salek, May 2009, CGG MFF UK, CGUdS, Lukas.Marsalek@mff.cuni.cz

Lukas Mar

* Why speed?
— Why to try?

* Lossless acceleration techniques for CPUs

* Mapping to GPUs
— How to map the algorithm to GPUs

[60 Mm3iA|ed] J0 Asa1unod 98ew

* Summary

Lukas Marsalek, May 2009 Lukas.Marsalek@mff.cuni.cz

e Sofar...

— Standard technique overview
— Non-interactive

* [nteractivity
— Enhances spatial perception
— Faster inspection in day-to-day work
— Essential for volume rendering

* Quality demands

— High-resolution for image & data

Lukas Marsalek, May 2009 Lukas.Marsalek@mff.cuni.cz

Most common approaches
— Ray casting
— Volume slicing

High-speed
High-quality

Flexibility

Ease of implementation

Slicing is restricted GPU-friendly ray casting

Lukas Marsalek, May 2009 Lukas.Marsalek@mff.cuni.cz

e Algorithmic improvements
— What are the opportunities?

* More, more, more hardware

— Cluster-based rendering

e Better hardware

— Free speed-up due to Moore’s law

— Specialized hardware

Lukas Marsalek, May 2009 Lukas.Marsalek@mff.cuni.cz

generate rays for pixels

while (1nVolume) { Volume data

Image plane
read data from volume b

map data to color Viewer

processed
pixel
accumulate color

}

write color to framebuffer

Lukas Marsalek, May 2009 Lukas.Marsalek@mff.cuni.cz

generate rays for pixels

Generate less rays

while (inVolume) { Volume data

Image plane
read data from volume Y

map data to color Viewer

processed
pixel
accumulate color

J

write color to framebuffer

Lukas Marsalek, May 2009 Lukas.Marsalek@mff.cuni.cz

generate rays for pixels

while (1nVolume) |
Use fewer samples mage plane
read data from volume A

Volume data

map data to color Viewer

processed
pixel
accumulate color

J

write color to framebuffer

Lukas Marsalek, May 2009 Lukas.Marsalek@mff.cuni.cz

generate rays for pixels

while (inVolume) { Volume data

Image plane
read data from volume b W
Read data faster |
map data to color Viewer

processed
pixel

accumulate color

J

write color to framebuffer

Lukas Marsalek, May 2009 Lukas.Marsalek@mff.cuni.cz

generate rays for pixels

while (inVolume) { Volume data

Image plane
read data from volume Y

map data to color Viewer
Map less often
accumulate color

processed
pixel

J

write color to framebuffer

Lukas Marsalek, May 2009 Lukas.Marsalek@mff.cuni.cz

generate rays for pixels

while (inVolume) { Volume data

Image plane
read data from volume Y

map data to color Viewer

processed
pixel
accumulate color

Accumulate only if needed

J

write color to framebuffer

Lukas Marsalek, May 2009 Lukas.Marsalek@mff.cuni.cz

generate rays for pixels

Generate less rays

while (inVolume) { Volume data

Image plane
read data from volume Y

map data to color Viewer

processed
pixel
accumulate color

J

write color to framebuffer

Lukas Marsalek, May 2009 Lukas.Marsalek@mff.cuni.cz

* Generate less rays

Do we need ray per pixel?

* NO!

* Shoot rays only in interesting regions
— How to identify them?

Lukas Marsalek, May 2009 Lukas.Marsalek@mff.cuni.cz

Split the image to fixed-size tiles
— Balance overhead vs. gains

e Shoot probe rays to evaluate tile importance
— Pre-classified volume blocks importance

* Assign tile sampling rate

— Higher importance => more samples in tile

* Not restricted to pixel-aligned samples
— Arbitrary sampling within the tile

Lukas Marsalek, May 2009 Lukas.Marsalek@mff.cuni.cz

generate rays for pixels

while (1nVolume) |
Use fewer samples mage plane
read data from volume A

Volume data

map data to color Viewer

processed
pixel
accumulate color

J

write color to framebuffer

Lukas Marsalek, May 2009 Lukas.Marsalek@mff.cuni.cz

* Only about 5-10% of voxels contribute to image

 Why to traverse all?

/

/
/
i
[/
/

‘-‘h"'hq.‘_
_-“"'l-i

[/

[/
[/

I/

* Depends on Transfer Function!!!

Lukas Marsalek, May 2009

Images by [Marmitt 06]

Lukas.Marsalek@mff.cuni.cz

* Encode empty space in additional structure

e QOctrees & kD-trees
— Implicit tree with min/max values in each node
— Summed-area table for transfer function

— Both semi-transparent and isosurfaces

— Size may be problem

 Flat blocks

— Fixed-size block with min/max values

— Limited effectivity

Lukas Marsalek, May 2009 Lukas.Marsalek@mff.cuni.cz

* Helps to determine ray entry point
* Do not skip all empty space

* Polygon-assisted ray casting (PARC)
— Render polygons with outlying value
— Start rays from there

* Warping
— Encode position of first non-empty voxel
— Warp and reuse next frame

Lukas Marsalek, May 2009 Lukas.Marsalek@mff.cuni.cz

generate rays for pixels

while (inVolume) { Volume data

Image plane
read data from volume b W
Read data faster |
map data to color Viewer

processed
pixel

accumulate color

J

write color to framebuffer

Lukas Marsalek, May 2009 Lukas.Marsalek@mff.cuni.cz

 Heavy memory bandwidth requirements

» Ray casting generates scattered memory access

— Cache unfriendly

* Maps neighboring pixels to be close in memory

* Increases cache efficiency
— Noticeable speed-up (2-3x)

Lukas Marsalek, May 2009 Lukas.Marsalek@mff.cuni.cz

generate rays for pixels

while (inVolume) { Volume data

Image plane
read data from volume Y

map data to color Viewer
Map less often
accumulate color

processed
pixel

J

write color to framebuffer

Lukas Marsalek, May 2009 Lukas.Marsalek@mff.cuni.cz

* For expensive shading
— Complex local lighting models
— Shadows, Fresnel approximation, ambient occlusion

 Shade only if required

e Skip highly transparent samples

— Contribution is insignificant

e Skip low gradient magnitude samples

— Improves more quality than speed

Lukas Marsalek, May 2009 Lukas.Marsalek@mff.cuni.cz

generate rays for pixels

while (inVolume) { Volume data

Image plane
read data from volume Y

map data to color Viewer

processed
pixel
accumulate color

Accumulate only if needed

J

write color to framebuffer

Lukas Marsalek, May 2009 Lukas.Marsalek@mff.cuni.cz

* Most samples are hidden behind opaque parts

e Stop the computation if the ray is saturated

* Empirical threshold
— Usually 0.95

* Trivial implementation

Lukas Marsalek, May 2009 Lukas.Marsalek@mff.cuni.cz

e Algorithmicimprovements

— What are the opportunities?

* More, more, more hardware

— Cluster-based rendering

* Better hardware
— Free speed-up due to Moore’s law
— Specialized hardware

Lukas Marsalek, May 2009 Lukas.Marsalek@mff.cuni.cz

* Algorithmic improvements

— What are the opportunities?

 More, more, more hardware

— Cluster-based rendering

* Better hardware
— Free speed-up due to Moore’s law
— Specialized hardware

Lukas Marsalek, May 2009 Lukas.Marsalek@mff.cuni.cz

e So far only about CPUs
— What about something faster?
— What means “faster”?

e Parallelism, Parallelism, Parallelism, Parallelism, Parallelism

— Our pixels are completely independent 11!

e Special purpose hardware

— Trivial tasks can be hardwired

 Meet ... Graphics Processing Units (GPUs)

Lukas Marsalek, May 2009 Lukas.Marsalek@mff.cuni.cz

Data-level parallelism
— SIMD architectures

Thread-level parallelism

— Multithreading, coarse or fine-grained

Task-level parallelism
— Traditional approach

Moore’s law re-defined
— Not with frequency, but with parallel cores

Lukas Marsalek, May 2009

Lukas.Marsalek@mff.cuni.cz

* Massively parallel
— 30 SIMD SMs
— 240 scalar cores

GeForce GTX 280
PCle Interface

I I
Geometry | can has Setun/Raster

\IIH\ WHIMHIMH \IM\ \IMHIMHIIH\

Lukas Marsalek, May 2009

Lukas.

Marsalek@ mff.cuni.cz

* New programming paradigm
— SIMT - Single Instruction Multiple Threads

* Implicit SIMD management
— Thread divergence
— Memory coherence

11 =
i =
S

[sm || sm |

T O O B ™|

=—ll==
& | Ed
s =
& | B
& | Ed
= B

[iemany | || [semony |

e User-controlled caches

— Hardware-managed texture cache
— User-managed shared memory [ewen |

Lukas Marsalek, May 2009 Lukas.Marsalek@mff.cuni.cz

e First hardwired subsystem

— First Graphics Accelerators
— Bilinear

* Fixed, trivial algorithm
— “Only MADD instructions”

e Performed EXTREMELY often

— ~ billion times per second

* Accelerated blending

Lukas Marsalek, May 2009

Lukas.Marsalek@mff.cuni.cz

e Suitable for hardware implementation
— Well-known algorithm
— Hierarchical approach, simple operations
— Very parallel on triangle level

* Hundreds of millions of triangles per second

* Wide, high-bandwidth memory bus
— 512 bit bus
— Theoretically dozens of gigabytes per second

Lukas Marsalek, May 2009 Lukas.Marsalek@mff.cuni.cz

* Designed to take advantage of new HW
— Bi-linear or tri-linear interpolation blending
— High rasterization throughput
— High bandwidth memory

e Until recently the fastest and most used algorithm

* Problems

— Rasterization is not fast enough for large volumes
— Artifacts
— Inflexible

Lukas Marsalek, May 2009 Lukas.Marsalek@mff.cuni.cz

* Most flexible algorithm

— Canincorporate speed-up techniques easily

* Balances the requirements on the GPU
— Can use texture interpolation hardware
— Can use rasterizers, but does not depend on them

* Shader based vs. CUDA-based implementations
— Onpar©

Lukas Marsalek, May 2009 Lukas.Marsalek@mff.cuni.cz

* Rasterize bounding box of the volume

— Ray generation phase

* Volume rendering loops runs in fragment shader
— ForSM >=3.0
— Need for dynamic branching

* Transfer function implemented as texture

Lukas Marsalek, May 2009 Lukas.Marsalek@mff.cuni.cz

High-speed volume ray casting with CUDA

Wolume ray casting receives a renewed interest as graphics hardware enables e v .)
its realtime implementations. Lukas Marsalek Armin Hauber Philipp Slusallek

Currently [2, 1, 2], special shader languages and graphics APIs are used, Saarland University Saarland University ~ DFKI Saarbriicken & Saarland University
making implementation uncomfortable and difficult. It also hinders

performance, as it bends the pregramming model for something it was not A .

designid o, Implementation Scalar C++ like code on GPU

Recantly, new generation of GPUs has been introduced together with CUDA, a Integrated In a C++ framework and itself written In ©/C++ mix-
C-language APl CUDA exposes the hardware not as a streaming graphics __aglobal__ void kernel {unsigned int * pixals) { ture with familiar constructs entirely on GPU

pipeline but as a general highly parallel co-processor.

We aim at evaluating this new increased flexibility versus any performance : s -
losses, For the study we have chosen ray casting with front-to-back traversal, _:;::::g_ Eg::; ;_rdasy;g;[os]?o], ng h GPU occu pancy

pre-integration, and early ray termination. - o == . Only 12 live registers for the whole kernel result in 83% GPU oc-

cupancy. Itis achieved by spilling long-lived variables into the
shared memory and recomputing common lacal expressions.

B int sindex = tldx.y * blockDim.x + tidxo;
CD nﬂ ICt'fI'EE SM u Sag € . s_rayDir[sindex] = ComputeRayDirection();
Storing float2 variables in block-sized atray enables completely conflict-free

shared memory access. This enables maxirmum parallelism in thread exscution,

servicing 16 requests to the shared memory simultaneoushy. IRttt orardngtoRs;

iff (tOut - tin) = 0.0f)
{

f = c_rayOrigin + tin * s_rayDir[sIndex];
Performance results old = tex3D{datasetTex, f);

| EPS performance ” Neghip (64%) | Foot (2567) | VisFemSlice (5127) |

while(tln < tOut)

CRM 46.7 13,2 11.6 {
ST 41 13.5 NIA tin += c_rayStepSize;
FPS in 1024x1024 for our (CRM) and Steigmaier [3] (5T) ray caster f=c_rayOrigin + tln * s_rayDir[sindex];
The Footdataset renderered at 15.2 FPS into 1024x 1024 window
Textures can also be utilized in CUDA De = At Seasctien L

= tex2D(preintTexture 2D, old, next);
We also use efficient texturing capabilities known from graphics APIs, taking Fii s References
advantage of the automatic interpolation and read-only caching for effective i

access to volume dataset and pre-integration lookup table.

[1] J. Kruger and R.Westermann: Acceleration Techniques for
GPU-based Volume Rendering. |EEE Visualization 2003.

AccumulateColoris_dst[sindex], f);
if{RaySaturated()) { break; |;

COE'ESCEd global memory access) [2] 5. Roettger, 5. Guthe, D.WEISkopf,.T.Erﬂ,ai:td W Stras;;er.

: : ; ’ Smart hardware-accelerated volume rendering, EuroVis 2003.
To make the access tathe global memaory effective, it Is imperative to enable 1 [3] 5. Stegmaier, M. Strenger, T.Klein and T, Ertl. A Simple and
the hardware to group individual requests. This is done through coalescing the Flexible Vol 2 Renderi F k fosr Granhi
reads and writes so that they access linear memory in a well-defined stride. pixels[i] = rgbaFleatTolnt(s_dst[sindex]); EAILS YR UTIE D NIETHG LIt e A Iy ar s

Hardware-based Raycasting. Volume Graphics, 2005.

Our optimized CUDA ray caster prasents a proof of concept that the flexibility of programming GPUs in € dialect does not come at This work was supported by International Max Planck Research
a performance hit. Rather it enables low-level optimizations, outparforming optimized shader implementations. Our future work School for Computer Science in Saarbriicken, Computer Sci-
will concentrate on advanced acceleration techniques and applications to new branches like anthropology and bicinformatics. ence Dept. of Saarland University and GAUK grant no.88008.

Lukas Marsalek, May 2009 Lukas.Marsalek@mff.cuni.cz

* Directly implementable

* How to render only corner pixels?

 Render small polygons
— One polygon per tile

* Restrict viewport

— Using glViewport command

Lukas Marsalek, May 2009 Lukas.Marsalek@mff.cuni.cz

* Flat schemes easy to implement
* Double loop

— First loop over empty-space structure

e Adaptive Texture Maps

— Indirect texture lookup into index texture

e Hierarchical are difficult

 QOctree-based CUDA traversal

Lukas Marsalek, May 2009 Lukas.Marsalek@mff.cuni.cz

* Both effective through early z-culling

— Allows to discard fragment before it is processed

* Block-based ERT
— Double pass algorithm
— Render bounding boxes of blocks
— Compare alpha value (ERT test), set z-buffer

Lukas Marsalek, May 2009 Lukas.Marsalek@mff.cuni.cz

What we have covered

— Basic acceleration techniques for ray casting and slicing

e Adaptive image-space sampling
* Memory layout (swizzling)
* Empty-space leaping
* Deferred shading
e Early ray termination
— Conservative lossless techniques

— Mapping to GPUs

What we have NOT covered ?

Lukas Marsalek, May 2009

Lukas.Marsalek@mff.cuni.cz

What we have covered

— Basic acceleration techniques for ray casting and slicing

Adaptive image-space sampling
Memory layout (swizzling)
Empty-space leaping

Deferred shading

Early ray termination

— Conservative lossless techniques

— Mapping to GPUs

What we have NOT covered ?

— Adaptive object-space sampling & multi-resolution rendering

Lukas Marsalek, May 2009

Lukas.Marsalek@mff.cuni.cz

« [BallView 09] BALLView, molecular modeling and visualization software, www.ball-
project.org, webpage, 2009

 [Marmitt 06] G. Marmitt, R. Brauchle, H. Friedrich, and P. Slusallek : Accelerated
and Extended Building of Implicit kd-Trees for Volume Ray Tracing, VMV 2006,

Lukas Marsalek, May 2009 Lukas.Marsalek@mff.cuni.cz

Thank you for your attention

Lukas Marsalek, May 2009 Lukas.Marsalek@mff.cuni.cz

