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rozdílem oproti ostatním systémům je, že naše implementace je od začátku psána 

v prostředí platformy .NET Framework, který zaručuje dobrý komfort pro koncového 

programátora a přesto výkon celého systému je díky využití všech zdrojů srovnatelný 

s nativně kompilovaným prostředím. 

 

Klíčová slova: zpracování obrazu, segmentace, objemové zobrazování, vrhání paprsku, 

cg, .NET, C# 

 

  



 

 10 

 

 

Title:  GPU-accelerated processing of medical data 

Author: Jakub Hlaváček 

Department: Department of Software and Computer Science Education 

Supervisor: Mgr. Lukáš Maršálek 

Supervisor’s e-mail address: Lukas.Marsalek@mff.cuni.cz 

Abstract: 
 

The aim of this thesis is to design and experimentally implement a complex 

framework dealing with accelerating and simplifying the development of systems for 

processing and visualization of medical volume data in C#. Currently, there are 

application interfaces and their implementations for both, techniques based on image 

processing, like filtering, registration, segmentation and classification, and also for 

techniques based on 3D image visualization. But there is no consistent framework for 

both tasks, which would take advantage of features of modern graphics processing units 

and multi-core processing units along with features of .NET Framework and of 

language C#. 

The thesis presents overview of current free and open source software, design of 

application interface, and implementation of main API features. One of important 

differences to other software is that the implementation has been developed natively in 

the managed environment of .NET Framework, offering a good level of comfort for an 

end application programmer, but system performance is comparable with natively 

compiled environments thanks to utilization of all resources. 

 

Keywords: image processing, segmentation, volume visualization, ray casting, cg, 

.NET, C# 

 



Chapter 1: Introduction 

 11 

Chapter 1   

1 Introduction 

With computer hardware development, interactive visualization of the 3D data 

sets is more and more available in the last few years. These 3D data sets bring more 

possibilities and advantages to users from medical environment. 

Computer tomography and magnetic resonance are common techniques applied 

in today medicine, producing 3D data. This thesis aims to simplify development of 

programs that deal with loading, processing and visualization of this type of data. 

Difficulties with development of software with such a pipeline are mainly 

connected with the necessity of knowledge from both disciplines - image processing 

and data visualization - and with design of data structures, which must be efficient in 

algorithms from both tasks. 

Basic review of computer science branches related to the main topic is presented 

in the next chapters. 

 

1.1 Medical Data Image Processing 

Digital image processing is a discipline where various algorithms are used to 

modify digital image data in a computer. A typical image processing cycle consists of 

the following steps: 

 Digitization (acquisition of data) 

 Preprocessing (image enhancement, image restoration) 

 Classification (pattern recognition, segmentation) 

 Encoding and compression 

 

In our case the digitization is performed by CT
1
, MRI

2
, PET

3
, SPECT

4
 and 

others techniques, which produce 3D data sets ([1], [2]). A typical output of 3D 

                                                
1 Computer tomography 
2 Magnetic resonance imaging 
3 Positron emission tomography 
4 Single photon emission computed tomography 
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digitization process in medicine is a set of 2D slices, which are stored in the DICOM 

format (described in chapter 1.5). Next, we will assume, that we have a 3D matrix of 

values from the regular rectangular grid. This matrix is called a “volume” and each 

single value in the volume is called a “voxel” (from volume element, Figure 1). Each 

voxel can be addressed by an index (i, j, k). Number of voxels in the volume in each 

direction is called dimensions (dimx, dimy, dimz). Dimensions of voxel are named voxx, 

voxy, and voxz. A set of voxels, where one coordinate is constant, is called slice. 

Real value of each voxel depends on the process of acquisition in a single 

scanner, but we will consider it as discretization of original continuous image function. 

 

 
Figure 1: Volume and voxels relation 

 

Preprocessing is a phase, which deals with correction of the image. Most 

important algorithms resolve tasks on modification of contrast and brightness, 

suppression of noise and edge detection. There is a range of algorithms applying a 

similar procedure. It consists of a loop through all output voxels, setting a new value for 

each of them from a small neighborhood of voxels from the input volume. 

Another part of preprocessing is registration. Its goal is to find corresponding 

parts of two images and find transformation from one to the other. It can be widely used 

in medicine, when a patient is scanned in several time intervals and these scans must be 

compared for changes, or when there are several scans with different modalities. 

Classification is the next task of image processing and its goal is to recognize 

certain parts of image, for example to divide the volume of the body into organs. This 

provides the possibility to overlook only these parts, which we are interested in, and 

don’t be bothered by surroundings. The classification can be also used for measuring 

the organ’s size and capacity, which is one of the possibilities, how to predict some 

diseases. 

Image processing concerns mainly with 2D images, but most of algorithms can 

be generalized into the third dimension, or they can be applied to parallel 2D slices 

separately without spatial information (stored in third dimension). 

x 

y 
z 

dimx 

dimz 

dimy 

voxx 

voxz 

voxy 
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Due to time efficiency concerns, the above mentioned algorithms use data, 

which are not compressed and thus they occupy unnecessary space in the memory. For 

long-time storage of data there is the encoding and compression task. 

Book [3] from Gonzalez and Woods is recommended for further reading about 

image processing. 

 

1.2 Volume Rendering 

Volume rendering is a technique used to display a 2D projection of a 3D 

sampled data set. For all techniques we need the following entities: 

 Data set. It is usually stored in regular grid. 

 Projection matrix. It defines way of transforming a point in 3D space to 2D screen. 

 Model-view matrix. It is generally called a “camera” and defines position and the 

viewing direction of the observer relatively to volume. 

 

There are two main approaches how to display the volumes: surface fitting and 

direct volume rendering. 

Surface fitting is based on transformation of the volume representation with 

regular grid to representation with a set of polygons. We will focus on direct volume 

rendering in this thesis, for more information about surface fitting see [4] and [5]. 

 

1.2.1 Direct Volume Rendering 

Direct volume rendering (DVR) is more dependent on processor speed than 

surface fitting, but there are more possibilities of rendering and generally more accurate 

images can be generated. 

DVR methods require every sampled value to be mapped to the opacity and the 

color, which is done with a “transfer function”. Resulting sample color is then applied 

to the corresponding pixel of the frame buffer. This general process is the same for all 

rendering techniques described later. 

Splatting [6] is a technique, where every voxel is splatted on the projection 

plane in back to front order. These splats are rendered with various profiles depending 

on the volume density and the transfer function. 

Shear warp factorization [7] is a technique, where the viewing transformation 

is transformed in such a way that the faces of the volume become axis aligned with 

image plane and the voxels to pixels scale is fixed. Once all slices have been rendered, 

the buffer is warped into the desired orientation. 

Texture mapping [8] approach is based on blending of textured slices. Volume 

is stored on the GPU in three sets of 2D textures (one set for each axis) and instead of 

stepping through voxels or rays, these textures are rendered using alpha blending. 

Second possibility is to store volume in one 3D texture and then render textured 

polygons using alpha blending. These polygons are defined as intersection of volume 

boundaries and planes parallel with projection plane. 



Chapter 1: Introduction 

 14 

Volume ray casting is a basic technique for volume visualization. We will 

describe this technique in more detail, because it is base for this work. 

 

1.2.2 Volume Ray Casting 

 

 
Figure 2: Rays are casted through each pixel of the projection plane 

 

The idea is same as in the common ray casting. For each desired image pixel a 

ray (defined by origin and direction, Figure 2) is generated. The ray is clipped by the 

boundaries of the volume. Then the ray is sampled at regular intervals throughout the 

volume. The data are interpolated for each sample point from eight surrounding voxels 

values by trilinear interpolation (Figure 3). Than the transfer function is applied to form 

an RGBA
5
 of the sample, which is composed onto the accumulated color of the ray, and 

the process is repeated until the ray exits the volume. The process is executed for every 

pixel on the screen to form the complete image. 

 

 
Figure 3: Sampling of points along the ray and linear interpolation (2D) 

 

Composition of sample color depends on the type of the application. Common 

techniques are: 

 Maximum intensity projection (MIP) – sample with maximum value on the ray is 

taken as a result. 

 Isosurface ray casting [9] – it is a form of thresholding, where points with a specific 

value are displayed. Surface color is usually defined explicitly. 

                                                
5 three color channels (red, green and blue) and one opacity channel 

volume 

 

screen camera 
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 Compositing – final pixel color is determined from the mix of all sample colors and 

opacities encountered on the ray. 

 

Isosurface ray casting is similar to the surface fitting, but data are not 

transformed to polygonal structure. User input to this method is a threshold value, 

which defines desired isosurface
6
 in the volume. Because we step along the ray from 

start to end, we know exactly, between which two samples (Figure 4, green dots) 

intersection of the ray with surface is. Several possibilities are at this point. If the step 

size is enough small, we can simply chose nearest neighbor sample by intensity (red 

line). More accurate methods can interpolate the depth of surface from samples’ 

intensities, or also iterative method can be used (blue lines). If the isosurface is not 

transparent, the computation of actual ray is finished. Otherwise, the loop can continue 

in computations along the ray and try to find another surface on the rest of the ray. 

Once the intersection point is known, the isosurface color is assigned and 

optionally one of shading models can be used for further image improvement. The most 

popular model is Phong’s illumination [33].  

 

 
Figure 4: Isosurface ray casting 

 

Color transfer function is a fundamental point of the compositing technique. 

There are typically many tissues in the medical image data, where each tissue has 

assigned its own interval of densities. The transfer function is an ideal way, how to 

simply separate these intervals during visualization (essentially, it’s a form of 

classification of the data set, Figure 5). 

 The color transfer function defines mapping of voxel’s value to the color. 

Usually, it is a function stored in a form of the look-up table, i.e. a 2D table, where 

along x-axis there are all possible values of densities and along y-axis RGBA values are 

assigned. 

 

                                                
6 Isosurface is surface, which represents points of constant value (e.g. density) within a volume. 

Intensity 

Distance 

Iso value 

Step size 

   Nearest neighbor 

 

Iterative method 

  1 3 2 

Sample intensity 

Exact intersection 

Nearest neighbor 

Iterative method 
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Figure 5: Simple classification with transfer function 

 

To complete the idea of transfer functions, there is also possibility to map multi-

component data on RGBA values with transfer functions, where one dimension must be 

added to transfer function table with each component stored in the data. This is useful, 

when e.g. volume contains more organs and the id of the organ is stored in the second 

component of the volume. 

Compositing technique (emission-absorption case) idea can be derived from 

mathematical description of situation, when viewer looks into the volume along the ray 

and each point emits some intensity toward a viewer and all points on the way absorbs 

some of that intensity. Numerical approximation of that situation can be implemented in 

software using following formula for each step along the ray. The derivation is in [34]. 

 

 

 

 

Where 

  is destination color 

  is sample color 

  is destination opacity 

  is sample opacity 

 

Main disadvantage of ray casting is its time consumption. Fortunately, in last 

few years the graphics hardware allows to implement the ray casting on a common 

consumer GPU
7
, so nowadays it is possible to view images from ray casting in accurate 

quality in real-time [11]. On the other hand, ray casting has advantages against other 

methods. One of them is that transfer function can be edited in real-time. Other is that 

isosurfaces can be computed together with compositing technique. 

 

                                                
7 Graphics processing unit 

  Opacity                           bone 

         1.0 

 

 

                      skin 

         0.2 

           

             0               800                     4096   Density 

 

(1) 
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1.3 Shader-accelerated Visualization 

This chapter describes some basic facts about OpenGL
8
 [12] and its features 

applied in our implementation. It is a software interface for graphics hardware 

specialized for developing applications that produce 2D and 3D graphics. OpenGL was 

started by Silicon Graphics Inc. (SGI) in 1992 and today it is considered as a 

fundamental interface for computer graphics.  

 

 
Diagram 1: A block diagram of programmable graphics pipeline 

 

Diagram 1 shows main parts of the OpenGL. On the left two types of commands 

enter, some specify geometric primitives (like points, lines and polygons) to be drawn 

and other operations specify how the objects are handled at various stages. 

Shaders are available for programming the GPU since OpenGL version 1.5. 

Shaders are small programs that are written in specialized languages (similar to C 

language), allowing modification of standard computation from the fixed-function 

pipeline (FFP). There are three types of them. 

 Vertex shader replaces per-vertex operations from the FFP. In this program color, 

position and texture coordinates of each vertex can be modified. 

 Geometry shader is a new type of shader that is placed immediately after the vertex 

shader. The difference from the vertex shader is that new graphics primitives can be 

generated, such as points, lines and triangles. Geometry shader is supported only in 

newest OpenGL extensions. 

 Fragment shader replaces per-fragment operations from FFP, computing resulting 

color and possibly depth for each fragment of target image. 

 

The advantage of GPU against CPU lies in parallelisms. Modern GPUs are 

SIMD
9
 processors, having a number of programmable parts and thus are faster for 

                                                
8 Open Graphics Library 
9 Single instruction, multiple data 

Evaluator Vertex 

Shader 

Rasteriz-

ation 

Fragment 

Shader 

Framebuffer 

Texture 

Memory 

Pixel 

Transfer 

Geometry 

Shader 
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algorithms, where same instructions are used for multiple input data. This is typical for 

algorithms done in both per-vertex operations and per-fragment operations. 

 

Overview of NVIDIA and AMD/ATI graphics cards support for shader model 

3.0 and 4.0 is shown in Table 1. The fragment shader model 3.0 is the first fragment 

shader, where loops can be used in source code of program. 

Shader technology opens a number of possibilities for GPU utilization in other 

tasks than graphics. For example there are implementations of Fast Fourier Transform, 

digital signal processing, neural networks, database operations and many others 

applications on GPU. Collectively these algorithms are called GPGPU
10

 [13]. 

 

Shader 

Model 
OpenGL Extension Cg profile 

DirectX 

version 

NVIDIA 

GeForce Series 

ATI Radeon 

Series 

3.0 
NV_vertex_program3 Vp40 

9.0c 6 R520 
NV_fragment_program2 Fp40 

4.0 

NV_gpu_program4 + 

NV_vertex_program4 
gp4vp 

10.0 8 R600 
NV_gpu_program4 + 

NV_geometry_program4 
gp4gp 

NV_gpu_program4 + 
NV_fragment_program4 

gp4fp 

Table 1: OpenGL extensions and DirectX versions on current GPUs 

 

1.4 .NET 

Microsoft .NET Framework 2.0 [27] is a software component that is a part of 

Microsoft Windows operating systems. The .NET Framework includes a broad set of 

supporting class libraries for common programming problems like user interface, 

database access, web application, network communication, and others. Programs written 

for the .NET Framework are executed in a software environment (CLR
11

) that manages 

the program’s requirements. The CLR provides services such as security, memory 

management, and exceptions handling. 

The result of compilation of program’s source code is MSIL
12

. When executing, 

the code is not interpreted, but compiled (in meaning of JIT
13

) into native code. The 

advantage of this concept is that there can be various languages and corresponding 

compilers only to the MSIL. On the other hand, there is little delay before a program is 

executed. Most widely known programming languages are C# and Visual Basic .NET. 

 

                                                
10 General-purpose computing on graphics processing units 
11 Common language runtime 
12 Microsoft intermediate language 
13 Just-in-time compilation 
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Diagram 2: Parts of .NET Framework 2.0 

 

CLR frees the developer from the memory management (allocating and freeing 

of memory). This feature is based on reference counting and garbage collection. Each 

object stores a number of references on it. GC
14

 then periodically (but not 

deterministically) checks these objects, whether the reference number is zero. If so, GC 

releases the used memory. 

Both MSIL compiler and memory management are parts of CLR. An overview 

is shown in Diagram 2. 

 

1.4.1 C# 

C# [28] is a modern and high level programming language with many 

similarities to Java. Syntax of C# comes from C++ language. There are many common 

programming features supported, like object-oriented programming, templates and 

collections, delegates, partial classes, preprocessor macros, XML documentation 

system, and many others. 

The language specification was approved as a standard by ECMA
15

 and ISO
16

, 

so that there can be other implementations than that from Microsoft. One of them is an 

open source project Mono [15], which now implements about 95% of .NET Framework 

2.0 specification. 

 

1.5 Format for Storing Medical Data 

Digital Imaging and Communications in Medicine (DICOM) is a standard [14] 

developed by the American College of Radiology (ACR) and National Electrical 

Manufacturers Association (NEMA). Its main parts are file format definition and a 

network communications protocol. 

The off-line media files correspond to part 10 of the DICOM standard. A single 

file contains both the header, as well as the image data. The header contains text 

information about the patient’s name, dimensions of image, etc. The size of the header 

depends on how much information is stored.  

 

                                                
14 Garbage collector 
15 Ecma International, an international private standard organization 
16 International Organization for Standardization 
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Tag Description Example value 

(0018,0050) Slice Thickness [5] 

(0028,0010) Rows [512] 

(0028,0011) Columns [512] 

(0028,0030) Pixel Spacing [0.34765625\0.34765625] 

(0028,0100) Bits Allocated [16] 

(0028,0101) Bits Stored [12] 

(0028,0102) High Bit [11] 
Table 2: Most important elements stored in DICOM file header 

 

Three-dimensional data sets can be stored in a single file image data or in 

multiple files, where each slice is stored in one file. A media directory file, the 

DICOMDIR file, must be present, providing index and summary information for all the 

DICOM files on the media. No information is allowed to be stored in a filename. 

Many other rules are described in the specification, but the last we want to 

mention is that each file has a unique identifier, so that the software that wants to create 

DICOM files must be registered and must have a set of these identifiers assigned. 

 

1.6 Goals of the Thesis 

The following goals were defined at the beginning of the project. Each point 

represents one feature of the desired framework. 

 

(g1) Compactness 

Framework can read, process, and display volume data without unnecessary 

transformations between different representations of data, which could lead to both the 

system memory and the system speed performance losses. 

 

(g2) Data abstraction 

Volume data handlers should be independent of types stored in each voxel. We 

need the possibility to store different types of data in volume, but the processing and 

visualization tasks should be independent on the incoming data types. 

 

(g3) Data processing 

The goal of framework is not to define all possible image processing algorithms, 

but to provide a good interface for writing algorithms by “user programmer” 

(programmer, who uses our framework) aimed on volume data sets. This includes the 

possibility of parallel computing without any programmer’s effort. 

 

(g4) Data visualization 

Framework should be capable of visualization of data in common ways from 

medical environment. That is direct volume rendering, isosurface rendering, definition 

of final color through color transfer function, displaying of output from segmented data. 
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(g5) Interactivity 

We want the frame rate of the visualization to be as high as possible. Ideal is 20 

frames per second or higher. Frame rate is important when end user moves or interacts 

with observed data. If user interface does not response in 50ms, it is very annoying for 

him.  

 

(g6) Minimize time between starting the segmentation and displaying some results 

When some complicated segmentation algorithm takes place in the processing 

pipeline, it is useful, when the end user can see temporary results before the algorithm 

finishes its activity. It is important in cases when user repeats his input, because he can 

stop the processing if the result is not what he expected. This should be performed by 

parallelization of tasks from the pipeline. 

 

(g7) Written in C# 

C# is a modern and simple object oriented programming language with good 

support for writing user interfaces. The framework should be natively written in it. 

 

(g8) Visualization on GPU 

Visualization should be accelerated on Graphics Processing Unit, which in 

addition frees CPU for other computations. 

 

1.7 Structure of this Document 

Chapter one introduces basic knowledge from the science branches related to 

this topic and lists the required features of our framework. Chapter two is about current 

software and their comparison. Design of application interface, problems and features 

are described in chapter three. Problems and specific implementation issues are 

described in the fourth chapter. Chapter five is devoted to the comparison between our 

new framework and Visualization Toolkit, leading free software in 3D computer 

graphics. The last chapter presents a summary of the work and evaluation of the targets. 

Suggestions for future work are also mentioned there. 
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Chapter 2  

2 Currently Available Software 

In this chapter we want to mention some of the existing software related to 

image processing or 3D visualization. It is a summary overview of the systems, their 

history, targets and their common usage. 

 

2.1 ITK 

The Insight Segmentation and Registration Toolkit (ITK, [16]), an open source 

image segmentation and registration software library, was developed for analyzing the 

images of The Visible Human Project
17

. The ITK development was funded from the 

National Library of Medicine (U.S.) and one of the remarkable contributors was 

Kitware Inc. [17]. 

The ITK does not solve visualization or graphical user interface, which is left to 

other toolkits, such as VTK. Similarly, this toolkit provides minimal functionality for 

file interface. 

The toolkit provides important segmentation and registration algorithms in two, 

three, and more dimensions. There is also support for multi-threaded parallel 

processing. 

The ITK is based on data-flow architecture. That means, that there are data 

objects, which are processed by process objects (filters) and they both are connected 

together into the pipeline. 

This framework is natively written in C++. To get ITK to work with a managed 

.NET application there are three options. First approach is PInvoke
18

, i.e. build a project 

as an unmanaged library, that uses the ITK toolkit, and in .NET application use PInvoke 

for entry points to library. Second approach is to write managed class wrappers around 

ITK classes which take care of converting data between managed and unmanaged code. 

                                                
17 http://www.nlm.nih.gov/research/visible/ 
18 Platform Invocation Services 
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The third approach is to write ITK part as a COM
19

 component and expose interfaces to 

be used in a .NET application. 

The ITK covers two of our goals, data abstraction (g2) and data processing (g3). 

 

2.2 VTK 

The Visualization Toolkit (VTK, [18]) is an open source software system for 3D 

computer graphics, image processing, and visualization used by thousands of 

researchers and developers around the world. 

VTK was initially created in 1993 as companion software to the book "The 

Visualization Toolkit: An Object-Oriented Approach to 3D Graphics" published by 

Prentice-Hall. This book was written by three people (W. Schroeder, K. Martin, and B. 

Lorensen) who later founded Kitware Inc. [17]. Kitware now provides professional 

support and products for VTK.  

The conceptual overview of the VTK pipeline (similar to ITK pipeline) is shown 

in Diagram 3. Data are read in the source module and then filtered by one or more 

filters. A mapper is then used to create a visual representation that can be interacted 

with and transformed by the actor. 

 

 
Diagram 3: The schematic of VTK pipeline 

 

Also other system and development processes are the same as in ITK. Namely: 

 Source code is heavily templated. 

 The toolkit is cross-platform. 

 There are wrappers to interpreted languages (Tcl, Python, and Java) 

 For building of a project CMake (Cross-Platform Make, also developed by Kitware) 

is used. 

 The toolkit uses its own system of reference counting and garbage collecting (called 

smart pointers). 

 

There is now available fourth edition of the mentioned book [19] for further 

reading. 

VTK can be used through wrappers [29] in .NET Framework, or possibilities 

mentioned in last paragraph from the ITK chapter can be used. 

                                                
19 Component Object Model 

Source Filter Mapper Actor 

.Render() 
Direction of Update() method 

Direction of the data flow 
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This framework covers these of our goals: data abstraction (g2), data processing 

(g3), data visualization (g4), and partially interactivity (g5) and visualization on GPU 

(g8). 

 

2.3 VTK and ITK Extensions 

2.3.1 MITK 

The Medical Imaging Interaction Toolkit (MITK
20

) is a C++ library for the 

development of medical imaging applications. It is an extension to ITK and VTK, so all 

functionalities are available in MITK. MITK adds support for synchronized multi-

viewer layouts and allows construction and modification of data objects. MITK can be 

added to existing applications and allows the construction of applications with 

specialized task without unnecessary other features. 

Goals covered by MITK are data abstraction (g2), data processing (g3), data 

visualization (g4), and partially interactivity (g5) and visualization on GPU (g8). 

 

2.3.2 KWWidgets 

KWWidgets
21

 is graphical user interface (GUI) toolkit, which provides common 

low-level widgets like buttons, textboxes, menus, and so on. On top of these it provides 

set of widgets for visualization libraries like VTK. For example there is surface material 

editor, transfer function editor, etc. 

This framework covers these of our goals: data abstraction (g2), data processing 

(g3), data visualization (g4), and partially interactivity (g5) and visualization on GPU 

(g8). 

 

2.4 Volumizer 

OpenGL Volumizer
22

 [20] is the commercially available, cross platform, high-

level volume rendering application programming interface (API) for the energy, 

manufacturing, medical, and sciences markets. It is a graphics API designed for 

interactive visualization of large volumetric data sets. 

The Volumizer covers four goals, data abstraction (g2), data visualization (g4), 

interactivity (g5), and visualization on GPU (g8). 

 

                                                
20 http://www.mitk.org/ 
21 http://www.kwwidgets.org 
22 http://www.sgi.com/products/software/volumizer 
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2.5 VGL 

VGL
23

 is a commercial graphics library aimed at volume rendering. It supports 

multiple volumes rendering through the software ray-tracing. The hardware rendering 

techniques used in VGL are 2D and 3D texture based volume rendering. 

Goals covered by VGL are data abstraction (g2), data visualization (g4), and 

partially interactivity (g5) and visualization on GPU (g8). 

 

2.6 Medical Imaging Programs 

VolView
24

 is a graphical interface for volume rendering and data visualization. 

VolView was developed by Kitware and designed to enable easy exploration of 

volumetric data. No programming skills are required to use VolView, but there is a 

possibility to extend the framework through plug-in interface. Currently some of ITK 

and VTK filters in VolView are supported. 

ParaView
25

 is application built on top of VTK and ITK libraries. ParaView adds 

features, such as visualization using parallel processing and large data handling. 

3D Slicer
26

 is third application from Kitware and it is intended for interactive 

visualization of images, manual editing, and automatic segmentation. It was developed 

with KWWidgets, TCL, VTK, and ITK. 

MeVisLab
27

 is graphical interface that uses visual dataflow programming to 

create custom applications and visualization tools. MeVisLab support 2D/3D 

visualization with Open Inventor, OpenGL fragment shader, or VTK. 

SCIRun
28

 is program for wide variety of applications including image 

processing and 3D volume rendering. Its advantages are ITK and MATLAB 

integrations. 

 

2.7 Summary 

Name 
Develop. 

language 
License Purpose Origin 

Develop. 

by 

ITK C++ open source 
Registration and 

segmentation 
1999 Kitware 

VTK C++ open source Visualization 1993 Kitware 

Volumizer C++ commercial 
Visualization of 

large data sets 
2002 SGI 

VGL C++ commercial 
Visualization of 

large data sets 
1997 

Volume 

Graphics 

                                                
23 http://www.volumegraphics.com 
24 http://www.volview.org/ 
25 http://www.paraview.org/ 
26 http://www.slicer.org/ 
27 http://www.mevislab.de/ 
28 http://www.software.sci.utah.edu/scirun.html 
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Name 
Develop. 

language 
License Purpose Origin 

Develop. 

by 

MITK C++ open source 
ITK and VTK 

extension 
2004 Kitware 

Table 3: Overview of existing frameworks 

 

There are many
29

 frameworks oriented on 3D data set processing and 

visualization. Most important of them are listed in Table 3. 

The most usable framework according to our goals is one of those that provide 

interoperability with ITK and VTK classes. Their disadvantage is in necessity of 

learning three frameworks altogether. 

Major part of frameworks was developed for many years and contains many 

classes and processes. This fact obviously extend the time of learning and developing of 

application. On the other hand it is better to use any of presented frameworks than 

develop a project from the scratch. 

For further comparison see e.g. [21] and [22]. 

 

 

   

   
Figure 6: Screenshots of some visualization programs. MITK (top left), VGStudio (top 

middle) VolView (top right), ParaView (bottom left), 3D Slicer (bottom middle), MeVisLab 

(bottom right) 

 

                                                
29 http://www.virtual-anthropology.com/support/software/ 
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Chapter 3  

3 Design of Application Interface 

In this chapter we will describe design of application interface (API). Within that 

the problems and required features from chapter 1.6 Goals of th are included. 

Source code of interface is a part of project VL (stands for Volume Library) on 

the CD as a separate namespace VL.Api. Only interfaces, abstract classes, 

and enums are defined in this namespace. General design features of VL.Api (except 

those mentioned in chapter 1.6) are following: 

 Independence on Windows Forms. All features making use of WinForms is left on 

implementation. Note that our implementation is using WinForms, but generally, the 

choice of user interface (UI) is left on other possible implementations of VL.Api. 

 Like state machine. The behavior of VL.Api for programmer is based on the state 

machine that controls building or modification of required pipeline and its execution. 

 

Note that VL Reference Manual is available on the attached CD and feel free to 

look there for exact features and behavior of each class and interface. 

 

3.1 Pipeline 

 
Diagram 4: Data flow diagram 

 

Files 

Voxels  

Pixels 

Algorithm 

Renderer 

   

Volume 

Factory 
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Diagram 4 shows general data flow diagram of the VL application. The diagram 

shows reading of the 3D data sets from the hard disk drive through the use of 

VolumeFactory. Next data can be processed by Algorithm or directly send to Renderer. 

Renderer then visualizes the data into the application window.  

The module connection in VL application is performed through the use of data 

structure IVolume. This adjustment is shown on Diagram 5 with a simplified example 

of code. 

 

 
Diagram 5: Creation of processing pipeline through the use of IVolume data structure 

 

Next we will analyze this situation in detail. 

 

 
Diagram 6: Block diagram of general VL pipeline 

 

Diagram 6 shows a schematic structure of data processing pipeline in VL. A 

typical data cycle in medical program, which makes use of VL, starts by loading 

volume data stored on a hard disk drive in the DICOM format. That functionality 

provides interface IVolumeFactory, which creates instances of classes 

derived from interface IVolume (chapter 3.2). For data modifications abstract 

class AlgorithmBase is available (chapter 3.3). After the defined algorithms have 

IVolumeFactory 

- CreateEmptyVolume 

- CreateFromDicom 

- GetVolume 

IVolume 

- Get 

- Set 

- AssignName 

AlgorithmBase 

- ExecuteOnVoxels 

- ExecuteOnLayers 

- ExecuteOnVolum 

IRenderer 

- GenerateDimensions 

- SetVolume 

- SetMask 

ITransferFunction 

- Pos 

- Dim 

ICamera 

- Matrix 

Picking 

Algorithm 

Renderer Volume 

Factory 
Volume Factory f; Algorithm a; 

Renderer r; 

Volume v1 = f.Load(); 

Volume v2 = a.Process(v1); 

r.Render(v2); 
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processed the data, they are sent to visualization part. Interfaces for common 

visualization techniques are defined in “renderers” (IRenderer, IRenderer2D, 

IRenderer3D, IRendererIso, IRendererDVR, ITransferFunction and 

ICamera) – chapter 3.4. There is also an interface for selecting points in displayed 

data (IPicking). 

Note that the described pipeline is a general structure and the exact form of 

pipeline is defined in each program. For example, in some cases no “algorithms” are 

needed and only visualization functionality is used. 

As mentioned earlier, one of our goals (g6) is to minimize time elapsed from 

execution of pipeline. This is one of the reasons for existence of interface 

IThreaded, which contains prototypes of methods for controlling parallel run of 

calculations. This interface is used in IVolume (because of possibility of loading 

volume data in another thread) and in AlgorithmBase (where executed algorithm 

can also run in background thread). IThreaded is not used in IRenderer, because 

rendering must be usually done in main thread of the application. 

 

3.2 Data Representation 

 
Diagram 7: Most important methods and properties of interfaces IVolume and 

IVolumeParams 

 

In this chapter we will describe two interfaces: IVolume and 

IVolumeParams. They are designed to store the data in 3D matrix and to provide 

efficient access to that data. 

There were several issues, which had to be resolved. The first was checking of 

access outside the volume, alias boundary problem, which is relevant when there are 

many checks while passing through the whole volume by the algorithm. This problem 

will be described in the next chapter 3.3. 

Second problem is the selection of supported data types for representation of 

each voxel. We decided to support the following types: 

 byte 

 ushort 

 uint 

 float 

 

IVolume : IThreaded 

- Get, Set 

- GetLocal, SetLocal 

- GetFast 

- HighestReadableLayer 

- Histogram 

- Params 

IVolumeParams 

- Dim, VoxDim, Pos 

- DataType, Bpp 

- Overflow 
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The reason for this is that these data types need not be converted before 

transmitting them to GPU. That is not true for other data types, which we considered 

originally – bool, ulong and double. 

The third and quite complex problem is data abstraction (g2). What we want is 

the possibility to store different types of data in a volume, but the processing and 

visualization tasks should be independent on the incoming data types. Problems with 

visualization were described in previous paragraph. In processing task we solve this by 

putting a generics parameter to the deepest point inside interface IVolume, i.e. to 

read and write methods:  
 

TYPE Get<TYPE>(int x, int y, int z); 

void Set<TYPE>(int x, int y, int z, TYPE value); 

Code snippet 1: Methods for accessing voxels 

 

Disadvantage of this approach is that it requires to cast field with stored data in 

these methods, but the code of processing methods defined by user is simpler, then if 

the generics parameter was on the whole interface IVolume, where the casting has to 

be performed by  programmer (if he wants to use some numeric operations). 

The last problem, which we want to mention, is dividing volume data into pieces 

in order to allow computation of multiple parallel algorithms (or loaders and renderers). 

The idea is that when some piece is e.g. loaded, it can be send to e.g. visualization. This 

cycle is than repeated until the whole volume is visualized. The major part of the image 

processing algorithms operate sequentially, so we decided for simple solution of this 

problem. We record number of layer, for which is true, that all other layers with smaller 

number are fully filled. This property is stored in 

IVolume.HighestReadableLayer. Figure 7 shows utilization of this property. 

 

 
Figure 7: Parallel run of pipeline modules 
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3.3 Algorithms 

 
Diagram 8: Set of classes connected with algorithms 

 

This chapter clarifies the functions of algorithms. Classes connected with this 

topic are AlgorithmBase, AlgorithmParams and DataAccess. 

Concept of algorithm is not to define all possible image processing algorithms, 

but to provide a good interface for writing algorithms (g3). Our solution of that is based 

on an assumption that most of the algorithms run sequentially through 3D data “voxel 

by voxel”, make some calculations on matching voxels of input volumes and write 

result to output volume. So, everything, what a user must do in VL.Api, is to write 

method for one voxel and then only call algorithm for the execution of that method. 

Running through the voxels is left to the framework, which makes optimizations 

possible. Delegate definition and corresponding method is shown in the Diagram 8. 

Previous paragraph is concerned with a case, when the user algorithm can be 

divided to independent executions for each output voxel. For other cases there is a 

method for stepping through the layers, when algorithm must operate on the whole 

layer. For this case the layer orientation can be specified, but it must be noted that when 

other than x-y layer is required, the processing pipeline evaluation is paused. Also this 

case allows parallelization. The last case of run is through the entire volume, but there 

no optimizations can be done, so it is good to consider carefully, which method should 

be used. 

  

AlgorithmBase : IThreaded 

- delegate FVoxel 

- delegate FLayer 

- delegate FVolume 

- ExecuteOnVoxels 

- ExecuteOnLayers 

- ExecuteOnVolumes 

 

AlgorithmParams 

- MaxLayerAccess 

DataAccess 

- volumeParams 

- Get 

- GetLocal 

delegate TYPE FVoxel<TYPE>( 

int x, int y, int z,  

DataAccess[] inputData 

); 

 

void ExecuteOnVoxels<TYPE>( 

FVoxel<TYPE> f,  

IVolume outputVolume,  

AlgorithmParams p,  

params IVolume[] input 

); 
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3.3.1 Algorithm Optimizations 

There are two main approaches how to accelerate the algorithm execution. 

The first approach is based on brute force, i.e. on utilization of more processors 

for parallel run of multiple threads. From the previous chapter 3.3 it is obvious, that 

there is no problem to schedule an execution of the algorithm on as many threads as 

there are voxels in the volume (for case of ExecuteOnVoxels), or as many threads 

as there are layers (for case of ExecuteOnLayers). It is clear, that 

ExecuteOnVolume cannot be automatically parallelized. 

Originally we have considered to implement the parallelization on GPU, but that 

would result in writing the segmentations algorithm in two versions (in two languages), 

as currently no automatic conversion (from C# to any of languages used on GPU) 

exists. 

The second approach is to make use of two types of Get methods from 

IVolume. 

 

TYPE Get<TYPE>(int x, int y, int z); 

TYPE GetFast<TYPE>(int x, int y, int z); 

Code snippet 2: Methods for accessing voxel from algorithms 

 

The difference in those two functions is that the first checks a possibility of 

accessing outside the data bounds (and in a case that someone is attempting to read 

outside volume it returns value dependent on set up of field overflow in 

IVolumeParams), while the second function immediately accesses the data without 

any overflow checks. 

This optimization is possible to implement due to the parameter 

MaxLayerAccess from the AlgorithmParams class. When MaxLayerAccess 

added to the voxel’s coordinates is always inside the volume, the method GetFast is 

hold up on method DataAccess.Get, which can then be securely called by the user 

algorithm. Otherwise the method Get is hold up on method DataAccess.Get. 
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3.4 Visualization 

 
Diagram 9: Interfaces that are connected with visualization 

 

There are several interfaces available for visualization in the API. They are 

designed to be able to offer implementation in one class, so that implementation 

programmer can decide which interfaces will be supported by which renderer. Interface 

IRenderer should be implemented in all renderers. 

Interfaces shown on Diagram 9 ensure the goal (g4): 

 Direct volume rendering – IRendererDVR. 

 Isosurface rendering – IRendererIso. 

 Color transfer functions – IRenderer and ITransferFunction1D. 

 Masks – IRenderer and ITransferFunctionsMultiD 

 Multidimensional color transfer function - ITransferFunctionsMultiD 

 

The goal (g5) Interactivity is also related to visualization, but we left this goal on 

implementation. 

In our concept of masks and transfer functions there is a rule, that all volumes 

(main volumes and mask volumes) store one component data and translation to final 

color (which is obviously multi component value) is left to transfer function. If we want 

to visualize two component data, it is necessary to store the first component in the main 

volume and the second component in the mask. Then we must define two-dimensional 

transfer function, where the first dimension corresponds to values from the main volume 

IRenderer 

- GenerateDimensions 

- SetVolume 

- SetMask 

- StartRender 

- StopRender 

- AddTransferFunction 

IRenderer2D 

- SetSlice 

IRenderer3D 

- AssignCamera 

IPicking 

- PickingEvent 

IRendererIso 

- GenIsoSurface 

- SetIsoSurface 

- IsIsoEnabled 

IClipPlane 

- GenerateClipPlane 

- SetClipPlane 

IRendererDVR 

- IsDVREnabled 

ICamera 

- Matrix 

ITransferFunction 

- Pos, Dim 

- SetLocalizationBlock 

- SetSegment 

- Lut 

ITransferFunction1D 

 : ITransferFunction 

ITransferFunctionMultiD 

 : ITransferFunction 
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and the second dimension corresponds to values from the mask volume. Each 

dimension will increase one mask volume and one dimension in the transfer function. 

 

 
Figure 8: The 2D transfer function 

 

Figure 8 shows the whole situation. There are two volumes, main and a mask. 

Densities from both volumes are needed for calculation of resulting color of actual 

voxel. These densities (862, 5) are taken as an index to the two-dimensional color 

transfer function look-up table. 

Figure 8 also shows the reason, why the components are divided between two 

volumes (instead of using one volume with two components stored in one voxel). 

Common case of image processing in medicine is that there are detailed data from 

CT/MRI scanner and the task is to show some segmented organ. The programmer 

develops a segmentation algorithm, which outputs only a mask with smaller data type, 

where information about organ is stored. Thus the mask is smaller and of the smaller 

data type, thus memory usage is optimized. 

Previous paragraph implies the necessity of moving the mask volume against the 

main volume. All volumes have their position, so it is possible to move them along the 

entire space. The position must be taken into account when reading input components 

for multidimensional transfer function from volumes. In a case when more components 

are used and there is no value at the particular position (because the mask volume is 

moved against the main volume or because the mask volume has smaller dimensions 

than the main volume), behavior is defined with field 

IVolume.Params.Overflow. There are three possibilities. The first of them is 

“clamp to border”. That means that defined value (density) is used. The second is 

“clamp to edge”, which means that nearest voxel value is used. And the third is 

“repeat”, which means tiling. 

Thus there can be more masking volumes and they can be localized. The same is 

true for transfer functions. In the application specification a possibility is included to 

localize transfer function by definition of position and dimensions of a block, where 
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transfer function is used. When more transfer functions are defined for one voxel, the 

last (meaning the last added) is used. On the other hand, when no function is defined for 

some voxel, it must be transparent. 

 

3.5 Goals Overview 

Here we want to summarize the goals from chapter 1.6 in relation to the 

presented API. 

 

(g1) Compactness is resolved by using one interface IVolume in all parts of the 

API, and trivially by the fact, that all three main tasks (loading, processing, and 

visualization) are contained within the API. 

(g2) Data abstraction: there is support for four data types (byte, ushort, int, 

and float) in the API and creating of processing pipeline is independent on the 

volume type. 

(g3) Data processing: ease of programming of segmentations and filtrations is 

designed through the use of delegates on methods. “User programmer” will implement 

single method, which will be automatically called. There are three types of runs – 

through each voxel, along layers in defined direction, and for whole volume at once. 

“User programmer” must decide which type he will use depending on granularity of his 

problem. The first two possibilities allow the parallelization without any programmer 

effort (“for free”). 

(g4) Data visualization: interfaces for 2D rendering and common 3D 

visualization techniques are contained in the API. Also the color transfer functions and 

multidimensional color transfer functions are supported.  

(g5) Interactivity depends mainly on quality of the renderer implementation, so 

this goal was not covered by API. 

(g6) Temporary results can be handled by IVolume property 

HighestReadableLayer and consequent setting of it by loaders and algorithms. 

(g7) Written in C# goal is filled trivially. 

(g8) Acceleration on GPU is also the goal of the implementation, but the API 

facilitates it with allowed data types. 
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Chapter 4  

4 Implementation 

This chapter describes certain issues related to our experimental implementation 

of the application interface VL.Api. 

Apart from this chapter, there are several other sources of information about VL 

Implementation: 

 VL Programming Guide at the end of this document. 

 VL Reference Manual (in Microsoft Help CHM format - .chm) on the attached CD. 

 Source code which was developed for introduction and testing of VL features – 

project “Example” in solution “VL” or in subdirectory “Example_proj” on the CD. 

 And there is also source code available for our VL implementation on the CD. 

 

Source code of VL framework is divided into three namespaces: 

 VL: Main namespace with framework implementation. 

 VL.Utils: This namespace contains auxiliary classes, mainly for math 

computations. 

 VL.Api: In this namespace only interfaces, abstract classes, and enums 

are defined. For more information see chapter 3 Design of Application Interface. 

 

Overview of main parts of source code is presented in the first section of this 

chapter. In following sections are implementation details and decisions made while 

developing VL. 
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4.1 Classes Overview 

 
Diagram 10: Most important classes in our VL implementation 

 

Implementation is placed in two namespaces: VL and VL.Utils. In 

VL.Utils there are auxiliary classes intended especially for mathematical operations 

with vectors and matrixes. 

There are three main groups of classes as shown in Diagram 10. The first group 

serves for loading data from hard disk drive and their management in the memory. The 

second group represents classes that solve image processing tasks of VL. And the third 

group includes classes dealing with visualization. 

Other classes shown in the Diagram 10 are auxiliary classes either for comfort of 

the “end programmer” (classes with word “Control” in their name) or classes that are 

used in the whole project and could not be included in any of the three listed groups 

(from those the most important is the class VLGlobal, which contains global settings 

of VL library). 
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4.1.1 Data Storing and Loading 

 
Diagram 11: Inheritance hierarchy and most important methods and properties of 

classes connected with data storing and loading. Dashed lines indicate interfaces from API. 

 

Connection of classes and interfaces from VL.Api is shown in Diagram 11. 

There is one feature in the class VolumePtr, which should be highlighted. It is 

obvious that the class VolumePtr stores data in the main computer memory, but for 

visualization it is necessary to store data also on the graphics card. VolumePtr is 

responsible for transfering the data to the VideoRAM for storage and for appropriate 

handling. 

Class VolumePtr.VolumeFactory is designed for creating empty volumes 

and loading volumes from hard disk. In order to simplify work of the “end programmer” 

as much as possible, there is UserControl DicomInfoControl, which is responsible 

for displaying information stored in DICOM files. 

 

4.1.2 Algorithms 

 
Diagram 12: Inheritance hierarchy of classes connected with Algorithms. Dashed lines 

indicate interfaces from API. 

 

The algorithm class task is concerned with execution of user defined functions 

on the input volumes. This class must schedule “work” for the right number of threads, 
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depending on number of processors in the system and on the number of threads already 

used by the VL. A secondary task of the class is to apply a right method for accessing 

data of input volumes related to user defined functions. It is done by classes 

DataAccessSafe and DataAccessFast derived from abstract class 

DataAccess from VL.Api. It is shown in the Diagram 12. 

 

4.1.3 Visualization 

It should be stressed (as already noted in chapter 3 Design of Application 

Interface), that our implementation is using WinForms [23] as a graphical user interface 

(GUI). That decision affects only classes connected with rendering, because they are 

designed as the UserControl. The main advantage of the UserControl is that 

they can be inserted into destination form and the surrounding environment is not 

affected, so the developer can personalize appearance of his forms. 

Most complicated situation of inheritance lies in visualization group of classes. 

 

 
Diagram 13: Inheritance diagram of renderers. Dashed lines indicate interfaces from 

API. 

 

“Renderers” part of visualization group is shown in the Diagram 13. The results 

for the “end programmer” are two classes: Renderer3DControl and 

Renderer2DSimpleControl. These two classes cover major part of visualization 

API. 

There are two interfaces, which were not implemented. 

The first was IClipPlane. We have considered it not so important and we 

preferred to spend time on other parts of the framework. 

The second was IRenderer2D. The role of this interface was replaced by 

Renderer2DSimpleControl, which is designed for rendering three 2D axis 

aligned slices. Because the task of rendering common slices is not fulfilled, we decided 

not to derive this class from IRenderer2D. It should be noted, that the class 
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R2DSimple is optimized for the memory requirements and for the speed of rendering. 

If common 2D slices were implemented, one of those two advantages would be lost. 

 

 
Diagram 14: Inheritance diagram of classes connected with transfer functions. Dashed 

lines indicate interfaces from API. 

 

Diagram 14 presents inheritance situation of transfer functions. Before the 

rendering pipeline is executed, transfer functions are assigned to renderers in order to 

map density values to color. 

For user input of the transfer function values there is the UserControl 

TransferFunctionControl available, which provides one instance of the class 

TransferFunction1D, which can be used directly in any renderer or can be used to 

compute another TransferFunctionMultiD. 

 

 

 
Diagram 15: Inheritance diagram of other classes connected with visualization. Dashed 

lines indicate interfaces from API. 

 

The Diagram 15 shows the rest of the classes, which are connected with the 

rendering. 

Cameras are classes that define behavior of Renderer3D depending on user input 

from input devices like mouse and keyboard. CameraBase is a class, which is best 

suitable to derive from if someone wants to have different behavior of Renderer3D than 

predefined cameras Camera and CameraRotate. The class Camera is used for 
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simple rotation around x and y axes and the class CameraRotate appends continuous 

turning of the scene around y-axis (this feature is used for measuring the rendering 

speed).  

GLFunc and GLFunc.Shaders are “singleton” classes with functionality 

related to OpenGL. It means: initialization, releasing of resources, handling of OpenGL 

errors, loading of textures and managing of ISO and DVR shaders. An important feature 

is the rendering context memory sharing, which is necessary when more than one 

rendering control visualize the same volume, so that the graphics memory is allocated 

only once. 

The task of the class MainLoop is to call renderers for redrawing, when an event 

arises. That is when new data are loaded or processed and they can be visualized or 

when camera has changed the position and the scene must be redrawn. VLTimer is 

“singleton” class for computing a one rendering loop time and counting of frames per 

second.  

 

4.1.4 Other Auxiliary Classes 

Two classes should be mentioned here. The first is VLGlobal, where overall 

library settings are maintained, like setting of output and error window, some threading 

settings and rendering settings. 

To make a list of classes compact, there is the class SystemInfoControl, 

which is designed to display information about the System (processor count, CPU 

usage, available and used memory, GPU type and OpenGL extensions). 

 

4.2 Rendering 

This chapter introduces detailed process of 3D visualization in VL. The process 

is implemented in the class Renderer3DControl and shader cg/ 

raycasting_shader.cg. 

We use GPU based ray-casting similar to the method presented by Kruger and 

Westermann in [11]. The main core of the algorithm is to send one ray per screen pixel 

and trace this ray through the volume. Both techniques, DVR and isosurfaces, are 

implemented in one fragment program.  

First of all, there is initialization of cg [24] and two framebuffer objects (FBO, 

[25]). In order to generate the necessary rays a trick is used with rendering color cubes, 

where colors represent coordinates – black means [0,0,0], white means [1,1,1] and so 

on. First FBO is filled with back faces of cube (Figure 9 left). Before rendering front 

faces (Figure 9 right) of color cube to second FBO our shader is binded. Finally, the 

second FBO with ray-casting output is blended to the screen. 

In the shader itself, the ray origin (input color to shader, front faces) and ray 

direction (corresponding color in back face FBO subtracted by ray origin) is than easily 
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computed. Final color is computed in a single loop, where the shader steps along the ray 

and recomputes actual color with the volume value translated by the transfer function. 

Camera rotation is applied once before rendering color cubes, so that projection 

matrix and model-view matrix need not be transferred to the shader. 

  
Figure 9: Back faces (left) and front faces (right) of color cube represents coordinates. 

 

The described technique does not support moving camera inside the volume 

(cube), so we implemented the box-plane intersection from [26] and in place of 

rendering front faces of cube we render front faces of cube intersected with a plane, 

which is parallel with the projection plane. The resulting cube is displayed in Figure 10 

(left). 

 

  
Figure 10: The left image shows color cube combined with intersected polygon. The 

right image presents a schematic outline of whole color cube. 

 

The way, how the color on each sample is computed when stepping along the 

ray is expressed by the following commands: 

 

 

Where 

  is destination color 

  is sample color 

  is destination opacity 

  is sample opacity 

 

(2) 
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4.2.1 GPU Data Transfer 

Both data structures volumes and the transfer function look-up tables are stored 

in GPU memory in form of 3D textures. Because OpenGL behavior is based on states, 

the transfer of these data must be done on the right place. That is in main thread before 

the rendering starts. 

For each volume only one texture is created, independently on number of 

renderers, which use this volume. The memory allocation is done in the moment, when 

the renderer starts, so that if some volume is not visualized (it serves as auxiliary 

storage for further computations), the data are not transferred to GPU. Once memory for 

volume is allocated, the slices are transferred as soon as they are available (according to 

volume property highestReadableLayer). This process guarantees the 

intermediate results. 

The 3D textures are used for all transfer functions (TF1D and TFMultiD) 

because of simplification of the fragment shader program. The size of texture depends 

on the size of the transfer function look-up table. Here also the source of limitation of 

VL on maximum number of volumes that can be visualized together comes. 

This behavior is handled by the class RendererBaseTransferControl. 

Since transfer of data is needed only when transfer function is changed, it allows 

the real-time editing of the transfer function. 

 

4.2.2 Shaders 

An interesting method is used for handling multiple versions of shaders. There 

must be twenty-one versions of ray casting fragment program altogether. One for DVR 

rendering, one for isosurface rendering and one for these two together. And each group 

must be three times (for one, two, or three volumes rendered together). Furthermore 

there are three possibilities for isosurfaces (ambient, diffuse and specular components of 

color can be enabled). This generating of code is enabled through the use of runtime 

compilation by the OpenGL driver. 

Because much of the code is same for all of them, we solved this problem with 

commentaries in the code. Every commentary has its unique identifier and when shaders 

are being initialized, the right commentary is deleted and thus the line of code over 

them is enabled. 

The Shader Model 3.0 is necessary for run of the fragment program. 

 

4.3 Threads and Synchronization 

Threads and parallel processing is used on two places in VL. 

The first is in Algorithm class, where the number of threads is calculated and 

then threads are created and started to perform the calling of user defined functions. 
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This is not very complicated, but for application programmer it is a great task, 

because he does not need to care for threads and synchronization at all. 

The second task, which threads provide, is parallel run of loading and processing 

modules. This is done through the use of the volume property 

HighestReadableLayer defined in the VolumePtr class. Generally every 

processing pipeline starts with reading data from hard disk drive, then something is 

computed and finally visualized. When these tasks run simultaneously, it is very good 

for utilization of system resources, because disk operations are interlaced with 

processing operations and rendering operations are performed on GPU. 

Intermediate results shown in the application window are the second effect of 

the parallel processing pipeline. 

 

4.4 External Components 

VL uses several external libraries. 

Library openDICOM.NET
30

 is used for loading of DICOM files. 

OpenGL functions are provided through the use of Tao Framework
31

. 

Cg Toolkit
32

 is also accessible through the use of Tao wrapper. 

Also our implementation of renderer is based on nice tutorial from Peter Thomsen’s 

Blog
33

.  

  

 

 

                                                
30 http://www.opendicom.net/ 
31 http://www.taoframework.com/ 
32 http://developer.nvidia.com/object/cg_toolkit.html 
33 http://www.daimi.au.dk/~trier/?page_id=98 
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Chapter 5  

5 Results 

The Visualization Toolkit (VTK, [18], [19]) is one of the most popular and 

commonly used framework for image processing and visualization of data. We made 

extended comparisons to document differences between volumetric features of VTK 

and our implementation of the VL application interface. The results from that effort are 

described in this chapter. 

Most important criteria for each part of data processing and visualization process 

were chosen, like loading of data, algorithms (filtering, registration, segmentation and 

classification), visualization, supported data types, developer point of view and resulting 

speed. Each group of criteria is pointed out in one of the chapters. 

 

5.1 Programming Language 

VL is written in C# under the .NET Framework 2.0 [28], while VTK is written 

in C++. This implies basic features of both frameworks.  

 

Advantages of C#: 

 intended to be simple 

 modern 

 general-purpose 

 object-oriented 

Main advantages of C++: 

 object-oriented 

 templates 

 preprocessor macros 

 multi-platform 

 

VTK has quite a long history and there were several wrappers made to other 

languages (than C++). One of them is VTK.NET [29]. First we though, that a 

comparison with the VTK will be done through the VTK.NET, but subsequently we 
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discovered, that it was not possible to write the algorithms in the wrapper (the reason 

was that the inheritance and polymorphism could not be used between the new and 

wrapped classes). This is one of the grounds for deciding on the selection of VL or 

VTK. 

 

5.2 Data Types 

Subject VTK VL 

Data Types {signed|unsigned} 

char, short, int, long, 

long long, float, 

double 

byte, ushort, uint, 

float 

Table 4: Supported data types. In VTK C++ names of types are displayed, while in VL 

C# names are used. 

 

Regarding this criterion the VTK support more types. VL chooses only unsigned 

types and largest type is 32 bits large, while VTK support 128 bits (long long, 

depends on a compiler). There are two reasons why VL supports those types. One is that 

only those types can be transferred to GPU and the other is that in C# preprocessor 

macros cannot be defined, while largely used in VTK in a code connected with data 

types. 

The data structure used in the common VTK volume processing pipeline is the 

same as in the VL library (in VTK notation “Image Data”). 

 

5.3 Lines of Code 

For the comparison, we wrote simple applications in both frameworks. 

Immediately after starting of each program the pipeline is created and executed. 

Pipeline consists of loading of data, making simple threshold segmentation on them, 

and displaying both volumes (input data and segmented volume) with direct volume 

rendering. The following Diagram 16 shows pipeline used in the VTK application. 

 

 
Diagram 16: Pipeline in the VTK testing application 

 

The Diagram 17 shows pipeline used in the VL application. The main difference 

is in using the mask volume for output from the algorithm, instead of VTK approach 
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(two components are stored in each voxel). This concept guarantees smaller memory 

requirements. These two diagrams also show that the VTK universality implies 

necessity of using more classes and structures in the processing pipeline. 

 

 
Diagram 17: Pipeline in the VL testing application 

 

The main part of applications with definition of data flow pipeline has 

essentially the same number of lines. Big difference lies in definition of the desired 

segmentation. The number of lines is shown in Table 5. 

 

Subject VTK VL 

Lines of code – pipeline definition 85 79 

Lines of code – single-threaded segmentation 92 12 

Lines of code – multi-threaded segmentation 156 12 
Table 5: Table with lines of code of simple applications 

 

Results from Table 5 are affected by the fact, that if a user wants to define his 

own algorithm in VTK, he must create a new class (inherited from 

vtkImageAlgorithm). But in VL it is only necessary to define a single function 

with segmentation and the framework does the rest. 

The same fact also implies that multi-threaded algorithm has the same lines of 

code in the VL. Multi-threading in VL is left on framework and the end developer has 

multi-threading “for free”. 

The difference between VTK and VL codes in segmentation in our example 

application is so prominent, because our segmentation is very simple. If it were more 

complex, the ratio between VTK and VL would be reduced (difference should remain 

the same). 

 

5.4 Speed of Algorithms 

Subject VTK VL 

Single-threaded segmentation 5.5 s 14.8 s 

Multi-threaded segmentation 2.9 s 8.1 s 
Table 6: Comparison of our simple segmentation speed 
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From the Table 6 it can be seen, that concerning computation speed, the VTK is 

much better than VL. This is due to the fact that accessing voxel values is slower, but 

more comfortable for a programmer of algorithm in VL. 

The VL has also advantage in parallelization. Both features of VL, rendering of 

temporary results and scheduling of algorithm work, are for end programmer provided 

without any programmer effort. Furthermore, the visualization does not slow down the 

algorithm computation - for exact times see the Table 8. 

For the task of segmentation, for which we tested the speed, the voxels, which 

were inside sphere and had a value above some threshold, were selected. There were the 

following operations: 

 Multiplication – 7 times 

 Addition – 5 times 

 Comparison – 2 times 

 Reading input voxel value – 1 time 

 Writing to output voxel – 1 time 

 

Data dimensions of input and output volume were 512*512*256 and there were 

2 bytes for a voxel. 

 

Hardware and software parameters of the machine: 

 CPU: Intel Core 2, 1.8 GHz, dual-core 

 GPU: NVIDIA GeForce 8400GS, 256MB 

 RAM: 1 GB 

 Microsoft Windows XP SP2 

 

5.5 Speed of Loading and Visualization 

There are certain difficulties when comparing speed of loading data. First is that 

VTK itself does not have functionality for loading DICOM data. The way for loading 

them is either to use some other library, or to transform data to another format before 

starting the program. We used the second approach and adjusted our data sets with the 

program dicom2 [30] to raw data. Apart from that, the loading time was practically the 

same, see Table 7 for exact times. 

Since rendering in VL is accelerated on graphics card, it is much faster than 

VTK, where rendering is computed on CPU. 

 

Subject VTK VL 

Loading time 17.5 s 18.2 s 

FPS for image with fixed quality – low 2 fps 20 fps 

FPS for image with fixed quality – medium 1.5 fps 10 fps 

FPS for image with fixed quality – high 0.6 fps 3 fps 

Render of first preview image (with loading) 22.1 s 1.4 s 
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Subject VTK VL 

Render of first image (with loading) 22.1 s 18.5 s 

Can render desired frames per second (in less quality) Yes Yes 

Temporary results while loading No Yes 

Multi-dimensional transfer functions 2 or 4 dim* Yes** 

Can render DVR and ISO together Yes Yes 
Table 7: Comparison of loading and visualization. *One component of voxel can define 

only one color channel. **In actual implementation of VL the dimension of transfer functions is 

restricted to three. 

 

Subject VTK VL 

Render of first preview image (with loading and segm.) 25.0 s 1.9 s 

Render of first image (with loading and segmentation) 25.0 s 26.6 s 
Table 8: Comparison of segmentation speed 2 

 

We used vtkFixedPointVolumeRayCastMapper for rendering in VTK 

example. There are implementations, which extends VTK with hardware accelerated 

raycasting ([31] or [32]), but they are not included in the official VTK release and they 

are not publicly available. 

The Figure 11 and the Figure 12 show images of neck with configurations of 

transfer functions conformable to each other. 

When we compare visualization, it should be noted that VL is aimed on 

visualization of volumes and their masks through multidimensional transfer function. 

The difference in comparison with VTK is that multidimensional transfer functions 

cannot read data from more volumes. The result is that data sets have more components 

in one voxel and thus multidimensionality has smaller possibilities of usage. 

 

  
Figure 11: Images of neck rendered with VL 2 fps (left) and VTK 1 fps (right). 
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Figure 12: Images of neck rendered with VL 20 fps (left) and VTK 20 fps (right). 

 

5.6 Summary 

Subject VTK VL 

Language C++ C# 

Platform Multi Windows 

Data types + 0 

Lines of code 0 + 

Speed of algorithms + - 

Ease of writing new algorithms - + 

Speed of visualization 0 + 

Temporary results while loading or segmentation - + 
Table 9: Results of comparison between VTK and VL. “+” means good support, “0” 

neutral and “-“ bad result or missing feature. 

 

The Table 9 presents the summary results of our comparison. Most negative item 

of VL is the speed of algorithm. On the other hand, VL can provide all three main tasks 

(loading, processing and visualization) simultaneously without any line of code by the 

end programmer and without slowing down the overall computation through the use of 

all system resources. 

This chapter presented differences between VTK and VL and should help in 

deciding on what tasks are suitable for VTK framework and when it would be better to 

use our VL framework. 

The VTK is suitable for applications developed for multiple platforms and for 

cases, where priority is given to high performance of algorithms before the end user 

comfort. 

The VL is suitable for cases, where the interactivity of whole application is 

necessary or for projects aimed for rapid design of new methods, because of both the 

language and library simplicity. 
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5.7 VL Testing 

This section is aimed at comparison of various settings inside the VL itself. 

 

Data access method checked unchecked 

sum += v[0].GetLocalFast<ushort>(i, j, k); 8.18 s 8.20 s 

sum += v[0].GetLocal<ushort>(i, j, k); 10.12 s 9.98 s 

sum += v[0].GetFast<ushort>(i, j, k); 12.26 s 12.53 s 

sum += v[0].Get<ushort>(i, j, k); 14.40 s 14.61 s 

Table 10: The efficiency of the data access methods for algorithms 

 

Table 10 shows results from comparison between the data access methods’ 

speed. We made a loop, which counted values of voxels within data set with dimensions 

512
3
. The first two methods are for direct indexing of voxels, while the others must 

subtract the volume position from the index. The first and the third method do not check 

access outside the input volume, while the others do (these two groups are switched 

through the use of polymorphism in user defined function). We can see that this 

optimization speeds up the reading operation for 15-20 percents. The column “checked” 

means that there was overflow-checking enabled, while the column “unchecked” shows 

times without overflow-checking. There is obvious, that it has no effect on computation. 

 

        
Figure 13: Dependence of the algorithm speed on the number of threads (on dual-core 

processor) 

 

Figure 13 shows graph with dependency of algorithm speed on the number of 

threads. Alas only dual-core processor has been used. The figure shows, that the speed 

of algorithm does not slow down, when there are more threads on a unit. 
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Figure 14: DVR and isosurface rendered together with VL (left), part of skull rendered 

with VTK (right) 

 

 

  
Figure 15: Part of body (top left), pelvis (top right), skulls (bottom). All were rendered 

with VL framework. 
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Chapter 6  

6 Conclusion 

In this thesis a framework and application interface oriented on processing and 

visualization of medical volume data sets is presented.  

At the beginning, there is a short introduction to all technical aspects dealt with 

the framework. That is image processing, volume visualization, GPU programming, and 

the .NET Framework architecture. At the end of the first chapter there are the most 

important features, which our framework should satisfy. 

The second chapter is devoted to existing free and open source software 

solutions for processing or visualization of volume data sets. It follows from the review, 

that most compact programs are provided by Kitware Inc., which has been involved in 

the development of VTK and ITK. 

Next a description of the design of application interface and its features is 

presented. Most important of them is parallelization of multiple modules of the 

framework and concept of masking volumes, which are used instead of multi-

component values in data sets. 

Chapter four describes our implementation and its main features. There is an 

overview of classes and relationship between them. Other interesting problems like 

rendering process are also included. 

Comparison of our framework with The Visualization Toolkit, the leading 

software in visualization, is made in the fifth chapter. Main differences between 

corresponding parts of both frameworks are described, such as loading, processing and 

visualization of data sets. 

 

6.1 Results 

The VL is compact volume-specialized framework developed natively in .NET 

architecture with parallelization, suitable for rapid development of medical image 

processing algorithms. 
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Main features of our framework are: 

Processing and visualization of three dimensional data sets. The library provides 

simple environment for all three main tasks (loading, processing, and visualization) in 

processing pipeline for the end application developer.  

Visualization. The ray casting algorithm is implemented on the GPU and makes 

real-time simultaneous rendering of both direct volume rendering technique and 

isosurface rendering technique possible. 

Oriented on medical purposes. The concept of masking volumes optimizes 

memory usage and provides more possibilities of usage of our renderer.  

Parallelization. The parallel run of data loading and of the processing algorithm 

provides good utilization of the system resources, because the disk operations interlace 

the processing operations. 

Including into existing projects. The design of library makes possible to simply 

integrate parts of library to existing software projects. 

 

Main problems of our implementation are: 

 The target platform of VL framework is Microsoft Windows only. 

 Performance of algorithms written through the use of VL is not as good as in 

comparable frameworks. 

 The number of volumes rendered altogether is restricted to three. 

 It is not possible to process data sets that do not fit into the main memory and 

visualize data sets that do not fit into the graphics memory. 

 

6.2 Future Work 

Except for optimization of the current source code, the main direction of the 

future work might be in implementing the remaining application interface features, 

primarily completion of the concept of multiple masks volume (our implementation 

restricts the number of currently visualized volumes to three) and possibility of 

localized transfer functions. 

Next essential improvement would be to make possible of integration of some 

ITK modules. 

Another possibility would be to modify the source code to fit Mono [15], an 

open source implementation of the Microsoft .NET architecture. 

In API the color transfer function interface can be extended in order to handle 

also isosurfaces. 
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Appendix A:  Contents of the CD 

There are the following directories on the attached CD: 

 Directory Data contains four tested data sets. There are anonymous CT images of 

skull (512x512x49), neck (512x512x27), body (512x512x72), and pelvic 

(512x512x41) 

 Directory Text contains electronic version of this document in the PDF format, as 

well as Microsoft Word 2007 (.docx) version. 

 Directory VL/src contains the source code of our library and source code of the 

project developed to test this library (subdirectory Example_proj). There is single a 

solution file (.sln) for both projects for Visual Studio 2008. 

 In the directory VL/bin there are binaries for the testing project (Example.exe) with 

necessary libraries. Target platforms are 32 bit versions of Windows XP and Vista. 

 In directory VL/bin64 there are binaries for the testing project (Example.exe) with 

necessary libraries. Target platforms are 64 bit versions of Windows XP and Vista. 

 Directory VL/doc contains reference manual for our library in the Microsoft Help 

CHM format (.chm). 

 In directory VTK there is the source code of the project used for comparisons made 

in Chapter 5. 
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Appendix B:  VL Programming Guide 

This appendix describes common techniques, which are necessary for 

developing software with VL library. 

VL is designed to be easily included to new as well as to existing projects. All 

graphical tools are designed as User Controls, which allow simple changing of their 

appearance and extending them with their own functionality. 

For introduction of VL possibilities, a simple form with controls from VL is 

described. 

 

B.1 Getting Started 

Inclusion of VL library to Visual Studio 2008 project consists of several steps. 

 First we must add reference on VL library: in “Solution Explorer / Project_name / 

References / right click / Add Reference… / VL.dll” 

 Copy all necessary files to our output directory – files with DICOM elements 

dictionary from data folder and supporting libraries (if they are not in the system 

already): cg.dll, cgGL.dll, Gobosh.DICOM.dll, opendicom-sharp.dll, Tao.Cg.dll, 

Tao.OpenGl.dll, Tao.Platform.Windows.dll. These files can be obtained from our 

testing project. 

 

B.2 Creating 3D Renderer 

To create control for 3D volume visualization, we open our form in Designer 

View and drag Renderer3DControl from the Toolbox. Next, we must append 

following line to constructor of our form: 

 
renderer3DControl1.StartRender(); 

 

When we now build and start the application, it will look like in Figure 16 (left top). 

The sign “Powered by Tao” means, that there is no volume assigned to the 

renderer, so we will now create one: 

 

VL.Api.IVolumeParams vp = new VL.VolumeParams( 

  256, 256, 256,  // dimensions 

  VL.Api.eType.vl_byte // data type 

); 

VL.Api.IVolume volume = VL.VolumePtr.Factory.CreateEmptyVolume(vp); 

renderer3DControl1.GenerateDimensions(1); 

renderer3DControl1.SetVolume(volume); 
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renderer3DControl1.StartRender(); 

Code snippet 3: Creating and displaying of the volume 

 

First, we filled in parameters of the new volume and called volume factory to create one 

empty volume. Result is shown in the Figure 16 (right top). Colored lines mean, that the 

volume is created, but that it is empty. 

Next, we will fill the volume with some data. We create and execute our 

algorithm defined in function f() immediately after volume is created: 

 
VL.Algorithm alg = new VL.Algorithm(); 

alg.ExecuteOnVoxels<byte>(f, volume, null); 

 
byte f(int x, int y, int z, VL.Api.DataAccess[] inputData,   

       object userParams) 

{ 

 return (byte)( 

  (x < 100 ? 40 : 10) + 

  (y < 100 ? 40 : 10) + 

  (z < 100 ? 40 : 10) 

 ); 

} 

Code snippet 4: Definition of function for algorithm 

 

When this is executed, it can be seen that the computation of our algorithm is done in 

separate thread(s) and that it does not affect a user with any delay. Figure 16 bottom 

left. 

 

B.3 Creating 2D Renderer 

In VL library there is also UserControl for visualization of 2D volume slices. 

The main difference from 3D renderer is that Renderer2DControl can be used for 

user input in the sense that user can select a point with 3D coordinates. That is done 

through event handler PickingEventHandler, Assigning volumes and transfer 

functions is the same for both renderers. 

 

B.4 Transfer Function Handling 

Handling of the volume color is done through the transfer function. We have one 

volume, so now we will use TransferFunction1D: 

 

 VL.TransferFunction1D tf = new VL.TransferFunction1D(8); 

 tf.SetSegment(0.0f, 0.2f, new VL.Utils.RGBA(0, 0, 0, 0.2f), 

    new VL.Utils.RGBA(0, 1, 1, 0.2f)); 

 tf.SetSegment(0.2f, 0.4f, new VL.Utils.RGBA(0, 0, 0, 0.2f), 

     new VL.Utils.RGBA(1, 0, 1, 0.2f)); 

 tf.SetSegment(0.4f, 1.0f, new VL.Utils.RGBA(0, 0, 0, 1.0f), 
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    new VL.Utils.RGBA(1, 1, 0, 1.0f)); 

 

 renderer3DControl1.AddTransferFunction(tf); 

Code snippet 5: Definition of transfer function 

 

Behavior of transfer function is set by the function SetSegment(), which takes four 

parameters. The first and the second are for volume density and the third and the fourth 

for final color. See Figure 16 (bottom right) for the result. There are also other functions 

for setting the transfer function, which are described in the reference manual for VL. 

 

  

  
Figure 16: Designing of our form 
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Figure 17: Designing of our form with multidimensional transfer function 

 

Next example, useful to present, is multidimensional transfer function. It means 

that target color depends on values from more volumes. We must create one more 

volume, which will stand for a “virtual ball”. This ball will be moving across the main 

volume, so that it will be clear, that ball’s color is changing and that it depends on 

multidimensional transfer function. 

 
VL.Api.IVolumeParams vp2 = new VL.VolumeParams( 

 80, 80, 80, VL.Api.eType.vl_byte 

); 

ball = VL.VolumePtr.Factory.CreateEmptyVolume(vp2); 

VL.Algorithm alg2 = new VL.Algorithm(); 

alg2.ExecuteOnVoxels<byte>(f2, ball, null); 

 
byte f2(int x, int y, int z, VL.Api.DataAccess[] inputData,   

       object userParams) 

{ 

 x -= ball_r2; y -= ball_r2; z -= ball_r2; 

 return (byte)(x * x + y * y + z * z < ball_r2 * ball_r2 ?   

  byte.MaxValue : 0); 

} 

Code snippet 6: Creating of the volume, which stands for a ball 

 

Function f2() changes the values inside the “ball” to 255 and others are left as zeroes. 

This volume represents a simple mask for our main volume and function f2() 

represents a simple segmentation. Next we must change the transfer function to 

TransferFunctionMultiD and fill in right values: 

 
VL.TransferFunctionMultiD tf2 = new VL.TransferFunctionMultiD(8, 1); 

tf2.SetSegment(new VL.Api.TFPoint(0, 0), new VL.Api.TFPoint(1, 0), 

 new VL.Utils.RGBA(0, 0, 0, 0), new VL.Utils.RGBA(1, 1, 1, 1)); 

tf2.CopyDimensionFromTF1D(tf, 1); 

Code snippet 7: Definition of multidimensional transfer function 
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As we can see, it is quite similar, except places, where the second dimension parameter 

must be specified. For TFMultiD there is also auxiliary function for cooperating with 

one-dimensional function. For moving the ball the following command is used, which is 

executed every 50 milliseconds by common timer. 

 
 ball.Params.Pos += dir; 

 

The result is shown in the Figure 17. The whole example is included in the 

attached CD with some other features, like sample of extending the camera. 

There is UserControl TransferFunctionControl for simplification of the 

transfer function definition in the VL library. It can be interactively connected with 

renderers through its property tf and event TFChanged. For more information see the 

reference manual. 
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Appendix C:  User Manual 

Appendix C describes a small project “Example”, which was developed for 

testing purposes of the VL library. It should be pointed out, that this project is not the 

only and main purpose of this work. Here, the VL UserControl’s behavior will also be 

described. 

The “Example” is a project for 2D and 3D visualization of DICOM data sets. It 

can render DVR and isosurface images. It allows definition of transfer function, 

viewing DICOM file elements, setting rendering quality, and more. 

 

C.1 System Requirements 

 Windows XP or Vista operating system. 

 .NET Framework 2.0 (Windows Vista contains it by default). 

 256 MB RAM (Depends on used data sets). 

 NVIDIA GeForce 6 Series or AMD/ATI Radeon R520 Series or higher (Shader 

model 3.0 required). 

 256 MB Video RAM (Depends on used data sets). 

 

 
Figure 18: Main parts of “Example” project window. 

  

Transfer 

Function 

Control 

Settings 

for R3D 

 Button 

panel 

 

Output 

console 

 

Window with 

Renderer3D 

Control 

 



Appendix C:  User Manual 

 64 

C.2 The Main Window 

The main window of the project is MDI
34

 and consists of two parts, the working 

desktop, and the right panel, as shown in the Figure 18. Working desktop is intended for 

windows with 2D and 3D renderers. 

Most important part of the right panel shows buttons: 

 

 Dicom Info serves for opening of DICOM files. 

 System Info opens panel with system values, like memory usage, processor 

load, count of processor’s cores, and graphics card extensions. 

 Options serves for setting of advanced mainly visualization options. 

 R3D opens new window with Renderer3DControl component. 

 R2D opens new window with Renderer2DControl component. 

 

Below that panel is a place for displaying messages from the VL library, the 

“output console”. Times of some loading, processing and visualization processes, 

messages from the renderer’s initialization and some error messages can be placed 

there. 

In the title bar of the main window the actual count of frames per second is 

shown. 

 

C.3 Dicom Info 

For loading files in the DICOM format there is DicomInfoControl (Figure 19). It 

consists of two tabs with treeviews. In the first all elements from the file are displayed 

as they are stored in the file (in same structure and order). The second shows 

DICOMDIR files and regroups file records in a logical order 

(patient/study/series/slices). They are marked with colors for better readability – blue 

means one file or slice, green more of them and red is for record that points on files, 

which cannot be opened. 

After selecting a file with mouse click, loading is started in the last active 

renderer. 

 

                                                
34 Multi-document interface 
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Figure 19: DicomInfoControl 

 

C.4 Options 

In the General part of the Options window there are settings for testing and 

debugging tasks. Parallel computations, printing of algorithm’s speed and rotating of 

camera in 3D renderers can be turned on or off in this window. 

In Rendering part of Options accuracy of visualization (at the expense of speed), 

Lego projection (interpolation type), inverting of colors (for printing purposes), and 

shading for isosurfaces can be set. Ambient shading means, that there is no dependence 

of color on isosurface gradient, diffuse is for non-shiny reflection and specular for 

specular reflection. 

 

       
Figure 20: Options (left), TransferFunctionControl (right up), and R3D settings 
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C.5 R2D a 3D 

Renderer2DControl (Figure 21 left) is intended for viewing three 2D axis 

aligned slices of the volume. Color is set up by the TransferFunctionControl. 

TransferFunctionControl (Figure 20 right up) displays five related graphs. In the 

background there is a histogram from actual volume (dark gray). Vertical scale of 

histogram can be changed from linear to logarithmic with the checkbox “Log hist”. 

Next four graphs are meant for color channels and opacity. Colors are either red (R), 

green (G), blue (B), or cyan (C), magenta (M), and yellow (Y), depending on “Black 

Background” checkbox setting. Under graphs the final color is displayed. 

Setting of these four graphs can be done with the left mouse button by directly 

drawing to background. Modification is done only to those channels, which are 

checked. 

Renderer3DControl (Figure 21 right) relates to DVR and isosurface 

visualization. These can be checked up with “R3D settings” from the right panel (Figure 

20 right bottom). If neither of checkboxes is checked, DVR rendering is used. When 

isosurface is enabled, color and opacity is set up by a button and a slider right of it. The 

second slider sets the desired density. 

 

  
Figure 21: Renderer2DControl (left) and Renderer3DControl (right) 
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