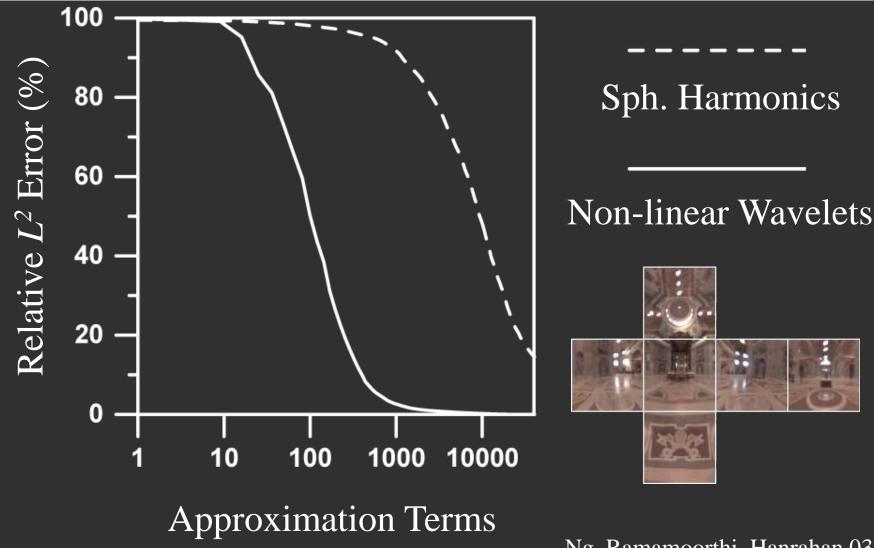


Non-linear Wavelet Light Approximation



Retain 0.1% - 1% terms

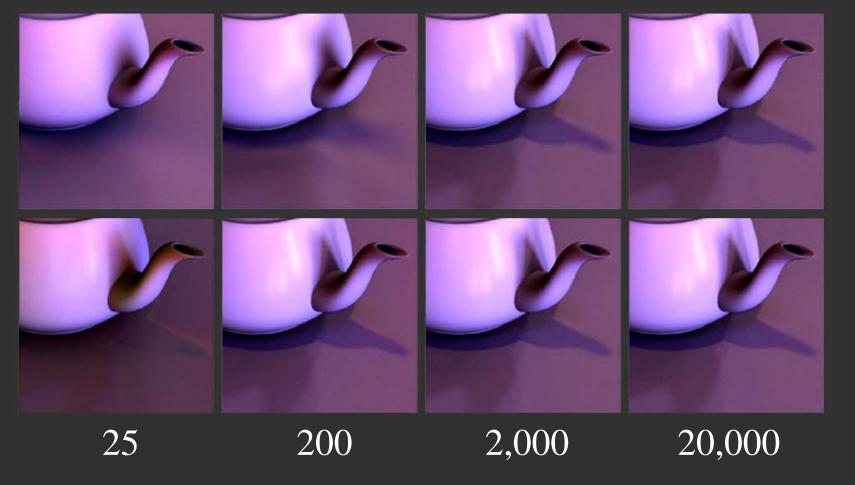
Error in Lighting: St Peter's Basilica



Ng, Ramamoorthi, Hanrahan 03

Output Image Comparison

Top: Linear Spherical Harmonic Approximation Bottom: Non-linear Wavelet Approximation



Outline

- Compression methods
 - Spherical harmonics-based PRT [Sloan et al. 02]
 - (Local) factorization and PCA
 - Non-linear wavelet approximation
- Changing view as well as lighting
 - Clustered PCA
 - Triple Product Integrals
- Handling Local Lighting
 - Direct-to-Indirect Transfer

SH + Clustered PCA

- Described earlier (combine Sloan 03 with Kautz 03)
 - Use low-frequency source light and transferred light variation (Order 5 spherical harmonic = 25 for both; total = 25*25=625)
 - 625 element vector for each vertex
 - Apply CPCA directly (Sloan et al. 2003)
 - Does not easily scale to high-frequency lighting
 - Really cubic complexity (number of vertices, illumination directions or harmonics, and view directions or harmonics)
 - Practical real-time method on GPU

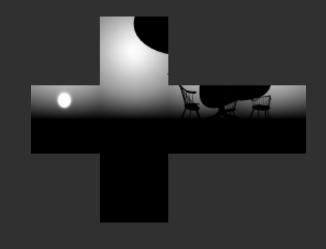
Outline

- Compression methods
 - Spherical harmonics-based PRT [Sloan et al. 02]
 - (Local) factorization and PCA
 - Non-linear wavelet approximation
- Changing view as well as lighting
 - Clustered PCA
 - Triple Product Integrals
- Handling Local Lighting
 - Direct-to-Indirect Transfer

Problem Characterization

6D Precomputation Space

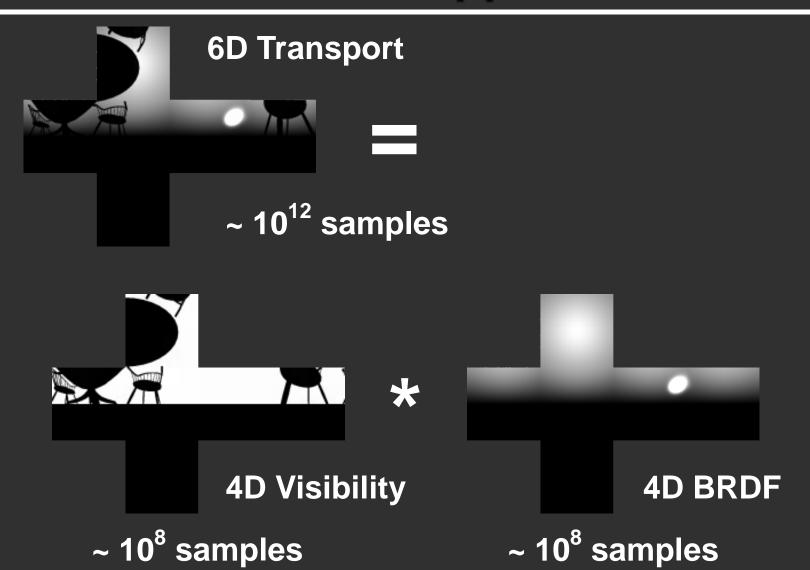
- Distant Lighting (2D)
- View (2D)
- Rigid Geometry (2D)



With ~ 100 samples per dimension

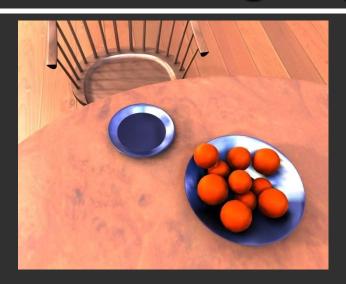
~ 10¹² samples total!! : Intractable computation, rendering

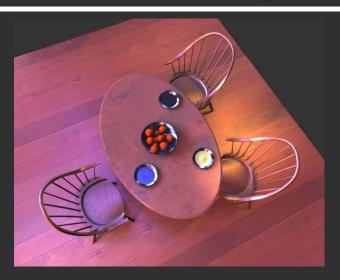
Factorization Approach



Triple Product Integral Relighting

Relit Images (3-5 sec/frame)





Triple Product Integrals

$$B = \int_{S^2} L(\omega) V(\omega) \, \tilde{\rho}(\omega) \, d\omega$$

$$= \int_{S^2} \left(\sum_i L_i \Psi_i(\omega) \right) \left(\sum_j V_j \Psi_j(\omega) \right) \left(\sum_k \tilde{\rho}_k \Psi_k(\omega) \right) d\omega$$

$$= \sum_i \sum_j \sum_k L_i V_j \, \tilde{\rho}_k \int_{S^2} \Psi_i(\omega) \Psi_j(\omega) \Psi_k(\omega) \, d\omega$$

$$= \sum_i \sum_j \sum_k L_i V_j \, \tilde{\rho}_k \, C_{ijk}$$

Basis Requirements

$$B = \sum_{i} \sum_{j} \sum_{k} L_{i} V_{j} \, \tilde{\rho}_{k} \, C_{ijk}$$

1. Need few non-zero "tripling" coefficients

$$C_{ijk} = \int_{S^2} \Psi_i(\omega) \Psi_j(\omega) \Psi_k(\omega) \ d\omega$$

2. Need sparse basis coefficients

$$L_i,\ V_j,\ \widetilde{
ho}_k$$

1. Number Non-Zero Tripling Coeffs

$$C_{ijk} = \int_{S^2} \Psi_i(\omega) \Psi_j(\omega) \Psi_k(\omega) d\omega$$

Basis Choice

Number Non-Zero C_{ijk}

General (e.g. PCA)

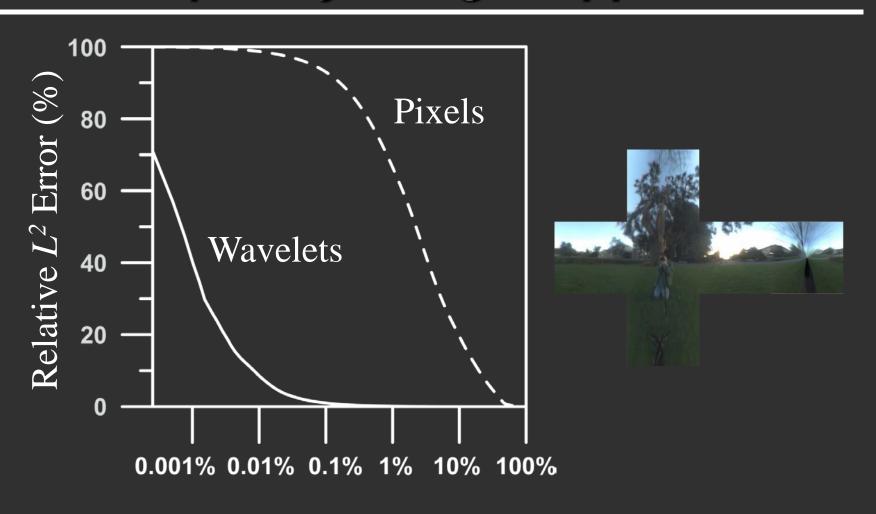
Sph. Harmonics

Haar Wavelets

 $O(N^3)$ $O(N^{5/2})$

 $O(N \log N)$

2. Sparsity in Light Approx.



Approximation Terms

Summary of Wavelet Results

Derive direct O(N log N) triple product algorithm

Dynamic programming can eliminate log N term

 Final complexity linear in number of retained basis coefficients

Outline

- Compression methods
 - Spherical harmonics-based PRT [Sloan et al. 02]
 - (Local) factorization and PCA
 - Non-linear wavelet approximation
- Changing view as well as lighting
 - Clustered PCA
 - Triple Product Integrals
- Handling Local Lighting
 - Direct-to-Indirect Transfer

Direct-to-Indirect Transfer

- Lighting non-linear w.r.t. light source parameters (position, orientation etc.)
- Indirect is a linear function of direct illumination
 - Direct can be computed in real-time on GPU
 - Transfer of direct to indirect is pre-computed
- Hašan et al. 06
 - Fixed view cinematic relighting with GI

DTIT: Matrix-Vector Multiply

$$= \begin{bmatrix} T_{11} & T_{12} & \cdots & T_{1M} \\ T_{21} & T_{22} & \cdots & T_{2M} \\ T_{31} & T_{32} & \cdots & T_{3M} \\ \vdots & \vdots & \ddots & \vdots \\ T_{N1} & T_{N2} & \cdots & T_{NM} \end{bmatrix}$$

 $\begin{bmatrix} L_1 \\ L_2 \\ \vdots \\ L_M \end{bmatrix}$ Direct

illumination on a set of samples distributed on scene surfaces

Compression: Matrix rows in Wavelet basis

DTIT: Demo

Summary

- Really a big data compression and signalprocessing problem
- Apply many standard methods
 - PCA, wavelet, spherical harmonic, factor compression
- And invent new ones
 - VQPCA, wavelet triple products
- Guided by and gives insights into properties of illumination, reflectance, visibility
 - How many terms enough? How much sparsity?