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Abstrakt: Zobrazovanie objemových dát je dôležitý nástroj pre skúmanie
a pochopenie trojrozmerných vedeckých dát, ako napŕıklad tých, ktoré sú
źıskané pomocou CT skenovania. Nedávne pokroky v oblastiach hardvéru
a softvéru obnovili záujem o interakt́ıvne a vysokokvalitné zobrazovanie ob-
jemových dát, pretože sa momentálne stávajú dostupnými dokonca aj na
domácich poč́ıtačoch. V tejto práci prezentujeme novú aplikáciu určenú
k vizualizácii CT sńımkov ľudských lebiek. Zameriavame sa hlavne na
kvalitu zobrazenia, pričom pridávame možnosti pre porovnávanie lebiek a
vizualicáciu ich rozdielov. Naše riešenie je postavné na .NET aplikácii,
ktorá sprostretkúva uživatělské rozhranie a externej dynamickej knžnici ob-
sahujúcej samotný renderer. K implementácii vykosokvalitného zobrazo-
vania izoplôch sme použili algoritmy založené na metódach interakt́ıvneho
vrhania lúčov a dǎlej v nej obsiahli možnosť presvitnosti izoplôch a vrhania
ich tieňov. Taktiež sme pridali podporu pre zobrazovanie viacerých obje-
movych dát a dǎlej predstavujeme nové zobrazovacie módy pre vizualizáciu
ich rozdielov. Náš systém použ́ıva technológiu NVidia CUDA, č́ım ukazuje
ako je možné využit urýchlenie pomocou moderných grafických procesorov.
Naše výsledky ukazujú, že sme schopńı predložit nástroj určeny na inter-
akt́ıvnu vizualizáciu, ktorý do značnej miery može pomôc v oblastiach ako
je napŕıklad antropológia.
Klúčové slova: CT, CUDA, GPU, izoplocha, lebka, vrhanie lúča, zobrazo-
vanie objemu
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Abstract: Volume visualization is an important tool for exploration and
understanding of complex 3D scientific data, as those acquired for example
by CT scanning. Recent advancements in hardware and software renewal
interest in interactive, high-quality volume rendering as it now becomes fea-
sible even on desktop computers. In this work we present new application
designed for visualization of CT scans of human skulls. We focus on image
quality and add new features for skull comparison and difference visual-
ization. Our solution is based on .NET application, which provides user
interface(GUI) and external volume renderer as dynamic link library. We
have implemented complex renderer for high-quality isosurfaces using algo-
rithms based on interactive ray-marching methods including self shadowing
and transparency. We also add support for multiple volumes and introduce
new rendering modes for difference visualization. In addition our system
uses NVidia CUDA technology, showing how to harness the power of mod-
ern GPUs for accelerating this complex task. Our results show that we are
able to deliver interactive visualization tool, which can greatly help in areas
like anthropological research.
Keywords: CT, CUDA, GPU, isosurface, ray-casting, skull, volume ren-
dering
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Chapter 1

Introduction

1.1 Motivation

Many years have past since the time when real-time volume rendering tech-
niques required system with so enormous computing power that it was af-
fordable only by some specialized medical institutions or universities. Huge
progress in the computing performance of microprocessors and increasing
availability of low-cost multi-core systems in the last few years brought us
massive use of specialized software implementing various volume visualiza-
tion methods interactively and with high-quality results. Also the source
data can now be acquired much more easily and cheaper than in the past
as originally medical imaging methods like Computed tomography (CT) are
common in use by many other institutions and some CT scanners are now
parts of their equipment.

Increasing demand for miscellaneous visualization applications from other
organizations and science departments lead to developing full-scale commer-
cial software solutions. Using the recent hardware, several methods have
been upgraded to take advantage of being accelerated by modern graphics
cards thus gaining significant speedup. These applications come with plenty
of features and rendering techniques but they not provide specific features
accessible together in one tool. Also none of them is targeted purely for
anthropological research, in which we want to contribute by delivering our
visualization solution.
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1.2 Volume rendering

1.2.1 Overview

Volume rendering is a technique used to display a two-dimensional projec-
tion of a three or four-dimensional discretely sampled data set, a scalar or
vector field. This fundamentally differs from standard visualization of ob-
jects, that are represented and displayed by geometric primitives. These
techniques found their use in many areas like medicine, chemistry, archeol-
ogy or microscopy. Most applications work with 3D grids of input data, but
there are also some that work with more dimensions like with time sequences
of volumetric data. Representations by scalar field prevail over vector fields
but in areas like meteorology, it is common to have grid points with multiple
quantities, stored as vector fields.

Typical data set for volume visualization is acquired by Magnetic Res-
onance Imaging (MRI) or Computed Tomography (CT). There are also ex-
amples of synthetic datasets, like generated textures of wood, marvel, etc.
They can be used and visualized together with data from empirical mea-
surements to provide mixed visualization when the system displays most
appropriate information from each data set at each point. However such a
implementation requires to have all input datasets properly registered.

1.2.2 Volume Visualization Methods

There are fundamentally two types of algorithms for volume visualization
- Isosurface extraction and Direct volume rendering (DVR). First class of
algorithms is based on extracting surfaces of equal values from the volume
and then rendering them as polygonal meshes. These surfaces are called
isosurfaces and are defined by their threshold value and color (possibly with
opacity). Since the surface is generated before the visualization as a pre-
processing, the rendering process is then usually very fast, but on the other
hand surface mesh data have to be regenerated again every time the iso-
value changes. Direct volume rendering takes different approach, where
DVR method maps volume data directly to the screen space without us-
ing any geometrical primitives. This allows to display entire volume as a
block of data and it is based on real physical models for light absorption
or accumulation. Another difference is that the volume traversal has to be
performed every time for every new image. DVR methods produce the high-
est possible image quality but at a high price, because such a rendering is
computationally intensive task.
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1.3 Computed tomography

Computed tomography is a technique that generates a three-dimensional
image of an object from a series of two-dimensional X-ray images of cross-
sections of that object. According to the type of scanner used, it is possible
to produce images with different resolution. Standard resolution of the sin-
gle slice image may vary between 256x256 to 4096x4096 pixels. Pixel is a
two-dimensional unit based on the matrix size and the field of view. When
the CT slice thickness is also factored in, the unit is known as a Voxel,
which is a three-dimensional unit. Voxel’s width and height are usually
equal (may be from 0.5mm to 2mm) but its thickness can be different so it
is not guaranteed that the voxel represents a regular cube. This distance
between two slices is called collimation and its minimum value is defined
by the type of the scanner, where the latest medical scanners are able to
produce slices with distances like 0.5mm. Higher resolution can be achieved
by specialized industrial scanners and for example synchrotron X-ray tomo-
graphic microscopy techniques produces scans with details as fine as 1000th
of a millimeter.

Each voxel stores a value that represents its radiodensity, which is mea-
sured mean attenuation of the material that corresponds to that voxel. It
can be any value within a interval from -1024 to +3071 (assumed 12-bit
data) and it is mapped on the Hounsfield scale. Water has an attenuation of
0 Hounsfield units (HU) while air is -1000 HU, cancellous bone is typically
+400 HU, cranial bone can reach 2000 HU or more and values over 3000 are
typical for X-ray almost non-permeable materials, like metals.

1.4 CT in anthropology and archeology

Computed tomography as nondestructive evaluation (NDE) technique has
already been recognized by some archaeologists and museum curators as an
efficient tool for nondestructive studying of archaeological artifacts. Dif-
ferent NDE method based on radiofrequency pulses, Magnetic Resonance
Imaging (MRI) on the other hand useless for such kind of research, because
this technique is sensitive to hydrogen nuclei spin orientation. Mineralized
bone delivers none or only weak signals and thus best applicable specimens
are those containing water like brain or other organ tissue.

With the help of CT, an archaeologist can research for example the
cuneiform texts sealed in clay envelopes without a need to destroy the outer
envelope as they had to do it in the past. Also another revelations like the
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evidence of repairs and information about ancient manufacturing techniques
that could help to verify the authenticity of certain artifacts has been discov-
ered on the scans of bronze Chinese Urns when using industry CT scanner.

These advanced imaging techniques have been successfully applied to
anthropological research as well and the computed tomography became the
ideal research tool to access the internal structures of various precious fossils
without even touching, let alone damaging them. Additional post-processing
may also help as many fossils are filled with stone encrustations and there-
fore can not be examined properly. Digital reconstruction techniques were
also successfully used for visualizing most missing parts of some partially de-
stroyed anthropological specimens. These new imaging and post-processing
techniques gave a birth to a new field of anthropological research - Vir-
tual Anthropology, which is characterized as a multidisciplinary approach to
studying anatomical data representations in 3D or 4D, particularly humans,
their ancestors, and their closest relatives.

We believe that all these mentioned examples of the usage of CT as the
nondestructive tool proved to be useful in preliminary studies of many other
areas of archaeological and anthropological research.

1.5 Opportunity

Faculty of Science of Charles University in Prague and more precisely it’s
Department of Anthropology is one of the next candidate which is about to
expand possibilities in their future research concerning human skulls by col-
laborating with Computer Graphics Group at Faculty of Mathematic and
Physics. This would be a great opportunity to test some of the volume
visualization methods previously used in other areas and by other institu-
tions with data obtained from the fields of research like anthropology or
even archeology. Also modifying existing solutions and developing new ones
which are more suited for this specific use will be tested in practice. Compar-
ison of multiple skulls and visualizing them so differences can be examined
is one of the example of the new method.

This thesis covers only a small part of the whole problem and it is the
first step in the future teamwork project itself. In this first phase several
requirements have to be accomplished and at the end results should be
delivered. Our primary objectives are described in the next section about
the goals of the thesis.

7



Figure 1.1: Examples of human skull CT slices scanned by Department of An-
thropology at Faculty of Science of Charles University in Prague

1.6 GPU acceleration in volume visualization

Huge progress has been made not only in the area of general-purpose pro-
cessors (CPU), but also the graphics processors (GPU) increased their per-
formance rapidly during last few years. Recent development in the pro-
grammability of graphics hardware brought many applications, which tried
to take advantage of modern graphics cards and their powerful GPUs. When
enhanced by graphics accelerator, many volume visualization algorithms per-
formed a lot faster compared to their CPU implementation. Therefore most
research in the area of volume rendering led to exploiting all possibilities
of accelerating volume visualization process and updating its algorithms to
suitable form for GPU implementation. Nowadays GPU solution is con-
sidered preferred and affordable option for real-time rendering on desktop
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platform.

The latest evolution of high-level GPU programming was introduced by
NVIDIA, when their new technology called CUDA was presented in late
2006. CUDA is specific form of solution for general-purpose computing on
graphics processing (GPCPU) available on all recent NVIDIA cards. When
working with algorithms, which are highly convenient for parallel computing,
like these in image processing, flow simulation or in our case 3D rendering,
CUDA allows us to take advantage of high performance computation power
of modern GPU with multiple cores suitable for massive parallelism. Theo-
retical computational peak can reach over 1TFLOP/s on recent GPUs. Just
for the comparison, the maximum performance of Intel Core 2 Quad CPU
is around 100GFLOP/s. This gives us the great tool to solve most complex
compute-intensive tasks more effectively on GPU. With CPU left relatively
unoccupied, we are able to perform additional tasks, which otherwise can
not be executed for the background processing.

1.7 .NET framework

The Microsoft .NET Framework is a software technology, that is available
with several Microsoft Windows operating systems as a managed code pro-
gramming model recommended for creating new applications for the Win-
dows platform. It was created to take over some major responsibilities that
are usually handled by programmer and to focus on rapid application de-
velopment, platform independence and network transparency. All .NET
applications are executed in the framework’s virtual machine software envi-
ronment that manages the program’s runtime requirements. Such a behavior
is in some sense similar to Java Virtual Machine, key component of the Java
Platform. Because of this, programmer doesn’t need to consider the ca-
pabilities of the specific CPU that will execute the program. Framework’s
runtime environment also provides additional services for .NET applications
like memory management, and exception handling.

Another great advantage brought by .NET, is an included large library
of precoded solutions for many programming problems. This collection of
precoded solutions is called Class Library and by combining it with own
code, programmer can easily gain access to areas like user interface (GUI),
numeric algorithms, data access, network communications, etc.

Managed code however runs more slowly and requires more resources
than a well written conventional Windows program. But all advantages
brought by .NET together with the fact that new CPUs and memory mod-
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ules will always get cheaper, make the Microsoft .NET framework as another
preferred option for current developers.

1.8 Goals of the thesis

Main task of this thesis is to create a tool for the interactive isosurface
visualization of CT scans of multiple human skulls for potential use in the
anthropology research and public displays in the museums. Additional work
should be concentrated on the visualization of their differences. This should
greatly help anthropologist to analyze numerous specific differences in the
sets of human skulls and to compare them in the real-time.

Core renderer would be based on the interactive ray marching meth-
ods implemented entirely on GPU. For this purpose compromise between
the high-quality output and the rendering speed has be chosen to meet
desired requirements on satisfactory level. In the end a stand-alone test-
ing application is to be created and compared with similar systems. This
testing application should base its GUI on the .NET framework, both to
provide easy-to-use interface for the rendering library and to give a proof
of concept that managed GUI environment can be effectively used even in
high-performance, time-critical applications.

1.9 Structure of the text

The thesis is divided into several chapters each one being shortly described
in this section.

Chapter 1 provides motivation for visualization of human skulls and spec-
ifies the part of it covered by this thesis.

Chapter 2 is a brief overview of methods concerning volume and iso-
surface rendering as they were chronologically presented in the history of
volume visualization. Also specific advantages and disadvantages for our
use are discussed here.

Chapter 3 contains theoretical background of all methods which were
used in our implementation. This part suggests some not yet implemented
techniques, which can be considered worthy of interest and can be imple-
mented in the future work as well.
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Chapter 4 is all about implementation details of previously described
methods used in testing application and partially serves as a programming
documentation. This part contains some in-depth information about the
core components in the renderer and also deals with additional optimization
steps. CUDA architecture is described here too.

Chapter 5 is the part where results are presented, compared with similar
rendering systems and discussed in the terms of quality and performance.

Chapter 6 provides conclusion, overall summary and reviews the achieved
goals together with future work discussion.

Appendix A is formulated as a basic user guide for the presented testing
application.

Appendix B is a list of files and directories found on enclosed DVD.

11



Chapter 2

Previous work

Volume rendering as the computer graphics term has been used many years
since the first attempts to visualize 3D datasets. Constant development in
this field during those years brought several approaches how to accelerate
rendering process and also improve overall visual quality. This chapter is
a summary of the most important methods presented during the histori-
cal evolution of volume rendering and since we focus mainly on isosurface
rendering, this part has been also dedicated to analysis related to previous
research on rendering of isosurfaces.

2.1 Volume visualization

Hardware acceleration is a major key element in the volume rendering so
many researches tried to take advantage of the hardware support as much
as possible. Nowadays this trend continues and most likely will not change in
the future as the technology and all its usage possibilities with new graphics
cards grow every year.

2.1.1 Texture based slicing

One of the first systems exploiting hardware support were based on texture
slicing. In those days only features like hardware 3D texturing were commer-
cially available through OpenGL extensions which were then supported by
workstations from SGI. Those systems re-sample volume data, represented
as a stack of 2D textures or as a 3D texture mapped onto the polygons
placed into the volume. This set of polygons is called proxy geometry and

12



can be can be either aligned with the data, aligned orthogonal to the viewing
direction or aligned in other configurations (such as spherical shells).

Early work about this technique was published by Cullip and Neu-
mann [7] where they discussed the necessary sampling schemes as well as
axis aligned or view-oriented sampling planes. Later on the method was
further enhanced by Cabral et al. [4] and they were the first to introduce an
implementation of volume reconstruction which required special hardware
with 3D texture acceleration capabilities. They managed to present simple
way for interactive volume rendering and this texture based slicing technique
soon became very popular.

Additional works improving this approach were subsequently released.
Method for direct volume rendering with shading via three-dimensional tex-
tures was published by Van Gelder and Kim [10], or new technique, which
enables shading as well as classification of the interpolated data was pub-
lished by Meißner et al. [21]. This technique came up with accurate lighting
for a one directional light source, semi-transparent classification and cor-
rect blending, with all of these algorithms performed within the graphics
pipeline.

Another work was presented by Rezk-Salama et al. [32] in which they pro-
posed new rendering techniques that significantly improve both performance
and image quality of the 2D-texture based approach and showed how multi-
texturing capabilities of modern consumer PC graphic boards are exploited
to enable interactive high quality volume visualization on low-cost hardware.
Furthermore they demonstrated how multi-stage rasterization hardware can
be used to efficiently render shaded isosurfaces and to compute diffuse illu-
mination for semi-transparent volume rendering at interactive frame rates.

Method which brought great improvement in the speed and quality of
texture slicing was then presented by Engel et al. [9] as they introduced
pre-integrated volume rendering, which achieves the image quality of the
best post-shading approaches with far less slices. They implemented various
specific algorithms using the novel technique like direct volume rendering,
volume shading and arbitrary number of isosurfaces or mixed mode render-
ing.

All these works proved worthy and so many systems and applications
were created using texture slicing for volume visualization method. It was
very easy because it required only hardware with 3D texture support. How-
ever as the method is very simple it brings some significant drawbacks con-
sidering the performance issue because many pixel blending operations, tex-
ture fetches or lighting calculations and others doesn’t have any impact in
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the final result. Because of that it is convenient to use some common accel-
eration techniques which will minimize all of these unnecessary operations.
Early ray termination and empty space skipping are suggested acceleration
methods in volume rendering (see [8, 17, 38]). Unfortunately when using
texture based slicing for rendering, it is quite difficult to implement any of
these improved algorithms.

2.1.2 Volume ray-casting on graphics hardware

After the arrival of DirectX 9.0 in 2002, Shader Model 2.0 was introduced as
a new feature of Direct3D API. Soon both major graphics chip manufactur-
ers ATI and NVIDIA presented their DirectX 9 compliant cards where ATI
Radeon 9700 was released in 2002 and NVIDIA GeForce FX 5800 in early
2003. This was the first time when GPU accelerated volume ray-casting
could be implemented on consumer hardware as it was then possible to uti-
lize better programmability in the fragment stage of the graphics pipeline.
One of the most significant work discussing this technology and ray-tracing
on programmable graphics hardware was done by Purcell et al. [29]. They
evaluated latest trends in programmability of the graphics pipeline and ex-
plained how ray tracing can be mapped to graphics hardware.

Multi-pass technique

Later on several implementations from various groups were published, using
multi-pass techniques and Shader Model 2.0 API for their algorithms. Work
by Krüger and Westermann et al. [16] can be considered as innovative in a
way of the integration of acceleration techniques like early ray termination
and empty-space skipping into texture based volume rendering on graphical
processing units. Their GPU implementation achieved performance gains
up to a factor of 3 for typical renditions of volumetric data sets compar-
ing to the standard slice-based volume rendering. Additionally work by
Röettger et al. [30] presented their implementation of pre-integration tech-
nique, volumetric clipping, and advanced lighting together with space leap-
ing and early ray termination in GPU ray-caster. Another work which was
the first implementation of a volume ray casting algorithm for tetrahedral
meshes was then published by Weiler et al. [41], where they also guaranteed
accurate ray integration by applying pre-integrated volume rendering.

Single-pass technique

Until the next big evolution in programmability of fragment graphics pipeline
there was no way to implement volume ray-casting algorithm in a single
pass. This all changed in the late 2004 when new version of DirectX 9.0c
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was introduced. It defined new Shader Model 3.0, which was highly antici-
pated as it brought significant improvements over the last version. It greatly
increased maximum count of program instruction, vertex texture fetches,
floating point textures and frame buffers dynamic. But the most relevant
feature in pixel shader was dynamic flow control with loops and branches.
The first graphics cards which fully supported DirectX Pixel Shader 3.0 API
were from NVIDIA GeForce 6 family. They performed very well comparing
to previous generation when GeForce 6800 Ultra was 2 to 2.5 times faster
than NVIDIA’s previous top-line product (the GeForce FX 5950 Ultra).

One of the first presentations that showed implementation on latest
hardware was presented by NVIDIA in their Shader Model 3.0 developer
presentation where they included short example of single-pass volume ren-
dering running on NVIDIA GeForce 6800 [25]. Using this new graphic card,
Stegmaier et al. [36] presented flexible framework for GPU-based volume ren-
dering based on single-pass volume ray-casting approach. They didn’t used
DirectX Pixel Shader 3.0 API but rather its OpenGL equivalent, NVIDIA’s
NV_fragment_program2 extension [24]. Framework which they presented
was highly flexible and showed some high-quality standard and non-standard
volume rendering techniques including translucency, transparent isosurfaces,
refraction, and reflection or self-shadowing. They also compared perfor-
mance results of slice-based volume renderer with single-pass volume ray-
casting solution but it was approximately only half as fast as the reference
implementation. It was due to the fact that used graphics processor didn’t
performed very well with dynamic flow control and branches or loops as
it was only the first generation with Shader Mode 3.0 support and further
improvement was expected in the next generation. They also mentioned
that implementing accelerating technique for early ray termination in most
cases gained only very little performance benefit because of the mentioned
dynamic flow control instruction. Short time after this work, Klein et al. [14]
published another work on accelerating GPU based ray-casting by empty-
space–leaping technique. Simply by exploiting frame-to-frame coherence
they experienced a speed-up of more than a factor of two comparing to the
basic GPU ray-casting solution. Additionally they demonstrated selective
super-sampling based antialiasing because the achieved speed-up allowed
further image quality improvement.

2.2 Isosurface rendering

This work is mainly related to visualizing human skulls and so we also made
specific research concerning isosurface rendering. The method called March-
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ing Cube algorithm published by Lorensen and Cline [19] was the first tech-
nique widely used for visualizing isosurfaces. It was relatively easy and
required only hardware capable of triangle rendering. The reconstruction of
the surface was approximated by triangle mesh and therefore it produced
large amounts of triangles even for moderately complex datasets. Several
improvements of the basic method were described and algorithms like Regu-
larised Marching Tetrahedra (see Treece et al. [37]) were published. However
these extraction methods don’t provide good solution for interactive work
as the triangle mesh must be regenerated every time the isovalue has been
changed. Additional visual effects like global illumination or shadows are
also very difficult to apply onto the generated isosurface.

As discussed in previous sections about volume visualization, several
methods can be modified to perform volume rendering together with iso-
surface rendering without major and difficult upgrades. Westermann and
Ertl [42] showed ways to use 3D textures for the rendering of lighted and
shaded isosurfaces in real-time without extracting any polygonal represen-
tation. Engel et al. [9] improved their texture based method for isosurface
rendering and discussed specific problems in implementation of gradient in-
terpolation and lighting for isosurfaces. They also showed an intermixing of
semi-transparent volumes and isosurfaces when performed by a multi-pass
approach that first renders a slice with a pre-integrated dependent texture
and then renders the slice again with an isosurface dependent texture. Ad-
vanced multi-pass isosurface ray-caster was also included in the work by
Krüger and Westermann et al. [16] where they just modified shader pro-
gram for the passes from 3 to N with first two unchanged. They showed
how both opaque and transparent can be implemented and pointed out the
fact that gradient reconstruction and illumination has to be always per-
formed even if no surface has been hit, because fragment shaders have not
yet supported conditional execution of expressions. Also their acceleration
techniques proves worthy for standard datasets and opaque isosurfaces. An-
other implementation done by Sigg et al. [35] employed tri-cubic filtering
of a scalar volume for real-time high-quality reconstruction of an isosurface,
its gradients, and second order derivatives. They presented that with their
method an advanced shading such as high-quality reflection mapping, solid
texture filtering, and non-photorealistic effects based on implicit surface cur-
vature are possible in real-time. As mentioned on previous part, next very
interesting techniques for isosurface rendering were showed in the frame-
work by Stegmaier et al. [36]. Besides common transparent and opaque
isosurfaces they included shaders for isosurface scattering, self shadowing,
sphere-mapping or incorporated additional volume clipping. Until recently
this way of single-pass SM 3.0 method for isosurface rendering was consid-
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ered the best solution.

2.3 High-quality techniques

In most applications where the isosurface visualization is key element, meth-
ods with the best possible output quality are employed. All previously men-
tioned methods have one attribute in common and it’s the way they compute
intersections with the isosurface. They are based on approximation of the
surface-ray intersect point by linear interpolation and are highly dependent
on the chosen sampling precision. But for the exact intersection this is not
enough and therefore works like Marmitt et al. [20] presented alternative
solution for accurate ray intersections which on the other hand are suitable
for interactive applications because of the higher performance compared to
exact algebraic intersections algorithms. Their approach showed great suit-
ability for a SIMD implementation as well, so in our work we have chosen
this algorithm for visualizing high-quality isosurfaces.

2.4 Recent evolution in GPU architecture

With the arrival of the 8th generation of graphic cards from NVIDIA re-
leased in November 2006, NVIDIA’s first unified shader Direct3D 10 Shader
Model 4.0 / OpenGL 2.1 architecture was presented. It was the major shift
from separate concept of pixel and vertex shader to the more common model
where all shader types have almost the same capabilities as the instruction
set is consistent across all shader types. Thanks to the array of floating
processors called Stream Processors every shader can thus perform more
universal set of tasks. Additionally with the G8X GPUs, NVIDIA released
their Compute Unified Device Architecture know as CUDA. It is designed as
parallel programming model and software environment and allows program-
mer to write highly parallel programs which will execute directly on GPU’s
stream processors. These programs can be written in C language which is
very convenient.

After the release of CUDA Toolkit which is a C language development
environment for CUDA-enabled GPUs, there were several attempts on im-
plementing generic ray-tracer (see Rollins [31]). Using the first versions of
CUDA Toolkit to develop volumetric ray-waster was on the other hand quite
difficult due to the lack of 3D texture support that caused much lower perfor-
mance comparing to previous SM 3.0 implementations. This changed when
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CUDA toolkit 2.0 beta was released and when new SDK which came with a
simple example of volume renderer using newly added 3D texture support.

In our work we try to continue to follow this path and therefore we de-
veloped purely CUDA based full-scale ray-caster for isosurface visualization
and volume rendering. All previous methods proved as a good solution too,
but so far we have always seen great progress in the GPU industry so with
that in mind we anticipate all brand new hardware in near future which
will be even more suitable for general purpose computing. Also recently an-
nounced info about next version of DirectX included speculations about its
new shader technology which should re-position GPUs as general-purpose
parallel processors.
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Chapter 3

Theoretical Background

3.1 High-quality isosurfaces

3.1.1 Overview

One of the most important factor for some specific users working with the
volume visualization software is to have an ability to render as accurate
isosurfaces as possible. Common reason could be for example that every
small detail is very important and thus high-quality output is necessary.
Since we are interested only in the real-time algorithms we do not consider
methods where computation time doesn’t play an important role. Also we
will focus only in the area of ray casting-based algorithms.

Standard ray-caster based isosurface renderer can find surface intersec-
tions just by marching along the ray and sampling values of density which
are then compared to the preselected isovalue. Very important task is to
compute exact or just the most possible accurate position of that intersec-
tion and also try not to miss any.

Simple and common way to achieve accurate results is to increase ray
marching sampling rate. By doing this we are able to detect more isosurface
intersections but on the other hand we loose performance advantage since
sampling rate has direct impact on it. But still this is not the ultimate
solution as the behavior of the scalar function could have even higher fre-
quency so some intersections will be missed during the ray marching process
no matter how high sampling frequency is. Although many algorithms work
this way quite well our aim to is achieve correct results by using method
which should be fast and accurate at the same time.
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Assuming that source data come from CT scanning and so discrete den-
sity volume information has been stored equally into the vertices defined
by voxel structure of the dataset. Outside the vertices density is generally
calculated as trilinear interpolation from the values in the voxel’s reference
vertices. This implies that the function describing the density along any ray
passing through the voxel is a cubic polynomial. The whole problem of den-
sity calculation at any point of the volume has been additionally described
in the following section.

3.1.2 Density calculation

w0u0

v0

p

R

Figure 3.1: Ray cast into the grid of voxels.

Let’s have point p with the coordinates (u, v, w) where u, v, w ∈ 〈0, 1〉
are located in the volume space defined by eight neighboring vertices. Then
using

u0 = 1− u, u1 = u,

v0 = 1− v, v1 = v,

w0 = 1− w, w1 = w,
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density ρ(p) at this point can now be calculated from trilinearly interpolated
values ρijk at the bounding vertices as

ρ(u, v, w) =
∑

i,j,k∈{0,1}
uivjwkρijk.

General case has the point p(px, py, pz) located in the voxel whose vertices
have coordinates (xij, yij, zij) (i, j ∈ {0, 1}) and therefore we must first per-
form transformation into unit coordinate system and only then previous form
can be applied. According to the exact notation used in Marmitt et al. [20]
we get

p0 = (up
0, v

p
0, w

p
0) = (

x1 − px

x1 − x0

, . . .),

p1 = (up
1, v

p
1, w

p
1) = (

px − x0

x1 − x0

, . . .)

and final form as

ρ(px, py, pz) =
∑

i,j,k∈{0,1}
up

i v
p
j w

p
kρijk.

But our situation also requires calculating density along the ray and
hence using parametric ray representation R(t) = a+ bt is the most suitable
way to do it easily. In that context a is the origin point for the casted ray
and b is its direction vector.

When this representation is used with the transformed trilinear inter-
polation form defined above then density along that ray ρ(R(t)) can be
calculated as

ρ(t) =
∑

i,j,k∈{0,1}
(ua

i + tub
i)(v

a
j + tvb

j)(w
a
k + twb

k).

After additional rewrite by multiplying to the polynomial form we get

ρ(t) = At3 + Bt2 + Ct + D

which refers to cubic polynomial function as mentioned previously. Individ-
ual coefficients are thus defined as

A =
∑

i,j,k∈{0,1}
ub

iv
b
jw

b
kρijk

B =
∑

i,j,k∈{0,1}
(ua

i v
b
jw

b
k + ub

iv
a
j w

b
k + ub

iv
b
jw

a
k)ρijk

C =
∑

i,j,k∈{0,1}
(ub

iv
a
j w

a
k + ua

i v
b
jw

a
k + ua

i v
a
j w

b
k)ρijk

D =
∑

i,j,k∈{0,1}
ua

i v
a
j w

a
kρijk.
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When considering the initial task to find the intersections of the ray with
the isosurface defined by isovalue := ρiso then problem can be accomplished
by finding roots of the function f(t) = ρ(t)− ρiso in every voxel intersected
by the ray. Next few sections are dedicated to specific methods how to
compute those or approximate roots.

3.1.3 Analytic method

Simple and somehow naive method is to compute the roots directly by solv-
ing the cubic equation. Analytic method was historically published first by
G. Cardano [3] in the 16th century. Since then various implementations
based on his work have been presented (e.g. see [33, 18]). But accord-
ing to the research done by Herbison [12] most algorithms for solving cubic
equations have been proposed with aims of elegance, generality or simplicity
rather than error minimization or overflow avoidance. These interesting facts
can be found in his conclusion about operation counts of the best combina-
tion of stabilized algorithms for non-special cases summarized in the table
3.1. But when considering problems related to the fact that some implemen-
tation computes exclusively with single precision floating point numbers so
cumulated error can have even greater impact on final results, then this
method cannot be recommended. Therefore in the next sections some other
non-analytic methods based on iterative approach are introduced and their
characteristics described and compared.

Additions Multiplications Functions
and and e.g. Tests

Subtractions Divisions Root, Sine
Best 8 10 2 18

Worst 13 15 3 19

Table 3.1: Operation counts for a best combination of stabilized algorithms.

3.1.4 Approximation methods

Given entry and exit points tin, tout on the ray R(t) passing through the
voxel we would like to approximate the location of the roots of the function
f(t) = ρ(t)− ρiso inside given voxel. The very simple way to do it at a low
price is to test function values at the entry and exit points and if they differ
in sign, which implies that the function has root inside the interval. Then
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compute it by linear interpolation from those bounding points. Example
in pseudo code taken from Marmitt et al. [20] has been listed below as
algorithm 1.

Algorithm 1 Pseudo code for linear interpolating the intersection position.

// linear interpolation
ρin := ρ(R(tin)); ρout := ρ(R(tout))
if sign(ρin − ρiso) = sign(ρout − ρiso) then

return NO HIT
end if
return thit := tin + (tout − tin) ρiso−ρin

ρout−ρin

This simple approach assumes that density function along the ray be-
tween the boundary points has linear progress. But as we previously showed
this requirement is not always satisfied. The only case when the algorithm
works can be seen in the first situation on the Figure 3.2 in which the density
function has only one intersection with the isosurface.

ρ(in)
ρ(out)

ρiso

intersect #1

intersect #2

ρ(in)

ρ(out)
ρiso

intersect #1

intersect #2

intersect #3

2.

3.

ρ(in)

ρ(out)

ρiso

intersect #1

1.

Figure 3.2: Different cases of ray intersections with isosurface.
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When considering situation 1, then simple linear interpolation can be
improved by finding the intersection using the iterative method. This was
suggested by Neubauer [23] (see algorithm 2) because it gives great improve-
ment in the output quality as the intersections is computed with precision
very similar to the results achieved by analytic method. Additionally nu-
merical stability, which is here much better plays great role when computing
with single-precision floating point numbers. Although total time complex-
ity of the algorithm has increased, since the linear interpolation step has to
be performed several times (2-3 iterations are often sufficient) this method
can be still considered simple and useful solution for increasing quality in
isosurface rendering.

Algorithm 2 Pseudo code for Neubauer’s algorithm using repeated linear
interpolation.

// Neubauer: repeated linear interpolation
t0 := tin; t1 := tout

ρ0 := ρ(R(t0)); ρ1 := ρ(R(t1))
if sign(ρ0 − ρiso) = sign(ρ1 − ρiso) then

return NO HIT
end if
for i = 1..N do

t := t0 + (t1 − t0)
ρiso−ρ0

ρ1−ρ0

if sign(ρ(R(t))− ρiso) = sign(ρ0 − ρiso) then
t0 := t; ρ0 = ρ(R(t))

else
t1 := t; ρ1 = ρ(R(t))

end if
end for
return thit := t0 + (t1 − t0)

ρiso−ρ0

ρ1−ρ0

Let’s analyze another two possible situations shown on the Figure 3.2.
Situation 2 shows density function ρ(R(t)) having two intersections with
the line defined by value ρiso. When test where entry and exit values of the
function are compared to the isovalue is used, then those intersections will
be incorrectly missed. Although it is true that sign(ρ0 − ρiso) = sign(ρ1 −
ρiso), density function reaches its extrema inside the interval [tin, tout] and
therefore two of its intersections are incorrectly missed. The last situation
3 shows the very special case when there are all tree intersection inside the
interval [tin, tout]. In this case the test performed by the algorithm will be
successful. But since we are interested in finding the first intersection on the
ray and the returned result can be in fact the third intersection then this is
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another example when the algorithm can not be considered satisfactory for
accurate isosurface rendering.

3.1.5 Advanced iterative root finding

New Algorithm 3 introduced and presented in Marmitt at al. [20] can be
considered as improved version of Neubauer’s method. The main advantage
of this algorithm is that while still using repeated linear interpolation as
root finding element, it is also capable of handling situations 2 and 3 showed
in Figure 3.2. Thus it surpasses the previous approximative algorithms in
terms of completeness and correctness, while retaining their speed. Also its
accuracy is at least comparable to the approach and due to better numerical
stability can be in practice even better. Therefore it was chosen for our
application as a reliable high-quality approximated isosurface intersection
test.

The task of this new algorithm is to find the first root of the function f
defined as

f(t) = ρ(t)− ρiso.

Notice that the failure of previous algorithm was caused by the fact that it
can only operate on intervals where the function has monotonic progress.
By monotonic we mean that it has to be nondecreasing or nonincreasing.
A function f(x) is said to be nondecreasing on an interval I if f(x) ≤ f(y)
for all x ≤ y, where x, y ∈ I. Conversely, a function f(x) is said to be
nonincreasing on an interval I if f(x) ≥ f(y) for all x ≤ y with x, y ∈ I. On
the other hand the function is monotonic if its first derivative (which need
not be continuous) does not change sign. Therefore monotonic progress can
be guaranteed only for intervals defined by points where the function reaches
its extrema.

In our case the task can be solved easily because cubic polynomial func-
tion may have local extrema only in two points at most. This is equivalent
to finding t ∈ I where f ′(t) = 0 which can be accomplished by finding the
roots of the function

f ′(t) = 3At2 + 2Bt + C,

thus solving simple quadratic equation.

Let’s analyze situation shown on Figure 3.3. We have the function with
both its extrema e1, e2 inside interval [tin, tout], which divide it into three
subintervals I1, I2 and I3. As it can be seen the test for the first interval will
fail because no intersection occurs. Then we advance to the second interval
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Algorithm 3 Pseudo code for intersection algorithm introduced by Marmitt
et al.

// Marmitt: Extrema finding with repeated linear interpolation
t0 := tin; t1 := tout; f0 = f(t0); f1 = (t1)
// Find extrema by looking at f ′(t) = 3At2 + 2Bt + C
if f ′ has real roots then

e0 = smaller root of f ′

if e0 ∈ [t0, t1] then
if sign(f(e0)) = sign(f0) then

// Advance the ray to the second segment
t0 := e0; f0 := f(e0)

else
t1 := e0; f1 := f(e0)

end if
end if
e1 = second root of f ′

if e1 ∈ [t0, t1] then
if sign(f(e1)) = sign(f0) then

// Advance the ray to the third segment
t0 := e1; f0 := f(e1)

else
t1 := e1; f1 := f(e1)

end if
end if

end if
if sign(f0) = sign(f1) then

return NO HIT
end if
// now, know we have got a root in t0, t1
// find it via repeated linear interpolation
for i = 1..N do

t := t0 + (t1 − t0)
−f0

f1−f0

if sign(f(R(t))) = sign(f0) then
t0 := t; f0 = f(R(t))

else
t1 := t; f1 = f(R(t))

end if
end for
return thit := t0 + (t1 − t0)

−f0

f1−f0
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Figure 3.3: Original interval divided into three subintervals where monotonic
progress for the function is guaranteed.

where the test will pass and intersection itself will be found by repeated
linear interpolation as in previous algorithms.

As shown above this algorithm can be considered an alternative way to
finding intersection of the ray with the isosurface in specific voxel delivering
sufficiently accurate results with performance much higher than direct al-
gebraic solution. It is perfectly suited for applications which require higher
quality output. In our application we used both approaches by implement-
ing this algorithm for high-quality mode and the simple linear interpolation
algorithm for much common usage when the accurate isosurfaces are not top
priority.

3.2 Voxel traversal

The previous section discussed specific algorithms for computing accurate
isosurface intersections, and this section deals with voxel traversal. Because
the computations are done separately in each voxel, we need to find all these
voxels that are intersected by the ray and also compute points where the
ray enters and exits specific voxel. For this purpose we employed algorithm
which is similar to three-dimensional DDA line algorithm. It consists of two
parts: first is the initialization and the second is traversal loop itself. Input
parameters are start position of the ray with its direction vector (R(t) =
A + Dt) and the output parameters are entry and exit positions tIn, tOut
on that ray for every intersected voxel.

The first part serves for initialization of all variables needed for subse-
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Figure 3.4: Scheme for voxel traversal algorithm.

quent successful traversal. First of all we determine point where the ray en-
ters the volume (tIn) and also the position of entry voxel (voxX, voxY voxZ).
Then we compute the position where the ray crosses the first boundary be-
tween neighbor voxel in X axis and store that parameter as variable tNextX.
We do the same computation also for another two variables. As the ray can
move from voxel to voxel in each of three axis we have to compute increments
of t which are needed for transition to next voxel in the all three directions.
We store these values in variables tIncX, tIncY and tIncZ.

After the initialization we approach to the traversal part which is now
very simple. In each step we move to the next voxel in the direction which
has the lowest value of tNext parameter. This parameter also specifies new
exit point tOut. Then we update other two parameters and perform test
where is a voxel for the next step, since the ray may have left the volume.

Pseudo code for basic version of the main loop for voxel traversal is listed
in Algorithm 4. Increments used for moving to the next voxel have to be
set dynamically for general case because they can be positive or negative,
depending on ray direction.
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Algorithm 4 Pseudo code for the main loop of voxel traversal

outside := false
repeat

if tNextX < tNextY and tNextX < tNextZ then
voxX := voxX + 1
tOut := tNextX
tNextY -= tNextX; tNextZ -= tNextX; tNextX := tIncX
if voxX = maxX then

outside := true
end if

else if tNextY < tNextX and tNextY < tNextZ then
voxY := voxY + 1
tOut := tNextY
tNextX -= tNextY; tNextZ -= tNextY; tNextY := tIncY
if voxY = maxY then

outside := true
end if

else
voxZ := voxZ + 1
tOut := tNextZ
tNextX -= tNextZ; tNextY -= tNextZ; tNextZ := tIncZ
if voxZ = maxZ then

outside := true
end if

end if
// process current voxel
tIn := tOut

until outside

3.3 Self shadowing

Shadowing is one of the advanced techniques used for better spatial per-
ception of visualized object. There are several methods how to do it with
each one of them suitable for different situation. In our case we decided to
apply sharp shadows but as we describe it will not be a problem to switch
to soft shadowing mode. An example of skull rendered with and without
self shadows enabled can be seen on Figure 3.5.

Because our isosurfaces are rendered using ray-casting method, it is very
simple to integrate additional self shadowing. Rendering process is then
divided into two phases. First phase is the same as used in standard opaque
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Figure 3.5: Examples of rendering where self shadowing is disabled (left) together
with the feature enabled (right).

isosurface rendering. Primary ray is used for finding the first isosurface
intersection with the ray and after that the lighting is performed for this
point. Second phase stands for ray-cast of shadowing ray. The ray starts
at the intersection point and has the direction of the light vector. This ray
is also tested for intersection with the isosurface but the procedure is much
more simplified as we just want to know if there is any intersection or not.
The iterative root finding part described in the previous section is therefore
omitted. If no intersection is found, then no change is done, because that
point doesn’t lie inside a shadow, but if there is, final color is then altered
by shadowing factor Fshadow like this:

Cdst = Fshadow(FambCamb + FdiffCdiff )

Here Cdst stands for output color and Famb, Camb, Fdiff , Cdiff are ambient
and diffuse colors with their corresponding factors as the parameters of the
light.

Two possible situations are showed in Figure 3.6 where intersection P1
was found for the primary ray R1 and then self shadow test was done by
secondary ray S1. Since it has not intersected the object, surface color was
not changed. On the other hand isosurface point P2 lies in the shadow
because secondary ray S2 intersected with the object.

We have applied only one point light source in our application but simple
modification can be done to support multiple lights of this sort. But that
comes with high performance loss because for every new light, another shad-
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Figure 3.6: Ray-cast with shadows. Point 1 lies outside the shadow. Point 2 lies
inside because its secondary shadowing ray intersected with the object.

owing ray must be tested for intersection. Rendering with soft shadows is
very similar to this approach, where the light is sampled from several points
and therefore this high-quality shadow rendering is much slower.

3.4 Difference visualization

3.4.1 Skull comparison introduction

One of the common and the most time consuming procedure in the an-
thropological research concerning human skulls is to have them all correctly
examined, compared and every important difference or resemblance prop-
erly described. This comparison is done all between each other pieces, or
if it is needed, then only to the one reference skull. Comparison itself can
be realized old-fashion way just by manual examination and measurement.
Although only specialized persons perform this difficult task, the results
are sometimes inaccurate due to the restrictions, which made many things
impossible with this manual method. Such a process has also another disad-
vantage because repeated daily work can after some time seriously damage
certain skulls and is not even possible for many precious historical pieces.
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This is where CT is taken into consideration and therefore all skulls are
scanned into digital form. By doing this, set of slices are acquired for each
skull which can be later used for any other research and original pieces can be
safely stored for potential future use. Resultant slices are good start point
for checking differences which cannot be revealed in manual examination
method. Software which is capable of displaying multiple isosurfaces has to
be used in the first place. We designed several modes and techniques that
were integrated into our tool to provide the most suitable way for the skull
comparison and their additional difference visualization.

3.4.2 Slice view mode and DVR

This mode is similar to standard manual method based on the comparison
of individual CT slices but it is more enhanced. Main idea is to bring an
option for comparing various slices, not just those acquired from scanning
process or axis-aligned slicing. This mode is in fact a simple ray-caster for
volumetric data with a clipping plane as an additional feature. Researcher
can examine visualized volume data along that plane, which is just like to
work with CT slices but it allows much more freedom.

Applied front to back ray-marching requires besides color accumulation
also alpha opacity accumulation for the each step of the main loop. Desti-
nation color Cdst and alpha Adst are updated like this:

Cdst = Cdst + (1− Adst)AsrcCsrc

Adst = Adst + (1− Adst)Asrc

.

Csrc and Asrc stands for color and opacity of the new sample point on
the ray. In the each step inside the main loop we move further away from
the start in the direction of the ray. This step size therefore defines overall
rendering quality. When the opacity Adst oversteps preselected limit (eg.
a value 0.95) then ray-marching is complete because there is no need to
continue as every new accumulated sample will have only minimal effect on
the resultant color. This is a common way to integrate early ray termination
optimization technique. Also with clipping plane enabled, part of the volume
is clipped in advance, so the segment of ray that intersects the volume is
much shorter and needs fewer steps to compute the final color.
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3.4.3 Overlay mode

When two or more isosurfaces are rendered at once, it is not easy to see
and understand their spatial location. This is due to the fact that all closer
opaque isosurfaces cover others and some important parts are therefore hid-
den. Rendering with transparency enabled can be considered useful but on
the other hand, many visible transparent isosurfaces create chaotic over-
all visualization. Because of that we decided to design new rendering mode
that has all advantages of the rendering with transparent isosurfaces but also
doesn’t display too much information at once and only important isosurfaces
are rendered.

I.

II.

III.

A

B

Figure 3.7: Different situations for individual isosurface locations and their render-
ing style in Overlay mode. Only surfaces drawn with thick line will be rendered.

In this mode we render both opaque and also transparent surfaces so
that’s why is it called Overlay Mode. Some possible cases which can occur
during the rendering are shown in the Figure 3.7. It shows two isosurfaces
which has been drawn with different pen styles so different rendering modes
can be distinguished. All those parts of the surface that are drawn with full
thick line are rendered as opaque and those represented by thick dashed line
are rendered as transparent. Full thin line represents skipped surfaces and
dotted thin line stands for all those surfaces that are not rendered because
they are located behind opaque surface.

In the first sector we can see that all rays intersect only isosurface B with
two their intersections. Because of that, only surface corresponding to the
first intersection will be rendered and shaded as opaque. The situation in
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the third sector is the same. Little bit complicated spatial arrangement can
be seen in the sector II. Most rays intersected the surface A twice before
the intersections with the surface B. This gives us the first intersection of
surfaces A rendered as transparent (the second is skipped) and again the
first intersection of surface B rendered as opaque.

3.4.4 Ray cast mode

With overlay mode enabled, two skulls can be compared in very conve-
nient way. But for users who desire more information about the overall
arrangement of all isosurfaces we added yet another mode for visualizing
local differences. It is done by ray-casting so called Difference Ray and dis-
playing additional info about all its intersections with all isosurfaces in the
right order. This significantly helps to understand some spatial structure of
examined skulls. An example of this difference ray is shown in Figure 3.8.

Figure 3.8: When Ray cast Mode is enabled, user can cast Difference Ray and
see all its intersections by both isosurfaces visualized together with marked ray
segments, which represent the volume inside the bone.

Another important information is to display which segments between
those intersections represent bone and which just some empty space. We
know that scanned input volume data store density information and there-
fore areas representing bones have higher density than areas of empty space,
which have the lowest value equal to density of the air. The problem is
to determine if the intersection is the entry point and the ray points into
the bone or it is the exit point and the ray points out of the bone. It can
be solved by comparing the values of density function in points [tin and
tout] (used in previously described iterative root finding algorithm) but we
decided to use gradient information as the key to the solution.
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The fact is that the gradient vector calculated at the isosurface inter-
section points in the direction of the greatest rate of increase of the density
scalar field. After computing its dot product with the direction vector of
Difference Ray we can tell if that intersection is the entry or exit point for the
bone. With all intersections marked like this, it is no problem to visualize
all bone segments along the ray.

In the situations when the source data are calibrated and this mode
enabled, additional local measurement feature is possible. Voxel dimensions,
which are therefore very important input parameter, serve as primary form of
calibration. Then we can measure distances between individual intersections
on the Difference Ray and display the values next to corresponding ray
segment. Such a measurement tool is very useful for researchers who besides
difference visualization, desire also quick and easy way to perform local
measurements.
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Chapter 4

Implementation

4.1 CUDA

4.1.1 Scalable parallel programming model

CUDA stands for Compute Unified Device Architecture which is parallel pro-
gramming model and software environment created by NVIDIA. CUDA is
designed to overcome the challenge to create application software that trans-
parently scales its parallelism to leverage the increasing number of processor
cores, much as 3D graphics applications transparently scale their parallelism
to multi-core GPUs with widely varying numbers of cores. CUDA brings
all these advantages while maintaining a low learning curve for program-
mers familiar with standard programming languages such as C. (see CUDA
Programming Guide [27] for more information)

Since CUDA is developed by NVIDIA, it only works with recent gen-
erations of NVIDIA GPUs, first time introduced by G8X series. Later on,
all newer NVIDIA cards are compatible with CUDA, including GeForce,
Quadro and the Tesla line. As for AMD/ATI, there is another similar
GPGPU technology, which is called AMD Stream. It took different ap-
proach from that seen in CUDA and since we didn’t choose AMD Stream
for our implementation, this thesis will not deal with it. For more informa-
tion about AMD Stream computing refer to [1].

CUDA allows programmer to write functions called kernels, which are
executed in multi-threaded way. Unlike normal C function, set of threads
is assigned for simultaneous execution of the kernel code. Programmer can
specify how many of these threads will be created and how these threads
will be organized. Simple example of using CUDA kernel function for vector
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pair-wise addition operation is written below.

__global__ void vecAdd(float* A, float* B, float* C)

{

int i = threadIdx.x;

C[i] = A[i] + B[i];

}

int main()

{

// Kernel invocation

vecAdd<<<1, N>>>(A, B, C);

}

As mentioned before, the kernel executes multiple threads, which can
be distinguished real-time in the code by internal threadIdx variable. This
three component vector allows defining one-dimensional, two-dimensional
or three-dimensional interpretation of the thread block. Number threads per
block depends on how many shared resources like memory is used by all
threads in the block. Currently predefined constant 512 is the maximum
allowed number, but it may change in the future. Subsequently thread
blocks can form a grid, which can be one-dimensional or two-dimensional.
These dimensions and the block position inside the grid can be accessed
through blockDim and blockIdx built-in variables. The dimension of the
grid is specified by the first parameter of the <<<...>>> syntax.

The kernel function itself is declared as standard C function with __global__

keyword added before its declaration. Calling convention is slightly different
from other functions, where kernel parameters are written inside <<<...>>>
tag. In this example we called the kernel with one-dimensional block with
the size N and the grid was degenerated to single thread block.

CUDA software stack (see the Figure 4.1) consists of several host layers,
which are all above device part. Lowest layers capable of accessing the
device via application programming interface are the CUDA Driver and its
runtime. There is also layer with two mathematical libraries - CUFFT (Fast
Fourier Transform implementation) and CUBLAS (Basic Linear Algebra
Subprograms CUDA implementation) above that. Finally an Application
layer is the place, where the programmer can access any of those layers to
write specific CUDA application.

CUDA memory hierarchy can be described as a set of different memory
spaces with different characteristic, which are designated for specific usage
in specific situations. Each CUDA thread has its own private local memory
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Figure 4.1: Compute Unified Device Architecture Software Stack.

space. Shared memory space is shared between threads from the same block
and all threads can access global memory space. These memory spaces
are available only during the thread execution and to them only. On the
top of that, there are two additional memory spaces with read-only access
available to all threads: the constant and texture memory spaces. The
global, constant and texture memory spaces are persistent across kernel
launches by the same application.

4.1.2 A set of SIMT multiprocessors with on-chip shared
memory

When CUDA program launches its kernel then individual blocks of threads
are scheduled to run on Stream Multiprocessors. Each multiprocessor con-
sists of eight Scalar Processor (SP) cores, two special function units for tran-
scendentals, a multi-threaded instruction unit, and on-chip shared memory.
They employ new SIMT (single-instruction, multiple-thread) architecture.
Threads are executed on scalar cores independently and are scheduled by
multiprocessor in groups of 32 parallel threads called warps. All threads
from the same warp start together but can finish independently because
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every one can take different code path. Every instruction step, the SIMT
unit selects one warp, which is ready to run and executes next instruction
with its threads. Maximum efficiency can be then accomplished only when
all warp threads take the same code path and no divergent branches occur.
On the other hand the executions of threads from different warps are not
dependent and have no effect on execution performance.

Figure 4.2: A set of SIMT multiprocessors with on-chip shared memory.

SIMT architecture is similar to general SIMD vector architecture but
differs in several ways. The main difference is that SIMT instructions reveal
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execution and branching behavior of a single thread but SIMD vector or-
ganizations expose only their SIMD width to the software. Knowing those
advantages of SIMT architecture the programmer can write thread-level par-
allel code for independent scalar threads, as well as data-parallel code for
coordinated threads.

As illustrated in Figure 4.2, each multiprocessor has on-chip memory of
the four following types:

• One set of local 32-bit registers per processor,

• A parallel data cache or shared memory that is shared by all scalar
processor cores and is where the shared memory space resides.

• A read-only constant cache that is shared by all scalar processor cores
and speeds up reads from the constant memory space, which is a read-
only region of device memory.

• A read-only texture cache that is shared by all scalar processor cores
and speeds up reads from the texture memory space, which is a read-
only region of device memory. Each multiprocessor accesses the tex-
ture cache via a texture unit that implements the various addressing
modes and data filtering (see [27] for more information).

All these parameters together with kernel complexity and the size of the
thread block define maximum count of blocks processed by one multiproces-
sor because resources like registers and shared memory are limited for use. If
there are not enough registers or shared memory available per multiprocessor
to process at least one block, the kernel will fail to launch.

4.2 CUDA - final thoughts

It is important to understand, that while CUDA brings easy tool for de-
veloping multi-threaded algorithms, which take advantage of GPU multi-
processor architecture, also another aspect of this approach has to be men-
tioned. Most programs written for general-purpose CPU are not suited for
SMIT architecture and sophisticated algorithms perform relatively slowly.
One of the main reason is the divergent branching problem and low capacity
of fast on-chip memory like registers and shader memory. Also with recur-
sion not supported due to the missing stack, many algorithms like some
acceleration techniques do not deliver sufficient performance and have to
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be omitted form GPU implementation. However some of them can be up-
graded and greatly optimized for SMIT architecture, but this challenging
operation is very time-consuming even with the help of available CUDA
profiling tools. More information about optimization can be found in the
section about CUDA specific optimization.

On the other hand, properly written and optimized program greatly
outperforms any of its CPU implementations even on the latest high-end
multi-core processors. We also assume that further improvements of next
generations of NVIDIA graphics cards will bring much better support for
CUDA programming and also some new features available in the next CUDA
Toolkit. With that in mind, we will continue to experiment with more
CUDA-powered implementation of the algorithms used in the area of vol-
ume visualization.

4.3 WisS Application

WisS (Volume Visualization Software) is a testing application designated to
be a first-approach software solution used for volume visualization of human
skulls and their differences. It implements algorithms for isosurface render-
ing and specific difference methods described in the Chapter 3. Next few
sections are dedicated to individual parts of the program and cover descrip-
tion of their implementation details or partially serve as basic programming
documentation.

Simple software model of WisS application is shown on Figure 4.3, which
is in fact the structure of two main parts: .NET Windows Form Application
and CUDA Renderer Library accessible via CULIB API. First part is focused
mainly on GUI features and handles user control together with all option
setting for internal renderer, which is implemented in the second part as
dynamic link library.

4.4 Renderer library

4.4.1 Helper structures and objects

Addition helper structures were chosen for the representation of matrices
and vectors in the renderer. Classes CMatrix4x4 and CVector4 are imple-
mentations of those structures. They were created for handling all matrix
and vector operations. As their internal representation was made simple
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CUDA Renderer Library - CULIB.dll

.NET Application - WisS.exe

C# code

MainForm.cs

CUDARendererControl.cs

MyTransferFunctionControl.cs

...

C/C++ code

volumeRenderer.cu

volumeRenderer_kernel.cu

kernel8.cu

kernel16.cu

...

CULIB_API void VRLoadVolumeFromFile(int, char*, void*);

CULIB_API void VRRender();

...

Figure 4.3: Wiss Application software model.

with no complicated member structures, it is very convenient to use them
with compatible OpenGL vector and matrix functions or CUDA internal
vector types like float4.

Console text standard output was chosen for displaying various debug-
ging messages. But the Renderer Library as native Win32 module doesn’t
come with console after its startup. Therefore it was necessary to invoke con-
sole explicitly and redirect there all calls for standard output. This is done
at the initialization stage of the Renderer Library by RedirectIOToConsole

function.
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4.4.2 Application programming interface

This library is used by main application for loading the volume data and
consequent rendering process. Renderer can be accessed by calling CULIB
API functions only. It uses OpenGL for rendering the output image so
the main application is responsible for creating, handling and destroying
OpenGL rendering context and its window.

The simplest example of how to use the library for rendering a single
frame can look like this:

...

// initialize rendering engine

VRInit();

// specify output dimensions

VRReshape(512, 512);

// load volume data into memory

VRLoadVolumeFormFile(...);

// render into OpenGL window

VRRender();

// close engine

VRClose();

...

At the beginning, the engine must be initialized by calling VRInit func-
tion. Then VRReshape should specify the dimensions of output window.
From now on, the renderer is ready and we can load all raw volume data
from single file into the memory by calling VRLoadVolumeFromFile with
desired parameters. Finally the function VRRender is self explanatory and
serves for rendering the output image into current OpenGL window. Af-
ter that, we must free all data and close the renderer by calling VRClose

function.

Next part is an quick summarization of all library API functions divided
into groups according to their common usage.

Renderer engine core

void VRInit();

void VRClose();

void VRReshape(int x, int y);

void VRRender();
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void VRLoadVolumeFromFile(int volID, char *fileName,

SVolData *volData);

All functions have been used and described in the previous example so
SVolData is the only one new structure and contains a definition of volume
dataset size, voxel extent and the number of bits per component in the source
data:

struct SVolData

{

int3 datasetSize;

float3 voxExtent;

int srcBpc;

};

Camera control

void VRRotate(int posX, int posY, float x, float y, float z);

void VRMove(float x, float y, float z);

float VRGetZPos();

void VRSetZPos(float z);

This library also handles simple camera control so all mouse input is
translated into the calls of these functions and the camera can be moved or
rotated by specific desired offset. For performing an arcball rotation style,
application must send mouse cursor position relative to output window as
additional parameter in VRRotate function.

Isosurface settings

void VRSetIsoValue(int volID, float value);

void VRSetIsoSurfaceColor(int volID, float r, float g, float b,

float a);

Isosurface is defined by specifying its isovalue and RGBA components
of a color used in the isosurface visualization. Isovalue must be within the
range of [0, 1] where 1 represents the highest possible density in the volume
data.
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DVR settings

int VRSetTransferFnc(int volID, float* data);

void VRSetDVRSteps(int steps);

void VRSetDVRAccCoef(float coef);

These functions are used for setting the count of ray-marching steps and
specifying color accumulation coefficient in the Direct Volume Rendering
mode and also for setting user-defined transfer function as one-dimensional
lookup table for the each volume.

Clip Plane

void VRResetClipPlane();

void VRMoveClipPlane(float offset);

void VRRotateClipPlane(float x, float y, float z);

void VRShowClipPlane(int show);

Clip plane, which is only used in DVR mode, is controlled by functions
allowing movement, rotation and visibility of the clip plane.

Miscellaneous functions

void VRSetRenderMode(int mode);

void VRShowBBox(int show);

void VREnableDiffRay(int enable);

void VRShowDiffRay(int show);

void VRSetDiffRayPos(int x, int y);

void VREnableVolume(int volID, int enable);

int VRGetHistoData(int volID, float *data);

The last group includes functions for visibility flags of bounding box,
Difference Ray or flags for enabling specific volume for rendering. Rendering
mode can be changed too. Also both transfer function controls retrieve all
histogram data via the last function from this group.

4.4.3 Textures

Textures are one of the most important data structures used in the volume
rendering implementation. At least one three-dimensional texture is required
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for storing source volume data and when performing DVR, another texture
is needed for storing data sampled from the transfer function.

CUDA supports a subset of the texturing hardware that the GPU uses
for graphics to access texture memory, which brings several performance
benefits over a case when using global memory. Kernel function can access
texture data through CUDA functions for texture fetches. These functions
operate with specific type of CUDA object called texture reference. It defines
which part of texture memory is fetched. Each texture reference must to be
bound with region of device memory, called texture, before it can be used
by a kernel.

A texture reference has several attributes. The most important attribute
specifies its dimensionality. It defines how it is addressed via texture coor-
dinates. For example single texture coordinate is required for addressing
one-dimensional array and three coordinates are required to address three-
dimensional array. Anther attribute specifies the type of data that is re-
turned when fetching the texture. This can be for example single-precision
floating-point four component vector of just one integer scalar value. There
are also several run-time texture attributes, which specify whether texture
coordinates are normalized or not, the addressing mode and the texture
filtering.

CUDA allows to allocate device memory either as linear memory or as
CUDA arrays. CUDA arrays are opaque memory layouts optimized for
texture fetching. Because of that, it common way to use them for storing the
volume data in three-dimensional array. CUDA arrays are only readable by
kernels through texture fetching and may only be bound to texture references
with the same number of packed components. Writing into the array can
be performed only in host code and only through the special memory copy
functions from CUDA API.

We use these texture references in our implementation:

• texA8 8-bit 3D texture for primary volume data,

• texA16 16-bit 3D texture for primary volume data,

• texB8 8-bit 3D texture for secondary volume data,

• texB16 16-bit 3D texture for secondary volume data,

• transferDVRTex 2D four-component texture for transfer function for
both volumes
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Not all of them have are bounded to the CUDA array. Secondary volume
texture is used only when comparison of two skulls is required and their
differences are visualized. Also 16-bit texture is used only for multi-byte
source data so half of allocated device memory can be freed otherwise.

4.4.4 Volume data loading

Loading new volume data into CUDA arrays is performed in several steps
by function VRLoadVolumeFromFile. Input parameters specify filename,
dimensions, voxel size and other information about loaded volume dataset.
Loading process is also slightly different for secondary volume, because it
its required, that all parameters must be the same as defined by primary
volume. Because of that, current version of our application doesn’t support
primary and secondary volume with different dimensions.

When loading the primary volume, we first reset all global parameters
and update them with the new values. If we have already loaded any pre-
vious volume data, all this memory is freed (FreeVolume) and new one
is allocated (CreateVolume). After that, main loading process is started.
Data are read from source file to CUDA array slice by slice and for each one
slice, all its data values are scaled to the interval from 0 to 2bpc − 1 by the
function CopyRawToFinalSliceData. Histogram calculation is done there
too. Function SetVolumeSliceData then performs all host-to-device mem-
ory copy operations. In this function we have to perform additional memory
transfer from host to page-locked memory, because current beta version of
CUDA Toolkit suffers from a bug concerning memory copy operations. This
known issue should be fixed in the public release.

4.4.5 Rendering

Rendering into OpenGL window is performed by VRRender function. This
process consists of several phases, which are responsible for specific tasks
used for the rendering of final image.

1. Set view transformation matrix and clipping plane

2. Update required global parameters

3. Map pixel buffer object to CUDA and call kernel function for selected
rendering mode

4. Render back faces of bounding box and clip plane if enabled
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5. Use PBO to draw textured full screen quad over it

6. Render front faces of bounding box and clip plane if enabled

7. Call kernel function for Difference Ray and display its information if
enabled

4.4.6 Global parameters

Due to the fact that single kernel function can only have limited number of
parameters (defined by maximum shader memory for parameters, see [27]),
most global parameters accessed by kernel are defined as __constant__

variables. Because of that, relatively fast access is guarantied by CUDA
constant memory cache.

All these CUDA constants have their relevant equivalents in host vari-
ables. Their values are copied to the CUDA constants at the initialization
stage when loading data, like to these parameters

float3 c_volSize,

float3 c_voxExtent,

float3 c_volBoxSize,

or if it is required, they are updated every time before the rendering
process. Three such a self explanatory global parameters are listed below.

float3x4 c_invViewMatrix,

float c_stepSize,

float c_isoValue[MAX_VOLUMES]

Several parameters have their purpose in minor optimization, like to
minimize floating point division operations. For example volume dimen-
sions are frequently used in many calculations so we added these two global
parameters as inverted values:

float3 c_volSizeInv,

float3 c_volBoxSizeInv
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4.5 Kernel functions

There are four different types of kernels functions designed to perform spe-
cific tasks.

• d_RenderDiff - basic renderer for transparent isosurfaces and Overlay
difference mode

• d_RenderShadow - advanced renderer for high quality opaque isosur-
faces with self shadowing

• d_RenderDVR - simple direct volume renderer for Slice view mode

• d_DiffRay - single ray cast for Difference Ray mode

All kernel functions perform some kind of ray casting technique and
except the last one, all produce rendered output image. Because of that,
output buffer and its dimensions are passed as function parameters to these
kernels. Specific output buffer is also used for calculating all Difference Ray
information that is filled by the fourth kernel.

4.5.1 Isosurface renderer

Basic isosurface renderer is implemented by d_RenderDiff8 and d_RenderDiff16

kernel functions. It supports multiple (two) transparent isosurfaces and be-
sides standard rendering it does also Overlay mode.

Rendering process is divided into these main parts:

1. Initialization

2. Voxel traversal

3. Intersection test

4. Isosurface shading

Initialization part is responsible for several calculations, which have
to be done before the start of following voxel traversal loop. First of all,
parameters like direction vector for the ray are computed according to inter-
nal kernel variables threadIdx and blockIdx. After that, ray and volume
bounding box intersection test is performed. If it is not successful, kernel
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function ends and no pixel is rendered. Otherwise we get two ray inter-
sections - volume entry and exit points. Then according to initialization
phase for voxel traversal algorithm, described in the Chapter 3, we deter-
mine entry voxel position and compute increments of t which are needed
for transition to next voxel in the all three directions together with such a
closest positions. This part of code contains multiple branches, but as it is
just the initialization step, which is executed only once per each ray, it is
not necessary to be concerned about this.

Voxel traversal is implemented as the main loop in the rendering algo-
rithm. In the each step, next voxel intersected by the ray is processed and
its entry and exit points are computed. Voxel traversal is aborted as soon
as the ray leaves the volume or the opacity of the rendered pixel exceeds the
threshold value (set to 0.95).

Intersection test is the core of the isosurface rendering. As described
in Chapter 3 about iterative root finding, we use Neubauer’s algorithm. Iso-
surface intersect it then calculated via repeated linear interpolation. This is
not the accurate test, but it is sufficient enough for this mode. We can switch
to better quality test anytime by uncommenting #define EXACT_TEST. This
test is performed for each enabled volume.

Isosurface shading is the last important part of the isosurface ren-
derer. After surface intersection is found (and its position calculated), func-
tion DoShading performs its shading. We use Phong reflection model and
therefore normal, reflection and light vectors are calculated for the inter-
section point. Then ambient, diffuse and specular lighting are applied and
final shading is done to the pixel. When Overlay mode is enabled, shading
is done only for the first intersects for each isosurface and these two colors
are blended together.

4.5.2 Renderer with self shadowing

This renderer, which is implemented by d_RenderDiff8 and d_RenderDiff16

kernel functions, is different form the previous one in three key elements:
renders always high-quality isosurfaces, doesn’t support transparency and
includes self shadowing.

The process of this renderer is divided into two parts, where the first
part has identical structure as the whole rendering process in the previous
kernel. However high-quality intersection test algorithm, that is described
in Chapter 3, is always used instead of repeated linear interpolation algo-
rithm. Also when the first intersection is found and shaded as opaque, voxel
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traversal stops and the second phase is started.

The second phase performs ray-cast of shadow ray and therefore it can
use the same algorithm as the first phase. At the beginning, shadow ray
direction is calculated and intersection point found by the first phase is set as
a start position for the shadow ray. For the each step of voxel traversal loop,
isosurface intersection test is reduced. Exact position of the intersection is
not needed so only those calculations, which can confirm its presence are
performed. Because of that, computation time of the second phase is much
faster than in was in the first phase. If the intersection is found, then the
color of rendered pixel must be changed according to the shadowing factor.

4.5.3 DVR

Although the first part of this kernel is similar to that used in other kernels,
direct volume rendering kernel is completely different from those used for
isosurface rendering. No voxel traversal is performed but instead, we use
simple ray marching with a constant step. Also after the initial ray-volume
bounding box test we do another one for a clipping plane, which is always
enabled in this mode.

Main part of this kernel is the ray marching loop. Current position on
the ray is updated in the each step by moving along the ray by defined step
size. This position is then used to sample scalar density data from the 3D
texture and it is done for each enabled volume. These values are then used
as coordinates into transfer function texture and retrieved RGB color is then
blended with color accumulated in previous steps. Opacity of the pixel is
also updated. Main loop ends after the ray marching reached its volume
exit point or after successful early ray termination maximum opacity test.

4.5.4 Difference Ray

This kernel is almost the same as for high-quality isosurface renderer, but
it actually doesn’t produce any output image, but instead, only fills buffer
with information about ray intersections. This is later used for the final
visualization of Difference Ray info.

Output buffer structure is very simple, when the first two values form a
header, followed by a set of trio values for each intersection. Specific order
of the first few items in the output buffer looks like this:

0. Intersection count
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1. Length of the ray segment from to volume entry to its exit point

2. Position of the first intersection

3. Flag that specifies if the first intersection is the bone’s entry or exit
point

4. Volume ID of the first intersection

5. Position of the second intersection

6. ...

Gradient vector calculation is performed to determine the flag if the
intersection point represents entry or exit for a bone segment on the ray.

4.6 Optimization

Optimization is one of the most important process in the implementation
stage. It is the process of modifying a system to make it work more efficiently
or use fewer resources. In our case, we aim for maximum rendering speed,
measured in frames per seconds (FPS). Because we work with large datasets,
we also don’t want to waste much more memory than is defined by minimum
memory requirements for volume data.

Optimization can occur at a number of levels. The highest level stands
for system design and handles better resource management, which can be
beneficial for used algorithms. These algorithms will benefit from good
quality code, which depends on compiler optimization. The lowest level can
be achieved by modifying program’s assembly directly and it is considered
last possible option for all those cases, when optimization done by compiler is
not sufficient. However recent compilers are able to produce highly optimized
code and in the most cases the programmer can not achieve much better
performance gain with his hand-written assembly optimization.

The process of the optimization is based on finding bottleneck, which is
critical part of the code that consumes most resources like CPU or GPU
time. The most performance improvement is gained after optimization of
this part. It is not always possible to achieve this at satisfactory level,
because improvement of one component done by optimization, can cause
some degradation for other components of the program. This trade-off is
common factor in optimization phase and programmer must decide which
components should be improved and which can be therefore less effective.
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We have dealt with optimization of our program since its design, but
with that in mind we also tied to avoid any premature optimization as it is
considered ”root of all evil” (D. Knuth [15]).

4.6.1 CUDA specific optimization

Development of CUDA programs requires enormous time, that has to be
spent with CUDA specific optimization. SIMT architecture allows us to
include various types of optimization and in this paragraph we follow some
of advices given by Green [11] in his presentation about CUDA Performance
Strategies. After each group of optimization type, we report how it is done
in our application and provide other comments.

Optimize Algorithms for the GPU

• Maximize independent parallelism

• Maximize arithmetic intensity

• Sometimes it’s better to recompute than to cache. GPU spends its
transistors on ALUs, not memory.

• Do more computation on the GPU to avoid costly data transfers. Even
low parallelism computations can sometimes be faster than transfer-
ring back and forth to host.

Our ray-tracing algorithm is parallelized on ray level. For each ray, new
thread is created and its corresponding pixel is rendered. These threads
work independently and only one data transfer is performed for each ren-
dered frame. We can also confirm that multiple computation operations
outperformed single texture read in one special case of ComputeValue func-
tion. This function was frequently used in the kernel for isosurface renderer,
so we used proposed approach (it’s better to recompute) and successfully
optimized this part of code. To maximize arithmetic density we tried some
modifications to code flow, like reducing number of branches. But the over-
all complexity of implemented algorithms doesn’t allow many changes for
achieving better arithmetic intensity.

Optimize Memory Coherence

• Coalesced vs. Non-coalesced, Local vs. Global

• Optimize for spatial locality in cached texture memory
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• In shared memory, avoid high-degree bank conflicts

Volumetric data are stored in multiple 3D textures. Our first implemen-
tation used one texture of uchar4 type and one of ushort4 for different
source data (8bit/16bit). Because of that, we have supported up to four
volumes, each one stored in one texture component. However we have only
used two of them for skull volumetric data and one for additional color for
isosurfaces. This changed in late development phase and single component
textures are used instead. This allowed us use to spare some free memory
and use it for loading larger primary dataset when the secondary volume
is not required. We noticed that performance has decreased a little. It is
due to the fact, that when both volumes are used for rendering, two texture
fetch operations are performed instead of one. This is a good example of
trade-off.

Spatial locality in cached texture memory is partially satisfied, because
of the method for voxel traversal and isosurface rendering. Only the first
ray, that intersects a voxel, performs full texture fetch of eight values from
its vertices, but all others use cached data. But we have keep in mind, that
when using two single component textures, ”4-byte read” is not satisfied,
and it can have some impact on memory read performance.

Take Advantage of Shared Memory

• Hundreds times faster than global memory

• Threads can communicate through shared memory

• Use one/a few threads to load/compute data shared by all threads

• Use it to avoid non-coalesced access. Stage loads and stores in shared
memory to re-order non-coalesceable addressing.

The nature of our ray-casting algorithm doesn’t consider any thread
communication via shared memory, nor any thread-wise pre-computation.
On the other hand, we understand the importance of shared memory and we
have tried to use it as replacement for local memory. In the most complex
kernel, d_RenderShadow number of free registers is lower than its memory
requirements so some local memory is allocated. Local memory is very
slow (latency) comparing to registers and shared memory, and therefore we
thought that some performance can be gained. Unfortunately we were not
successful because after this optimization, there was no change in allocated
size of local memory. We think, it is the great complexity of this kernel,
that doesn’t allow further replacement for local memory or some problem
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with the compiler (we have found many of them so far). However it is
possible that some local memory latency can be hidden by higher number of
running threads, but this has to be tested. On the other, in the much simpler
d_RenderDVR kernel, we successfully reduced used registers and gained some
additional speedup.

Use Parallelism Efficiently

• Partition your computation to keep the GPU multiprocessors equally
busy (many threads, many thread blocks)

• Keep resource usage low enough to support multiple active thread
blocks per multiprocessor (registers, shared memory)

We have studied generated cubin files and used CUDA Visual Profiler
[6] or even decuda [5], external disassembler tool, to analyze our CUDA
kernels. We have discovered some important information like number of
used registers, size of allocated constant, shared and local memory or number
of divergent branches. These information are very important and we have
referred them as useful indicators during the optimization process.

At the beginning we started to run kernels with block of threads with
dimensions 32x16, which means, that we used all 512 possible threads. How-
ever as the complexity of some kernels grew enormously, we were forced to
decrease the number of threads to 128 with the block of threads downsized
to 16x8. This gave us 64 available registers and 128 bytes of shared mem-
ory per thread. With these resources available, each kernel showed different
requirements in cubin file. Used constant memory doesn’t really have any
significant impact on overall performance so we focused mainly on used reg-
isters and local memory. d_RenderDVR kernel showed as the one with the
lowest register consumption (20) and d_RenderShadow as the one with the
highest requirements (60 regs. + 68 local mem.). That means 10 times
lower multiprocessor occupancy, which we consider key factor for overall
kernel performance.

4.6.2 Global optimizations

It application design stage, we hoped for many possible accelerating tech-
niques, which can be used in our volume renderer. Most of all we intended
to use techniques like early ray termination or efficient calculation of isosur-
face intersections. We also thought about optimizing pixel transfer, when
rendering the final image.
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• Early ray termination: This common acceleration technique was
implemented without any problems. It is focused on reduction of un-
necessary pixel operations in DVR or rendering of transparent isosur-
faces. As described in the previous sections, we perform front-to-back
ray-casting and because of that, we can interrupt ray marching process
after opacity has reached predefined threshold - further color accumu-
lation is not necessary. Gained speedup was not measured, but it is
clear that this technique brought us significant improvement.

• Voxel traversal: First version of our voxel traversal algorithm was
rather slow and ineffective. We noticed, that it was necessary to op-
timize this part of code especially for large datasets, where there are
many intersected voxels. Some optimization was done to original al-
gorithm but at the end we have written completely new version of
voxel traversal algorithm. It is much faster and also the code is much
simpler. Detailed description of the new algorithm can be found in
Chapter 3.

• Isosurface intersections: The most critical part of our renderer is
the code for calculating isosurface intersections. We use two differ-
ent algorithms for those calculations: Neubauer’s algorithm for re-
peated interpolation and accurate intersection finding algorithm by
Marmitt et al. Both are described in Chapter 3. Accurate test is
much more complicated and therefore we first aimed for reducing the
number of those cases, when this test will fail because no intersection is
found. For each processed voxel we fist look at its eight vertices. If all
density values are below or above defined isovalue, we already know,
that there is no isosurface intersection and there is no need to perform
additional accurate test. This optimization gained some noticeable
performance improvement and was considered successful. However
when we optimized Neubauer’s algorithm, we saw even greater differ-
ence of FPS, but in negative axis. This was quite a shock. We think,
that the main reason could be the fact that both algorithms are totally
different. One algorithm (though complicated) can take advantage of
well written optimization and another (simpler) just doesn’t need it
because in the end it makes it slower.

• Empty space skipping: This global optimization was intended to
be used only in a case of poor and insufficient performance. We have
always thought that our renderer can perform better with empty space
skipping technique. But after some time programming in CUDA, it
showed that implementation of kd-tree or octree hierarchy is not really
convenient to use with CUDA. Recursive structures and tree traversal
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are good choice for CPU renderer but our case requires alternative
approach. This is a example of optimization designated for future
work.

• Pixel transfer: We noticed, that volume renderer example, supplied
with new CUDA SDK, used glReadPixels for uploading final image
from PBO to screen. This function is considered as relatively slow
for pixel transfer operations and therefore we decided to use faster
alternative. Instead of glReadPixels, we first use glTexSubImage2D

for uploading data from PBO to texture and then draw full-screen
quad using this texture. This idea seamed to be good option, but
we have discovered that performance improvement was only about 1%
above the results achieved by original method.

4.7 .Net Application

Main application is a single window program developed under .NET using
Windows Forms. This main window is handled by MainFrom class. There is
no message loop like in native windows application when using WIN API.
Instead of that, all actions are handled by callback methods, which are
assigned to specific events. Methods like OnPaint and OnClick are examples
of these callbacks.

One of the most important callback is that for idle event, which is han-
dled by OnApplicationIdle method. It occurs when the application finishes
processing and is about to enter idle state. We use this method to update
the renderer and also update our special timer, which performs calculations
of frames per seconds (FPSTimer class). Other callbacks process numerous
events from all main GUI controls like main menu, right control panel of
transfer function controls. Every action is then translated into Renderer
Library API function call. User can perform various actions like load new
volume data, toggle bounding box visibility, set specific color for isosurface
or change its isovalue. Complete list of supported actions is equivalent to the
list of functions described in the previous section about Renderer Library
API.

4.7.1 VL framework

VL framework was designed by J. Hlaváček (see [13]) as a complex frame-
work dealing with accelerating and simplifying the development of systems
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for processing and visualization of medical volume data in C#. We intended
to use VL as much as possible or even integrate our CUDA renderer into VL.
But at the end we decided to use only a small part of all its features - its high
level support for transfer functions. We use VL class TransferFunction1D,
which is responsible for all operations handling one-dimensional transfer
function.

4.7.2 Transfer function control

This control is represented by MyTransferFunctionControl class and it is
inspired by a similar control used in experimental implementation of volume
renderer, which was included in the first release of VL framework. This
custom control is responsible for managing the transfer function for specific
volume. It was designed to provide user friendly interface for visualizing and
modifying this transfer function. We also implemented feature for loading
predefined lookup tables (LUTs) from a text file. Renderer Library API
function VRGetHistoData is used to fill all histogram data from assigned
volume dataset. Whenever user interacts with the control and its transfer
function is changed, renderer is updated through VRSetTransferFnc API
function.

4.7.3 Renderer control

User control, which wraps CUDA Renderer Library and defines output ren-
dering window is handled by class CUDARendererControl. OpenGL render-
ing context for its window is created during the initialization part, when
the control is created. This context is destroyed by parent window when
the control is about to be disposed. After OpenGL window and Renderer
Library are initialized, it is possible to load new volume data and start with
the rendering by calling VRRender function.

User interaction is handled by processing various mouse and key events
by assigned callback methods. OnMouseDown, OnMouseMove and others pro-
cess user input and translate it into specific Renderer Library API function
like VRRotate or VRMove. When this happen, renderer switches into inter-
active mode for smoother rendering and output resolution is scaled down to
1/4 of window size. After predefined time of user inactivity (1000ms) it will
switch back to normal rendering mode.

This control was intended to be compatible with VL interface API for
user DVR and isosurface renderer classes. Unfortunately VL framework
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doesn’t provide suitable compatibility level with Renderer Library. It is
because our CUDA solution requires different interface than it was showed
in experimental SM 3.0 renderer implementation for VL. Of course we are
still interested in integrating our renderer into VL and therefore it can be
considered future work.
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Chapter 5

Results

5.1 Performance comparison

We have performed several benchmarks to provide overall information about
rendering performance of our application. Standard desktop PC with fol-
lowing configuration was used for the tests:

• OS: Windows XP SP2, 32-bit

• CPU: AMD Athlon 64 3000+

• System Memory: 2048 MB

• VGA: NVIDIA GeForce 9600GT, 512 MB Video Memory, Driver ver-
sion 177.35b

We believe that this combination of single core processor and mainstream
GPU is representative for most mid-range users and so are our performance
results.

Because our program was designed to run as windowed application (al-
though full-screen is also possible), default size of renderer window was set
to acceptable 512×512. Most of our tests were performed in this resolution.

The first set of tests was executed with five different datasets and four
different rendering modes. Each dataset is specific in its size and structure.
We believe that such a combination of various tests is necessary to provide
overall perspective of the rendering performance.
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Figure 5.1: Engine dataset, as rendered in different modes. Left to right, top to
bottom: opaque and transparent isosurfaces, self shadowing and direct volume
rendering.

The application supports several rendering modes (see Figure 5.1). Trans-
parent isosurface rendering mode is our default mode. It was used for opaque
isosurface rendering as well. Tests for high-quality rendering were performed
in self shadowing mode and direct volume rendering was also used for test-
ing. Difference Ray and Overlay mode were not included in the benchmarks,
because the first one computes only one ray (which is not interesting for test-
ing), and the second one is performed in fact by the same kernel as used for
transparent isosurfaces.

The Figure 5.2 shows the rest of the datasets used in our benchmarks.
The first one is Bucky ball, which is also a dataset with the smallest size (323).
We used sample bucky ball provided by NVIDIA CUDA SDK [28] volume
renderer example. The second dataset is down-sampled version of Bonsai
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Figure 5.2: Datasets used for performance testing: Bucky ball(top-left), Bonsai
tree (top-right), CT head bottom-left and Anthropological skull (bottom-right).

tree (2562× 128) from Stefan Röttger’s Volume Library. CT scan of human
head (2562 × 225), which was acquired from Simple and Flexible Volume
Rendering Framework (SPVolRen), developed by Stegmaier et at [36] is
the third dataset. This framework is also used as the reference renderer,
which our solution is compared to. This comparison is performed in all
four rendering modes, and with the mentioned datasets. The last testing
sample is an anthropological skull (5122×648), which is our largest dataset.
Unfortunately were not able to load it into SPVolRen framework because of
unknown loading error.

Final results for all benchmarks are shown in the Table 5.1. We have
performed measurements of minimum, maximum and average count of ren-
dered frames per seconds (fps). The output window was resized to resolution
of 512×512 pixels. During this benchmark, fps calculations were performed
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Test 1: Opaque Isosurfaces
min. max. avg. avg. fps
fps fps fps SPVolRen

Bucky 90.0 93.0 90.3 30.0
Engine 31.5 37.0 33.1 60.2
Bonsai 16.5 22.6 18.4 30.03
Head 14.3 18.4 16.0 29.1
Skull 3.3 10.8 5.3 N/A

Test 2: Transparent Isosurfaces
min. max. avg. avg. fps
fps fps fps SPVolRen

Bucky 73.1 76.0 74.2 4.2
Engine 21.6 26.5 23.6 7.9
Bonsai 15.5 21.6 17.2 8.8
Head 12.0 15.1 13.3 5.1
Skull 2.1 8.1 3.4 N/A
Test 3: Self Shadowed Isosurfaces

min. max. avg. avg. fps
fps fps fps SPVolRen

Bucky 19.4 22.0 20.8 29.3
Engine 7.5 11.6 8.5 37.5
Bonsai 4.8 7.3 5.4 20.1
Head 3.8 5.4 4.5 24.75
Skull 0.7 2.9 1.1 N/A
Test 4: Direct Volume Rendering

min. max. avg. avg. fps
fps fps fps SPVolRen

Bucky 54.0 57.0 55.3 29.9
Engine 81.1 92.3 85.5 41.0
Bonsai 59.0 60.2 59.4 28.2
Head 44.7 61.2 49.3 23.2
Skull 7.4 34.0 11.2 N/A

Table 5.1: Comparison between our application and SPVolRen framework in four
different rendering modes.

and measured while rotating tested volume around its y-axis. All 360 cor-
responding frames are rendered.

These results clearly show, that the complexity of used datasets is almost
equally scaled in all rendering modes with one little exception - bucky ball
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performance in DVR rendering. Differences between minimum and maxi-
mum fps fluctuated between 2% increase, up to over 300%. High values were
however measured with absolute difference of 6 fps. We can see them almost
exclusively in those tests, which were performed with the largest dataset.

Next we compare the results from the first test with the second test. This
shows, how much is the algorithm for opaque isosurfaces faster than the ver-
sion, which renders more isosurfaces with transparency enabled. Overall
speedup is about 20% and it means that additional computations for trans-
parent isosurfaces bring only moderate slowdown. These two modes are
using the same renderer so the difference is caused only by those additional
computations for each new intersected isosurface.

Self shadowing showed clearly as the most time-consuming rendering
mode. However, it was caused mainly by its part of the code where high-
quality isosurface test is performed. It increased overall complexity of the
renderer to higher level. Although it produced the best quality of rendered
isosurfaces, it performed slower than others. Value of minimal fps for the
Skull dataset was below 1, and because of that it can not be used for inter-
active work with very large volumes.

The last group of tests benchmarked direct volume rendering mode. We
used default transfer function a sampling rate of 512 samples for the volume
ray-marching. The results showed the best performance among all rendering
modes. This was expected, because its rendering kernel is the most simple
implementation among others.

Our CUDA renderer was also compared with alternative SM 3.0 imple-
mentation of SPVolRen framework to show relative difference in performance
for all compatible rendering modes. This comparison showed us that in the
some cases SPVolRen performed better as our solution. Transparent iso-
surfaces and direct volume rendering was on the other hand faster with our
renderer. It is also important so say that we use complex ray-caster based
on voxel traversal and SPVolRen is based on sampling ray-caster, which is
much simpler. We also found their renderer more balanced, when average
fps for each dataset was not so much dependent on tested dataset. How-
ever we noticed small abnormality in their shader for rendering transparent
isosurfaces. Its poor results were observed with all used datasets. The av-
erage performance drop over the previous mode for opaque isosurfaces was
measured by factor of six. Compared to our renderer, it is much slower.

Final results for the last set of benchmarks are showed in the Table 5.2.
We measured average fps of the renderer for opaque isosurfaces again, but
this time, we report how it scales with different resolutions of rendering
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1282 2562 5122 10242

Bucky(323) 398.0 219.0 92.0 34.8
Engine(2562 × 110) 138.0 82.7 33.1 12.6
Bonsai(2562 × 128) 93.3 51.9 18.4 6.1
Head(2562 × 225) 64.8 40.0 16.0 5.7
Skull(5122 × 648) 23.3 9.0 5.3 3.2

Table 5.2: Performance of opaque isosurface rendering in different output resolu-
tion.

window. Four tests were performed and the results showed that average fps
scaled by factor of 3 in the best case. This shows that our implementation
scales better than is expected, because average FPS dropped at most by a
factor of 3, while the number of pixels increased by factor of 4. We also
report that performance scales very good with dataset size.

5.2 Output quality

This section refers to images acquired from different rendering modes, which
are compared and discussed in the terms of output quality. First of all we
compare three different algorithms for isosurface rendering. Two of them are
implemented in our isosurface render and the third is method used in SPVol-
Ren framework. These algorithms are: voxel traversal with repeated linear
interpolation isosurface test (Neubauer [23]), voxel traversal with accurate
isosurface test (Marmitt et al. [20]), and ray-marching with constant step
and single linear interpolation test. The Figure 5.3 shows output images of
Head dataset using all three renderers. We see the difference between the
first and second image where the exact intersection test outperformed sim-
ple interpolation method. We have especially selected these images for the
comparison, because we can see how the linear interpolation test combined
with voxel traversal produce unwanted grid artifacts. However the Figure
5.5 shows images, where these artifacts are not so evident. SPVolRen and
its ray-marching method was able to produce sufficient quality of rendering
only with high sampling rate (at least 2000 samples were needed) and it
therefore performed relatively slow.

Furthermore we have tested quality of images achieved by our imple-
mentation of direct volume rendering. Results are shown in the Figure 5.4.
We have performed three tests with different sampling rates. These results
show, that we need to perform ray-marching with at least 200 samples to

65



achieve acceptable image quality. We have also observed that sampling rate
with more than 400 samples in the volume does not bring much greater
improvement.

Figure 5.3: Examples of image quality of three different algorithms for isosurface
rendering: voxel traversal with repeated linear interpolation (top-left), accurate
test (top-right), constant sampling step in SpVolRen(bottom).
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Figure 5.4: Direct volume rendering with different ray-marching steps. From left
to right: 25 steps, 100 steps, 400 steps.

Figure 5.5: High-quality isosurfaces with self shadowing compared to standard
rendering.
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5.3 Comparison with other applications

We have compared performance and quality results with SPVolRen frame-
work in the previous part. In this section we discuss other packages, which
offer solution for volume visualization like Voreen [40], MRIcro [22] and NIS
Elements [26], etc. Each of this applications are designed for different users
and provide various kind of features regarding volume rendering or isosurface
rendering.

For example NIS Elements is a good choice for live cell imaging where
its implemented volume renderer is able to visualize multi-component spec-
tral z-stacks. This software supports rendering of 3D time-lapse sequences
and generated isosurfaces from segmented images. It comes also with the
integrated tool for creating video sequences of visualized volume data.

Voreen is considered simple tool for volume visualization with advanced
transfer function control, standard rendering modes and lighting or material
settings. MRIcro program comes with many features concerning region of
interest and supports working with overlays.

However none of these packages are useful for anthropological research,
where the researchers demanded tool for difference visualization. Our ap-
plication is the answer to this request and brings features, which were not
found in any of other tested programs.

We have obtained the set of scanned skulls from the anthropologists,
which they have prepared for comparison. These skulls were used as the
testing datasets to show new capabilities of our application. We present
results of renderer, which supports multiple volumes and such a compari-
son and difference visualization is possible. Examples of final images when
using different rendering modes are shown in the Figure 5.6. This set of
images includes examples of high-quality isosurfaces, transparent rendering
and Overlay Mode together with Difference Ray information bar. Last two
images show results of slice view in direct volume rendering mode.
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Figure 5.6: Examples of rendering modes used for difference visualization.

69



Chapter 6

Conclusion

6.1 Summary

We have developed prototype application designed for visualization of hu-
man skulls. This work started with many preparations including litera-
ture search, especially in the area of isosurface rendering. We have selected
this visualization method as the best option for visualizing objects like hu-
man skulls, which are common research specimens used in anthropology and
archeology. Our colleagues from these departments demanded tool, that will
help them with their research and they saw potential advantage in modern
nondestructive visualization methods like CT scanning. We have discussed
several key features, which had to be included in such a tool. Additional
support for displaying multiple skulls and interactive difference visualization
were selected as the main features. Furthermore they intended to use this
visualization tool for public presentations and high-quality rendering was
thus another key element.

We have decided to use algorithms for real-time high-quality isosurface
rendering ([23, 20]) and implement them entirely on GPU. Our application is
considered the first CUDA implementation combing techniques for rendering
of accurate isosurfaces together with selfshadowing or transparency, while
adding support for multiple volumes. All these algorithms are based on
ray-casting and therefore such a combination is possible. Additionally we
have implemented standard direct volume rendering using ray-casting with
arbitrary clipping plane.

Second part of this work has focused on difference visualization. We
have included several options for researchers to compare, visualize and then
analyze differences of human skulls. Special Overlay mode allows to visualize
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these differences in higher level than for example transparent rendering and
gives better perception of spatial structure of compared skulls. DVR slice
view mode together with Difference ray mode are another two useful options
for visualization and even basic measurement. Single ray can be casted into
the volume and information about its intersections with all isosurfaces can
be displayed.

After the implementation phase, we have done several tests regarding
rendering performance and quality of our application. These results were
presented in the previous chapter and additional comments were provided
about implemented difference visualization features.

With all these features currently available in our application, we are
looking forward to participate in further cooperation with Department of
Anthropology and to test the application with real data. So far we have
received only a small part of these data and all usable datasets still required
additional preprocessing before they could be used in the program.

6.2 Goals achievement

We have delivered application for interactive visualization of CT scans of
human skulls with difference highlighting, which was our primary goal. This
main objective can be divided into these partial accomplishments:

• We have implemented high-quality isosurface renderer using algo-
rithms based on ray-marching methods on GPU and employed NVIDIA
CUDA technology to deliver modern GPGPU solution for this imple-
mentation.

• We were able to perform interactive rendering in 512× 512 window
with some algorithms and showed that further improvement is possible
with additional optimization.

• We have successfully integrated support for multiple volumes, which
currently allows two volumes to be loaded and visualized at once. Only
a simple change of code is then required for adding even more datasets.

• Three modes for difference visualization were developed and imple-
mented and we have shown how they can be used with real data.

• We have also performed comparison with similar systems and
have presented our results.
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Because of these accomplishments, we declare this work successful and
hope for more future improvements and any subsequent use of our applica-
tion.

6.3 Future work

We believe that this application is complete, but some currently imple-
mented features can be further upgraded and optimized. It has been con-
sidered prototype implementation since we are the beginning of the collab-
oration with the Department of Anthropology. It is only the first step of
much larger project. In the beginning of this teamwork, we have discussed
many features, which were divided into several groups. One of these group is
covered by this work but some other features are related to our application
as well. Their integration into our solution is natural decision. We plan to
or we have already started to work on some of these features:

• CUDA specific optimization
As we have shown in the previous part about optimization, it is nec-
essary to continue with optimization process. Performance results
achieved with the current version of CUDA volume renderers can be
further improved after intensive work on code optimization for SIMT
architecture. In the near future we anticipate the arrival of release
version of CUDA Toolkit 2.0, which should also bring some additional
tweaks and improvements to the current beta version. Also we would
like to perform tests on multi GPU solutions (SLI) and report their
results.

• New mode for difference visualization
This is the second most wanted enhancement. We have already done
some side work regarding next-generation of difference highlighting,
but further research is required before any kind of implementation.
This problem is related to the fact, that we still need to fully under-
stand what is really important as a difference in the anthropological
point of view. We plan to upgrade current Overlay Mode to higher
level, where all differences will be more visible and easier to work with.

• Different rendering techniques
After we have taken initial research concerning isosurface rendering we
decided to implement specific ray-casting algorithms, which we have
described in Chapter 3. On the other hand, alternative approach, pre-
sented by Sigg et al. [35], made us also interested in their method using
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cubic reconstruction filter for high-quality isosurface rendering. This
completely different rendering technique should be properly studied
for possible new CUDA implementation.

• Large datasets
Large dataset are partially supported by our application, but due to
the limited access to graphic cards equipped with more video memory,
we were not able to test it with some really large datasets. We also
wanted to test CUDA support for large 3D textures (20483), but we
currently don’t have any available hardware capable of this test.

Another group, which was not directly related to this work, included
various interesting features. Since we hope that is it possible to integrate
them to our application, future work can be done in these areas:

• Isosurface texturing

• Volume measurement

• 3D image registration

• Advanced camera path control and replay

• Output video encoding

We hope for intensive co-operation with anthropologists to receive addi-
tional feedback and therefore we provide first-approach solution in the form
of a tool, which should be soon tested by group of researchers. This feedback
will greatly help us understand, if we have made right choices and if we are
getting closer to the desired final solution, or if we have made some mistakes.
This is the matter of time and only the future will tell about our success with
this collaboration project. However in the end, we all who participated in
this ”opportunity” can say, that everybody gained great amount of precious
experiences, while working on interesting research.
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Appendix A

User Guide

In this appendix we provide simple user guide to our testing application. We
describe functionality of all GUI controls included in the main application
window. Overall screenshot of this window is shown in the Figure A.1.
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Figure A.1: User guide screenshot of our application.

The application window is divided into four main parts: main menu with
top toolbar, right panel and renderer window. These parts contain more GUI
elements, which are described in the following summary.
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1. Main menu
Commands for loading new primary and secondary volume data are
available through the File popup menu. The View popup menu pro-
vides switching between the rendering modes.

2. Top toolbar
It contains buttons which enable and disable volume bounding box
and info about Difference Ray mode, together with the button for
enabling FPS performance test. User can also change the background
color used in the render window.

3. Dataset info
User must there specify the complete information about volume dimen-
sions, voxel extent and data type before loading new dataset. These
information about each dataset are located in the .vh header files.

4. Isosurface settings
These controls provide settings for primary and secondary isosurfaces
and allow changing their color and specifying their isovalue.

5. Transfer function control
This control provides easy way for modification of the transfer function
through separate setting of its RGBA lookup table.

6. Transfer function presets
Several predefined presets for transfer function can be selected from
this combo box control. User can also add new preset by defining its
transfer function in the predefined.lut file located in the main applica-
tion directory.

7. DVR settings
Ray-marching sample rate and color accumulation factor used in direct
volume rendering mode can be changed by this control.

8. Renderer window
This window displays rendered image and processes all mouse and key
input from the user. Volume rotation is performed with mouse move
and the left mouse button, the right mouse button is for moving the
volume and the mouse wheel allows zooming. While in DVR mode
and the CRTL key is pressed, user can rotate the clipping plane with
left the mouse button or place it into the default position by the right
mouse button and move the plane with the mouse wheel.
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Appendix B

Contents of DVD

bin – Executable version of our program

data – Sample datasets in raw format

doc – PDF and PS versions of this thesis

src – Source files needed for compiling the application

CULib – CUDA rederer library

src – C++ source code and CUDA kernels

lib – Glew library

Properties – Resource files

src – .NET application C# source code

testing – Debug directory for testing
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