
Charles University in Prague

Faculty of Mathematics and Physics

MASTER THESIS

Jakub Hlaváček

Zpracování medicínských dat na GPU
GPU-accelerated processing of medical data

Department of Software and Computer Science Education

Supervisor: Mgr. Lukáš Maršálek

Study program: Informatics, Software Systems,
Computer Graphics

 2

Chtěl bych poděkovat vedoucímu práce Mgr. Lukášovi Maršálkovi za rady a všechny

připomínky, provázející tvorbu této práce.

Také bych zde chtěl poděkovat celé mé rodině za podporu během psaní této práce a

během celého studia.

Prohlašuji, že jsem svou diplomovou práci napsal samostatně a výhradně s použitím

citovaných pramenů. Souhlasím se zapůjčováním práce.

V Praze dne 18. 4. 2008 Jakub Hlaváček

 3

Contents

1 Introduction... 11

1.1 Medical Data Image Processing ... 11

1.2 Volume Rendering .. 13

1.2.1 Direct Volume Rendering ... 13

1.2.2 Volume Ray Casting ... 14

1.3 Shader-accelerated Visualization ... 17

1.4 .NET ... 18

1.4.1 C# .. 19

1.5 Format for Storing Medical Data.. 19

1.6 Goals of the Thesis .. 20

1.7 Structure of this Document .. 21

2 Currently Available Software ... 22

2.1 ITK ... 22

2.2 VTK.. 23

2.3 VTK and ITK Extensions .. 24

2.3.1 MITK ... 24

2.3.2 KWWidgets.. 24

2.4 Volumizer ... 24

2.5 VGL.. 25

2.6 Medical Imaging Programs .. 25

2.7 Summary ... 25

3 Design of Application Interface... 27

3.1 Pipeline ... 27

3.2 Data Representation... 29

3.3 Algorithms .. 31

3.3.1 Algorithm Optimizations .. 32

3.4 Visualization ... 33

3.5 Goals Overview ... 35

4 Implementation ... 36

4.1 Classes Overview .. 37

4.1.1 Data Storing and Loading ... 38

4.1.2 Algorithms ... 38

4.1.3 Visualization .. 39

4.1.4 Other Auxiliary Classes .. 41

4.2 Rendering.. 41

4.2.1 GPU Data Transfer ... 43

4.2.2 Shaders .. 43

 4

4.3 Threads and Synchronization ... 43

4.4 External Components .. 44

5 Results ... 45

5.1 Programming Language ... 45

5.2 Data Types .. 46

5.3 Lines of Code .. 46

5.4 Speed of Algorithms .. 47

5.5 Speed of Loading and Visualization ... 48

5.6 Summary ... 50

5.7 VL Testing .. 51

6 Conclusion ... 53

6.1 Results .. 53

6.2 Future Work .. 54

7 References.. 55

 5

List of Figures

Figure 1: Volume and voxels relation ... 12

Figure 2: Rays are casted through each pixel of the projection plane....................... 14

Figure 3: Sampling of points along the ray and linear interpolation (2D) 14

Figure 4: Isosurface ray casting .. 15

Figure 5: Simple classification with transfer function ... 16

Figure 6: Screenshots of some visualization programs. MITK (top left),

VGStudio (top middle) VolView (top right), ParaView (bottom left),

3D Slicer (bottom middle), MeVisLab (bottom right).................................. 26

Figure 7: Parallel run of pipeline modules .. 30

Figure 8: The 2D transfer function .. 34

Figure 9: Back faces (left) and front faces (right) of color cube represents

coordinates. ... 42

Figure 10: The left image shows color cube combined with intersected

polygon. The right image presents a schematic outline of whole color

cube. ... 42

Figure 11: Images of neck rendered with VL 2 fps (left) and VTK 1 fps (right). 49

Figure 12: Images of neck rendered with VL 20 fps (left) and VTK 20 fps

(right).. 50

Figure 13: Dependence of the algorithm speed on the number of threads (on

dual-core processor) .. 51

Figure 14: DVR and isosurface rendered together with VL (left), part of skull

rendered with VTK (right) .. 52

Figure 15: Part of body (top left), pelvis (top right), skulls (bottom). All were

rendered with VL framework. ... 52

Figure 16: Designing of our form ... 60

Figure 17: Designing of our form with multidimensional transfer function 61

Figure 18: Main parts of “Example” project window. ... 63

Figure 19: DicomInfoControl ... 65

Figure 20: Options (left), TransferFunctionControl (right up), and R3D settings 65

Figure 21: Renderer2DControl (left) and Renderer3DControl (right) 66

 6

List of Tables

Table 1: OpenGL extensions and DirectX versions on current GPUs 18

Table 2: Most important elements stored in DICOM file header 20

Table 3: Overview of existing frameworks ... 26

Table 4: Supported data types. In VTK C++ names of types are displayed,

while in VL C# names are used. .. 46

Table 5: Table with lines of code of simple applications ... 47

Table 6: Comparison of our simple segmentation speed .. 47

Table 7: Comparison of loading and visualization. *One component of voxel

can define only one color channel. **In actual implementation of VL

the dimension of transfer functions is restricted to three. 49

Table 8: Comparison of segmentation speed 2 .. 49

Table 9: Results of comparison between VTK and VL. “+” means good

support, “0” neutral and “-“ bad result or missing feature. 50

Table 10: The efficiency of the data access methods for algorithms 51

 7

List of Diagrams

Diagram 1: A block diagram of programmable graphics pipeline 17

Diagram 2: Parts of .NET Framework 2.0 ... 19

Diagram 3: The schematic of VTK pipeline .. 23

Diagram 4: Data flow diagram ... 27

Diagram 5: Creation of processing pipeline through the use of IVolume data

structure .. 28

Diagram 6: Block diagram of general VL pipeline .. 28

Diagram 7: Most important methods and properties of interfaces IVolume and

IVolumeParams .. 29

Diagram 8: Set of classes connected with algorithms .. 31

Diagram 9: Interfaces that are connected with visualization 33

Diagram 10: Most important classes in our VL implementation 37

Diagram 11: Inheritance hierarchy and most important methods and properties

of classes connected with data storing and loading. Dashed lines

indicate interfaces from API. ... 38

Diagram 12: Inheritance hierarchy of classes connected with Algorithms.

Dashed lines indicate interfaces from API. .. 38

Diagram 13: Inheritance diagram of renderers. Dashed lines indicate interfaces

from API. .. 39

Diagram 14: Inheritance diagram of classes connected with transfer functions.

Dashed lines indicate interfaces from API. .. 40

Diagram 15: Inheritance diagram of other classes connected with visualization.

Dashed lines indicate interfaces from API. .. 40

Diagram 16: Pipeline in the VTK testing application .. 46

Diagram 17: Pipeline in the VL testing application ... 47

 8

List of Code Snippets

Code snippet 1: Methods for accessing voxels .. 30

Code snippet 2: Methods for accessing voxel from algorithms 32

Code snippet 3: Creating and displaying of the volume... 59

Code snippet 4: Definition of function for algorithm .. 59

Code snippet 5: Definition of transfer function ... 60

Code snippet 6: Creating of the volume, which stands for a ball 61

Code snippet 7: Definition of multidimensional transfer function 61

 9

Název práce: Zpracování medicínských dat na GPU

Autor: Jakub Hlaváček

Katedra (ústav): Kabinet software a výuky informatiky

Vedoucí diplomové práce: Mgr. Lukáš Maršálek

e-mail vedoucího: Lukas.Marsalek@mff.cuni.cz

Abstrakt:

Cílem této práce je navrhnout a experimentálně implementovat ucelený systém

zaměřený na urychlení a zjednodušení vývoje systémů pro zpracování a zobrazování

medicínských dat v prostředí C#. V dnešní době existují jak systémy orientované na

postupy vycházející z vědeckého odvětví zpracování obrazu, jako jsou filtrace,

registrace, segmentace a klasifikace, tak systémy zaměřené na zobrazování 3D dat.

Neexistuje však konzistentní systém pro obě odvětví, který by navíc využíval možností

současných grafických a vícejádrových procesorů a zároveň využíval výhod platformy

.NET a jazyka C#.

V této práci uvádíme přehled současného volně dostupného software, návrh

programového rozhraní a implementaci hlavních častí tohoto rozhraní. Důležitým

rozdílem oproti ostatním systémům je, že naše implementace je od začátku psána

v prostředí platformy .NET Framework, který zaručuje dobrý komfort pro koncového

programátora a přesto výkon celého systému je díky využití všech zdrojů srovnatelný

s nativně kompilovaným prostředím.

Klíčová slova: zpracování obrazu, segmentace, objemové zobrazování, vrhání paprsku,

cg, .NET, C#

 10

Title: GPU-accelerated processing of medical data

Author: Jakub Hlaváček

Department: Department of Software and Computer Science Education

Supervisor: Mgr. Lukáš Maršálek

Supervisor’s e-mail address: Lukas.Marsalek@mff.cuni.cz

Abstract:

The aim of this thesis is to design and experimentally implement a complex

framework dealing with accelerating and simplifying the development of systems for

processing and visualization of medical volume data in C#. Currently, there are

application interfaces and their implementations for both, techniques based on image

processing, like filtering, registration, segmentation and classification, and also for

techniques based on 3D image visualization. But there is no consistent framework for

both tasks, which would take advantage of features of modern graphics processing units

and multi-core processing units along with features of .NET Framework and of

language C#.

The thesis presents overview of current free and open source software, design of

application interface, and implementation of main API features. One of important

differences to other software is that the implementation has been developed natively in

the managed environment of .NET Framework, offering a good level of comfort for an

end application programmer, but system performance is comparable with natively

compiled environments thanks to utilization of all resources.

Keywords: image processing, segmentation, volume visualization, ray casting, cg,

.NET, C#

Chapter 1: Introduction

 11

Chapter 1

1 Introduction

With computer hardware development, interactive visualization of the 3D data

sets is more and more available in the last few years. These 3D data sets bring more

possibilities and advantages to users from medical environment.

Computer tomography and magnetic resonance are common techniques applied

in today medicine, producing 3D data. This thesis aims to simplify development of

programs that deal with loading, processing and visualization of this type of data.

Difficulties with development of software with such a pipeline are mainly

connected with the necessity of knowledge from both disciplines - image processing

and data visualization - and with design of data structures, which must be efficient in

algorithms from both tasks.

Basic review of computer science branches related to the main topic is presented

in the next chapters.

1.1 Medical Data Image Processing

Digital image processing is a discipline where various algorithms are used to

modify digital image data in a computer. A typical image processing cycle consists of

the following steps:

 Digitization (acquisition of data)

 Preprocessing (image enhancement, image restoration)

 Classification (pattern recognition, segmentation)

 Encoding and compression

In our case the digitization is performed by CT
1
, MRI

2
, PET

3
, SPECT

4
 and

others techniques, which produce 3D data sets ([1], [2]). A typical output of 3D

1 Computer tomography
2 Magnetic resonance imaging
3 Positron emission tomography
4 Single photon emission computed tomography

Chapter 1: Introduction

 12

digitization process in medicine is a set of 2D slices, which are stored in the DICOM

format (described in chapter 1.5). Next, we will assume, that we have a 3D matrix of

values from the regular rectangular grid. This matrix is called a “volume” and each

single value in the volume is called a “voxel” (from volume element, Figure 1). Each

voxel can be addressed by an index (i, j, k). Number of voxels in the volume in each

direction is called dimensions (dimx, dimy, dimz). Dimensions of voxel are named voxx,

voxy, and voxz. A set of voxels, where one coordinate is constant, is called slice.

Real value of each voxel depends on the process of acquisition in a single

scanner, but we will consider it as discretization of original continuous image function.

Figure 1: Volume and voxels relation

Preprocessing is a phase, which deals with correction of the image. Most

important algorithms resolve tasks on modification of contrast and brightness,

suppression of noise and edge detection. There is a range of algorithms applying a

similar procedure. It consists of a loop through all output voxels, setting a new value for

each of them from a small neighborhood of voxels from the input volume.

Another part of preprocessing is registration. Its goal is to find corresponding

parts of two images and find transformation from one to the other. It can be widely used

in medicine, when a patient is scanned in several time intervals and these scans must be

compared for changes, or when there are several scans with different modalities.

Classification is the next task of image processing and its goal is to recognize

certain parts of image, for example to divide the volume of the body into organs. This

provides the possibility to overlook only these parts, which we are interested in, and

don’t be bothered by surroundings. The classification can be also used for measuring

the organ’s size and capacity, which is one of the possibilities, how to predict some

diseases.

Image processing concerns mainly with 2D images, but most of algorithms can

be generalized into the third dimension, or they can be applied to parallel 2D slices

separately without spatial information (stored in third dimension).

x

y
z

dimx

dimz

dimy

voxx

voxz

voxy

Chapter 1: Introduction

 13

Due to time efficiency concerns, the above mentioned algorithms use data,

which are not compressed and thus they occupy unnecessary space in the memory. For

long-time storage of data there is the encoding and compression task.

Book [3] from Gonzalez and Woods is recommended for further reading about

image processing.

1.2 Volume Rendering

Volume rendering is a technique used to display a 2D projection of a 3D

sampled data set. For all techniques we need the following entities:

 Data set. It is usually stored in regular grid.

 Projection matrix. It defines way of transforming a point in 3D space to 2D screen.

 Model-view matrix. It is generally called a “camera” and defines position and the

viewing direction of the observer relatively to volume.

There are two main approaches how to display the volumes: surface fitting and

direct volume rendering.

Surface fitting is based on transformation of the volume representation with

regular grid to representation with a set of polygons. We will focus on direct volume

rendering in this thesis, for more information about surface fitting see [4] and [5].

1.2.1 Direct Volume Rendering

Direct volume rendering (DVR) is more dependent on processor speed than

surface fitting, but there are more possibilities of rendering and generally more accurate

images can be generated.

DVR methods require every sampled value to be mapped to the opacity and the

color, which is done with a “transfer function”. Resulting sample color is then applied

to the corresponding pixel of the frame buffer. This general process is the same for all

rendering techniques described later.

Splatting [6] is a technique, where every voxel is splatted on the projection

plane in back to front order. These splats are rendered with various profiles depending

on the volume density and the transfer function.

Shear warp factorization [7] is a technique, where the viewing transformation

is transformed in such a way that the faces of the volume become axis aligned with

image plane and the voxels to pixels scale is fixed. Once all slices have been rendered,

the buffer is warped into the desired orientation.

Texture mapping [8] approach is based on blending of textured slices. Volume

is stored on the GPU in three sets of 2D textures (one set for each axis) and instead of

stepping through voxels or rays, these textures are rendered using alpha blending.

Second possibility is to store volume in one 3D texture and then render textured

polygons using alpha blending. These polygons are defined as intersection of volume

boundaries and planes parallel with projection plane.

Chapter 1: Introduction

 14

Volume ray casting is a basic technique for volume visualization. We will

describe this technique in more detail, because it is base for this work.

1.2.2 Volume Ray Casting

Figure 2: Rays are casted through each pixel of the projection plane

The idea is same as in the common ray casting. For each desired image pixel a

ray (defined by origin and direction, Figure 2) is generated. The ray is clipped by the

boundaries of the volume. Then the ray is sampled at regular intervals throughout the

volume. The data are interpolated for each sample point from eight surrounding voxels

values by trilinear interpolation (Figure 3). Than the transfer function is applied to form

an RGBA
5
 of the sample, which is composed onto the accumulated color of the ray, and

the process is repeated until the ray exits the volume. The process is executed for every

pixel on the screen to form the complete image.

Figure 3: Sampling of points along the ray and linear interpolation (2D)

Composition of sample color depends on the type of the application. Common

techniques are:

 Maximum intensity projection (MIP) – sample with maximum value on the ray is

taken as a result.

 Isosurface ray casting [9] – it is a form of thresholding, where points with a specific

value are displayed. Surface color is usually defined explicitly.

5 three color channels (red, green and blue) and one opacity channel

volume

screen camera

Chapter 1: Introduction

 15

 Compositing – final pixel color is determined from the mix of all sample colors and

opacities encountered on the ray.

Isosurface ray casting is similar to the surface fitting, but data are not

transformed to polygonal structure. User input to this method is a threshold value,

which defines desired isosurface
6
 in the volume. Because we step along the ray from

start to end, we know exactly, between which two samples (Figure 4, green dots)

intersection of the ray with surface is. Several possibilities are at this point. If the step

size is enough small, we can simply chose nearest neighbor sample by intensity (red

line). More accurate methods can interpolate the depth of surface from samples’

intensities, or also iterative method can be used (blue lines). If the isosurface is not

transparent, the computation of actual ray is finished. Otherwise, the loop can continue

in computations along the ray and try to find another surface on the rest of the ray.

Once the intersection point is known, the isosurface color is assigned and

optionally one of shading models can be used for further image improvement. The most

popular model is Phong’s illumination [33].

Figure 4: Isosurface ray casting

Color transfer function is a fundamental point of the compositing technique.

There are typically many tissues in the medical image data, where each tissue has

assigned its own interval of densities. The transfer function is an ideal way, how to

simply separate these intervals during visualization (essentially, it’s a form of

classification of the data set, Figure 5).

 The color transfer function defines mapping of voxel’s value to the color.

Usually, it is a function stored in a form of the look-up table, i.e. a 2D table, where

along x-axis there are all possible values of densities and along y-axis RGBA values are

assigned.

6 Isosurface is surface, which represents points of constant value (e.g. density) within a volume.

Intensity

Distance

Iso value

Step size

 Nearest neighbor

Iterative method

 1 3 2

Sample intensity

Exact intersection

Nearest neighbor

Iterative method

Chapter 1: Introduction

 16

Figure 5: Simple classification with transfer function

To complete the idea of transfer functions, there is also possibility to map multi-

component data on RGBA values with transfer functions, where one dimension must be

added to transfer function table with each component stored in the data. This is useful,

when e.g. volume contains more organs and the id of the organ is stored in the second

component of the volume.

Compositing technique (emission-absorption case) idea can be derived from

mathematical description of situation, when viewer looks into the volume along the ray

and each point emits some intensity toward a viewer and all points on the way absorbs

some of that intensity. Numerical approximation of that situation can be implemented in

software using following formula for each step along the ray. The derivation is in [34].

Where

 is destination color

 is sample color

 is destination opacity

 is sample opacity

Main disadvantage of ray casting is its time consumption. Fortunately, in last

few years the graphics hardware allows to implement the ray casting on a common

consumer GPU
7
, so nowadays it is possible to view images from ray casting in accurate

quality in real-time [11]. On the other hand, ray casting has advantages against other

methods. One of them is that transfer function can be edited in real-time. Other is that

isosurfaces can be computed together with compositing technique.

7 Graphics processing unit

 Opacity bone

 1.0

 skin

 0.2

 0 800 4096 Density

(1)

Chapter 1: Introduction

 17

1.3 Shader-accelerated Visualization

This chapter describes some basic facts about OpenGL
8
 [12] and its features

applied in our implementation. It is a software interface for graphics hardware

specialized for developing applications that produce 2D and 3D graphics. OpenGL was

started by Silicon Graphics Inc. (SGI) in 1992 and today it is considered as a

fundamental interface for computer graphics.

Diagram 1: A block diagram of programmable graphics pipeline

Diagram 1 shows main parts of the OpenGL. On the left two types of commands

enter, some specify geometric primitives (like points, lines and polygons) to be drawn

and other operations specify how the objects are handled at various stages.

Shaders are available for programming the GPU since OpenGL version 1.5.

Shaders are small programs that are written in specialized languages (similar to C

language), allowing modification of standard computation from the fixed-function

pipeline (FFP). There are three types of them.

 Vertex shader replaces per-vertex operations from the FFP. In this program color,

position and texture coordinates of each vertex can be modified.

 Geometry shader is a new type of shader that is placed immediately after the vertex

shader. The difference from the vertex shader is that new graphics primitives can be

generated, such as points, lines and triangles. Geometry shader is supported only in

newest OpenGL extensions.

 Fragment shader replaces per-fragment operations from FFP, computing resulting

color and possibly depth for each fragment of target image.

The advantage of GPU against CPU lies in parallelisms. Modern GPUs are

SIMD
9
 processors, having a number of programmable parts and thus are faster for

8 Open Graphics Library
9 Single instruction, multiple data

Evaluator Vertex

Shader

Rasteriz-

ation

Fragment

Shader

Framebuffer

Texture

Memory

Pixel

Transfer

Geometry

Shader

Chapter 1: Introduction

 18

algorithms, where same instructions are used for multiple input data. This is typical for

algorithms done in both per-vertex operations and per-fragment operations.

Overview of NVIDIA and AMD/ATI graphics cards support for shader model

3.0 and 4.0 is shown in Table 1. The fragment shader model 3.0 is the first fragment

shader, where loops can be used in source code of program.

Shader technology opens a number of possibilities for GPU utilization in other

tasks than graphics. For example there are implementations of Fast Fourier Transform,

digital signal processing, neural networks, database operations and many others

applications on GPU. Collectively these algorithms are called GPGPU
10

 [13].

Shader

Model
OpenGL Extension Cg profile

DirectX

version

NVIDIA

GeForce Series

ATI Radeon

Series

3.0
NV_vertex_program3 Vp40

9.0c 6 R520
NV_fragment_program2 Fp40

4.0

NV_gpu_program4 +

NV_vertex_program4
gp4vp

10.0 8 R600
NV_gpu_program4 +

NV_geometry_program4
gp4gp

NV_gpu_program4 +
NV_fragment_program4

gp4fp

Table 1: OpenGL extensions and DirectX versions on current GPUs

1.4 .NET

Microsoft .NET Framework 2.0 [27] is a software component that is a part of

Microsoft Windows operating systems. The .NET Framework includes a broad set of

supporting class libraries for common programming problems like user interface,

database access, web application, network communication, and others. Programs written

for the .NET Framework are executed in a software environment (CLR
11

) that manages

the program’s requirements. The CLR provides services such as security, memory

management, and exceptions handling.

The result of compilation of program’s source code is MSIL
12

. When executing,

the code is not interpreted, but compiled (in meaning of JIT
13

) into native code. The

advantage of this concept is that there can be various languages and corresponding

compilers only to the MSIL. On the other hand, there is little delay before a program is

executed. Most widely known programming languages are C# and Visual Basic .NET.

10 General-purpose computing on graphics processing units
11 Common language runtime
12 Microsoft intermediate language
13 Just-in-time compilation

Chapter 1: Introduction

 19

Diagram 2: Parts of .NET Framework 2.0

CLR frees the developer from the memory management (allocating and freeing

of memory). This feature is based on reference counting and garbage collection. Each

object stores a number of references on it. GC
14

 then periodically (but not

deterministically) checks these objects, whether the reference number is zero. If so, GC

releases the used memory.

Both MSIL compiler and memory management are parts of CLR. An overview

is shown in Diagram 2.

1.4.1 C#

C# [28] is a modern and high level programming language with many

similarities to Java. Syntax of C# comes from C++ language. There are many common

programming features supported, like object-oriented programming, templates and

collections, delegates, partial classes, preprocessor macros, XML documentation

system, and many others.

The language specification was approved as a standard by ECMA
15

 and ISO
16

,

so that there can be other implementations than that from Microsoft. One of them is an

open source project Mono [15], which now implements about 95% of .NET Framework

2.0 specification.

1.5 Format for Storing Medical Data

Digital Imaging and Communications in Medicine (DICOM) is a standard [14]

developed by the American College of Radiology (ACR) and National Electrical

Manufacturers Association (NEMA). Its main parts are file format definition and a

network communications protocol.

The off-line media files correspond to part 10 of the DICOM standard. A single

file contains both the header, as well as the image data. The header contains text

information about the patient’s name, dimensions of image, etc. The size of the header

depends on how much information is stored.

14 Garbage collector
15 Ecma International, an international private standard organization
16 International Organization for Standardization

Common Language Runtime (CLR)

Base Class Library

WinForms ASP.NET ADO.NET

.N
E

T

F
ra

m
ew

o
rk

 2
.0

Chapter 1: Introduction

 20

Tag Description Example value

(0018,0050) Slice Thickness [5]

(0028,0010) Rows [512]

(0028,0011) Columns [512]

(0028,0030) Pixel Spacing [0.34765625\0.34765625]

(0028,0100) Bits Allocated [16]

(0028,0101) Bits Stored [12]

(0028,0102) High Bit [11]
Table 2: Most important elements stored in DICOM file header

Three-dimensional data sets can be stored in a single file image data or in

multiple files, where each slice is stored in one file. A media directory file, the

DICOMDIR file, must be present, providing index and summary information for all the

DICOM files on the media. No information is allowed to be stored in a filename.

Many other rules are described in the specification, but the last we want to

mention is that each file has a unique identifier, so that the software that wants to create

DICOM files must be registered and must have a set of these identifiers assigned.

1.6 Goals of the Thesis

The following goals were defined at the beginning of the project. Each point

represents one feature of the desired framework.

(g1) Compactness

Framework can read, process, and display volume data without unnecessary

transformations between different representations of data, which could lead to both the

system memory and the system speed performance losses.

(g2) Data abstraction

Volume data handlers should be independent of types stored in each voxel. We

need the possibility to store different types of data in volume, but the processing and

visualization tasks should be independent on the incoming data types.

(g3) Data processing

The goal of framework is not to define all possible image processing algorithms,

but to provide a good interface for writing algorithms by “user programmer”

(programmer, who uses our framework) aimed on volume data sets. This includes the

possibility of parallel computing without any programmer’s effort.

(g4) Data visualization

Framework should be capable of visualization of data in common ways from

medical environment. That is direct volume rendering, isosurface rendering, definition

of final color through color transfer function, displaying of output from segmented data.

Chapter 1: Introduction

 21

(g5) Interactivity

We want the frame rate of the visualization to be as high as possible. Ideal is 20

frames per second or higher. Frame rate is important when end user moves or interacts

with observed data. If user interface does not response in 50ms, it is very annoying for

him.

(g6) Minimize time between starting the segmentation and displaying some results

When some complicated segmentation algorithm takes place in the processing

pipeline, it is useful, when the end user can see temporary results before the algorithm

finishes its activity. It is important in cases when user repeats his input, because he can

stop the processing if the result is not what he expected. This should be performed by

parallelization of tasks from the pipeline.

(g7) Written in C#

C# is a modern and simple object oriented programming language with good

support for writing user interfaces. The framework should be natively written in it.

(g8) Visualization on GPU

Visualization should be accelerated on Graphics Processing Unit, which in

addition frees CPU for other computations.

1.7 Structure of this Document

Chapter one introduces basic knowledge from the science branches related to

this topic and lists the required features of our framework. Chapter two is about current

software and their comparison. Design of application interface, problems and features

are described in chapter three. Problems and specific implementation issues are

described in the fourth chapter. Chapter five is devoted to the comparison between our

new framework and Visualization Toolkit, leading free software in 3D computer

graphics. The last chapter presents a summary of the work and evaluation of the targets.

Suggestions for future work are also mentioned there.

Chapter 2: Currently Available Software

 22

Chapter 2

2 Currently Available Software

In this chapter we want to mention some of the existing software related to

image processing or 3D visualization. It is a summary overview of the systems, their

history, targets and their common usage.

2.1 ITK

The Insight Segmentation and Registration Toolkit (ITK, [16]), an open source

image segmentation and registration software library, was developed for analyzing the

images of The Visible Human Project
17

. The ITK development was funded from the

National Library of Medicine (U.S.) and one of the remarkable contributors was

Kitware Inc. [17].

The ITK does not solve visualization or graphical user interface, which is left to

other toolkits, such as VTK. Similarly, this toolkit provides minimal functionality for

file interface.

The toolkit provides important segmentation and registration algorithms in two,

three, and more dimensions. There is also support for multi-threaded parallel

processing.

The ITK is based on data-flow architecture. That means, that there are data

objects, which are processed by process objects (filters) and they both are connected

together into the pipeline.

This framework is natively written in C++. To get ITK to work with a managed

.NET application there are three options. First approach is PInvoke
18

, i.e. build a project

as an unmanaged library, that uses the ITK toolkit, and in .NET application use PInvoke

for entry points to library. Second approach is to write managed class wrappers around

ITK classes which take care of converting data between managed and unmanaged code.

17 http://www.nlm.nih.gov/research/visible/
18 Platform Invocation Services

Chapter 2: Currently Available Software

 23

The third approach is to write ITK part as a COM
19

 component and expose interfaces to

be used in a .NET application.

The ITK covers two of our goals, data abstraction (g2) and data processing (g3).

2.2 VTK

The Visualization Toolkit (VTK, [18]) is an open source software system for 3D

computer graphics, image processing, and visualization used by thousands of

researchers and developers around the world.

VTK was initially created in 1993 as companion software to the book "The

Visualization Toolkit: An Object-Oriented Approach to 3D Graphics" published by

Prentice-Hall. This book was written by three people (W. Schroeder, K. Martin, and B.

Lorensen) who later founded Kitware Inc. [17]. Kitware now provides professional

support and products for VTK.

The conceptual overview of the VTK pipeline (similar to ITK pipeline) is shown

in Diagram 3. Data are read in the source module and then filtered by one or more

filters. A mapper is then used to create a visual representation that can be interacted

with and transformed by the actor.

Diagram 3: The schematic of VTK pipeline

Also other system and development processes are the same as in ITK. Namely:

 Source code is heavily templated.

 The toolkit is cross-platform.

 There are wrappers to interpreted languages (Tcl, Python, and Java)

 For building of a project CMake (Cross-Platform Make, also developed by Kitware)

is used.

 The toolkit uses its own system of reference counting and garbage collecting (called

smart pointers).

There is now available fourth edition of the mentioned book [19] for further

reading.

VTK can be used through wrappers [29] in .NET Framework, or possibilities

mentioned in last paragraph from the ITK chapter can be used.

19 Component Object Model

Source Filter Mapper Actor

.Render()
Direction of Update() method

Direction of the data flow

Chapter 2: Currently Available Software

 24

This framework covers these of our goals: data abstraction (g2), data processing

(g3), data visualization (g4), and partially interactivity (g5) and visualization on GPU

(g8).

2.3 VTK and ITK Extensions

2.3.1 MITK

The Medical Imaging Interaction Toolkit (MITK
20

) is a C++ library for the

development of medical imaging applications. It is an extension to ITK and VTK, so all

functionalities are available in MITK. MITK adds support for synchronized multi-

viewer layouts and allows construction and modification of data objects. MITK can be

added to existing applications and allows the construction of applications with

specialized task without unnecessary other features.

Goals covered by MITK are data abstraction (g2), data processing (g3), data

visualization (g4), and partially interactivity (g5) and visualization on GPU (g8).

2.3.2 KWWidgets

KWWidgets
21

 is graphical user interface (GUI) toolkit, which provides common

low-level widgets like buttons, textboxes, menus, and so on. On top of these it provides

set of widgets for visualization libraries like VTK. For example there is surface material

editor, transfer function editor, etc.

This framework covers these of our goals: data abstraction (g2), data processing

(g3), data visualization (g4), and partially interactivity (g5) and visualization on GPU

(g8).

2.4 Volumizer

OpenGL Volumizer
22

 [20] is the commercially available, cross platform, high-

level volume rendering application programming interface (API) for the energy,

manufacturing, medical, and sciences markets. It is a graphics API designed for

interactive visualization of large volumetric data sets.

The Volumizer covers four goals, data abstraction (g2), data visualization (g4),

interactivity (g5), and visualization on GPU (g8).

20 http://www.mitk.org/
21 http://www.kwwidgets.org
22 http://www.sgi.com/products/software/volumizer

Chapter 2: Currently Available Software

 25

2.5 VGL

VGL
23

 is a commercial graphics library aimed at volume rendering. It supports

multiple volumes rendering through the software ray-tracing. The hardware rendering

techniques used in VGL are 2D and 3D texture based volume rendering.

Goals covered by VGL are data abstraction (g2), data visualization (g4), and

partially interactivity (g5) and visualization on GPU (g8).

2.6 Medical Imaging Programs

VolView
24

 is a graphical interface for volume rendering and data visualization.

VolView was developed by Kitware and designed to enable easy exploration of

volumetric data. No programming skills are required to use VolView, but there is a

possibility to extend the framework through plug-in interface. Currently some of ITK

and VTK filters in VolView are supported.

ParaView
25

 is application built on top of VTK and ITK libraries. ParaView adds

features, such as visualization using parallel processing and large data handling.

3D Slicer
26

 is third application from Kitware and it is intended for interactive

visualization of images, manual editing, and automatic segmentation. It was developed

with KWWidgets, TCL, VTK, and ITK.

MeVisLab
27

 is graphical interface that uses visual dataflow programming to

create custom applications and visualization tools. MeVisLab support 2D/3D

visualization with Open Inventor, OpenGL fragment shader, or VTK.

SCIRun
28

 is program for wide variety of applications including image

processing and 3D volume rendering. Its advantages are ITK and MATLAB

integrations.

2.7 Summary

Name
Develop.

language
License Purpose Origin

Develop.

by

ITK C++ open source
Registration and

segmentation
1999 Kitware

VTK C++ open source Visualization 1993 Kitware

Volumizer C++ commercial
Visualization of

large data sets
2002 SGI

VGL C++ commercial
Visualization of

large data sets
1997

Volume

Graphics

23 http://www.volumegraphics.com
24 http://www.volview.org/
25 http://www.paraview.org/
26 http://www.slicer.org/
27 http://www.mevislab.de/
28 http://www.software.sci.utah.edu/scirun.html

Chapter 2: Currently Available Software

 26

Name
Develop.

language
License Purpose Origin

Develop.

by

MITK C++ open source
ITK and VTK

extension
2004 Kitware

Table 3: Overview of existing frameworks

There are many
29

 frameworks oriented on 3D data set processing and

visualization. Most important of them are listed in Table 3.

The most usable framework according to our goals is one of those that provide

interoperability with ITK and VTK classes. Their disadvantage is in necessity of

learning three frameworks altogether.

Major part of frameworks was developed for many years and contains many

classes and processes. This fact obviously extend the time of learning and developing of

application. On the other hand it is better to use any of presented frameworks than

develop a project from the scratch.

For further comparison see e.g. [21] and [22].

Figure 6: Screenshots of some visualization programs. MITK (top left), VGStudio (top

middle) VolView (top right), ParaView (bottom left), 3D Slicer (bottom middle), MeVisLab

(bottom right)

29 http://www.virtual-anthropology.com/support/software/

Chapter 3: Design of Application Interface

 27

Chapter 3

3 Design of Application Interface

In this chapter we will describe design of application interface (API). Within that

the problems and required features from chapter 1.6 Goals of th are included.

Source code of interface is a part of project VL (stands for Volume Library) on

the CD as a separate namespace VL.Api. Only interfaces, abstract classes,

and enums are defined in this namespace. General design features of VL.Api (except

those mentioned in chapter 1.6) are following:

 Independence on Windows Forms. All features making use of WinForms is left on

implementation. Note that our implementation is using WinForms, but generally, the

choice of user interface (UI) is left on other possible implementations of VL.Api.

 Like state machine. The behavior of VL.Api for programmer is based on the state

machine that controls building or modification of required pipeline and its execution.

Note that VL Reference Manual is available on the attached CD and feel free to

look there for exact features and behavior of each class and interface.

3.1 Pipeline

Diagram 4: Data flow diagram

Files

Voxels

Pixels

Algorithm

Renderer

Volume

Factory

Chapter 3: Design of Application Interface

 28

Diagram 4 shows general data flow diagram of the VL application. The diagram

shows reading of the 3D data sets from the hard disk drive through the use of

VolumeFactory. Next data can be processed by Algorithm or directly send to Renderer.

Renderer then visualizes the data into the application window.

The module connection in VL application is performed through the use of data

structure IVolume. This adjustment is shown on Diagram 5 with a simplified example

of code.

Diagram 5: Creation of processing pipeline through the use of IVolume data structure

Next we will analyze this situation in detail.

Diagram 6: Block diagram of general VL pipeline

Diagram 6 shows a schematic structure of data processing pipeline in VL. A

typical data cycle in medical program, which makes use of VL, starts by loading

volume data stored on a hard disk drive in the DICOM format. That functionality

provides interface IVolumeFactory, which creates instances of classes

derived from interface IVolume (chapter 3.2). For data modifications abstract

class AlgorithmBase is available (chapter 3.3). After the defined algorithms have

IVolumeFactory

- CreateEmptyVolume

- CreateFromDicom

- GetVolume

IVolume

- Get

- Set

- AssignName

AlgorithmBase

- ExecuteOnVoxels

- ExecuteOnLayers

- ExecuteOnVolum

IRenderer

- GenerateDimensions

- SetVolume

- SetMask

ITransferFunction

- Pos

- Dim

ICamera

- Matrix

Picking

Algorithm

Renderer Volume

Factory
Volume Factory f; Algorithm a;

Renderer r;

Volume v1 = f.Load();

Volume v2 = a.Process(v1);

r.Render(v2);

Chapter 3: Design of Application Interface

 29

processed the data, they are sent to visualization part. Interfaces for common

visualization techniques are defined in “renderers” (IRenderer, IRenderer2D,

IRenderer3D, IRendererIso, IRendererDVR, ITransferFunction and

ICamera) – chapter 3.4. There is also an interface for selecting points in displayed

data (IPicking).

Note that the described pipeline is a general structure and the exact form of

pipeline is defined in each program. For example, in some cases no “algorithms” are

needed and only visualization functionality is used.

As mentioned earlier, one of our goals (g6) is to minimize time elapsed from

execution of pipeline. This is one of the reasons for existence of interface

IThreaded, which contains prototypes of methods for controlling parallel run of

calculations. This interface is used in IVolume (because of possibility of loading

volume data in another thread) and in AlgorithmBase (where executed algorithm

can also run in background thread). IThreaded is not used in IRenderer, because

rendering must be usually done in main thread of the application.

3.2 Data Representation

Diagram 7: Most important methods and properties of interfaces IVolume and

IVolumeParams

In this chapter we will describe two interfaces: IVolume and

IVolumeParams. They are designed to store the data in 3D matrix and to provide

efficient access to that data.

There were several issues, which had to be resolved. The first was checking of

access outside the volume, alias boundary problem, which is relevant when there are

many checks while passing through the whole volume by the algorithm. This problem

will be described in the next chapter 3.3.

Second problem is the selection of supported data types for representation of

each voxel. We decided to support the following types:

 byte

 ushort

 uint

 float

IVolume : IThreaded

- Get, Set

- GetLocal, SetLocal

- GetFast

- HighestReadableLayer

- Histogram

- Params

IVolumeParams

- Dim, VoxDim, Pos

- DataType, Bpp

- Overflow

Chapter 3: Design of Application Interface

 30

The reason for this is that these data types need not be converted before

transmitting them to GPU. That is not true for other data types, which we considered

originally – bool, ulong and double.

The third and quite complex problem is data abstraction (g2). What we want is

the possibility to store different types of data in a volume, but the processing and

visualization tasks should be independent on the incoming data types. Problems with

visualization were described in previous paragraph. In processing task we solve this by

putting a generics parameter to the deepest point inside interface IVolume, i.e. to

read and write methods:

TYPE Get<TYPE>(int x, int y, int z);

void Set<TYPE>(int x, int y, int z, TYPE value);

Code snippet 1: Methods for accessing voxels

Disadvantage of this approach is that it requires to cast field with stored data in

these methods, but the code of processing methods defined by user is simpler, then if

the generics parameter was on the whole interface IVolume, where the casting has to

be performed by programmer (if he wants to use some numeric operations).

The last problem, which we want to mention, is dividing volume data into pieces

in order to allow computation of multiple parallel algorithms (or loaders and renderers).

The idea is that when some piece is e.g. loaded, it can be send to e.g. visualization. This

cycle is than repeated until the whole volume is visualized. The major part of the image

processing algorithms operate sequentially, so we decided for simple solution of this

problem. We record number of layer, for which is true, that all other layers with smaller

number are fully filled. This property is stored in

IVolume.HighestReadableLayer. Figure 7 shows utilization of this property.

Figure 7: Parallel run of pipeline modules

VolumeFactory Algorithm Renderer
Out In

Vol_1

Out In

 Vol_2

Chapter 3: Design of Application Interface

 31

3.3 Algorithms

Diagram 8: Set of classes connected with algorithms

This chapter clarifies the functions of algorithms. Classes connected with this

topic are AlgorithmBase, AlgorithmParams and DataAccess.

Concept of algorithm is not to define all possible image processing algorithms,

but to provide a good interface for writing algorithms (g3). Our solution of that is based

on an assumption that most of the algorithms run sequentially through 3D data “voxel

by voxel”, make some calculations on matching voxels of input volumes and write

result to output volume. So, everything, what a user must do in VL.Api, is to write

method for one voxel and then only call algorithm for the execution of that method.

Running through the voxels is left to the framework, which makes optimizations

possible. Delegate definition and corresponding method is shown in the Diagram 8.

Previous paragraph is concerned with a case, when the user algorithm can be

divided to independent executions for each output voxel. For other cases there is a

method for stepping through the layers, when algorithm must operate on the whole

layer. For this case the layer orientation can be specified, but it must be noted that when

other than x-y layer is required, the processing pipeline evaluation is paused. Also this

case allows parallelization. The last case of run is through the entire volume, but there

no optimizations can be done, so it is good to consider carefully, which method should

be used.

AlgorithmBase : IThreaded

- delegate FVoxel

- delegate FLayer

- delegate FVolume

- ExecuteOnVoxels

- ExecuteOnLayers

- ExecuteOnVolumes

AlgorithmParams

- MaxLayerAccess

DataAccess

- volumeParams

- Get

- GetLocal

delegate TYPE FVoxel<TYPE>(

int x, int y, int z,

DataAccess[] inputData

);

void ExecuteOnVoxels<TYPE>(

FVoxel<TYPE> f,

IVolume outputVolume,

AlgorithmParams p,

params IVolume[] input

);

Chapter 3: Design of Application Interface

 32

3.3.1 Algorithm Optimizations

There are two main approaches how to accelerate the algorithm execution.

The first approach is based on brute force, i.e. on utilization of more processors

for parallel run of multiple threads. From the previous chapter 3.3 it is obvious, that

there is no problem to schedule an execution of the algorithm on as many threads as

there are voxels in the volume (for case of ExecuteOnVoxels), or as many threads

as there are layers (for case of ExecuteOnLayers). It is clear, that

ExecuteOnVolume cannot be automatically parallelized.

Originally we have considered to implement the parallelization on GPU, but that

would result in writing the segmentations algorithm in two versions (in two languages),

as currently no automatic conversion (from C# to any of languages used on GPU)

exists.

The second approach is to make use of two types of Get methods from

IVolume.

TYPE Get<TYPE>(int x, int y, int z);

TYPE GetFast<TYPE>(int x, int y, int z);

Code snippet 2: Methods for accessing voxel from algorithms

The difference in those two functions is that the first checks a possibility of

accessing outside the data bounds (and in a case that someone is attempting to read

outside volume it returns value dependent on set up of field overflow in

IVolumeParams), while the second function immediately accesses the data without

any overflow checks.

This optimization is possible to implement due to the parameter

MaxLayerAccess from the AlgorithmParams class. When MaxLayerAccess

added to the voxel’s coordinates is always inside the volume, the method GetFast is

hold up on method DataAccess.Get, which can then be securely called by the user

algorithm. Otherwise the method Get is hold up on method DataAccess.Get.

Chapter 3: Design of Application Interface

 33

3.4 Visualization

Diagram 9: Interfaces that are connected with visualization

There are several interfaces available for visualization in the API. They are

designed to be able to offer implementation in one class, so that implementation

programmer can decide which interfaces will be supported by which renderer. Interface

IRenderer should be implemented in all renderers.

Interfaces shown on Diagram 9 ensure the goal (g4):

 Direct volume rendering – IRendererDVR.

 Isosurface rendering – IRendererIso.

 Color transfer functions – IRenderer and ITransferFunction1D.

 Masks – IRenderer and ITransferFunctionsMultiD

 Multidimensional color transfer function - ITransferFunctionsMultiD

The goal (g5) Interactivity is also related to visualization, but we left this goal on

implementation.

In our concept of masks and transfer functions there is a rule, that all volumes

(main volumes and mask volumes) store one component data and translation to final

color (which is obviously multi component value) is left to transfer function. If we want

to visualize two component data, it is necessary to store the first component in the main

volume and the second component in the mask. Then we must define two-dimensional

transfer function, where the first dimension corresponds to values from the main volume

IRenderer

- GenerateDimensions

- SetVolume

- SetMask

- StartRender

- StopRender

- AddTransferFunction

IRenderer2D

- SetSlice

IRenderer3D

- AssignCamera

IPicking

- PickingEvent

IRendererIso

- GenIsoSurface

- SetIsoSurface

- IsIsoEnabled

IClipPlane

- GenerateClipPlane

- SetClipPlane

IRendererDVR

- IsDVREnabled

ICamera

- Matrix

ITransferFunction

- Pos, Dim

- SetLocalizationBlock

- SetSegment

- Lut

ITransferFunction1D

 : ITransferFunction

ITransferFunctionMultiD

 : ITransferFunction

Chapter 3: Design of Application Interface

 34

and the second dimension corresponds to values from the mask volume. Each

dimension will increase one mask volume and one dimension in the transfer function.

Figure 8: The 2D transfer function

Figure 8 shows the whole situation. There are two volumes, main and a mask.

Densities from both volumes are needed for calculation of resulting color of actual

voxel. These densities (862, 5) are taken as an index to the two-dimensional color

transfer function look-up table.

Figure 8 also shows the reason, why the components are divided between two

volumes (instead of using one volume with two components stored in one voxel).

Common case of image processing in medicine is that there are detailed data from

CT/MRI scanner and the task is to show some segmented organ. The programmer

develops a segmentation algorithm, which outputs only a mask with smaller data type,

where information about organ is stored. Thus the mask is smaller and of the smaller

data type, thus memory usage is optimized.

Previous paragraph implies the necessity of moving the mask volume against the

main volume. All volumes have their position, so it is possible to move them along the

entire space. The position must be taken into account when reading input components

for multidimensional transfer function from volumes. In a case when more components

are used and there is no value at the particular position (because the mask volume is

moved against the main volume or because the mask volume has smaller dimensions

than the main volume), behavior is defined with field

IVolume.Params.Overflow. There are three possibilities. The first of them is

“clamp to border”. That means that defined value (density) is used. The second is

“clamp to edge”, which means that nearest voxel value is used. And the third is

“repeat”, which means tiling.

Thus there can be more masking volumes and they can be localized. The same is

true for transfer functions. In the application specification a possibility is included to

localize transfer function by definition of position and dimensions of a block, where

0 862 main volume density

5

862

mask

density

 5

mask

main volume

2D transfer function

Chapter 3: Design of Application Interface

 35

transfer function is used. When more transfer functions are defined for one voxel, the

last (meaning the last added) is used. On the other hand, when no function is defined for

some voxel, it must be transparent.

3.5 Goals Overview

Here we want to summarize the goals from chapter 1.6 in relation to the

presented API.

(g1) Compactness is resolved by using one interface IVolume in all parts of the

API, and trivially by the fact, that all three main tasks (loading, processing, and

visualization) are contained within the API.

(g2) Data abstraction: there is support for four data types (byte, ushort, int,

and float) in the API and creating of processing pipeline is independent on the

volume type.

(g3) Data processing: ease of programming of segmentations and filtrations is

designed through the use of delegates on methods. “User programmer” will implement

single method, which will be automatically called. There are three types of runs –

through each voxel, along layers in defined direction, and for whole volume at once.

“User programmer” must decide which type he will use depending on granularity of his

problem. The first two possibilities allow the parallelization without any programmer

effort (“for free”).

(g4) Data visualization: interfaces for 2D rendering and common 3D

visualization techniques are contained in the API. Also the color transfer functions and

multidimensional color transfer functions are supported.

(g5) Interactivity depends mainly on quality of the renderer implementation, so

this goal was not covered by API.

(g6) Temporary results can be handled by IVolume property

HighestReadableLayer and consequent setting of it by loaders and algorithms.

(g7) Written in C# goal is filled trivially.

(g8) Acceleration on GPU is also the goal of the implementation, but the API

facilitates it with allowed data types.

Chapter 4: Implementation

 36

Chapter 4

4 Implementation

This chapter describes certain issues related to our experimental implementation

of the application interface VL.Api.

Apart from this chapter, there are several other sources of information about VL

Implementation:

 VL Programming Guide at the end of this document.

 VL Reference Manual (in Microsoft Help CHM format - .chm) on the attached CD.

 Source code which was developed for introduction and testing of VL features –

project “Example” in solution “VL” or in subdirectory “Example_proj” on the CD.

 And there is also source code available for our VL implementation on the CD.

Source code of VL framework is divided into three namespaces:

 VL: Main namespace with framework implementation.

 VL.Utils: This namespace contains auxiliary classes, mainly for math

computations.

 VL.Api: In this namespace only interfaces, abstract classes, and enums

are defined. For more information see chapter 3 Design of Application Interface.

Overview of main parts of source code is presented in the first section of this

chapter. In following sections are implementation details and decisions made while

developing VL.

Chapter 4: Implementation

 37

4.1 Classes Overview

Diagram 10: Most important classes in our VL implementation

Implementation is placed in two namespaces: VL and VL.Utils. In

VL.Utils there are auxiliary classes intended especially for mathematical operations

with vectors and matrixes.

There are three main groups of classes as shown in Diagram 10. The first group

serves for loading data from hard disk drive and their management in the memory. The

second group represents classes that solve image processing tasks of VL. And the third

group includes classes dealing with visualization.

Other classes shown in the Diagram 10 are auxiliary classes either for comfort of

the “end programmer” (classes with word “Control” in their name) or classes that are

used in the whole project and could not be included in any of the three listed groups

(from those the most important is the class VLGlobal, which contains global settings

of VL library).

Data storing and loading Algorithms Visualization

VolumePtr

VolumeParams

VolumePtr.VolumeFactory

Algorithm

RendererBaseControl

TransferFunction

Camera

MainLoop

GLFunc

Algorithm.DataAccSafe

Algorithm.DataAccFast

RendererBaseTransCont.

Renderer2DSimpleContr.

Renderer3DControl

TransferFunctionContr

ol

 DicomInfoControl

VLGlobal

SystemInfoControl VLException

VLTimer

Utils.Matrix Utils.Vector3

Chapter 4: Implementation

 38

4.1.1 Data Storing and Loading

Diagram 11: Inheritance hierarchy and most important methods and properties of

classes connected with data storing and loading. Dashed lines indicate interfaces from API.

Connection of classes and interfaces from VL.Api is shown in Diagram 11.

There is one feature in the class VolumePtr, which should be highlighted. It is

obvious that the class VolumePtr stores data in the main computer memory, but for

visualization it is necessary to store data also on the graphics card. VolumePtr is

responsible for transfering the data to the VideoRAM for storage and for appropriate

handling.

Class VolumePtr.VolumeFactory is designed for creating empty volumes

and loading volumes from hard disk. In order to simplify work of the “end programmer”

as much as possible, there is UserControl DicomInfoControl, which is responsible

for displaying information stored in DICOM files.

4.1.2 Algorithms

Diagram 12: Inheritance hierarchy of classes connected with Algorithms. Dashed lines

indicate interfaces from API.

The algorithm class task is concerned with execution of user defined functions

on the input volumes. This class must schedule “work” for the right number of threads,

Algorithm

- ExecuteOnVoxels

- ExecuteOnLayers

- ExecuteOnVolumes

DataAccess

Algorithm.DataAccessSafe

- volumeParams

- Get

- GetLocal

AlgorithmBase

Algorithm.DataAccessFast

- volumeParams

- Get

- GetLocal

IVolume

IVolumeParams

IVolumeFactory

VolumePtr

- Get, Set

- GetLocal, SetLocal

- GetFast

- HighestReadableLayer

- Histogram

- Params

VolumeParams

- Dim, VoxDim, Pos

- DataType, Bpp

- Overflow
VolumePtr.VolumeFactory

- CreateEmptyVolume

- CreateFromDicom

- GetVolume

Chapter 4: Implementation

 39

depending on number of processors in the system and on the number of threads already

used by the VL. A secondary task of the class is to apply a right method for accessing

data of input volumes related to user defined functions. It is done by classes

DataAccessSafe and DataAccessFast derived from abstract class

DataAccess from VL.Api. It is shown in the Diagram 12.

4.1.3 Visualization

It should be stressed (as already noted in chapter 3 Design of Application

Interface), that our implementation is using WinForms [23] as a graphical user interface

(GUI). That decision affects only classes connected with rendering, because they are

designed as the UserControl. The main advantage of the UserControl is that

they can be inserted into destination form and the surrounding environment is not

affected, so the developer can personalize appearance of his forms.

Most complicated situation of inheritance lies in visualization group of classes.

Diagram 13: Inheritance diagram of renderers. Dashed lines indicate interfaces from

API.

“Renderers” part of visualization group is shown in the Diagram 13. The results

for the “end programmer” are two classes: Renderer3DControl and

Renderer2DSimpleControl. These two classes cover major part of visualization

API.

There are two interfaces, which were not implemented.

The first was IClipPlane. We have considered it not so important and we

preferred to spend time on other parts of the framework.

The second was IRenderer2D. The role of this interface was replaced by

Renderer2DSimpleControl, which is designed for rendering three 2D axis

aligned slices. Because the task of rendering common slices is not fulfilled, we decided

not to derive this class from IRenderer2D. It should be noted, that the class

RendererBaseControl IRendererDVR

IRenderer3D IRenderer

RendererBaseTransferControl

UserControl

IRendererIso

Renderer3DControl

IPicking

Renderer2DSimpleControl

Chapter 4: Implementation

 40

R2DSimple is optimized for the memory requirements and for the speed of rendering.

If common 2D slices were implemented, one of those two advantages would be lost.

Diagram 14: Inheritance diagram of classes connected with transfer functions. Dashed

lines indicate interfaces from API.

Diagram 14 presents inheritance situation of transfer functions. Before the

rendering pipeline is executed, transfer functions are assigned to renderers in order to

map density values to color.

For user input of the transfer function values there is the UserControl

TransferFunctionControl available, which provides one instance of the class

TransferFunction1D, which can be used directly in any renderer or can be used to

compute another TransferFunctionMultiD.

Diagram 15: Inheritance diagram of other classes connected with visualization. Dashed

lines indicate interfaces from API.

The Diagram 15 shows the rest of the classes, which are connected with the

rendering.

Cameras are classes that define behavior of Renderer3D depending on user input

from input devices like mouse and keyboard. CameraBase is a class, which is best

suitable to derive from if someone wants to have different behavior of Renderer3D than

predefined cameras Camera and CameraRotate. The class Camera is used for

ICamera

CameraBase

Camera

CameraRotate

GLFunc

 GLFunc.Shaders

MainLoop

VLTimer

ITransferFunction

ITransferFunction1D

ITransferFunctionMultiD

TransferFunction

TransferFunction1D

TransferFunctionMultiD

Chapter 4: Implementation

 41

simple rotation around x and y axes and the class CameraRotate appends continuous

turning of the scene around y-axis (this feature is used for measuring the rendering

speed).

GLFunc and GLFunc.Shaders are “singleton” classes with functionality

related to OpenGL. It means: initialization, releasing of resources, handling of OpenGL

errors, loading of textures and managing of ISO and DVR shaders. An important feature

is the rendering context memory sharing, which is necessary when more than one

rendering control visualize the same volume, so that the graphics memory is allocated

only once.

The task of the class MainLoop is to call renderers for redrawing, when an event

arises. That is when new data are loaded or processed and they can be visualized or

when camera has changed the position and the scene must be redrawn. VLTimer is

“singleton” class for computing a one rendering loop time and counting of frames per

second.

4.1.4 Other Auxiliary Classes

Two classes should be mentioned here. The first is VLGlobal, where overall

library settings are maintained, like setting of output and error window, some threading

settings and rendering settings.

To make a list of classes compact, there is the class SystemInfoControl,

which is designed to display information about the System (processor count, CPU

usage, available and used memory, GPU type and OpenGL extensions).

4.2 Rendering

This chapter introduces detailed process of 3D visualization in VL. The process

is implemented in the class Renderer3DControl and shader cg/

raycasting_shader.cg.

We use GPU based ray-casting similar to the method presented by Kruger and

Westermann in [11]. The main core of the algorithm is to send one ray per screen pixel

and trace this ray through the volume. Both techniques, DVR and isosurfaces, are

implemented in one fragment program.

First of all, there is initialization of cg [24] and two framebuffer objects (FBO,

[25]). In order to generate the necessary rays a trick is used with rendering color cubes,

where colors represent coordinates – black means [0,0,0], white means [1,1,1] and so

on. First FBO is filled with back faces of cube (Figure 9 left). Before rendering front

faces (Figure 9 right) of color cube to second FBO our shader is binded. Finally, the

second FBO with ray-casting output is blended to the screen.

In the shader itself, the ray origin (input color to shader, front faces) and ray

direction (corresponding color in back face FBO subtracted by ray origin) is than easily

Chapter 4: Implementation

 42

computed. Final color is computed in a single loop, where the shader steps along the ray

and recomputes actual color with the volume value translated by the transfer function.

Camera rotation is applied once before rendering color cubes, so that projection

matrix and model-view matrix need not be transferred to the shader.

Figure 9: Back faces (left) and front faces (right) of color cube represents coordinates.

The described technique does not support moving camera inside the volume

(cube), so we implemented the box-plane intersection from [26] and in place of

rendering front faces of cube we render front faces of cube intersected with a plane,

which is parallel with the projection plane. The resulting cube is displayed in Figure 10

(left).

Figure 10: The left image shows color cube combined with intersected polygon. The

right image presents a schematic outline of whole color cube.

The way, how the color on each sample is computed when stepping along the

ray is expressed by the following commands:

Where

 is destination color

 is sample color

 is destination opacity

 is sample opacity

(2)

Chapter 4: Implementation

 43

4.2.1 GPU Data Transfer

Both data structures volumes and the transfer function look-up tables are stored

in GPU memory in form of 3D textures. Because OpenGL behavior is based on states,

the transfer of these data must be done on the right place. That is in main thread before

the rendering starts.

For each volume only one texture is created, independently on number of

renderers, which use this volume. The memory allocation is done in the moment, when

the renderer starts, so that if some volume is not visualized (it serves as auxiliary

storage for further computations), the data are not transferred to GPU. Once memory for

volume is allocated, the slices are transferred as soon as they are available (according to

volume property highestReadableLayer). This process guarantees the

intermediate results.

The 3D textures are used for all transfer functions (TF1D and TFMultiD)

because of simplification of the fragment shader program. The size of texture depends

on the size of the transfer function look-up table. Here also the source of limitation of

VL on maximum number of volumes that can be visualized together comes.

This behavior is handled by the class RendererBaseTransferControl.

Since transfer of data is needed only when transfer function is changed, it allows

the real-time editing of the transfer function.

4.2.2 Shaders

An interesting method is used for handling multiple versions of shaders. There

must be twenty-one versions of ray casting fragment program altogether. One for DVR

rendering, one for isosurface rendering and one for these two together. And each group

must be three times (for one, two, or three volumes rendered together). Furthermore

there are three possibilities for isosurfaces (ambient, diffuse and specular components of

color can be enabled). This generating of code is enabled through the use of runtime

compilation by the OpenGL driver.

Because much of the code is same for all of them, we solved this problem with

commentaries in the code. Every commentary has its unique identifier and when shaders

are being initialized, the right commentary is deleted and thus the line of code over

them is enabled.

The Shader Model 3.0 is necessary for run of the fragment program.

4.3 Threads and Synchronization

Threads and parallel processing is used on two places in VL.

The first is in Algorithm class, where the number of threads is calculated and

then threads are created and started to perform the calling of user defined functions.

Chapter 4: Implementation

 44

This is not very complicated, but for application programmer it is a great task,

because he does not need to care for threads and synchronization at all.

The second task, which threads provide, is parallel run of loading and processing

modules. This is done through the use of the volume property

HighestReadableLayer defined in the VolumePtr class. Generally every

processing pipeline starts with reading data from hard disk drive, then something is

computed and finally visualized. When these tasks run simultaneously, it is very good

for utilization of system resources, because disk operations are interlaced with

processing operations and rendering operations are performed on GPU.

Intermediate results shown in the application window are the second effect of

the parallel processing pipeline.

4.4 External Components

VL uses several external libraries.

Library openDICOM.NET
30

 is used for loading of DICOM files.

OpenGL functions are provided through the use of Tao Framework
31

.

Cg Toolkit
32

 is also accessible through the use of Tao wrapper.

Also our implementation of renderer is based on nice tutorial from Peter Thomsen’s

Blog
33

.

30 http://www.opendicom.net/
31 http://www.taoframework.com/
32 http://developer.nvidia.com/object/cg_toolkit.html
33 http://www.daimi.au.dk/~trier/?page_id=98

Chapter 5: Results

 45

Chapter 5

5 Results

The Visualization Toolkit (VTK, [18], [19]) is one of the most popular and

commonly used framework for image processing and visualization of data. We made

extended comparisons to document differences between volumetric features of VTK

and our implementation of the VL application interface. The results from that effort are

described in this chapter.

Most important criteria for each part of data processing and visualization process

were chosen, like loading of data, algorithms (filtering, registration, segmentation and

classification), visualization, supported data types, developer point of view and resulting

speed. Each group of criteria is pointed out in one of the chapters.

5.1 Programming Language

VL is written in C# under the .NET Framework 2.0 [28], while VTK is written

in C++. This implies basic features of both frameworks.

Advantages of C#:

 intended to be simple

 modern

 general-purpose

 object-oriented

Main advantages of C++:

 object-oriented

 templates

 preprocessor macros

 multi-platform

VTK has quite a long history and there were several wrappers made to other

languages (than C++). One of them is VTK.NET [29]. First we though, that a

comparison with the VTK will be done through the VTK.NET, but subsequently we

Chapter 5: Results

 46

discovered, that it was not possible to write the algorithms in the wrapper (the reason

was that the inheritance and polymorphism could not be used between the new and

wrapped classes). This is one of the grounds for deciding on the selection of VL or

VTK.

5.2 Data Types

Subject VTK VL

Data Types {signed|unsigned}

char, short, int, long,

long long, float,

double

byte, ushort, uint,

float

Table 4: Supported data types. In VTK C++ names of types are displayed, while in VL

C# names are used.

Regarding this criterion the VTK support more types. VL chooses only unsigned

types and largest type is 32 bits large, while VTK support 128 bits (long long,

depends on a compiler). There are two reasons why VL supports those types. One is that

only those types can be transferred to GPU and the other is that in C# preprocessor

macros cannot be defined, while largely used in VTK in a code connected with data

types.

The data structure used in the common VTK volume processing pipeline is the

same as in the VL library (in VTK notation “Image Data”).

5.3 Lines of Code

For the comparison, we wrote simple applications in both frameworks.

Immediately after starting of each program the pipeline is created and executed.

Pipeline consists of loading of data, making simple threshold segmentation on them,

and displaying both volumes (input data and segmented volume) with direct volume

rendering. The following Diagram 16 shows pipeline used in the VTK application.

Diagram 16: Pipeline in the VTK testing application

The Diagram 17 shows pipeline used in the VL application. The main difference

is in using the mask volume for output from the algorithm, instead of VTK approach

Chapter 5: Results

 47

(two components are stored in each voxel). This concept guarantees smaller memory

requirements. These two diagrams also show that the VTK universality implies

necessity of using more classes and structures in the processing pipeline.

Diagram 17: Pipeline in the VL testing application

The main part of applications with definition of data flow pipeline has

essentially the same number of lines. Big difference lies in definition of the desired

segmentation. The number of lines is shown in Table 5.

Subject VTK VL

Lines of code – pipeline definition 85 79

Lines of code – single-threaded segmentation 92 12

Lines of code – multi-threaded segmentation 156 12
Table 5: Table with lines of code of simple applications

Results from Table 5 are affected by the fact, that if a user wants to define his

own algorithm in VTK, he must create a new class (inherited from

vtkImageAlgorithm). But in VL it is only necessary to define a single function

with segmentation and the framework does the rest.

The same fact also implies that multi-threaded algorithm has the same lines of

code in the VL. Multi-threading in VL is left on framework and the end developer has

multi-threading “for free”.

The difference between VTK and VL codes in segmentation in our example

application is so prominent, because our segmentation is very simple. If it were more

complex, the ratio between VTK and VL would be reduced (difference should remain

the same).

5.4 Speed of Algorithms

Subject VTK VL

Single-threaded segmentation 5.5 s 14.8 s

Multi-threaded segmentation 2.9 s 8.1 s
Table 6: Comparison of our simple segmentation speed

Chapter 5: Results

 48

From the Table 6 it can be seen, that concerning computation speed, the VTK is

much better than VL. This is due to the fact that accessing voxel values is slower, but

more comfortable for a programmer of algorithm in VL.

The VL has also advantage in parallelization. Both features of VL, rendering of

temporary results and scheduling of algorithm work, are for end programmer provided

without any programmer effort. Furthermore, the visualization does not slow down the

algorithm computation - for exact times see the Table 8.

For the task of segmentation, for which we tested the speed, the voxels, which

were inside sphere and had a value above some threshold, were selected. There were the

following operations:

 Multiplication – 7 times

 Addition – 5 times

 Comparison – 2 times

 Reading input voxel value – 1 time

 Writing to output voxel – 1 time

Data dimensions of input and output volume were 512*512*256 and there were

2 bytes for a voxel.

Hardware and software parameters of the machine:

 CPU: Intel Core 2, 1.8 GHz, dual-core

 GPU: NVIDIA GeForce 8400GS, 256MB

 RAM: 1 GB

 Microsoft Windows XP SP2

5.5 Speed of Loading and Visualization

There are certain difficulties when comparing speed of loading data. First is that

VTK itself does not have functionality for loading DICOM data. The way for loading

them is either to use some other library, or to transform data to another format before

starting the program. We used the second approach and adjusted our data sets with the

program dicom2 [30] to raw data. Apart from that, the loading time was practically the

same, see Table 7 for exact times.

Since rendering in VL is accelerated on graphics card, it is much faster than

VTK, where rendering is computed on CPU.

Subject VTK VL

Loading time 17.5 s 18.2 s

FPS for image with fixed quality – low 2 fps 20 fps

FPS for image with fixed quality – medium 1.5 fps 10 fps

FPS for image with fixed quality – high 0.6 fps 3 fps

Render of first preview image (with loading) 22.1 s 1.4 s

Chapter 5: Results

 49

Subject VTK VL

Render of first image (with loading) 22.1 s 18.5 s

Can render desired frames per second (in less quality) Yes Yes

Temporary results while loading No Yes

Multi-dimensional transfer functions 2 or 4 dim* Yes**

Can render DVR and ISO together Yes Yes
Table 7: Comparison of loading and visualization. *One component of voxel can define

only one color channel. **In actual implementation of VL the dimension of transfer functions is

restricted to three.

Subject VTK VL

Render of first preview image (with loading and segm.) 25.0 s 1.9 s

Render of first image (with loading and segmentation) 25.0 s 26.6 s
Table 8: Comparison of segmentation speed 2

We used vtkFixedPointVolumeRayCastMapper for rendering in VTK

example. There are implementations, which extends VTK with hardware accelerated

raycasting ([31] or [32]), but they are not included in the official VTK release and they

are not publicly available.

The Figure 11 and the Figure 12 show images of neck with configurations of

transfer functions conformable to each other.

When we compare visualization, it should be noted that VL is aimed on

visualization of volumes and their masks through multidimensional transfer function.

The difference in comparison with VTK is that multidimensional transfer functions

cannot read data from more volumes. The result is that data sets have more components

in one voxel and thus multidimensionality has smaller possibilities of usage.

Figure 11: Images of neck rendered with VL 2 fps (left) and VTK 1 fps (right).

Chapter 5: Results

 50

Figure 12: Images of neck rendered with VL 20 fps (left) and VTK 20 fps (right).

5.6 Summary

Subject VTK VL

Language C++ C#

Platform Multi Windows

Data types + 0

Lines of code 0 +

Speed of algorithms + -

Ease of writing new algorithms - +

Speed of visualization 0 +

Temporary results while loading or segmentation - +
Table 9: Results of comparison between VTK and VL. “+” means good support, “0”

neutral and “-“ bad result or missing feature.

The Table 9 presents the summary results of our comparison. Most negative item

of VL is the speed of algorithm. On the other hand, VL can provide all three main tasks

(loading, processing and visualization) simultaneously without any line of code by the

end programmer and without slowing down the overall computation through the use of

all system resources.

This chapter presented differences between VTK and VL and should help in

deciding on what tasks are suitable for VTK framework and when it would be better to

use our VL framework.

The VTK is suitable for applications developed for multiple platforms and for

cases, where priority is given to high performance of algorithms before the end user

comfort.

The VL is suitable for cases, where the interactivity of whole application is

necessary or for projects aimed for rapid design of new methods, because of both the

language and library simplicity.

Chapter 5: Results

 51

5.7 VL Testing

This section is aimed at comparison of various settings inside the VL itself.

Data access method checked unchecked

sum += v[0].GetLocalFast<ushort>(i, j, k); 8.18 s 8.20 s

sum += v[0].GetLocal<ushort>(i, j, k); 10.12 s 9.98 s

sum += v[0].GetFast<ushort>(i, j, k); 12.26 s 12.53 s

sum += v[0].Get<ushort>(i, j, k); 14.40 s 14.61 s

Table 10: The efficiency of the data access methods for algorithms

Table 10 shows results from comparison between the data access methods’

speed. We made a loop, which counted values of voxels within data set with dimensions

512
3
. The first two methods are for direct indexing of voxels, while the others must

subtract the volume position from the index. The first and the third method do not check

access outside the input volume, while the others do (these two groups are switched

through the use of polymorphism in user defined function). We can see that this

optimization speeds up the reading operation for 15-20 percents. The column “checked”

means that there was overflow-checking enabled, while the column “unchecked” shows

times without overflow-checking. There is obvious, that it has no effect on computation.

Figure 13: Dependence of the algorithm speed on the number of threads (on dual-core

processor)

Figure 13 shows graph with dependency of algorithm speed on the number of

threads. Alas only dual-core processor has been used. The figure shows, that the speed

of algorithm does not slow down, when there are more threads on a unit.

0,00

1,00

2,00

3,00

4,00

5,00

6,00

1 2 3 4 5 6 7 8 9 10

algorithm
speed (s)

number of threads

Chapter 5: Results

 52

Figure 14: DVR and isosurface rendered together with VL (left), part of skull rendered

with VTK (right)

Figure 15: Part of body (top left), pelvis (top right), skulls (bottom). All were rendered

with VL framework.

Chapter 6: Conclusion

 53

Chapter 6

6 Conclusion

In this thesis a framework and application interface oriented on processing and

visualization of medical volume data sets is presented.

At the beginning, there is a short introduction to all technical aspects dealt with

the framework. That is image processing, volume visualization, GPU programming, and

the .NET Framework architecture. At the end of the first chapter there are the most

important features, which our framework should satisfy.

The second chapter is devoted to existing free and open source software

solutions for processing or visualization of volume data sets. It follows from the review,

that most compact programs are provided by Kitware Inc., which has been involved in

the development of VTK and ITK.

Next a description of the design of application interface and its features is

presented. Most important of them is parallelization of multiple modules of the

framework and concept of masking volumes, which are used instead of multi-

component values in data sets.

Chapter four describes our implementation and its main features. There is an

overview of classes and relationship between them. Other interesting problems like

rendering process are also included.

Comparison of our framework with The Visualization Toolkit, the leading

software in visualization, is made in the fifth chapter. Main differences between

corresponding parts of both frameworks are described, such as loading, processing and

visualization of data sets.

6.1 Results

The VL is compact volume-specialized framework developed natively in .NET

architecture with parallelization, suitable for rapid development of medical image

processing algorithms.

Chapter 6: Conclusion

 54

Main features of our framework are:

Processing and visualization of three dimensional data sets. The library provides

simple environment for all three main tasks (loading, processing, and visualization) in

processing pipeline for the end application developer.

Visualization. The ray casting algorithm is implemented on the GPU and makes

real-time simultaneous rendering of both direct volume rendering technique and

isosurface rendering technique possible.

Oriented on medical purposes. The concept of masking volumes optimizes

memory usage and provides more possibilities of usage of our renderer.

Parallelization. The parallel run of data loading and of the processing algorithm

provides good utilization of the system resources, because the disk operations interlace

the processing operations.

Including into existing projects. The design of library makes possible to simply

integrate parts of library to existing software projects.

Main problems of our implementation are:

 The target platform of VL framework is Microsoft Windows only.

 Performance of algorithms written through the use of VL is not as good as in

comparable frameworks.

 The number of volumes rendered altogether is restricted to three.

 It is not possible to process data sets that do not fit into the main memory and

visualize data sets that do not fit into the graphics memory.

6.2 Future Work

Except for optimization of the current source code, the main direction of the

future work might be in implementing the remaining application interface features,

primarily completion of the concept of multiple masks volume (our implementation

restricts the number of currently visualized volumes to three) and possibility of

localized transfer functions.

Next essential improvement would be to make possible of integration of some

ITK modules.

Another possibility would be to modify the source code to fit Mono [15], an

open source implementation of the Microsoft .NET architecture.

In API the color transfer function interface can be extended in order to handle

also isosurfaces.

Chapter 7: References

 55

7 References

[1] A. C. Kak and Malcolm Slaney: Principles of Computerized Tomographic

Imaging, Society of Industrial and Applied Mathematics, 2001

[2] J. P. Homak: The Basics of MRI, 1996

[3] R. C. Gonzalez, R. E. Woods: Digital Image Processing, 3
th
 Edition, 2008

[4] A. B. Ekoule, F. C. Peyrin, C. L. Odet: A Triangulation Algorithm from

Arbitrary Shaped Multiple Planar Contours, 1991

[5] W. E. Lorensen, H. E. Cline: Marching Cubes: A high resolution 3D surface

construction algorithm, 1987

[6] L. Westover: Footprint Evaluation for Volume Rendering, 1990

[7] P. Lacroute, M. Levoy: Fast Volume Rendering Using a Shear-Warp

Factorization of the Viewing Transformation, 1994

[8] K. Engel, M. Kraus, T. Ertl: High-Quality Pre-Integrated Volume Rendering

Using Hardware-Accelerated Pixel Shading, 2001

[9] S. Parker, P. Shirley, Y. Livnat, Ch. Hansen, P. Sloan: Interactive Ray Tracing

for Isosurface Rendering, 1998

[10] G. Marmitt, A. Kleer, I. Wald, H. Friedrich, P. Slusallek: Fast and Accurate

Ray-Voxel Intersection Techniques for Iso-Surface Ray Tracing, 2004

[11] J. Kruger, R. Westermann: Acceleration techniques for

GPU-based volume rendering, 2003

[12] The OpenGL Graphics System: A Specification 2.1, http://www.opengl.org/,

2006

[13] General-purpose computing on graphics processing units,

http://www.gpgpu.org/

[14] Digital Imaging and Communications in Medicine (DICOM) Standard,

http://dicom.nema.org/

[15] Mono, http://www.mono-project.com/

[16] Insight Segmentation and Registration Toolkit (ITK), http://www.itk.org/

[17] Kitware Inc., http://kitware.com/

[18] Visualization Toolkit (VTK), http://www.vtk.org/, 2008

http://www.vtk.org/

Chapter 7: References

 56

[19] W. Schroeder, K. Martin, B. Lorensen: The Visualization Toolkit An Object-

Oriented Approach to 3D Graphics, 4
th
 Edition, Kitware, 2006

[20] P. Bhaniramka, Y. Demange: OpenGL Volumizer: A Toolkit for High Quality

Volume Rendering of Large Data sets, 2002

[21] I. Bitter, R. V. Uitert, I. Wolf, L. Ibanez, J.-M. Kuhnigk: Comparison of Four

Freely Available Frameworks for Image Processing and Visualization That Use

ITK, 2006

[22] J. J. Caban, A. Joshi, P. Nagy: Rapid Development of Medical Imaging Tools

with Open-Source Libraries, 2007

[23] Windows.Forms reference documentation (MSDN), http://msdn2.microsoft.

com/en-us/library/dd30h2yb.aspx

[24] Cg Language Specification, NVIDIA,

http://developer.download.nvidia.com/cg/Cg_2.0/2.0.0012/Cg-

2.0_Jan2008_LanguageSpecification.pdf

[25] Framebuffer object (FBO) extension, http://oss.sgi.com/projects/ogl-

sample/registry/EXT/framebuffer_object.txt

[26] C. Salama, A. Kolb: A Vertex Program for Efficient Box-Plane Intersection,

2005

[27] .NET Framework (MSDN), http://msdn.microsoft.com/NETFramework/, 2008

[28] C# Language Specification (MSDN), http://msdn2.microsoft.com/en-

us/vcsharp/aa336809.aspx, 2008

[29] .NET Wrappers for VTK 5, VTK.NET, http://vtkdotnet.sourceforge.net/, 2006

[30] dicom2, command line program for converting DICOM data to raw data,

http://www.barre.nom.fr/medical/dicom2

[31] J. Allard, B Raffin: A Shader-Based Parallel Rendering Framework, 2005

[32] R. Brecheisen: Real-time volume rendering with hardware-accelerated

raycasting, 2006

[33] B. T. Phong: Illumination of Computer-Generated Images, 1973

[34] N. Max: Optical models for Direct Volume Rendering, 1995

[35] L. Maršálek: Lighting using GPU, 2005

Appendix A: Contents of the CD

 57

Appendix A: Contents of the CD

There are the following directories on the attached CD:

 Directory Data contains four tested data sets. There are anonymous CT images of

skull (512x512x49), neck (512x512x27), body (512x512x72), and pelvic

(512x512x41)

 Directory Text contains electronic version of this document in the PDF format, as

well as Microsoft Word 2007 (.docx) version.

 Directory VL/src contains the source code of our library and source code of the

project developed to test this library (subdirectory Example_proj). There is single a

solution file (.sln) for both projects for Visual Studio 2008.

 In the directory VL/bin there are binaries for the testing project (Example.exe) with

necessary libraries. Target platforms are 32 bit versions of Windows XP and Vista.

 In directory VL/bin64 there are binaries for the testing project (Example.exe) with

necessary libraries. Target platforms are 64 bit versions of Windows XP and Vista.

 Directory VL/doc contains reference manual for our library in the Microsoft Help

CHM format (.chm).

 In directory VTK there is the source code of the project used for comparisons made

in Chapter 5.

Appendix B: VL Programming Guide

 58

Appendix B: VL Programming Guide

This appendix describes common techniques, which are necessary for

developing software with VL library.

VL is designed to be easily included to new as well as to existing projects. All

graphical tools are designed as User Controls, which allow simple changing of their

appearance and extending them with their own functionality.

For introduction of VL possibilities, a simple form with controls from VL is

described.

B.1 Getting Started

Inclusion of VL library to Visual Studio 2008 project consists of several steps.

 First we must add reference on VL library: in “Solution Explorer / Project_name /

References / right click / Add Reference… / VL.dll”

 Copy all necessary files to our output directory – files with DICOM elements

dictionary from data folder and supporting libraries (if they are not in the system

already): cg.dll, cgGL.dll, Gobosh.DICOM.dll, opendicom-sharp.dll, Tao.Cg.dll,

Tao.OpenGl.dll, Tao.Platform.Windows.dll. These files can be obtained from our

testing project.

B.2 Creating 3D Renderer

To create control for 3D volume visualization, we open our form in Designer

View and drag Renderer3DControl from the Toolbox. Next, we must append

following line to constructor of our form:

renderer3DControl1.StartRender();

When we now build and start the application, it will look like in Figure 16 (left top).

The sign “Powered by Tao” means, that there is no volume assigned to the

renderer, so we will now create one:

VL.Api.IVolumeParams vp = new VL.VolumeParams(

 256, 256, 256, // dimensions

 VL.Api.eType.vl_byte // data type

);

VL.Api.IVolume volume = VL.VolumePtr.Factory.CreateEmptyVolume(vp);

renderer3DControl1.GenerateDimensions(1);

renderer3DControl1.SetVolume(volume);

Appendix B: VL Programming Guide

 59

renderer3DControl1.StartRender();

Code snippet 3: Creating and displaying of the volume

First, we filled in parameters of the new volume and called volume factory to create one

empty volume. Result is shown in the Figure 16 (right top). Colored lines mean, that the

volume is created, but that it is empty.

Next, we will fill the volume with some data. We create and execute our

algorithm defined in function f() immediately after volume is created:

VL.Algorithm alg = new VL.Algorithm();

alg.ExecuteOnVoxels<byte>(f, volume, null);

byte f(int x, int y, int z, VL.Api.DataAccess[] inputData,

 object userParams)

{

 return (byte)(

 (x < 100 ? 40 : 10) +

 (y < 100 ? 40 : 10) +

 (z < 100 ? 40 : 10)

);

}

Code snippet 4: Definition of function for algorithm

When this is executed, it can be seen that the computation of our algorithm is done in

separate thread(s) and that it does not affect a user with any delay. Figure 16 bottom

left.

B.3 Creating 2D Renderer

In VL library there is also UserControl for visualization of 2D volume slices.

The main difference from 3D renderer is that Renderer2DControl can be used for

user input in the sense that user can select a point with 3D coordinates. That is done

through event handler PickingEventHandler, Assigning volumes and transfer

functions is the same for both renderers.

B.4 Transfer Function Handling

Handling of the volume color is done through the transfer function. We have one

volume, so now we will use TransferFunction1D:

 VL.TransferFunction1D tf = new VL.TransferFunction1D(8);

 tf.SetSegment(0.0f, 0.2f, new VL.Utils.RGBA(0, 0, 0, 0.2f),

 new VL.Utils.RGBA(0, 1, 1, 0.2f));

 tf.SetSegment(0.2f, 0.4f, new VL.Utils.RGBA(0, 0, 0, 0.2f),

 new VL.Utils.RGBA(1, 0, 1, 0.2f));

 tf.SetSegment(0.4f, 1.0f, new VL.Utils.RGBA(0, 0, 0, 1.0f),

Appendix B: VL Programming Guide

 60

 new VL.Utils.RGBA(1, 1, 0, 1.0f));

 renderer3DControl1.AddTransferFunction(tf);

Code snippet 5: Definition of transfer function

Behavior of transfer function is set by the function SetSegment(), which takes four

parameters. The first and the second are for volume density and the third and the fourth

for final color. See Figure 16 (bottom right) for the result. There are also other functions

for setting the transfer function, which are described in the reference manual for VL.

Figure 16: Designing of our form

Appendix B: VL Programming Guide

 61

Figure 17: Designing of our form with multidimensional transfer function

Next example, useful to present, is multidimensional transfer function. It means

that target color depends on values from more volumes. We must create one more

volume, which will stand for a “virtual ball”. This ball will be moving across the main

volume, so that it will be clear, that ball’s color is changing and that it depends on

multidimensional transfer function.

VL.Api.IVolumeParams vp2 = new VL.VolumeParams(

 80, 80, 80, VL.Api.eType.vl_byte

);

ball = VL.VolumePtr.Factory.CreateEmptyVolume(vp2);

VL.Algorithm alg2 = new VL.Algorithm();

alg2.ExecuteOnVoxels<byte>(f2, ball, null);

byte f2(int x, int y, int z, VL.Api.DataAccess[] inputData,

 object userParams)

{

 x -= ball_r2; y -= ball_r2; z -= ball_r2;

 return (byte)(x * x + y * y + z * z < ball_r2 * ball_r2 ?

 byte.MaxValue : 0);

}

Code snippet 6: Creating of the volume, which stands for a ball

Function f2() changes the values inside the “ball” to 255 and others are left as zeroes.

This volume represents a simple mask for our main volume and function f2()

represents a simple segmentation. Next we must change the transfer function to

TransferFunctionMultiD and fill in right values:

VL.TransferFunctionMultiD tf2 = new VL.TransferFunctionMultiD(8, 1);

tf2.SetSegment(new VL.Api.TFPoint(0, 0), new VL.Api.TFPoint(1, 0),

 new VL.Utils.RGBA(0, 0, 0, 0), new VL.Utils.RGBA(1, 1, 1, 1));

tf2.CopyDimensionFromTF1D(tf, 1);

Code snippet 7: Definition of multidimensional transfer function

Appendix B: VL Programming Guide

 62

As we can see, it is quite similar, except places, where the second dimension parameter

must be specified. For TFMultiD there is also auxiliary function for cooperating with

one-dimensional function. For moving the ball the following command is used, which is

executed every 50 milliseconds by common timer.

 ball.Params.Pos += dir;

The result is shown in the Figure 17. The whole example is included in the

attached CD with some other features, like sample of extending the camera.

There is UserControl TransferFunctionControl for simplification of the

transfer function definition in the VL library. It can be interactively connected with

renderers through its property tf and event TFChanged. For more information see the

reference manual.

Appendix C: User Manual

 63

Appendix C: User Manual

Appendix C describes a small project “Example”, which was developed for

testing purposes of the VL library. It should be pointed out, that this project is not the

only and main purpose of this work. Here, the VL UserControl’s behavior will also be

described.

The “Example” is a project for 2D and 3D visualization of DICOM data sets. It

can render DVR and isosurface images. It allows definition of transfer function,

viewing DICOM file elements, setting rendering quality, and more.

C.1 System Requirements

 Windows XP or Vista operating system.

 .NET Framework 2.0 (Windows Vista contains it by default).

 256 MB RAM (Depends on used data sets).

 NVIDIA GeForce 6 Series or AMD/ATI Radeon R520 Series or higher (Shader

model 3.0 required).

 256 MB Video RAM (Depends on used data sets).

Figure 18: Main parts of “Example” project window.

Transfer

Function

Control

Settings

for R3D

 Button

panel

Output

console

Window with

Renderer3D

Control

Appendix C: User Manual

 64

C.2 The Main Window

The main window of the project is MDI
34

 and consists of two parts, the working

desktop, and the right panel, as shown in the Figure 18. Working desktop is intended for

windows with 2D and 3D renderers.

Most important part of the right panel shows buttons:

 Dicom Info serves for opening of DICOM files.

 System Info opens panel with system values, like memory usage, processor

load, count of processor’s cores, and graphics card extensions.

 Options serves for setting of advanced mainly visualization options.

 R3D opens new window with Renderer3DControl component.

 R2D opens new window with Renderer2DControl component.

Below that panel is a place for displaying messages from the VL library, the

“output console”. Times of some loading, processing and visualization processes,

messages from the renderer’s initialization and some error messages can be placed

there.

In the title bar of the main window the actual count of frames per second is

shown.

C.3 Dicom Info

For loading files in the DICOM format there is DicomInfoControl (Figure 19). It

consists of two tabs with treeviews. In the first all elements from the file are displayed

as they are stored in the file (in same structure and order). The second shows

DICOMDIR files and regroups file records in a logical order

(patient/study/series/slices). They are marked with colors for better readability – blue

means one file or slice, green more of them and red is for record that points on files,

which cannot be opened.

After selecting a file with mouse click, loading is started in the last active

renderer.

34 Multi-document interface

Appendix C: User Manual

 65

Figure 19: DicomInfoControl

C.4 Options

In the General part of the Options window there are settings for testing and

debugging tasks. Parallel computations, printing of algorithm’s speed and rotating of

camera in 3D renderers can be turned on or off in this window.

In Rendering part of Options accuracy of visualization (at the expense of speed),

Lego projection (interpolation type), inverting of colors (for printing purposes), and

shading for isosurfaces can be set. Ambient shading means, that there is no dependence

of color on isosurface gradient, diffuse is for non-shiny reflection and specular for

specular reflection.

Figure 20: Options (left), TransferFunctionControl (right up), and R3D settings

Appendix C: User Manual

 66

C.5 R2D a 3D

Renderer2DControl (Figure 21 left) is intended for viewing three 2D axis

aligned slices of the volume. Color is set up by the TransferFunctionControl.

TransferFunctionControl (Figure 20 right up) displays five related graphs. In the

background there is a histogram from actual volume (dark gray). Vertical scale of

histogram can be changed from linear to logarithmic with the checkbox “Log hist”.

Next four graphs are meant for color channels and opacity. Colors are either red (R),

green (G), blue (B), or cyan (C), magenta (M), and yellow (Y), depending on “Black

Background” checkbox setting. Under graphs the final color is displayed.

Setting of these four graphs can be done with the left mouse button by directly

drawing to background. Modification is done only to those channels, which are

checked.

Renderer3DControl (Figure 21 right) relates to DVR and isosurface

visualization. These can be checked up with “R3D settings” from the right panel (Figure

20 right bottom). If neither of checkboxes is checked, DVR rendering is used. When

isosurface is enabled, color and opacity is set up by a button and a slider right of it. The

second slider sets the desired density.

Figure 21: Renderer2DControl (left) and Renderer3DControl (right)

	Introduction
	Medical Data Image Processing
	Volume Rendering
	Direct Volume Rendering
	Volume Ray Casting

	Shader-accelerated Visualization
	.NET
	C#

	Format for Storing Medical Data
	Goals of the Thesis
	Structure of this Document

	Currently Available Software
	ITK
	VTK
	VTK and ITK Extensions
	MITK
	KWWidgets

	Volumizer
	VGL
	Medical Imaging Programs
	Summary

	Design of Application Interface
	Pipeline
	Data Representation
	Algorithms
	Algorithm Optimizations

	Visualization
	Goals Overview

	Implementation
	Classes Overview
	Data Storing and Loading
	Algorithms
	Visualization
	Other Auxiliary Classes

	Rendering
	GPU Data Transfer
	Shaders

	Threads and Synchronization
	External Components

	Results
	Programming Language
	Data Types
	Lines of Code
	Speed of Algorithms
	Speed of Loading and Visualization
	Summary
	VL Testing

	Conclusion
	Results
	Future Work

	References
	Contents of the CD
	VL Programming Guide
	Getting Started
	Creating 3D Renderer
	Creating 2D Renderer
	Transfer Function Handling

	User Manual
	System Requirements
	The Main Window
	Dicom Info
	Options
	R2D a 3D

