
Charles University in Prague
Faculty of Mathematics and Physics

BACHELOR THESIS

Oskár Elek

Rendering Planetary Atmospheres in
Real-Time

Department of Software and Computer Science Education

Thesis supervisor: Mgr. Petr Kmoch

Study program: Computer Science, Programming

2008

Here I would like to thank my supervisor, Mgr. Petr Kmoch, who aided me
with picking the topic for my work and also advised me during the creation
of both application and thesis. Moreover, I would like to thank my dear
girlfriend, who helped me to overcome stress involved in the elaboration.

I declare that I have written my bachelor thesis independently and solely by
using cited sources. I agree with lending of the thesis and its publishing.

In Prague, 05/30/2008 Oskár Elek

2

Contents

1 Introduction 6
1.1 Motivation — who needs realistic atmosphere? 6
1.2 Goals of the thesis . 7

2 Atmosphere rendering 8
2.1 Physical basis of light scattering 8
2.2 Statistical versus empirical approach 9
2.3 Related work on atmospheric light scattering 9

3 Rendering of planetary atmospheres using precomputed 3D
lookup table 13
3.1 Mathematics of the single-scattering model 13
3.2 The concept of precomputation 15
3.3 Precomputation of single scattering 16
3.4 Extended precomputation of single scattering 18
3.5 Rendering of planetary surface 21
3.6 Technique summary . 24

4 Implementation 25
4.1 Environment and libraries 25
4.2 TextureCreator . 26
4.3 AtmoVision . 28
4.4 Tests and results . 30

5 Conclusion 36
5.1 Summary . 36
5.2 Fulfillment of goals . 36
5.3 Discussion and future directions 37

Bibliography 39

A Contents of DVD 40

3

B TextureCreator and AtmoVision quick reference 41
B.1 System requirements . 41
B.2 Installation . 41
B.3 TextureCreator . 42
B.4 AtmoVision . 42

C Physical constants and parameters 44

4

Název práce: Vykreslováńı planetárńıch atmosfér v reálńım čase
Autor: Oskár Elek
Katedra (ústav): Kabinet software a výuky informatiky
Vedoućı bakalářské práce: Mgr. Petr Kmoch
e-mail vedoućıho: petr.kmoch@mff.cuni.cz

Abstrakt: V oblasti fotorealistického vykreslováńı fyzikálńıch jev̊u hraje ren-
derováńı atmosférického rozptylu světla velice d̊uležitou roli. Vykreslováńı
oblohy a atmosféry obecně je nezbytné pro většinu her, r̊uzných simulátor̊u,
virtuálńıch svět̊u či dokonce i animovaných filmů. Je to sice velice těžká
úloha, ale d́ıky rozvoji specializovaného poč́ıtačového hardware je dnes již
zvládnutelná. V mé bakalářské práci představuji přesnou a zároveň rychlou
metodu pro zobrazováńı planetárńıch atmosfér. Toho je dosaženo předpo-
č́ıtáńım složitých rovnic primárńıho rozptylu světla do série vyhledávaćıch
tabulek. Správná barva atmosféry je z nich poté vyzdvižena ve fragment
shaderu. Prezentovaná metoda je implementována v poč́ıtačovém programu,
který je schopen vykreslovat realistickou atmosféru rychlost́ı několika set
sńımk̊u za sekundu.
Kĺıčová slova: fotorealistické zobrazováńı, atmosférický rozptyl světla, pro-
gramováńı GPU, procedurálńı textury

Title: Rendering Planetary Atmospheres in Real-Time
Author: Oskár Elek
Department: Department of software and computer science education
Supervisor: Mgr. Petr Kmoch
Supervisor’s e-mail address: petr.kmoch@mff.cuni.cz

Abstract: In the field of photorealistic rendering of physical phenomena, the
rendering of atmospheric light scattering takes a very important place. Real-
time rendering of sky and atmosphere in general is essential for all outdoor
computer games, various simulators, virtual worlds or even for animated
movies. It is a very difficult task, but thanks to the advancement of dedicated
graphics hardware we can reach it today. In my thesis I present an accurate
and fast method for real-time rendering of planetary atmospheres. This is
achieved by precomputing complex single-scattering equations into a set of
lookup tables. The correct atmospheric colour values are then fetched from
these in the fragment shader. The presented method is then implemented in
a program that is capable of rendering realistic atmosphere in hundreds of
FPS.
Keywords: photorealistic rendering, atmospheric light scattering, GPU pro-
gramming, procedural textures

5

Chapter 1

Introduction

One of the major reasons for founding 3D computer graphics was the
desire for accurate reproduction of physical reality that surrounds us. Till
today, 3D graphics diverged into many different directions, but the one which
strives for the original purpose of this domain — photorealistic rendering —
is perhaps the most important of them all. One of the most interesting parts
of protorealistic rendering is, in my opinion, rendering of various physical
phenomena. This work aims at rendering one such phenomenon, which is
very well known to everyone, as it accompanies us in our everyday life —
the atmospheric scattering responsible for light conditions which we live in.

1.1 Motivation — who needs realistic atmo-

sphere?

Atmosphere is the layer of gases, aerosols and condensation cores that
surrounds our planet. It is not very dense, but it still influences the manner
in which light from the Sun propagates before it reaches the ground and
also our retinas. It is responsible for perceived colour of the sky during the
day or night (see Figure 1.1). Because of this, every application that renders
any outdoor scene should care about beliveable appearance of the sky and
also sunlight colour in certain time of day. Modern computer games, such as
3D shooters, flight or spacecraft simulators, but also various virtual worlds,
strongly need to persuade their user about realism of the environment they
are moving in. Moreover, training simulators for aircraft or spacecraft pilots
have to create immersion of controlling the real machine in real conditions.
Or for instance, some TV sessions such as weather forecasts may also need
realistic atmosphere.

The key problem in these applications is that they have to immediately
react for example to the user’s movement, so all parts of the environment,
including the atmosphere, have to be rendered in real-time. As we will se in
forthcoming chapters, this is quite difficult to achieve.

6

Figure 1.1: Real photo of an evening sky

1.2 Goals of the thesis

My work aims to reach these objectives:

1. Examine existing sources and methods which aim for real-time render-
ing of the atmosphere or other light scattering effects.

2. Pick one such method, implement it, analyze it and figure out the new
method based on it, but with modifications allowing custom parame-
terization of both the rendered atmosphere and underlying planet and
any corrections that I consider necessary.

3. To implement the new method in my own program with emphasis on
strong GPU utilization and low CPU load.

7

Chapter 2

Atmosphere rendering

2.1 Physical basis of light scattering

First of all, I’d like to very shortly describe the physical mechanisms that
run in the atmosphere. I think that their knowledge can help to better
understand mathematical principles used for its visualization.

Earth’s atmosphere is a very complex object. It is generally a mixture
consisting of many chemical compounds. However, these can be divided into
three groups: gases, aerosols and solid particles, such as dust or tiny ice
crystals. In the climatological sense, the atmosphere is described by tens of
properties — temperature, pressure, density, humidity and so on. However,
these properties mainly describe the percentages, distribution and movement
of these three basic types of compounds in the atmosphere.

This is important, because these compounds are directly involved in the
influencing of the light propagation through the atmosphere. How? When
a particular photon from the Sun (or any light source) hits a gas molecule
or an aerosol particle, it will likely change the direction of movement (in
fact, it may also be absorbed by it or another photon may be emitted from
it, but I’ll omit this process, as it belongs to quantum physics and ther-
modynamics). This phenomenon is called light scattering and is responsible
for all characteristic colours of the sky. We call the compounds causing it a
participating media.

We basically recognize two types of light scattering — Rayleigh and Mie
scattering. Rayleigh scattering is the light scattering on gas molecules. These
are of size comparable to the wavelength of visible light, so the shorter the
wavelength of an incoming photon is, the more probably it gets scattered.
This dependency is the main reason for the blue sky colour during the day
and the reddish hues during the sunrise or sunset. Mie scattering is on the
other hand the light scattering on aerosol and dust particles. As these are
vastly bigger than visible light wavelength, the scattering on them is wave-
length independent.

8

And here comes the main issue: a particular photon can hit and bounce
from atmospheric particles many times until it reaches an observer1. It is
called multiple scattering. This results in high-degree polynomial complex-
ity, when one wants to simulate this behaviour. So we need a simplified
mathematical model that is possible to implement algorithmically.

2.2 Statistical versus empirical approach

In designing a mathematical model that will be sufficently accurate for
describing atmosphere colour and simple enough to be implemented in code,
two different approaches can be taken: statistical and empirical.

Statistical - Thanks to gravitational force of the planetary body, the at-
mospheric mass is distributed unevenly in the sense of altitude. More
precisely, about 50% of atmosphere’s mass is located under 5.6km, 75%
under 11.2km and so on. That means the atmospheric pressure halves
each 5.6km [10]. Thanks to this knowledge, it is possible to create a
probabilistic distribution function based on real physical principles.
This is the preferred approach, as it is physically correct, despite the
simplifications which have to be made. On the other hand, it can be
very time-consuming, as we’ll see in Section 3.1, where such model
called single-scattering is described.

Empirical - This approach means that we don’t try to create a physically
based model, but we analyze desired behaviour (in this case the colour
of the sky) and try to produce an arbitrary equation or algorithm that
provides us results which are at least close to the desired ones. This
ad hoc solution can be much faster than the previous one, but it is
very difficult to find such empirical method to describe as complex an
object as atmosphere. Moreover, such solution doesn’t help to deeply
understand any laws taking place in the particular phenomenon, it
only tries to imitate the results. For this reason I don’t consider this
approach very scientific, so I’ve decided to follow the statistical ap-
proach everytime it will be possible, because it shows that despite its
potential complexity, it can already be implemented in real-time.

2.3 Related work on atmospheric light scat-

tering

There are many works dealing with general light scattering in various en-
vironments. Of course these principles are applicable also on atmospheric

1However, it loses some of its energy after each bounce, so the photon becomes infrared
after a certain amount of bounces (but that can be quite high)

9

scattering, but dealing with it adds issues that are specific only to the at-
mosphere, such as its chemical composition, density fluctuation or largeness.
For this reason I only focused on works about atmospheric light scattering.
In spite of this there’s still quite a lot of them, so I don’t try to create
their complete enumeration. Rather I present a list of works that influenced
development of my method itself.

In agreement with advantages and disadvantages of two possible ap-
proaches described in Section 2.2, the physically-based statistical approach
is more frequent in endeavour for getting realistic atmosphere look. This is
mainly possible thanks to very good knowledge of physical laws involved in
light scattering and their algorithmic implementability. In fact all works I’m
going to present are using basically the same single-scattering model (see
Section 3.1 for details and mathematical equations). Then the main differ-
ence between them is not in the mathematical model they implement, but
in the algorithmical approach they take for its implementation.

Display of The Earth Taking into Account Atmospheric Scattering -
This I’d say almost classical paper of a Japanese research group from
1993 [5] is one of the first works in modern computer graphics that
realistically deals with atmospheric scattering, at least as far as I’m
aware. Nishita et al. presented here a single-scattering model suitable
for algorithmic implementation. This model later became popular in
modelling atmospheric scattering. As the word ‘Display’ from the title
suggests, their algorithm was not capable of interactive rendering of
the Earth’s atmosphere2 — they implemented a software ray-tracing
that rendered one frame in several minutes. Although their scattering
model was capable of calculating the atmosphere colour from any view-
point under or above the upper atmosphere boundary, their algorithm
was designed to display the realistic atmosphere only from outside of
it (see Figure 2.1 for an example). They also designed a pre-computed
lookup table for speeding up the rendering process a bit. In this 2D
lookup table, they stored the out-scattering (see Section 3.1 for defi-
nition) from the Sun to a sample point in arbitrary height, by taking
advantage of the fact that the Sun is so far away that any two light
rays from it can be considered parallel.

Real-Time Atmospheric Scattering - In 2004, Sean O’Neil [6] imple-
mented a real-time CPU based, vertex oriented algorithm by using
the same scattering model presented by Nishita et al. [5]. He mainly
improved the lookup table introduced by them, so he was able to store
not only the out-scattering from the Sun, but also the out-scattering
to the observer. However he hasn’t succeeded in precomputing the

2Bear in mind it was the year 1993

10

Figure 2.1: Ray-traced Earth (from Nishita et al. [5])

in-scattering, so he could afford only few integral samples for its com-
putation, to keep the whole rendering process in real-time framerates.
This, in combination with per-vertex calculations, resulted in quite
rough accuracy. He was however aware that there must be a way to
precompute both out- and in- scattering into a 3D lookup table, so he
suggested further investigation of this possibility.

Accurate Atmospheric Scattering - A year later, in 2005, the same Sean
O’Neil ported [7] his real-time solution onto the dedicated graphics
hardware. This was an important deed as there was little perspective
of improving the accuracy of his previous CPU version. However he still
wasn’t successful in precomputing both scattering integrals into any
form of lookup texture, so he implemented the in-scattering integral
in a vertex shader, as its real-time computation was too expensive for
a fragment shader. He didn’t want his implementation to require the
Shader Model 3.0, so he didn’t used the improved lookup texture from
his previous implementation, because the vertex texture reads were
expensive on the GeForce 6 series (according to Gerasimov et al. [4]).
Instead he figured an analytical expression of both out-scattering in-
tegrals, by which he made a purely virtual algorithm without the need
of any precomputed data.

Real-Time Rendering of Planets with Atmospheres - Finally in 2007,
Schafhitzel et al. presented [8] an approach that already computed the
atmospheric colour in a fragment shader. This was achieved by figur-
ing out the paramaterization for the 3D lookup texture (predicted by
O’Neil [6]) — it was parameterized by camera height, angle to sun and
angle to camera. Only coordinates (based on actual spatial parame-

11

ters) into this texture and several corrections had to be calculated in
a fragment shader. This approach, as expected, was very fast, but the
lookup table lacked one dimension — the azimuth from the Sun. This
resulted in some incorrect colours mainly during the sunset and the
inability to correctly display Mie scattering. I’ll describe this method
in the next chapter, as it forms the starting point for my work.

12

Chapter 3

Rendering of planetary
atmospheres using
precomputed 3D lookup table

In this chapter I’m going to present a method for real-time rendering of
planetary atmospheres. Its mathematical model is adapted from [5] and the
algorithmical part is based on [8]. However, I’ve made several improvements
of this method, as it didn’t produce correct results under certain conditions,
which I’ll describe later.

3.1 Mathematics of the single-scattering model

In this section I’m going to present the mathemtatical model of single
scattering (hereinafter SS). SS is a simplified physical model in the sense
that it omits all of a photon’s multiple bounces in the participating medium.
It calculates with only one deflection of the photon away from its original
direction, so the light flux gets attenuated (out-scattering) and with the
one deflection of photon flying in the arbitrary direction into our view path
(in-scattering). Let’s now discuss the statictical equations describing SS.

As explained in 2.1, we recognize two types of atmospheric light scat-
tering — Rayleigh scattering and Mie scattering. Since their calculation is
similar to each other, I’ll first describe Rayleigh scattering and then I’ll
discuss differences between them.

The amount of light Is scattered in sample point P in dependence on
spectral wavelength λ and scattering angle θ (see Figure 3.1) is described by
the Rayleigh scattering equation:

Is(λ, θ) = Ii(λ)Kρ(h)FR(θ)
1

λ4
(3.1)

where Ii is the intensity of incident spectral wavelength λ, K = 2π2(n2−1)2

3NS

is the ratio for molecular density of atmosphere at sea level, n is index of

13

Figure 3.1: Schematic view of the atmosphere (redrawn from Nishita et
al. [5])

refraction for air, NS is the absolute molecular density at sea level, ρ(h) =
exp(− h

HR
) stands for the density function (in dependence on height h of

sample point P and Rayleight scale height1 HR = 7994m) and FR is the
Rayleigh phase function (for the complete list of used constants’ values see
Appendix C).

FR represents the amount of scattered light in dependence on scattering
angle θ between light ray and viewing ray. The standard Rayleigh phase
function is denoted by FR(θ) = 3

4
(1 + cos2(θ)). Application of this function

produces the largest amount of scattered light at 0◦ and 180◦ scattering an-
gles and the smallest amount at 90◦ scattering angle (exactly half of 0◦/180◦).
This is the correct property of SS, but results produced by this form of FR

do not match the real-world observations. This is caused by the fact that we
are working with only SS whereas in the real observations, multiple scatter-
ing takes place. To resolve this problem I’ve derived an empirical Rayleigh
phase function defined as

FR(θ) =
7

10

(
7

5
+

1

2
cos(θ)

)
(3.2)

This function produces the smallest values at 180◦ which gradually increase
up to 0◦, where the amount of scattered light is largest. There are approaches
which solve this problem by adding an ambient term to the overall sky colour,
but I find this kind of correction more appropriate — similarly to the SS,
the amount of multiple-scattered light varies according to view angle and
also daytime and thus cannot be approximated by a constant ambient term.

Let’s now describe the calculation of optical depth, which is the attenu-
ation coefficient for the light ray between two points in atmosphere due to

1Represents the altitude where an atmospheric pressure of Rayleigh-active molecules
is halved

14

the out-scattering. Given the attenuation coefficient β(λ) = 4πK
λ4 , the optical

depth t(S, λ) along path S is obtained by integrating β(λ) weighted by the
density function ρ(h), that is

t(S, λ) =
∫ S

0
β(λ)ρ(s)ds ≡ 4πK

λ4

∫ S

0
ρ(s)ds (3.3)

where the last equivalence is valid thanks to the assumption that the index
of refraction for air n does not change with altitude (truly there’s a small
variation, but I neglect it for sake of simplicity).

Knowing the amount of light attenuated along some light path, we can
finally obtain the amount of light that the observer situated in PV receives.
We achieve this by combining Equation 3.3 with Equation 3.1. The Rayleigh
intensity IV of spectral wavelength λ in PV is then denoted by

IV (λ) = Ii(λ)FR(θ)
K

λ4

∫ Pb

Pa

ρ(h)exp (−t(PPc, λ) − t(PPa, λ))ds (3.4)

where h is the height of sample point P .
Having defined the intensity of Rayleigh-scattered light, I can now de-

scribe the modifications needed to calculate Mie scattering. The whole sys-
tem of equations stays, except for the 1

λ4 term, that has to be completely
removed. This is caused by the nature of Mie scattering — the aerosol par-
ticles causing it are vastly larger than the wavelength of visible light, so this
no longer influences the intensity of scattered light.

We also have to use a different phase function. An often-used Henyey-
Greenstein function has been improved by Cornette [2] to a physically more
reasonable formulation of FM :

FM(θ, g) =
3(1 − g2)

2(2 + g2)

(1 + cos2(θ))

(1 + g2 − 2gcos(θ))3/2
(3.5)

where θ is the scattering angle and g stands for the asymetry factor between
forward and backward scattering and g ∈ (−1;−0.75〉. It can be noticed
that setting g to 0 gives us the original Rayleigh phase function.

To conclude, calculation of Mie scattering also requires modification of
a few parameters. A different scale height for the density function must
be used, as the aerosol and dust particles are located in much lower alti-
tudes of the atmosphere due to their greater weight in comparasion with
gas molecules. Thus the Mie scale height used is HM = 1200m. Also the
different molecular density NS has to be used, because the absolute density
of aerosol particles is much lower than the density of gas molecules.

3.2 The concept of precomputation

One of the most massively used concepts in computer graphics and es-
pecially in real-time graphics is precomputation. Precomputation is the typ-
ical tradeoff ‘memory for speed’ often seen in computer sciences. Suppose

15

we have some complicated function or integral equation (just like our SS
model) which we need to evaluate for instance per-fragment to compute
local lighting or any other property of particular graphical primitive (let’s
call it critical function, CF). This assumption implicates that we have to
evaluate CF say a few million times to obtain one single frame. For the SS
model, this is equivalent to several minutes of renderig.

Precomputation is the process when the CF is adequately sampled and
the resulting values are stored in some data structure, from where they are
fetched during the rendering2. The possibility of precomputation depends
on two issues: dimensionality of CF and the desired precision. The first issue
exist because it’s quite difficult (and also memory consuming) to store values
of function with dimension larger than 3 in the data structures common
in today’s real-time graphics — lookup textures3. The precision issue arises
because the desired sampling frequency of CF may be larger than the biggest
allowed size of textures or sampling of CF in this frequency could cause the
size of the precomputed data to be unbearably large.

The importance of precomputation increased even more with coming
of programmable graphics hardware. This is so because on modern GPUs
the speed of a fragment texture fetch operation is extremely high. It is even
reasonable to precompute a normalization cubemap and fetch the normalized
version of vector instead of normalizing it directly in fragment shader [3].
Thus it is very convenient to figure how to precompute the SS model into
such lookup texture. However as we’ll see in the following section, it’s not
an easy task.

3.3 Precomputation of single scattering

Let’s now discuss the possibility of precomputing the SS equations into
a lookup table. Since I’m focusing on pure-GPU implementation (but pre-
computation can be handled by CPU, as this is a one-time batch operation),
it’s necessary to keep the dimensionality of a lookup table less or equal to
3, because higher-dimensional textures are not supported by hardware.

To completely precalculate the SS model, we basically have to evaluate
Equation 3.4 for every possible observer position in the atmosphere looking
in an arbitrary direction at arbitrary daytime (what means considering every
possible sun direction). These are 3 parameters, but let’s not forget that
each of them is a 3-dimensional vector, what leaves us with 9(!) degrees of
freedom (DoF). Even representing these vectors in polar coordinates leaves
us with 6 DoF. This is then not the way to go. However, we can afford a few

2Of course we assume that the fetching operation lasts significantly shorter than cal-
culation of CF

3A lookup texture is an arbitrary array of 1D, 2D or 3D data stored in primary or
secondary memory

16

Figure 3.2: Scheme depicting hφδ-parameterization

assumptions that will help us to achieve our intention:
(1) the Sun (light source) is so far away that all light rays from it can be

considered parallel
(2) the Earth (planet) is perfectly spherical (neglecting terrain morphol-

ogy for now)
(3) the density of an atmosphere changes according to altitude, but not

according to latitude and longitude (this fits well with gaseous componds of
atmosphere, but for aerosols there’s a variation according to latitude that
must be neglected)

Under these circumstances I adopted the parameterization proposed by
Schafhitzel et al. [8]. This approach precomputes the scattering Equation 3.4
into a 3D lookup texture. This texture is parametrized by the altitude of
the observer in the atmosphere h ∈ 〈0, HTOP 〉 (where HTOP is the altitude
of atmosphere’s upper boundary), the angle φ ∈ 〈0, π〉 between observer’s
position (in respect to the center of planetary sphere) and view direction
and by the angle δ ∈ 〈0, π〉 between observer’s position and light direction
(see Figure 3.2). Thanks to the assumption (3) the position of observer in

3D space can be expressed without loss of generality as ~P = (0, h, 0). Since
P lies on the y-axis, the view and light directions can be then expressed as
~V = (sin(φ), cos(φ), 0) and ~L = (sin(δ), cos(δ), 0), respectively. We can see
that by using only 3 scalar values it’s possible to express observer’s position
and both view and light direction and using them, we are able to precompute
Equation 3.4 into a 3D lookup texture.

It can look a bit suspicious that even though we want to observe the
atmosphere also from outside of it, we are calculating only with positions
inside of it. But in fact, there’s no light scattering in space, so for observer
situated outside the atmosphere, the amount of scattered light is the same
as if they were ‘standing’ on the upper atmosphere boundary.

The utilization of the precalculated dataset is not difficult. All we have
to do is calculate the coordinates into the 3D texture during runtime for
each fragment and fetch the appropriate atmosphere colour. In the fragment

17

Figure 3.3: Errors in Mie scattering when using hφδ-parameterization

shader, we have available all of ~P , ~V and ~L and all that has to be done is
to calculate the altitude of ~P over the ground and angles between ~P , ~V and
~P , ~L and use these values as coordinates into the lookup table (see [8] for
the original fragment shader code).

This approach looks good, but soon I figured out that there’s a lack
of one dimension in such parameterization. Analyzing it I found out that
the resulting lookup table stores the scattered light only for configurations
when ~V is coplanar with ~P and ~L. For any other situation, when the observer
looks around, the table fails, because it completely neglects the azimuth (I

will refer to it as ω) between ~V and ~L. This causes uniformity of sky colour
with respect to ω and nasty-looking ‘rings’ of Mie-scattered light centered
around the zenith (see Figure 3.3 for examples of these errors).

This represents a problem, because the fourth dimension can’t be simply
squeezed into the texture. Thus, to get plausible results, I had to figure out
the way to incorporate the remaining dimension into the whole concept. In
the next section I’ll show two different solutions of this problem.

3.4 Extended precomputation of single scat-

tering

Despite the fact that hardware does not support 4D textures, it’s theoret-
ically possible to emulate it by a 3D texture4. However in practice, this is
completely useless because of hugeness of the resulting data and also because
the addressing in shader would be very awkward.

For the first solution of the problem shown in Section 3.3 I’ve created
a different parameterization of the 3D lookup texture. The angles φ and δ

4Similarly to emulating a 3D texture by a 2D texture by making the regular tiles on
2D plane that would represent slices of the emulated 3D texture

18

remain, but instead of h the third dimension is the azimuth ω. The pre-
computation is then performed as follows: first, an arbitrary altitude in the
atmosphere is chosen, for example the sea level; then both ~V and ~L are calcu-
lated and ~V is aditionally rotated by ω around the y-axis. 3D lookup texture
then stores correct values for all view and sun directions, but only for one
altitude. To be able to display the atmosphere in different altitudes, a few of
these textures must be calculated, each of them for different height5. Then in
fragment shader, we have to fetch the atmosphere colour from both lookup
textures adjacent to current observer’s altitude and to linearly interpolate
between them.

This is indeed a very simple and brute force approach. It’s in fact the
emulation of 4D lookup table with one dimension sampled very roughly.
It would be suitable only for such applications where it’s certain that the
observer can be situated in only one or few height levels, because the linear
interpolation produces quite disturbing visual transitions between them. It
also produces unacceptable results for Mie-scattered light, because unlike
the Rayleigh scattering, the Mie scattering has sharp colour transitions.
The resolution of such lookup texture is simply insufficent and this results
in very blocky-looking Mie-scattered light (see Figure 3.4).

(a) (b)

Figure 3.4: Errors in φδω-parameterization — blocky-looking Mie scatter-
ing (a) and visible interpolation between two height levels (b)

A more suitable approach would be, if one dimension could be excluded
from the precomputation and computed during the rendering itself. At first
I was considering elimination of h, but I wasn’t successful in analytically
expressing the light scattering for different altitudes from the lookup tex-
ture fixed in one height level. So I ended up with the solution explained in
previous paragraphs. Then I realized it should be possible to exclude ω. The

5For example at ground level, in half of the atmosphere height and on the top of the
atmosphere

19

reason of such possiblility is this: during the precomputation, the only usage
of ω is to rotate the view direction ~V around the y-axis to include all possi-
ble viewing directions. However after such rotation, the distance between the
observer’s position ~P and the intersection point of ~V with outer atmosphere
boundary stays the same, as the atmosphere is spherical and centered in the
origin. Thus the path along which the light scattering is calculated remains
the same, only the angle θ between ~L and ~V is altered. But θ only represents
the parameter for the phase function which only multiplies the outermost
in-scattering integral (see Equation 3.4).

This simple idea allowed me to exclude calculation of F (θ) from the
precomputation step — for calculating the 3D lookup texture original hφδ-
parameterization is used, but the F (θ) term is excluded from it. Instead
it’s precomputed into a separate 1D lookup table parametrized only by θ
and this is loaded into fragment shader along with the main 3D scattering
texture. Then, the proper value of F (θ) is fetched according to ~V ~L angle
and multiplied with the previously fetched scattering colour to get the final
colour of the sky.

(a) (b)

Figure 3.5: The graph of Cornette’s FM for g = −0.95 (a) and the correct
sampling of Mie scattering with enhanced hφδ-parameterization (b)

This solution removes both problems of φδω-parameterization. The prob-
lem with rough sampling of the altitude is now irrelevant, because the orig-
inal hφδ-parameterization with fine altitude sampling is used. The second
problem — the blockiness of Mie scattering — is also removed, because the
sharp colour transitions of Mie-scattered light are caused by the rapid rise
of FM in small scattering angles. In φδω-parameterization, the resolution of
the scattering texture is simply insufficent to correctly catch this rise, but
with real-time computation of FM , this problem does not occur anymore as
we have now the FM sampled with per-fragment accuracy (see Figure 3.5
for details).

20

From now on, I’ll be considering only the enhanced hφδ-parameterization,
as it’s the only one that produces plausible results.

3.5 Rendering of planetary surface

Until now, I’ve been describing only rendering of the atmosphere. To be
able to render the surface of the planet, a few more light contributions must
be taken into account.

For surface shading, the Strauss local reflectance model [9] is used. I’ve
chosen it because of its approximation of specular Fresnel terms (which can
be precomputed in 1D lookup tables) and for the physically based param-
eterization of shaded surface. Its implementation is quite compact and is
suitable for rendering realistically-looking surfaces in real-time.

Figure 3.6: Real photos of the Moon approaching the horizon. It’s clearly
visible that the light gets weaker and reddish with the increasing layer of
atmosphere that it has to pass through

Firstly, the light intensity coming from the light source changes after
passing through the atmosphere. In particular the light gets attenuated and
gains reddish hues before reaching planetary surface (see Figure 3.6). During
this, some portion of photons gets scattered, and this loss is described by
the optical depth t defined in Equation 3.3. The intensity of light reaching
the planetary surface at point PG is denoted by the equation

IP (λ) = Ii(λ)exp(−t(PGPc, λ)) (3.6)

where Ii is the intensity of incident light on the outer atmosphere boundary
and Pc is the intersection between ~L and the upper atmosphere boundary.
Since the length of the path from PG to Pc is directly dependent on the angle
between ~PG and ~L, it’s possible to precompute the optical depth into a 2D
lookup texture to avoid expensive real-time evaluation of it6.

6The second dimension of this texture is represented by h — the altitude of PG; we’ll
see later why it is needed

21

Figure 3.7: Schematic view of evaluation of Equation 3.7

Secondly, the ambient light in PG must be accounted. Apart from the
direct illumination discussed in the previous paragraph, the ambient illumi-
nation in PG is caused by the intensity of scattered light coming from the sky
segment that is visible from PG. Assuming the perfectly spherical planetary
surface, the ambient illumination at PG can be calculated as

IA(λ, δ) =
∫ π/2

−π/2
cos(φ)

∫ π

0
IV (λ, φ, δ, ω)dωdφ (3.7)

where IV is calculated using the same method as in the φδω-parameterization.
Since calculation of IA is quite time-consuming, I’m also precomputing it into
a 1D lookup table. This table is parameterized only by the sun angle δ be-
tween ~PG and ~L because all points on the planetary surface with the same
δ receive the same amount of ambient light (see Figure 3.7).

Thirdly, for a more realistic image of water surfaces, it’s necessary to
calculate the reflection of sky on them. Thanks to the nature of the 3D scat-
tering lookup texture, it’s also possible to use it as an environment texture
(assuming we want only reflection of the sky). The intensity of the reflected
light IR at PG, assuming PG lies on the water surface, can be simply ob-
tained as a 3D texture lookup with altered coordinates. The altitude is set
to h = 0, φ is now the angle between ~PG and ~R (~R is the reflection vector

at PG) and δ has to be the angle between ~PG and ~L. Because the amount
of reflected light generally depends on the angle under which the reflecting
surface is observed, I use a very simple water reflection model based on this
angle to obtain water surface colour, IW :

IW (λ) = αIS(λ) + (1− α)IR(λ) (3.8)

where α = max(~N · ~V , 0) and IS denotes the intensity of shaded surface
at PG (IS = IA + ID + IM , ID and IM are the diffuse and specular terms
calculated by the Strauss local reflectance model).

The last thing before getting the correct planetary surface colour I
′
S is

calculation of the attenuation of light on its path from PG to observer. This

22

Figure 3.8: Schematic view of calculation of IR, IP and t(PV PG, φ)

is again due to the light scattering on the atmosphere layer between PG

and observer. Thus, calculation of this attenuation is very similar to the
calculation of IP , except one thing. To get IP , only the full optical depth
from outer atmosphere boundary to ground must be accounted. However for
I

′
S, we must consider the fact that the observer can be situated anywhere

inside the atmosphere. This situation is depicted in Figure 3.8. There’s a
little problem, because the 2D lookup table stores only the optical depth
from top of the atmosphere to any altitude inside it. To solve this, two
lookups have to be done - the first lookup for PG gives us the optical depth
from Pa to PG, the second lookup for PV gives us the optical depth from Pa

to PV (this is the reason why the optical depth lookup table must have 2
dimensions — the second dimension is h, the altitude of sample point). The
correct optical depth t(PV PG, λ) is then simply obtained as

t(PV PG, λ) = t(PaPG, λ) − t(PaPV , λ) (3.9)

and the resulting colour of planetary surface (land or water) is calculated as

I
′

S(λ) = IS|W (λ)exp(−t(PV PG, λ)) (3.10)

The definitive colour of planet is obtained as sum of I
′
S and the previously

calculated scattered light intensity from atmosphere.

There’s yet one more note to make. The technique presented in this
section correctly handles only a spherical planetary surface. The expansion
necessary to render elevation data would need several corrections including
correction of the amount of atmospheric scattered light, the optical depth
and the amount of ambient light. Surface perturbations necessary for mod-
elling water waves would also break the reflection model for some cases.
Some of corrections treating the terrain morphology have been presented in
Schafhitzel et al. [8], but these are insufficent for my extended approach.
I’ve already started implementation of suitable corrections, but without a
robust terrain renderer, which would exceed the extent of my thesis, they
are useless.

23

3.6 Technique summary

The amount of steps necessary for plausible real-time rendering of the
planet with atmosphere may seem overwhelming, even though this was only
a brief explanation of the whole algorithm. So I feel that a little summa-
rization could help the reader to sort all facts into a better-knit image of
presented techniques.

The behaviour of light in the conditions of planetary atmosphere is ap-
proximated by the single-scattering model. As this is severely complicated,
for run-time applications it is essential to precompute as many equations
as possible into various lookup textures. The resolution of these textures
directly influences the final accuracy of output pictures.

The colour of the sky is determined by gathering the scattered light along
the view ray. This is stored in the main 3D lookup texture for every possi-
ble viewpoint and directly fetched in the fragment shader. The only correct
parameterization of this texture is hφδ-parameterization with deferred eval-
uation of phase function in fragment shader.

For rendering the planetary surface, the light from the source star has to
be attenuated during its pass through atmosphere. The part of the scattered
light during this pass reaches the ground as the ambient light gathered from
visible segment of sky dome. The colour of water areas is also influenced by
the reflected sky light, the contribution of which depends on the angle under
which the water surface is observed. The final colour of the planetary surface
is obtained by attenuating the surface light along its path to the observer
again due to the light scattering and adding contribution of scattered light
from the atmosphere.

24

Chapter 4

Implementation

The aim of this part of my work was implementation of two standalone
applications, whose conjunction would allow the user to display an arbitrary
planet with atmosphere in real-time framerates. The emphasis should be on
finding a reasonable tradeoff between image realism and rendering speed.

The first application was intended to be a batch-based highly config-
urable precomputing utility. This application should allow user (with
knowledge of the topic) to set numerous physical parameters of both planet
and its atmosphere and then generate whole dataset containing atmospheric
data for utilization by:

The second application, a realistic 3D real-time planet renderer. By
using precomputed atmospheric data, this application should render a fully
textured planet with its atmosphere. It should furthermore allow the user
to navigate freely around the planet, to use various visual features and also
to change numerous parameters of the atmosphere that are not hardwired
into the precomputed dataset.

4.1 Environment and libraries

The programming language chosen for implementation of both applica-
tions is C++, because of the emphasis on application speed (as in most
cases of graphical applications) and also because of broad spectrum of freely
available libraries and utilities. HLSL was chosen for shaders’ implementa-
tion. The target operating system is Microsoft Windows XP or higher, the
development was done on XP with SP2.

For the implementation of both applications, the following libraries are used:

Win32 API - GUI library for all MS Windows systems. Since the accent is
on speed, the user interaction is very simple and is limited to keyboard
shortcuts and mouse navigation. For this purpose, WINAPI is more
than sufficent.

25

Microsoft Direct3D - 3D graphics API/library. I’m using it because of
my previous positive experience with it and richness of included func-
tions and utilities. Moreover, its distribution is monolithic and there-
fore very compact, including all needed libraries and also very useful
sample applications (with source codes).

TinyXML - Simple and compact .xml files parser1. Used for loading both
applications’ settings. Thanks to Lee Thomason for the free source
code distribution.

Boost C++ Libraries - Huge library distribution for C++2. I use only
the Conversion module for conversions between numerical types and
strings.

4.2 TextureCreator

TextureCreator is the precomputing application. Its purpose is the cre-
ation of lookup textures that will be later utilized by the rendering appli-
cation. The precomputing itself is a batch task and can last several hours,
depending on desired lookup textures’ resolutions and quality.

The source code structure is very simple with accent on functionality
and transparency. The application consists of a main module that creates
the window and Direct3D device and manages lookup textures’ creation
and storage on HDD, and the namepace generator that contains the set of
callback functions that are used for lookup textures’ calculation.

The precomputation is parameterized from a single .xml file. This con-
tains the generator settings such as resolutions and sampling rates and also
many physical parameters that participate in the calculation process. All set-
tings are loaded before the precomputation starts and thus can’t be changed
during the calculations.

The output of TextureCreator depends on settings specified before the
execution, but in the default settings, it produces the full set of lookup
textures needed for atmosphere rendering. All textures are generated us-
ing 64b floating-point texel format (D3DFMT A16B16G16R16F) and .dds file
format3. This is essential, because the physical nature of generated data
implicates high dynamic range of resulting intensities. Using such format,
the resulting textures may become quite large, mainly the 3D scattering
texture(s). So let’s take a look on the possible memory consumption. Sup-
pose we want the main scattering texture to have resolution of 2563, what is
quite reasonable; then the size of the resulting texture is simply calculated

1http://www.grinninglizard.com/tinyxml/index.html
2http://www.boost.org
3Even more suitable would be to use an IEEE 32b float per-component, but not even

high-end hardware yet commonly supports filtering of 128b texel formats

26

as 28∗28∗28∗8b = 128MB. Multiply this by 2, because we need to calculate
both Rayleigh and Mie scattering. The resulting size of 256MB is too high,
because along with the main scattering textures, the rest of the lookup tex-
tures and also planetary surface textures must be placed in texture memory.
I’ve tried to DXT-compress them — this shrank both textures to 1/8 of
original size, but the resulting quality was very poor and no filtering helped
to improve this.

So I had to tweak the main lookup texture a bit. It can be noticed, that
thanks to the fact that Mie scattering is λ-independent (see Section 3.1),
it can be stored in only one texture channel instead of 3. Therefore I store
both Rayleigh and Mie scattering in only one lookup texture — Rayleigh
in RGB components and Mie in α component. This reduces the size of 3D
lookup texture back to 128MB, which is an acceptable value4.

For the evaluation of integrals in equations 3.3, 3.4 and 3.7 I use the
trapezoid evaluation rule with uniform sampling interval. It could be more
suitable to use adaptive sampling with weight function that would pre-
fer smaller sampling intervals for lower altitudes (the scattering function
changes more dynamically in them), but this would complicate the solution
and as I found out, uniform sampling works well if used in the trapezoid
rule. The sample number of 15 produces yet acceptable results and above
50, the convergence of the approximation is already very slow.

All equations discussed in Chapter 3 use λ for the light colour represen-
tation. To be able to display precomputed scattering values (that fundamen-
tally must be calculated using wavelenghts), the corresponding wavelenghts
must be converted to RGB colour representation. I’ve implemented two
different approaches for this:

RGB equivalent wavelenghts - the basic approach. During the calcula-
tion three different wavelenghts are used (configurable by the user),
each corresponding to one colour component. No conversion is then
needed, as the intensity of the concrete colour component is equal to
scattered light intensity for its corresponding λ.

Multifrequency scattering calculation - in this extended, physically more
correct approach I’m calculating the light scattering for 191 wave-
lenghts ranging from 350nm to 730nm with the step of 2nm. For con-
verting wavelenghts to RGB values I use a simple algorithm by Dan
Burton [1]. The final RGB colour value is obtained as average of con-
verted values weighted by the corresponding intensities of scattered
light and also by intensities of blackbody radiation (in current im-
plementation, these constants are hardcoded in the application and

4Using a card with 256MB video memory on PCIe bus and Direct3D’s
D3DPOOL MANAGED memory pool will allow us to use also very large textures for plane-
tary surface representation thanks to fast transfers between video and system memory

27

correspond to the incoming radiation from Sun on the top of Earth’s
atmosphere). It may seem this enhancement will drastically elongate
the precomputation time, but in fact all time-consuming integrations
are λ-independent — only the β constant in Equation 3.3 and 1

λ4 term
in Equation 3.4 contain λ, and as these are involved only in multipli-
cations with integrals, the real computational time growth is only few
percent.

4.3 AtmoVision

AtmoVision is the main rendering application. It’s capable of real-time
rendering of one planet with atmosphere, free camera navigation around the
planet and setting various graphical and physical parameters.

The structure of source code is fairly simple. It contains the main applica-
tion and 4 classes. The main application does the usual work — creates and
destroys application window, device and all classes, contains the rendering
routine and handles keyboard and mouse interactions. The DataNode class
contains public data members representing settings parameters loaded from
configuration .xml file and is available for main application and the rest of
classes. This class is also used by TextureCreator, because they use the same
settings file. It’s very important for AtmoVision to use the same settings
(except graphical) as were used for dataset generation, otherwise the planet
rendering will likely get spoiled. The AtmosphericPlanetEx class represents
the atmospheric planet itself. It implements functionality connected with
the planet or the atmosphere including their creation/destruction, features’
functionality and also rendering. The Camera class represents the observer
and implements the functionality connected with looking and movement in
space. Finally, the SunSprite class represents the billboard with star texture
mapped on. It represents the direction to light source and moves around the
camera to create the illusion of being infinitely far.

As indicated in Chapter 3, purely the programmable pipeline is used
for the whole rendering. Because the size of vertex and fragment programs’
source code is quite large, I’m using the Direct3D’s .fx effect files for
wrapping all samplers, vertex/fragment programs and techniques. AtmoVi-
sion uses 4 .fx files — one for each of the atmosphere, planet, star and
offscreen surface rendering.

The geometry of both planet and atmosphere is represented by 2 uniform
grid meshes that are programmatically wrapped around the corresponding
spherical limit surfaces5. I don’t use any external models, instead I create
them procedurally during the application initialization (as I found out, the

5Note that the atmosphere does not need any additional sampling spheres often used
by some of real-time light scattering rendering techniques

28

(a) (b)

Figure 4.1: Example of scene with oversaturated (down) and undersaturated
(up) areas (a) and the same scene with software HDR correction (b)

time needed for the mesh generation is minor in comparasion with the time
consumed by the loading of all textures into memory).

The rendering of both objects is done primarily by the fragment shaders
and follows the technique described in Chapter 3. It’s good to say that the
planet is rendered with backface culling while the atmosphere with frontface
culling. The reason for this is the fact that during the rendering of planetary
surface, also the scattered light from the atmosphere is accounted. This
implies that if the camera is situated above the upper atmosphere boundary,
only the shining atmospheric ‘halo’ has to be rendered and if the camera is
situated inside the atmosphere volume, the sky must be visible. The planet
is rendered first and thanks to DepthStencil test, only needed parts of the
atmosphere that exceed the planet are rendered. The atmosphere has to be
rendered with alpha blending turned on because we want any object behind
the upper atmosphere boundary to be visible, such as the Sun in my case
(DestBlend and SrcBlend arguments should be both set to One).

Rendering of the natural phenomena related to light always implies the
high dynamic range of incoming radiation intensities. This effect is very
strong in atmosphere rendering. To avoid undersaturated or oversaturated
scenes, it’s very convenient to implement at least software HDR rendering.
As I previously said, all lookup textures are in floating point format, so the
only thing that must be done is to create an offscreen floating point render
target and draw both planet and atmosphere into it. Then this surface is
mapped as a texture onto a screen-sized quad, which is rendered using the
following formula (taken from O’Neil [7])

ColourNew = 1.0− exp(−cExposure× ColourOld) (4.1)

in the fragment shader. cExposure constant denotes the software equivalent
of camera exposure time. Usage of this formula provides a normalization of

29

all colours to interval 〈0.0, 1.0〉 and flattens the sharp colour transitions, as
shown on Figure 4.1.

4.4 Tests and results

Before the testing itself, I feel it’s reasonable to analyze the technique
and both applications, as it can help us to make some expectations and
understand the measured results.

TextureCreator is a batch application and it was written in this manner
from the beginning. The emphasis is firstly on precision and physical validity.
I’ve made many optimizations to aviod repetitive calculation of same equa-
tions or expressions, but no speed-ups that would decrease the precision of
computation have been made. For manipulating all values (except counters)
the long double native type is used. The only way for the user to affect the
precomputation time is to change the sampling rate or the textures’ resolu-
tion. The precomputation itself runs purely on CPU and consumes 100% of
one core’s time.

AtmoVision is based on the technique described in Section 3, which is
designed with accent on minimal CPU load and maximal utilization of GPU.
As has been said, most of the rendering work related to atmosphere is done
in fragment shader. Fixed pipeline is not used at all and vertex shaders are
not particulary complicated, they do only transformations to clip space and
to world space (or in case of enabled normal mapping, to tangent space). I
also do not use any LoD technique in the moment and because both planet
and atmosphere are modelled by single spheres, there’s no possibility of
frustrum clipping (except the case when the entire object is not visible) and
thus all geomerty is always rendered. It’s then quite obvious that the bot-
tleneck of the whole algorithm are fragment shaders6 and the framerate will
be directly dependent on the amount of rendered fragments. Moreover, the
fragment shader for rendering planetary surface is much more complicated
than the one for sky dome rendering (see section 3.5 for details). So it’s ex-
pected that if the observer is situated inside the atmosphere, the more sky
fragments and the less planetary surface fragments constitute the current
view, the higher framerates will be encountered. Let’s then proceed to the
tests now.

The configuration used for testing was a desktop PC with Intel Core
2 Duo @ 1866MHz CPU, 2048MB @ 800MHz DDR2 RAM and NVIDIA
PCI-E GeForce 8800GT graphics adapter with 512MB GDDR3 VRAM and
112 unified shader units.

I used this testing concept: the camera starts at 1km over planetary
surface looking straight down. Then the camera automatically starts pitching

6Assuming the reasonable amount of vertices in scene

30

at the rate of 6 degrees per second upwards for 30 seconds, ending in looking
straight up. During this procedure, the FPS is measured every second. Then
I take control of camera and am flying around the planet with effort to
catch different viewing conditions around the planet. During this free flight,
only the minimal and maximal framerates are measured and stored. I’m also
measuring the amount of available texture memory.

I’ve made 5 tests of this kind but with certain differences. I’ll call them
TT1–TT5:

Test Screen Res Size of textures Atmosphere # Vertices
TT1 800× 600 full off low
TT2 800× 600 full on low
TT3 800× 600 reduced on low
TT4 800× 600 full on high
TT5 2560× 2048 full on low

TT1 was performed to test the speed of vertex transformations and Strauss
local reflectance model without rendering of the atmosphere. TT3 was per-
formed to find out if the size of used textures and potential transfers between
video and AGP memory do or do not decrease the overall performance.
The full-size set of textures uses 4096 × 2048 textures for planetary surface
and 2563 3D scattering lookup texture and the reduced-size set consists of
512×256 textures for planetary surface and 1283 3D scattering texture. TT4

was intended to examine how the highly increased number of vertices influ-
ences overall performance — the used graphics adapter works with unified
shader architecture, which implies that the more computational power will
be used in vertex transformations, the less will remain for fragment process-
ing. In case of low number of vertices, the scene consists of 65536 vertices
(equally divided between planet and atmospheric shell) and in case of high
number, the scene consists of 1048576 vertices. TT5 has been performed in
the windowed mode to enable creation of such large offscreen buffer, because
the used display has the resolution only 1280×1024. The purpose of this last
test was to verify the dependence between the amount of rendered fragments
and the overall performance.

The results of all five tests are shown on the graph in Figure 4.2. The
remaining measurements are written in the table below:

Test Min/Max/Avg FPS Init/Run TexMem MPx/Frame
TT1 786/1227/1079.74 736MB/549MB 0.48
TT2 570/1266/864.13 736MB/399MB 0.48
TT3 520/1288/869.10 736MB/621MB 0.48
TT4 68/166/132.91 736MB/344MB 0.48
TT5 62/342/123.26 643MB/305MB 5.24

31

Figure 4.2: Results of tests TT1–TT5 — the dependence of FPS (y-axis) on
time (x-axis)

In the table, Min and Max FPS refer to limit framerates during the whole
runtime7, while the Avg FPS refers to the average framerate value only dur-
ing the automatic camera action. Init and Run TexMem refer to the amount
of free texture memory immediately after device creation and during the
application runtime, respectively. MPx/Frame represents the peak amount
of fragments that had to be rendered each frame.

Let’s now analyze the obtained results. It can be seen that measurements
fit quite well with the predictions.

TT1 (yellow diamonded line) shows the performance of vertex shaders and
fragment shaders when rendering only the planet using Strauss re-
flectance model. No scattering is calculated yet. This is the kind of
reference values from which I’ll derive the performance of my tech-
nique.

TT2 (red squared line) shows the performance with atmosphere turned on.
The memory consumption in comparasion to TT1 grew about 150MB,
which is exactly the size of all lookup textures with generated mipmaps.
The pattern suggested in the beginning of this section has been con-
firmed — in around the half of the automated test, the performance
starts to grow and ends up in double framerates compared to the be-
ginning. This growth of course corresponds to the transition between
the ground and the sky, when the camera view passes through horizon.

7Since the second phase of all tests consists of free flight, the Max FPS value very
likely corresponds to the case when the camera looks into empty space; this could be
understood as the performance when rendering purely the geometry, because the planet
is behind the camera and thus no fragments are generated

32

TT3 (green triangled line) represents the performance when using small tex-
tures. We see that in spite of the fact that the memory consumption de-
creased about 3 times comparing to TT2 the performance hasn’t risen
at all. This proves that thanks to the size of available video memory
and the bandwidth of PCIe BUS, the performance is not dependent
on the size of lookup textures. This implies that we can use lookup
textures of an arbitrary precision without a performance penalty, if
these can fit into the texture memory.

TT4 (blue circled line) the performance when using high amount of polygons
for representing the planet and the atmosphere. It’s clear that the high
number of polygons eats up too much of shading units, leaving too little
computational power for fragment shading.

TT5 (brown crossed line) proves that the performance is very strongly de-
pendent on the amount of rendered fragments. This test has also
proven the power of this method, because even in such high resolu-
tion the framerates stayed around 120 FPS and never dropped under
the desired 60 FPS. I assume that in combination with some reasonable
LoD technique for terrain rendering and multiple graphics adapters,
this technique could be used also for simulators running on very large
displays in high framerates.

So the majority of tests agree well with the predictions made in the be-
ginning of this section. The slight exception is my underestimation of per-
formance cost of vertices’ transformations. Comparing the results of TT4

and TT5, it shows up that if the number of vertices in the scene closes on
the number of fragments, the performance drops down quite rapidly. This
implies that the implementation of some robust terrain rendering method is
strongly needed for this type of applications.

In all tests I’ve been using my enhanced hφδ-parameterization. I skipped
tests of the φδω-parameterization, because the code is very similar to the
previous one, the only additional thing is to compute the azimuth between
~V and ~L and one more 3D lookup texture fetch. In average case, this would
represent only a few % of all computations.

The last thing to mention is the performance cost of HDR rendering. In
my experience, this is only 2− 3 frames on 800× 600 screen resolution and
even less on higher ones, because in Direct3D there’s only a neglectable
preformance penalty for rendering to offscreen frame buffer, and the render-
ing of the screen-sized quad represents only a small fragment of instructions
that are needed for computation of the scattering itself.

Some of the results of my technique can be found on Figures 4.3, 4.4 and
4.5.

33

(a) (b)

Figure 4.3: Real photo of Earth from Apollo spaceship (a) and screenshot
from AtmoVision (b) (the cloud layer has been added to increase realism).
The different colour of the land is determined by the used surface texture

(a) (b) (c)

Figure 4.4: Orbital view of the horizon: real photograph from space shuttle
(courtesy of NASA) (a), ray traced image (b) and screenshot from Atmo-
Vision (high resolution) (c). (a) and (b) are taken from Nishita et al. [5],
reddish tones instead of black are caused by the compression

34

(a) (b)

(c) (d)

(e) (f)

Figure 4.5: Screenshots from AtmoVision: the ‘fisheye’ projection of day-
time sky (a); sight on the terminator over Indonesia (b); orbital view over
the Middle-East (c); sunset at Spain (d); examples how different parameter-
ization can radically change the overall look of the planet (e) and (f)

35

Chapter 5

Conclusion

5.1 Summary

In the first chapter I’ve opened the topic of rendering the physical phe-
nomena and explained why I think the realistic rendering of the atmosphere
as the phenomenon of light scattering is important and what applications
may need it. I’ve also presented aims of my work.

In the second chapter I have briefly presented the physical fundaments
of light scattering and shown how such complex problematique can be de-
scribed by a mathematical model. Then I’ve presented a few works dealing
with realistic atmosphere rendering.

The third chapter presents the method for real-time rendering of plane-
tary atmospheres based on previously listed works. At first the mathematical
model of single scattering is described. Secondly I explain how such compli-
cated mathematical equations can be implemented in a real-time rendering
algorithm. Finally, two such methods based on similar idea are presented
along with specialities involved in the rendering of realistic planetary ter-
rain.

The fourth chapter describes the pair of applications implementing tech-
niques from Chapter 3. At first the internal structure of both of them is
stated. Then the rest of the chapter devotes to testing these applications
and exploring their abilities and weaknesses.

5.2 Fulfillment of goals

In my work, I have succeeded in fulfilling most of the objectives I’ve demar-
cated in first chapter:

36

1. I have examined 4 works on the field of atmospheric scattering. All
of them are aiming for real-time implementation and thus have been
great knowledge bases for my thesis.

2. For my implementation I chose the work by Schafhitzel et al. [8]. In
this work they are calculating the atmospheric scattering per fragment
from data precomputed in a 3D lookup texture. I’ve implemented this
method, analyzed the results and figured numerous modifications that
I considered necessary for increased fidelity of the rendered atmosphere
and planetary surface. For the correction of missing fourth dimension
of 3D lookup texture, I’ve deferred evaluation of the phase function, re-
sulting in correct Mie scattering and anisotropy of Rayleigh scattering
in respect to ~V ~L azimuth. For terrain rendering I’m calculating light
attenuation due to out-scattered photons, an ambient term described
by Nishita et al. [5] and also the water reflections.

3. I’ve implemented the enhanced technique in two programs. The first,
batch-based, performs the precomputation step and generates all lookup
textures for the second application, which uses these textures for real-
time computation and rendering of atmospheric light scattering. Thereby
the method proved itself suitable for the task by its capability of ren-
dering the realistic atmosphere even in hundreds of FPS. Also the
majority of artefacts resulting from this method has been removed by
various corrections. I’ve also reached the goal of high utilization of
GPU and low consumption of CPU time.

5.3 Discussion and future directions

When I was starting this project, my knowledge of computer graphics
was very poor. I’m glad for this topic, because I learned a lot of techniques
during the time I invested into this work. I also realised that the rendering of
light scattering and other physical phenomena is very broad and inherently
interesting topic and I’d like to investigate it even more. I won’t go into
details of the work itself, because it’s full of them and I have discussed them
anytime I felt it necessary.

In the text I mentioned a few times the desperate need for sophisticated
terrain rendering. The atmospheric scattering constitutes the overall colour
visage of the planet, but it is terrain that adds the details. And these are
equally important to create a sensation of looking on some huge object such
as a planet, because without them, it looks dull. Moreover, the reasonable
LoD technique would also decrease the amount of rendered geometry primi-
tives, leaving more computational power for computation of light scattering.

Even though I’ve neglected the rendering of clouds, these are also a
very important element in realistic atmosphere rendering. There is plenty of

37

techniques aiming on this problem, but the problematique itself is so large
that it is beyond the extent of this work.

I also think that rendering of realistic water deserves attention. Again,
many works dealing with this exist, but I’m not aware of any that would
combine physical modelling of waves, realistic reflections of the sky and light
scattering on water molecules. Because of this, I plan to further examine this
topic in detail.

38

Bibliography

[1] Burton, D.: Approximate RGB values for Visible Wavelengths,
http://www.physics.sfasu.edu/astro/color/spectra.html

[2] Cornette, W. M., Shanks, J. G.: Physical Reasonable Analytic Expres-
sion for The Single-Scattering Phase Function, Applied Optics Vol. 31,
No. 16, 3152-3160, 1992

[3] Fernando, R. and Kilgard M. J.: The Cg Tutorial: The Definitive Guide
to Programmable Real-Time Graphics, Addison-Wesley, 205-207, 2003

[4] Gerasimov, P., Fernando, R. and Green, S.: Shader Model 3.0: Using
Vertex Textures, NVIDIA white paper DA-01373-001 v00, 2004

[5] Nishita, T., Sirai, T., Tadamura, K., Nakamae, E.: Display of The Earth
Taking into Account Atmospheric Scattering, Siggraph ’93: Proceedings
of the 20th annual conference on Computer graphics and interactive
techniques, 175-182, 1993

[6] O’Neil, S.: Real-Time Atmospehric Scattering,
http://www.gamedev.net/reference/articles/article2093.asp, 2004

[7] O’Neil, S.: Accurate Atmospheric Scattering, Addison-Wesley, GPU
Gems 2, 253-268, 2005

[8] Schafhitzel, T., Falk, M. and Ertl, T.: Real-Time Rendering of Planets
with Atmospheres, Journal of WSCG, Vol. 15, 2007

[9] Strauss, P. S.: A Realistic Lighting Model for Computer Animators,
IEEE Computer Graphics and Applications, Volume 10, Issue 6, 56 -
64, 1990

[10] Wikipedia The Free Encyclopedia: Earth’s Atmosphere,
http://en.wikipedia.org/wiki/Earth%27s atmosphere, 2008

39

Appendix A

Contents of DVD

The accompanying DVD is organized as follows:

• /Data Sets - a few precomputed datasets with configuration files used
for their generation

• /Documents

– /Documentation - contains the both applications’ documentation

– /Others - miscellaneous documents

– /Tests - .xls file containing performance tests’ results

– /Thesis - contains thesis’ .pdf file and LaTeX source code

• /Installation - both (Full and Lite) installation packages are located
here, plus free .dds texture viewer

• /Pictures and Screenshots - contains screenshots from AtmoVision
and also a few real images of Earth

• /Source Code - AtmoVision’s and TextureCreator’s complete source
code

40

Appendix B

TextureCreator and
AtmoVision quick reference

B.1 System requirements

This is the minimal recommended configuration for running AtmoVision
and TextureCreator:

• CPU 1.2 GHz single-core

• Operational memory 512 MB

• VGA graphics adapter with support of DirectX 9.0c (TextureCreator)

• VGA graphics adapter with support of DirectX 9.0c, Shader Model
3.0 and 128MB VRAM (AtmoVision)

• HDD space 350 MB

• OS MS Windows 2000/XP

It’s possible that they will run also on slower systems, but low performance
and/or decreased precission due to insufficent texture memory may occur.

B.2 Installation

The installation is very simple and straightforward. Simply launch either
AtmoVision Full.exe or AtmoVision Lite.exe installation package located in
the /Installation directory and the wizard will guide you through the
whole process. The difference between them is that Full version already con-
tains a full set of precomputed data, resulting in a much larger installation.
The Lite version doesn’t, so it’s necessary to perform the precomputational
step. Some series of precomputed lookup textures can also be found on source
CD in the /Data Sets directory.

41

B.3 TextureCreator

TextureCreator is launched by executing either TextureCreator RGB.exe
or TextureCreator MFQ.exe. These two builds are almost identical, except
the wavelength colour representation. The first of them precomputes lookup
textures using 3 RGB-equivalent wavelengths, the second uses 191 wave-
lengths through the whole spectrum (see Section 4.2 for details).

All settings for TextureCreator are located in common configuration file
Resources/Dbs.xml. By default, the parameters are set to generate whole
dataset in appropriate resolution and sufficent quality. However, this will
take a few hours depending on the speed of your CPU. Some of the settings
are described in the user documentation located in Documentation directory,
the rest of them should be comprehensible from the descriptions provided
in the settings .xml file.

TextureCreator contains no GUI, it consist only of one small window.
The generation can be stopped anytime by pressing the Esc key, although
the termination may not be immediate. The progress of precomputation
process is displayed on window’s title — there’s a percentual information
about how much of currently generated lookup texture is done and absolute
number representing the order of currently generated texture (this will range
from 1 to 12 in case that all textures are generated).

After succesfully finished execution, the following lookup textures will
be located in Data directory:

tex AmbSc 1D.dds tex F 1D.dds tex G 1D.dds
tex HTD 3D.dds tex OptDpta 2D.dds tex OptDptp 2D.dds

tex OTDL0a 3D.dds tex OTDL0p 3D.dds tex OTDL1a 3D.dds
tex OTDL1p 3D.dds tex OTDL2b 3D.dds tex ScPh 1D.dds

B.4 AtmoVision

AtmoVision is launched by running the AtmoVision.exe from installation
directory or one of the shortcuts created by the installator. Before execu-
tion, it’s good to check the common settings file Resources/Dbs.xml, if the
graphical settings suit your machine. It’s necessary that you use the same
settings file which was used for the dataset creation and modify only param-
eters related to the runtime, such as graphical settings, detailness of models
or the desired parameterization. Also, paths to surface textures are specified
here.

Besides the settings file, the input for AtmoVision are lookup textures
generated by TextureCreator. AtmoVision expects them in the Data direc-
tory, the place where TextureCreator will store them. Not all textures are
used at once — hφδ- and enhanced hφδ-parameterizations don’t need those

42

with prefix tex OTD and φδω-parameterization doesn’t need tex HTD 3D.dds
texture.

After loading all textures into memory, the application starts with camera
on Earth’s high orbit and you can immediately work with it. All controls are
described in the user documentation and also briefly on the yellow tooltip
on the left side of screen. The application is terminated by pressing the Esc
key.

43

Appendix C

Physical constants and
parameters

Such large and complex object as the planetary atmosphere has to be
described by many parameters. Despite I’m using a simplified model for its
simulation, the amount of necessary constants and equations is still quite
high and it took me a few days in all to find the data that would produce
correct results. So I’ve decided to present some of them here in one com-
prendious table.

Constant Value[units] Description
g (−1;−0.75〉 Mie phase function parameter
HR 7994[m] Rayleigh scale height
HM 1200[m] Mie scale height
HTOP 100000[m] atmosphere upper boundary altitude
Ir 1.0 relative incoming light intensity (red)
Ig 0.960784 relative incoming light intensity (green)
Ib 0.949019 relative incoming light intensity (blue)
λr 705 × 10−9[m] wavelength (red light)
λg 530 × 10−9[m] wavelength (green light)
λb 440 × 10−9[m] wavelength (blue light)
nr 1.000271287 refractive index (red light)
ng 1.000274307 refractive index (green light)
nb 1.000275319 refractive index (blue light)
NSR

2.653× 1025[p/m3] molecular density (Rayleigh particles)
NSM

1.5× 1010[p/m3] particle density (Mie particles)
R 6372797[m] mean Earth radius
T 5778[K] Sun’s photosphere temperature

T is the value that is used only for multifrequency calculation (see Sec-
tion 4.2). The used intensity values of blackbody radiation correspond to
this temperature.

44

