
UNIVERZITA KARLOVA V PRAZE

MATEMATICKO-FYZIKÁLNÍ FAKULTA

DIPLOMOVÁ PRÁCE

Bc. Václav Klecanda

Implementace algoritmů pro zpracovánı́
obrazu na IBM Cell

Kabinet software a výuky informatiky
Vedoucı́ diplomové práce: Mgr. Václav Krajı́ček

Studijnı́ program: Informatika, softwarové systémy

Rád bych poděkoval magistru Václavu Krajı́čkovi za jeho vedenı́, rady, názory a
připomı́nky a vůbec za jeho podporu. Dále chci poděkovat svým rodičům a mé
přı́telkyni za trpělivost.

I would like to thank to Mgr. Václav Krajı́ček for leading, his advices, opinions
and other support. I also want to thank to my parents and to my girlfriend for their
patience during works on this thesis.

Prohlašuji, že jsem svou diplomovou práci napsal samostatně a výhradně s použitı́m
citovaných pramenů. Souhlası́m se zapůjčovánı́m práce.

V Praze dne 4. Srpna 2009 Václav Klecanda
vlastnoručnı́ podpis

Contents

1 Introduction 9

2 Cell/B.E. platform 11
2.1 PPE - Power Processing Element 13
2.2 SPE - Synergistic Processing Element 13

3 Cell/B.E. programming 15
3.1 Cell/B.E. platform development 15
3.2 SDK content . 16
3.3 Parallel systems & Cell/B.E. 17
3.4 Cell/B.E. programming models . 18

3.4.1 Cell/B.E. parallelism levels 19
3.4.2 Computation configurations 20

3.5 Building for the Cell/B.E. 22
3.5.1 Process of application porting for the Cell/B.E. 22
3.5.2 SPE porting considerations 25
3.5.3 Speed and compiler options 26

3.6 Profiling . 27

4 Image segmentation 28
4.1 Problem formulation . 28
4.2 Image segmentation methods overview 29
4.3 Level set . 31

4.3.1 Level set theory . 32
4.3.2 Level set computation . 32
4.3.3 Speed-up approaches . 33
4.3.4 Level set image segmentation 36
4.3.5 Level set methods on streaming architectures 38

5 Design and implementation 40
5.1 Original idea of the porting process 40
5.2 Chosen algorithm and frameworks 41
5.3 Incorporation into MedV4D framework 41

5.3.1 Client part . 43
5.3.2 Server part . 45

3

5.4 Level set segmentation pipeline . 46
5.5 Pre-porting steps . 47
5.6 Profiling . 49
5.7 New design . 50

5.7.1 Data flow . 51
5.7.2 Tools . 52
5.7.3 Work balancing . 54

5.8 Actual porting process . 54
5.8.1 PC as Cell/B.E. simulator 54
5.8.2 Moving to PPE . 55
5.8.3 Tools porting . 55
5.8.4 Memory checking tools . 55

6 Results 57
6.1 Speed measurements . 57
6.2 Reasons of slowdown and possible improvements 58
6.3 Code and design complexity . 61

7 Conclusion 63

A Images 67

B Tools setup 72
B.1 SDK installation . 72

B.1.1 Bug fixing . 74
B.2 IBM Full-System Simulator . 74

B.2.1 Bug fixing . 75
B.2.2 Installation of libraries into sysroot image 77
B.2.3 Copying content into sysroot image 77
B.2.4 Simulator hints . 77

B.3 Using examples . 78
B.4 Tuning memory usage on PS3 . 78
B.5 Performance tools . 79
B.6 Visual Performance Analyser - VPA 79
B.7 Cell/B.E. cross compilation . 79

C Content of the DVD 80

List of Figures

2.1 Cell/B.E. processor layout . 12
2.2 Cell/B.E. based machines . 14

3.1 Streaming SPE configuration . 20
3.2 Pipeline SPE configuration . 21
3.3 PPE centric configuration . 21
3.4 SPE binary embedding . 23
3.5 Application porting cycle . 25

4.1 Flooding an object . 31
4.2 Narrow band computation illustration 33
4.3 Sparse fields method computation illustration 35
4.4 Graph of thresholding based speed function 37
4.5 Leaking . 37
4.6 GPU virtual memory . 39

5.1 LevelSetClient application computation process 42
5.2 ITK wrapper MedV4D filter . 43
5.3 Remote MedV4D filter . 44
5.4 MedV4D server cycle . 45
5.5 Original ITK thresholding level set filter class hierarchy 48
5.6 Resulting level set filter ready to be ported to Cell/B.E. 49
5.7 Diagram of new design components 50

6.1 Automatic align of small data . 59
6.2 Multiple DMA list workaround . 59
6.3 Comparison of one slice segmented on different architectures 60

A.1 3D view of segmented skull data set 67
A.2 Result of segmentation of parietal part of a skull 68
A.3 Result of segmentation middle slices of the skull data set 69
A.4 Result of segmentation front slices of the skull data set 70
A.5 Result of segmentation of slices near nose 71
A.6 3d blending of original and segmentationed images 71

B.1 Screenshot of standard cellide veiw 75
B.2 Cellide with started simulator . 76

5

List of Tables

5.1 Profiling results . 49

6.1 Measurement results . 58

6

Název práce: Implementace algoritmů pro zpracovánı́ obrazu na IBM Cell
Autor: Bc. Václav Klecanda
Katedra (ústav): Kabinet software a výuky informatiky
Vedoucı́ diplomové práce: Mgr. Václav Krajı́ček
e-mail vedoucı́ho: Vaclav.Krajicek@mff.cuni.cz
Abstrakt:

Práce shrnuje dostupné informace o architektuře IBM Cell/B.E. tak, aby čtenář
rychle zı́skal potřebný náhled na problematiku programovánı́ pro tuto architekturu.
Praktické informace jsou čerpány z vývoje aplikace která implementuje netrivialnı́
algoritmus z oblasti zpracovánı́ obrazu, sparse field level set segmentation. Dalšı́
část obsahuje popis vývoje této aplikace a řešenı́ problémů, které mohou během
něj nastat.

Práce zároveň srovnává klasickou a Cell architekturu a popisuje nutné podmı́nky
pro vytvořenı́ efektivnı́ aplikace pro Cell/B.E. Dále obsahuje stručný postup
instalace nejdůležitějšı́ch vývojových nástrojů. Tento postup si klade za cı́l co
nejrychleji připravit vše potřebné a zkrátit tak dobu přı́pravné fáze tak, aby čtenář
mohl začı́t vyvı́jet pro Cell/B.E.

Klı́čová slova: programovánı́ pro Cell, multicore acceleration, IBM, PS3

Title: Implementation of image processing algorithms on IBM Cell
Author: Bc. Václav Klecanda
Department: Department of Software and Computer Science Education
Supervisor: Mgr. Václav Krajı́ček
Supervisor’s e-mail address: Vaclav.Krajicek@mff.cuni.cz
Abstract:

This work summarize available information about IBM Cell/B.E. architecture to
let the reader create a necessary overview for programming for this architecture.
Practical information are based on development of an application that implements
nontrivial image processing algorithm, sparse field level set segmentation. Next
section contains description of the application development and associated
problems solving.

The work compares common and Cell B.E. architectures and describes conditions
necessary for creation of an effective Cell/B.E. application. The work also
contains brief procedure of the most important development tools installation.
This procedure has to prepare everything necessary as fast as possible and thus to
shorten the duration of the preparation phase to let the reader to start development.

Keywords: CellBE programming, multi-core acceleration, IBM, PS3

Chapter 1

Introduction

The production of x86 platform processors has started a big frequency competition.
The manufacturers have been releasing processors with higher and higher operat-
ing frequency. Behind this competition there has been a significant amount of re-
search of new production technologies that allow to integrate more transistors onto
a smaller area. Gradually the manufacturers started to realize that it is impossible
to continue the competition forever.

More computing units started to be integrated into a single processor. The first
among common desktop processors was Intel’s Pentium R© with hyper-threading.
This processor was able to execute two threads at a time. Since then a quick boom
of multi-core integration started even among other big processor manufacturers.

Integration of more execution cores allows less power consumption. This factor
is nowadays especially important due to processor integration into laptops and even
due to environmental issues. Therefore current effort of the processor manufactur-
ers is to gain the best performance to power consumption ratio.

General purpose cores are integrated into the current common processors.
It means they have a pipeline for instruction execution composed of several
stages. Instruction can be in various states in the pipeline, e.g. fetched, awaiting
operands, ready, executed. Instructions do not flow among the stages in the order
that designates the program but the order is decided by the processor itself. The
decision is based on variety of factors and predictions. One of the pipeline stages
is a branch-prediction unit. It has to predict the most probable flow of the executed
program. When this prediction is false the whole pipeline has to be discarded and
execution of the right branch of the program has to be started. Processors suffer
heavily from these mispredictions because they lead into big execution holes in
which the processor pipeline stalls or is being reset.

9

CHAPTER 1. INTRODUCTION 10

Cache misses are another general purpose processor suffering. A cache miss
occurs when the requested data are not within processor cache and have to be loaded
from the main memory.

Although many improvements were implemented into the general purpose pro-
cessors they still suffer from the described problems. This is one of the reasons why
a collaboration of three big companies IBM, Sony, and Toshiba started development
of the Cell/B.E. processor. It is a multi-core processor which has high performance
to power consumption ratio and is able to overcome the problems that the general
purpose processors suffer from. That is because it allows the programmer to man-
age processor cache and branch prediction unit to a certain degree. The next chapter
will describe the processor in more details.

Chapter 2

Cell/B.E. platform

This chapter will introduce the Cell Broadband Engine processor (Cell/B.E.), the
whole platform and its specific details. The particular Cell/B.E. processor will be
described and illustrated. All the information were taken from [6].

Cell/B.E. processor is representative of a new generation of IBM’s Cell/B.E.
platform family. Cell/B.E. is an asymmetric, high-performance multi-core proces-
sor that combines eight synergistic processing elements (SPE) and a Power Pro-
cessing Element (PPE), which is a general-purpose IBM Power PC R© core. The
next important part is a central memory element. The PPE can operate with the
central memory directly while the SPE can access the memory indirectly through
DMA. All the elements are connected through a high speed bus (EIB - Element
Interconnect Bus). The whole layout is in the figure 2.1.

The Cell/B.E. achieves a significantly better performance per Watt and perfor-
mance per chip area ratios than conventional high-performance processors. It is
more flexible and programmable than single-function and other optimized proces-
sors such as graphics processors, or conventional digital signal processors. While
a conventional microprocessor may deliver about 20+GFlops of single-precision
(32b) floating-point performance, Cell delivers 200+ GFlops (under ideal condi-
tions) at a comparable power consumption.

A number of signal processing and media applications have been implemented
on the Cell/B.E. with excellent results. Advanced visualization techniques such
as ray-casting, ray-tracing and volume rendering, streaming applications such as
media encoders, decoders or encryption and decryption algorithms have also been
demonstrated to perform about an order of magnitude better than a conventional
processors.

11

CHAPTER 2. CELL/B.E. PLATFORM 12

PPE

EIB (High speed bus)

System
Memory

...

SPE 0

local store

256 kB

128 128−bit
registers

SPU

core

DMA engine

SPE 7

local store

256 kB

128 128−bit
registers

SPU

core

DMA engine

Figure 2.1: One PPE unit along with eight SPE stream processor units and system
memory connected together with a high speed EIB bus

CHAPTER 2. CELL/B.E. PLATFORM 13

2.1 PPE - Power Processing Element

The PPE is derived from IBM Power PC R© core. It has 512kB L2 on die cache. It
supports the Power Architecture ISA, inherits the memory translation, protection,
and SMP coherence model of mainstream 64-bit Power processors. Virtualization,
logical partitioning, large pages, and other recent innovations in the Power architec-
ture are supported as well. Programming for the PPE is the same as for conventional
processors due to direct access to central memory.

2.2 SPE - Synergistic Processing Element

SPE is an autonomous processor (sometimes called accelerator) targeted for com-
putational intensive applications. Each SPE has a SIMD core (SPU), a high-speed
private local store memory and a direct memory access (DMA) engine.

The SPU unit has 128 128-bit wide unified general purpose registers to store
all types of data in contrast to traditional RISC processors where registers are di-
vided according data types. It supports a SIMD-RISC instruction set. The SPU
has two pipelines, the odd one and the even one, so it can execute two instructions
at a time (dual-issue) if some conditions are met. Vectorized operations in various
data types configurations can be performed with these registers e.g. two double-
precision floats or eight 32bit integers can be processed at single clock tick.

Unlike conventional microprocessors the SPE does not have a hardware cache.
Its function represents the small on-chip local store memory under programmer’s
control. This allows code optimizations that can reduce cache misses. The local
store is separated from the main memory i.e. the SPE has its own address space.
Therefore any synchronization with other cores is not necessary. The SPE uses the
local store as a cache of data stored in the central memory i.e. programmer has to
create copies of the data within the local store. The data are transferred through
DMA engine which manages transferring data from central memory to local store
and vice versa as well as between two SPEs’ local stores. We say that data is
”DMAed” from source to destination. DMA commands can be issued in many
ways such as in synchronous, asynchronous or in scatter-gather manner through
DMA lists. The DMA list is an array of pointer-size pairs that defines pieces of
memory that shall be transferred within single DMA request. The pieces must not
necessarily be continuous. Therefore the Cell/B.E. processor can be viewed as a
distributed memory multiprocessor. The local store memory management is a big
part of programming for the Cell/B.E.

Programming for the SPE is a bit different compared to programming for a
conventional processor. Programmer have always to count with the fact that he/she

CHAPTER 2. CELL/B.E. PLATFORM 14

Figure 2.2: Images of Cell/B.E. based machines. Sony’s Play Station 3, on the left
(image taken from www.boygeniusreport.com), IBM Cell Blade board, on the right
(image taken from www.ps3tester.com)

has only 256kB for the program and data. More details about this topic will be
described in the next chapter.

The Cell/B.E. is embedded in game console Sony PlayStation 3 (PS3) as well as
IBM Blade servers where are two processors on one board, building block. There
can be more boards connected in one system forming a powerful and modular ma-
chine. We have two PS3 machines available for this work.

Chapter 3

Cell/B.E. programming

Cell/B.E. platform development tools will be described in this chapter. Our expe-
rience with the tools will be mentioned as well. Then particular SDK content and
tools will be listed. Parallel systems and models will be mentioned later on as well
as the relationship to the Cell/B.E. development along with a few design patterns.
At the end core configurations and their advantages and disadvantages will be listed
finishing with few practical approaches to the Cell/B.E. porting process.

3.1 Cell/B.E. platform development

IBM delivers a SDK for the Cell/B.E. application development. It is made for a
Linux platform, in the concrete for the Fedora or the Red Hat distribution. It comes
in two flavours. The first is the official non free SDK which has all the features
needed for the Cell/B.E. development even for hybrid systems. The purchaser has
also a support team ready to help. The next is a free one that is open to wide public
and everybody can download it and start developing. The free one does not have
full support for hybrid systems nor for development in other languages than C/C++.
We have used the free one since we have developed only in C/C++ and for a clean
Cell/B.E. processor.

Because the SDK is for Linux operation system its user has to have already
a deeper knowledge about this system. There are a few bugs and parts that are
not fully finished (see Appendix B) and without the deeper system knowledge is
practically impossible to react on an unexpected behaviour during installation or
development phase.

We have begun with SDK version 3.0 and Fedora version 8 which were the
current versions of needed tools. We have faced a number of obstacles and before
we were able to overcome them a new version of SDK (3.1) appeared. Because we

15

CHAPTER 3. CELL/B.E. PROGRAMMING 16

wanted to use and describe the latest tools we had to begin from scratch because the
new version brought new obstacles as well.

The new version was declared to be compatible with a new version of Fedora, 9
- Sulphur, that had been released at almost the same time as the new SDK version.
The previous version of SDK (3.0) was for Fedora 7 Werewolf. We have tried
all possible combinations of Fedora distributions and SDK packages to find out if
they are compatible with each other. The only result from that testings was finding
out that they are not mutually compatible. We have spent plenty of days on this
discovery. The SDK is a huge package of software dependent on lots of third party
libraries and solutions. They are treated differently within particular distributions
and sometimes even versions of the same distribution. The resulting advise is to
avoid combination of system versions nor SDK versions nor particular libraries that
the SDK components are dependent on. The repository versions of the third party
software should be used.

Although there are too much of troubles when different version are combined,
a few efforts to get the SDK run on another distributions than Fedora were made.
But we think the time spent on this goal is not worth the result.

Finally we installed Fedora 9 Sulphur and SDK 3.1. Although this combination
is declared by IBM as tested we have run into few bugs and errors. The process of
installation is described in the Appendix B.

3.2 SDK content

The Cell/B.E. SDK is divided into variety of components. Each component is con-
tained in one or more rpm package for easy installation purposes. Here is a list of
important available components:

1. Tool chain

Is a set of tools such as compilers, linkers etc. necessary for actual code
generation. There are two tool chains. One is for PPU and the other for SPU.

2. Libraries

IBM provides several useful libraries for mathematical purposes e.g. linear
algebra, FFT, Monte Carlo with the SDK. Another libraries set is for
cryptography or SPE run-time management. Code of these libraries is
debugged, highly optimized for running on SPEs and SIMDized. It is highly
advisible to use the libraries i.e. adapt a code for using the libraries instead
of programming own solution.

CHAPTER 3. CELL/B.E. PROGRAMMING 17

3. Full system simulator

Program that can simulate the Cell/B.E. processor on other hardware plat-
forms. It is used mostly in profiling stage because simulator can simulate ac-
tual computation of a code in cycle precision. It can be of course used when
programmer has an actual Cell/B.E. hardware available, but the simulation is
incredibly slow.

4. IDE

IDE is in fact version 3.2 of Eclipse with integration of debugging, profiling,
Cell/B.E. machine management and other features that makes development
for the Cell/B.E. easier and more comfortable.

3.3 Parallel systems & Cell/B.E.

Parallelism depends on type of system where the program will be run. There are
two basic kind of parallel systems:

1. shared-memory system

Is a multi-processor system with one shared memory which all processor can
see. Processors has to synchronize access to the memory otherwise race con-
ditions will rise.

2. distributed-memory system

Is system where each processor has its own private memory. There is no need
for any synchronization.

In context of parallel systems Cell/B.E. is a kind of hybrid system. The SPEs
matches a distributed-memory system due to private local stores while the PPE is
a shared-memory system. The Cell/B.E. is sometimes called heterogeneous multi-
core processor with distributed memory. Because Cell/B.E. processors can be com-
posed into bigger units such as IBM blade server with two Cell/B.E. chips they can
be viewed as either 16 + 2 cores in SMP mode or two non-uniform memory access
machines connected together. Programmer has then to decide which view of the
Cell/B.E. processor is better for the solved problem.

Because of separation of address spaces programming of the SPE is very similar
to client/server application design. Roles depends on how the work is started. In
case the PPU initiates the transfers, the PPU is a client and the SPE is a server be-
cause the SPE receive data for computation and offer a service for the PPE. Another
possibility is that the SPE grabs the data from the central memory. In this case the
SPE is a client of central memory. This scenario is preferred because the PPE is
only one and would not be able to manage all the SPUs.

CHAPTER 3. CELL/B.E. PROGRAMMING 18

3.4 Cell/B.E. programming models

Implementation of parallel algorithms rely on a parallel programming model. It is
a set of software technologies such as programming languages extension, special
compilers, libraries through that actual parallelism is achieved. The programming
model is programmer’s view to the hardware. Choosing a programming model or
mixture of models that will best fit for the solved problem is another decision that
programmer has to make.

For the Cell/B.E. there is variety of parallel programming models. THe mod-
els differ in view of the hardware from each other and thus how many actions are
performed implicitly by the model. The actions can be e.g. task distribution man-
agement, data distribution management or synchronization. The most abstract ones
can perform many actions implicitly. Their advantage is ease of implementation
but at cost no performance tuning ability. Differently act the most concrete models
that see the Cell/B.E. processor with all the low level details. Their advantage is
performance tuning ability in all application parts but at cost of more development.

There are several models that are targeted only for the Cell/B.E. platform and
are contained in the SDK. While there are other models such as MPI, OpenMP that
can be used as well but they would expose only the PPE. These will not be further
described.

List of the programming models (frameworks) follows in order from the most
concrete to the most abstract:

1. libspe2

This library provides the most low level functionality. It offers SPE context
creating, running, scheduling or deleting. DMA primitives for data transfer,
mailboxes, signal, events, and synchronization functions for PPE to SPE and
SPE to SPE dialogues are also provided by this library. More information can
be found in [7] within ”SPE Runtime Management Library” document.

2. Data Communication and Synchronization - DaCS

Defines a program entity for the PPE or the SPE. It is a HE (Host Element
program) for the PPE and an AE (Accelerator Element program) for the
SPE. It provides variety of services for that programs. The services are
e.g. resource and process management where an HE manipulates its AEs or
group management, for defining groups in which synchronization events like
barriers can happen or message passing by using send and receive primitives.
More information can be found in [7] within ”DACS Programmer’s Guide
and API Reference” document.

CHAPTER 3. CELL/B.E. PROGRAMMING 19

3. Accelerated Library Framework - ALF

The ALF defines an ALF-task as another entity that perform computationally
intensive parts of a program. The idea is to have a program split into mul-
tiple independent pieces which are called work blocks. They are described
by a computational kernel, the input and the output data. Programming with
the ALF is divided into two sides. The host and the accelerator one. On the
accelerator side the programmer has only to code the computational kernel,
unwrap the input data, and pack the output data when the kernel finishes. The
ALF offers clear separation between the host and the accelerator sides of pro-
gram parts. It provides following services: work blocks queue management,
load balancing between accelerators, transparent DMA transfers etc. More
information can be found in [7] within ”ALF Programmer’s Guide and API
Reference” document.

Choosing a framework is important decision of writing Cell/B.E. application. It
should be considered enough.

3.4.1 Cell/B.E. parallelism levels

The Cell/B.E. processor offers four levels of parallel processing. That is because it
is composed of heterogeneous elements, the SPE and the PPE and the possibility of
composition into a more complex systems. The levels are:

1. Server level

Parallelism on this level means task distribution among multiple servers like
within a server farm. This is possible in a hybrid environment at the cluster
level using MPI or some other grid computing middle-ware.

2. Cell/B.E. chips level

On this level tasks can be divided among multiple Cell/B.E. processors. This
is possible if there are more such processors in single machine. It is e.g. IBM
Blade server with two Cell/B.E. chips. ALF or DaCS for hybrid can be used
for task distribution.

3. SPE level

This parallelism level allows to distribute tasks among particular SPEs. Lib-
spe, ALF, DaCS can be used to perform the distribution.

4. SIMD instruction level

This level can increase the speed the most. Parallelism is achieved on instruc-
tion level that means more data are processed at a time by single instruction.
Language intrinsics are used for this purpose. This will be explained later in
part devoted to ”SIMDation”.

CHAPTER 3. CELL/B.E. PROGRAMMING 20

data source

SPE 2

SPE 0

SPE 3

SPE 1

data destination

Figure 3.1: All SPE run the same code creating farm of processor that process same
type of data.

3.4.2 Computation configurations

Because of the Cell/B.E.’s heterogeneous nature there are few computation config-
urations that can be used. Each of them differs in usage of SPEs:

1. Streaming configuration

All SPEs serves as a stream processor (see figure 3.1). They run exactly
the same code expecting the same type of data and producing also the same
of data type. This configuration is well suited for streaming application for
example filters where there is still the same type of data on input.

2. Pipeline configuration

The SPEs are stages of a pipeline (see figure 3.2). Data are passed through
one SPE to another. This configuration makes use of the fact that transfer
among SPEs is faster than the transfer between SPE and PPE.

3. PPE centric

This configuration is common approach to use the Cell/B.E. A program runs
on the PPE (see figure 3.3) and only selected, highly computational intensive
parts (hotspots) are offloaded to SPEs. This method is the easiest from a
program development perspective because it limits the scope of source code
changes and does not require much re-engineering at the application logic
level. A disadvantage is frequent changes of SPE contexts that is quite
expensive operation.

CHAPTER 3. CELL/B.E. PROGRAMMING 21

PPE

SPE 3SPE 0 SPE 2SPE 1

PPE sends data to pipeline

last pipeline SPE sends result back to PPE

Figure 3.2: SPE creates a pipeline. Each SPE represent one stage of that pipeline.
Data are transferred only via SPE to SPE DMA transfers benefiting the speed of
bus.

PPE runs program

hotspot is reached

SPE 0

SPE 1

SPE 2

program continues

hotspot

computation

management

Figure 3.3: Program is run on PPE and only hotspots are offloaded to SPEs. Of-
floading means managing SPE context creation and loading as well as managing
data transfer and synchronization between PPE and SPEs

CHAPTER 3. CELL/B.E. PROGRAMMING 22

4. SPE server

Another configuration is to have server-like programs running on SPEs that
sits and waits offering specific services. It is very similar to the PPE centric
configuration. Only difference is requirement to the program to be small
enough to fit into the SPU local store to avoid the frequent SPE context
switching.

3.5 Building for the Cell/B.E.

Actual compilation process is performed using an appropriate tool chain. The PPE
code requires the PPE tool chain and the SPE code requires the SPE one. But there
is a difference between management of the code in linking stage between the PPE
and the SPE object files. It is caused by difference of actual code usage. While
the PPU code resides in the central memory, like in common architectures, the SPU
code is loaded into the SPE dynamically and shall be somehow separated from the
PPE code. It is similar to shader programs for graphic accelerators. They are also
loaded into appropriate processors as soon as they are needed so they live separated.

There are two options for SPE code management. One is to build a shared li-
brary and load it explicitly when it shall be used. Another way is to build a static li-
brary and include it into the PPU executable using Cell/B.E. Embedded SPE Object
Format (CESOF). This allows PPE executable objects to contain SPE executable
i.e. the SPE binary is embedded within the PPE binary, see figure 3.4. The SPU
program is then referenced as special external structure directly from the PPU code
instead of performing shared library loading. Both ways have advantages and disad-
vantages which are the same as shared vs. static library usage. Shared library means
better modularity and possibility of code alternation without whole executable re-
building. On the other hand additional management of such library is necessary in
contrast to a static SPE code into a PPE binary embedding.

3.5.1 Process of application porting for the Cell/B.E.

Common process of application porting for the Cell/B.E. processor (figure 3.5) con-
sists of next two basic steps:

1. Hotspots localization

Through profiling of the application on the PPE we find most compute
intensive parts, hotspots. How to profile the application see chapter 5 of [5].

CHAPTER 3. CELL/B.E. PROGRAMMING 23

......

S
P

E
 program

 struct

data section

...

P
P

E
 − E

LF header

S
P

E
 binary

Figure 3.4: Illustration how is a SPE binary ”embedded” into a PPE binary. The
SPE binary is another section of the PPE binary. It is reachable through extern struct
variable, that contains a pointer to the SPE binary.

2. Hotspot porting for SPE

Each hotspot computation is moved to the SPE i.e. the code adaptation for
the SPE features shall be performed. This means DMA transfers instead of
direct memory access, appropriate data structures utilization, etc. Data move-
ment tuning e.g. different data structures usage can be then performed until
satisfactory performance is obtained.

Work distribution among available SPEs shall be performed to accelerate ac-
tual computation. Amount of work performed by particular SPEs should be
equal to avoid mutual SPE waiting.

Following additional steps are necessary for application optimization and speed-
up. Performing these steps leads to utilization of all the SPU features such as whole
register set utilization, dual-issuing of instructions, SIMD execution and DMA
transfers. More detail in [4], part 4:

1. Multi-buffering

Data that resides within central memory and are processed by the SPE
should be copied into local store before actual computation. When there are
more of the places for the data (buffers) the program can take advantage
from asynchronous DMA transfer and can process current buffer while the
next data are being transferred into another buffer. Then the buffers are
simply swapped and the SPU need not to wait until the transfer of next data
is complete. See the figure in the paragraph named ”Hiding data-access
latencies” in [17] for illustration.

CHAPTER 3. CELL/B.E. PROGRAMMING 24

2. Branch elimination

Branch less instruction chain is a succession of instructions without any con-
ditional jump. In other words there is no decision where to continue per-
formed within such succession. Elimination of branches elongates the branch
less instruction chain. In such a chain all data always go through the same
instructions which makes possible to perform SIMDation. There is variety of
branch elimination methods. Good information resource provides [1]. Branch
elimination is probably the most complicated step due to necessity of com-
plete code restructuralization.

3. SIMDation

Means rewriting a scalar code into a vectorized one to be able to use SIMD
instructions. In this step the most performance gain could be achieved be-
cause of multiple data processing by one instruction. Every single piece of
data should go through the exactly same order of instructions in SIMDized
code. Therefore is necessary to have long branch less instruction chain. The
most important method is arrays of structure to structure of arrays conver-
sion. The figure in the paragraph called ”SIMDizing” in [17] shall illustrate
the data processing with SIMD instructions.

SIMDizing brings also avoidance of usage a rotation instructions which are
necessary to move unaligned data into preferred slot. Preferred slot is the
beginning of a register e.g. for short integer it is the first 16 bits of the register.

4. Loop unrolling

Loop body is the code inside curly brackets of the loop. This code is ex-
ecuted repeatedly until the loop condition is valid. Loop unrolling means
putting more loop bodies serially into the code. This decrease loop count
and elongate the loop body letting the compiler to make more optimizations.
Example:

for(uint32 i=0; i<32; i++)
{

printf(".");
}

become (by loop unrolling with factor 2)

for(uint32 i=0; i<16; i++)
{

printf(".");
printf(".");

}

The compiler can do more optimizations e.g. better instruction scheduling
and register utilization.

CHAPTER 3. CELL/B.E. PROGRAMMING 25

optimize data transfer

optimize code

port to PPE

perf. pooranother hotspot

port to SPE

find hotspo

Figure 3.5: Diagram shows all stages of the process and loops for better perfor-
mance tuning and other hotspots

5. Instruction scheduling

Proper reorganization of instructions can give more performance in some
cases. This step is performed by the compiler but it is possible to rearrange
instructions manually in assembly language.

6. Branch hinting

Gives a hint where the program is rather going to continue after future branch
to the processor. It is done through insertion of special instructions. This
step should be again accomplished by the compiler but it is possible to use
appropriate assembly language instruction directly within the code.

3.5.2 SPE porting considerations

The local store size is the main SPE feature that everything spins around while
porting a code to the SPE. On the one hand there are decisions about data transfers.

CHAPTER 3. CELL/B.E. PROGRAMMING 26

This means how the data that has to be processed by the SPE will be transferred into
local store and vice versa. How many buffers will be used in case of multi-buffering.
On the other hand is code complexity of the solved problem that influence the size
of the final binary. There is one solution how to use bigger binaries than the local
store, SPE overlays. It is based on division of the binary into segments that are
loaded into the SPE on demand in run-time.

Programmer has to take into consideration all these things to make the final bi-
nary smaller than the local store. Everything is big trade-off between the processed
data chunk sizes, number of buffers for that chunks and the code lenght.

After the first compilation of a SPU binary from original ported code the final
executable will probably exceed the local store size even when the code does not
seem as large. Then a big searching what part of code causes the huge size would
begin. We have gone through several problems with code that is common in non
SPE code but cause problems in the SPE code. Here is the list:

1. usage of keyword new

There is no memory allocation in the SPE. So usage of the new keyword is
meaningless. But the SPE compiler accepts it without any complain.

2. usage of std streams

This code:

#include <iostream>
std::cout << "Hello" << std::endl;

goes through the compiler without complaints but makes the final binary very
big.

The reason why the resulting code is too big is probably size of the code
within headers that are included when using described features.

3.5.3 Speed and compiler options

There is variety of compiler options. Usage of them is worth nothing but can in-
crease performance and avoid some kind of bugs.

Mike Acton explains strict aliasing in [2]. One advantage of usage of this feature
is positive impact on performance. Another advantage is fact that it can avoid bugs
that would appear as far as in release stage when optimizations flags are used during
compilation. In this stage is really hard to track and debug this kind of bugs.

Another option advises are in [17]

CHAPTER 3. CELL/B.E. PROGRAMMING 27

3.6 Profiling

Profiling of Cell/B.E. application means rather profiling the SPE part of the appli-
cation. There is variety of profiling tools. The basic one is a dynamic performance
analysis which can provide many useful information such as how much time SPE
stalled, reasons of the stall, the CPI (cycle per instruction) ratio, branch count, etc.
The next one is a static performance analysis which can illustrate run of a SPE in
instruction precision. These two analysis are evaluated from program run within
full system simulator. Both the methods are well described in tutorial in the cell
IDE help which is accessible through menu→ Help→ Help Content in the IDE.

Another profiling tools are:

1. PDT - performance debugging tool

2. OProfile

3. CPC - cell performance counter

These tools collect profiling data that can be further processed with VPA (visual
performance analyser), an external tool provided by IBM. This tool can display the
collected data in different charts, time lines or can highlight parts of the code that
are worth to improve and many other useful features. Usage of all these perfor-
mance tools is described in SDK document ”Performance Tools Reference” in [7].
We wanted to test them all but when we followed the manual instructions we expe-
rienced a few obstacles because we worked on PS3. Lately, we have found out on
forums that unfortunately there is poor or none support for these performance tools
on PS3.

Chapter 4

Image segmentation

Image segmentation will be described in this chapter as well as several basic seg-
mentation techniques. Subsequently level set techniques will be introduced, de-
fined and explained in more detail. Then level set computation issues will be de-
scribed along with mentioning of two basic speed-up approaches. After that level
set method relation to image segmentation will be mentioned. After all some fea-
tures of the level set computation on streaming architectures will be listed along
with comparison to the Cell/B.E. features.

4.1 Problem formulation

Image segmentation is process when pixels of an input image are split into several
subsets, segments, based on their characteristics or computed properties, such as
colour, intensity, or texture. The pixels in such segments have similar features and
compose an object in the image.

In more formal way it is a function that assign a segment to a pixel:

S : S(p) = k (4.1)

where p ∈ pixels of the image and k ∈ set of segments.

Image segmentation is used in many domains such as medicine (locating or-
gans, tumors, bones, etc.), satellite images classification for maps (location build-
ings, roads, etc.), machine vision (fingerprint recognition, face, eyes, or other fea-
tures recognition). Other example of image processing application can be a simple
tool as the well known ”magic-stick” tool in popular graphics editing software like
Photoshop.

28

CHAPTER 4. IMAGE SEGMENTATION 29

Although there were some attempts to find general-purpose segmentation so-
lution, results were not satisfactory. So there is not yet a general solution. Each
domain needs extra approach how to perform the segmentation. Some of them are
not even fully automatic so they need assistance of an operator. They are called
semi-autonomous approaches. These methods need an operator who inputs some
region and thus gives a hint to the algorithm. This is favourite approach in segmen-
tation of structures in medical images like organs, tumors, vessels, etc. A physician
then plays the role of the operator because of his knowledge of images’ content.
Some methods are autonomous but need some apriory knowledge of the segmented
object properties.

4.2 Image segmentation methods overview

Image segmentation methods can be divided into following basic categories (infor-
mation based on [19]):

1. Clustering

These methods are used to partition an image into N clusters that cover the en-
tire image. Two main subsets of the methods are bottom-up and top-bottom.
The first one takes each pixel as separate cluster and then iterate joining these
initial clusters based on some criterion until there are N clusters. The sec-
ond one picks N randomly or heuristic chosen cluster centres. Then these
two steps are repeated until some convergence condition is met e.g. no pixels
change clusters: assign pixels to clusters based minimalization of the variance
between the pixel and the cluster centre and re-compute the cluster centres by
averaging all of the pixels in the cluster.

2. Histogram-based

Firstly a histogram is computed from pixels of the image. Then peaks and
valleys in the histogram creates the segments in the image. Result can be
refined by recursively repeating the process. The recursion is stopped when
no more new segments appear.

3. Edge detection

These methods segment an image based on its edges. Therefore core of such
methods is an edge-detection algorithm such as Canny, Sobel.

4. Region growing

This set of methods are very similar to the flood-fill algorithm. It takes a set
of seed points and a segmented image. Each seed point is something like
pointer to segmented object on the image. Seed points form an initial set of

CHAPTER 4. IMAGE SEGMENTATION 30

segments. Then iteration through the neighbouring pixels of the segments is
performed. In every step of that iteration a neighbour pixels of a segment
is compared with the segment i.e. similarity function is calculated. If the
pixel is considered similar enough it is added to the segment. Method is
highly noise-sensitive. The initial seeds can be misplaced due to the noise.
Therefore there is another algorithm that is seedless. It starts with a single
pixel that is an initial region. Its location does not significantly influence the
final result. Then the iteration over the neighbouring pixels are taken just as
in seeded growing. If a neighbour is different enough new segment is created.
A threshold value is used as similarity measurement but particular approaches
differs in definition of the similarity function. While one group uses pixel’s
properties like intensity or colour directly another computes some statistical
test from the properties and the candidate pixel is processed according the
test is accepted or rejected.

5. Graph partitioning

This approach converts an image into a graph. The pixels correspond to the
vertices. There is edge between every pair of the pixels. Edges are weighted
with similarity function of the two connected pixels. Then a graph algorithm
that cuts off edges is run partitioning the graph resp. image. Popular algo-
rithms of this category are the random walker, minimum mean cut, minimum
spanning tree-based algorithm, normalized cut, etc.

6. Watershed transformation

The watershed transformation considers the gradient magnitude of an image
as a topographic surface. Pixels having the highest gradient magnitude inten-
sities correspond to watershed lines, which represent the region boundaries.
Water placed on any pixel enclosed by a common watershed line flows down-
hill to a common local intensity minimum. Pixels draining to a common
minimum form a catch basin, which represents a segment.

7. Model based segmentation

The main idea of this method is to describe the segmented object statistically,
constructing a probabilistic model that explains the variation of the object
shape. In segmentation phase is the model used to impose constraints as
prior. Searching for such model contains steps like: registration of the train-
ing examples to a common pose, probabilistic representation of the variation
of the registered samples and statistical correspondence between the model
and the image.

8. Level set

It is a method that uses a mathematical model of the segmented object. It is
represented by a level set function. Segmentation is performed by deforma-
tion of an initial isoline (for 2D case), hyperplane of the level set function,
with forces that are computed from the segmented image.

CHAPTER 4. IMAGE SEGMENTATION 31

Figure 4.1: An initial shape, the circle, grows and floods the object on the back-
ground. In contrast to common flood-fill approach, level set method has several
parameters that can e.g. prevent flooding beyond the object borders through small
holes.

Whole process can be illustrated in very similar way to the flood-filling, see
the figure 4.1. The initial isoline is deformed with forces that has direction
of an isoline normal. For 2D case the initial isoline can be e.g. a simple
circle as a hyperplane of a distance function from a given point. When it
approaches object borders the propagation slows down. On the object borders
the propagation stops because the forces are zero there.

Another illustration uses a landscape with a lake. Water is always at a con-
stant altitude and the surface of the landscape changes in time. With the
changes of the landscape the shoreline of the lake changes as well. The land-
scape represents the level set function and the water surface represent the
isoline i.e. k-level set.

Advantages of the level set method are lack of special treatment of merging
and splitting surfaces necessity, few intuitive parameters, ability of topology
changing. The most suiting advantage for our purpose is ability of perfor-
mance in all dimension without explicit changes in method because we will
perform volume segmentation i.e. 3D case of level set.

4.3 Level set

Level set method as proposed by Osher and Sethian [15] provides numerical and
mathematical mechanisms for surface deformation computation as time varying iso-
values of level set function using partial differential equations (PDE).

CHAPTER 4. IMAGE SEGMENTATION 32

4.3.1 Level set theory

Information in this and following paragraphs are based on [20] and definitions will
be for 2D case. The level set function is a signed scalar distance function

φ : Ux,y→ R, (4.2)

where U ⊂ R2 is the domain of the function. φ is called embedding and is implicit
representation of the segmented object. Isoline is then a subset of the level set
function values, a hyperplane

S = {~x | φ(~x) = k} (4.3)

The symbol S represents a k-isoline or k-level set of φ. The variable k can be chosen
freely, but in most cases it is zero. The isoline is then called zero isoline, zero level
set or dimension insensitively front (will be used further).

Deformation of the front is then described by an evolution equation. One ap-
proach, dynamic, uses one-parameter family of φ function i.e. φ(~x, t) changes over
time,~x remains on the k-level set of φ as it moves and k remains constant. Resulting
equation is

φ(~x(t), t) = k⇒ δφ

δt
=−∆φ ·~v. (4.4)

Where v represents movement of a point x on the deforming front i.e. positions in
time. All front movements depend on forces that are based on level set geometry
which can be expressed in terms of the differential structure of φ. So following
version of equation 4.4 link formulated:

δφ

δt
=−∆φ ·~v =−∆φ ·F(~x,Dφ,D2

φ, ...), (4.5)

where Dnφ is the set of n-order derivatives of φ evaluated at ~x. The term
F(~x,Dφ,D2φ, ...) represents the force that influence the movement of a surface
point. This equation can apply to every values of k i.e. every level set of func-
tion φ and is basic equation of level set method.

4.3.2 Level set computation

Computation of surface deformations has to be discretized which means it is per-
formed on discretized space i.e. grid. Front propagation is then computed from
initial model in cycles representing discrete time steps using this update equation:

φ
n+1
i, j = φ

n
i, j +∆t∆φ

n
i, j, (4.6)

where the term φn
i, j is discrete approximation of δφ

δt referring to the n-th time step
at a discrete position i, j which has a counter part in continuous domain φ(xi,y j).

CHAPTER 4. IMAGE SEGMENTATION 33

touch point

Figure 4.2: Embedding computation is performed only within narrow band (high-
lighted in grey). When level set touches (highlighted by the circle) the border or the
band, new band has to be computed i.e. reinitialized.

∆t∆φn
i, j is a finite forward difference term representing approximation of the forces

influencing the level set, the update term. The solution is then succession of steps
where new solution is obtained as current solution plus update term.

Discretization of the level set solution brings two problems. Fist one is need
of stable and accurate numeric scheme for solving PDEs. This is solved by the
’upwind scheme’ proposed by Osher and Sethian [15]. The second one is high
computational complexity caused by conversion problem one dimension higher.
Straightforward implementation via d-dimensional array of values, results in both
time and storage complexity of O(nd), where n is the cross sectional resolution and
d is the dimension of the image. In case of pictures with size about 5123 voxels the
level set computation takes very long time.

4.3.3 Speed-up approaches

Because of computational burden of straightforward level set solving some speed-
up approaches has been proposed. They are useful only when only single level
set is computed which is the case of image segmentation. Then is unnecessary to
compute solution for given time step over whole domain but only in those parts that
are adjacent to the level set. Beside the most known and used Narrow Bands and
Sparse Fields there is an octree based method proposed by Droske et al. [9].

Narrow Band, proposed by Adalsteinsson and Sethian [3], computes embedding
only within narrow band, tube. Remaining points are set constant to indicate that
they are not in the tube. When level set reach the border of the tube, a new tube
has to be calculated based on current level set. Then new run of computations are
performed on this new tube until involving level set reaches tube borders again or
the computation is stopped.

CHAPTER 4. IMAGE SEGMENTATION 34

Sparse Fields method, proposed by Whitaker [18], introduces a scheme in which
updates of an embedding are calculated only on the level set. This means that it
performs exactly the number of calculations that is needed to calculate the next
position of the level set. This is the biggest advantage of the method.

Points that are adjacent to the level set are called active points and they form an
active set. Because active points are adjacent to the level set, their positions must
lie within certain range from the level set. Therefore the values of an embedding in
active set positions must lie on certain range, the active range.

When active point value move out from the active range, it is no longer the
active point and is removed from the active set. And vice versa, the point whose
value comes into active range is added into active set. Along the active set there are
few layers of points adjacent to the active set organized like peels of an onion, see
the figure 4.3.

Process of front propagation can be imagined as a tram that lays down tracks
before it and picks them up behind.

Algorithm (from [20]):
layer, Li - set of points that are close to the level set. i is order of a layer, negative

for inner layers, positive for outer ones. Zero is for the active set layer. See the
figure4.3
statuslist, Si - list of points within i-th layer that are changing status

DO WHILE (stop condition is met):

1) FOREACH (point ∈ active set, the zero layer (ZL)
a) compute level set geometry (~x)
b) compute change using the upwind scheme in point (~x)

2) FOREACH (point ∈ active set compute new embedding value φ
n+1
i, j,k , which

means computing 4.6.
Decide if it falls into [-1

2 ,1
2] interval. If φ

n+1
i, j,k moved under the interval, put the (~x)

into lower status list, resp. into higher if φ
n+1
i, j,k moved above the interval.

3) Visit points in other layers Li in order i = ±1, . . . ,±N, and update the
grid point values based on the values of the next inner layer Li±1 by adding resp.
subtracting one unit.
If more than one Li±1 neighbour exists then use the neighbour that indicates a
level curve closest to that grid point. i.e. use the point with maximal value for the
outside layers resp. point with minimal value for the inside ones. If a grid point in
layer Li has no Li±1 neighbours, then it gets denoted to the next layer away from
the active set, Li±1.

CHAPTER 4. IMAGE SEGMENTATION 35

layer 0, L0

layer 1, L1

layer 2, L2

Figure 4.3: Embedding is calculated only at points that are covered by the level
set (the white line). Those points (active set) are coloured in black forms the zero
layer. Other layers embrace the zero layer from both inner and outer side, formed
like onion peels

CHAPTER 4. IMAGE SEGMENTATION 36

4) For each status list S±1, S±2, . . ., S±N do the following:
a) For each element x j on the status list Si, remove x j from the list Li±1 and add it
to the Li layer. Or in the case of i =±(N +1), remove it from all layers.
b) Add all Li±1 neighbours to the S±1 list.

The stop condition is specified by maximal count of iterations. Another stopping
criterion is based on a measurement of the front movement. When the front does
not move anymore, calcultation is stopped before maximal count of iterations is
reached.

4.3.4 Level set image segmentation

Image segmentation using a level set method is performed based on a speed func-
tion that is calculated from the input image and that encourages the model to grow
into directions where the segmented object lies. There is variety of the speed func-
tions. In this work we used speed function based on a threshold Tlow and Thi of the
intensities if pixels from the input image. If a pixel has intensity value that is within
the threshold interval the level set model grows, see the figure 4.4. Otherwise it
contracts as fast as the pixel has value further from the interval. The function D is
defined as:

D(~x) =

{
V (~x)−Tlow if V (~x) < Tmid

Thi−V (~x) if V (~x) > Tmid
(4.7)

where V (~x) is pixel value in point ~x and Tmid is the middle of the thresholding
interval.

This is quite natural definition of what we need from the process i.e. grow as
fast as possible where the segmented object lies and contract otherwise.

The update term from equation 4.6 can be rewritten into following form that
consist of few terms:

φt = α|5φ|H +β5|5 I| ·5φ+ γ|5φ|D (4.8)

where | 5 φ|D represents speed function term, 5|5 I| is edge term that is and
|5φ|H represent curvature term. α, β and γ are weights of particular terms.

Edge term is computed from second order derivatives just like Canny and Marr-
Hildreth algorithms for edge detection. It shall to push level set towards edges, i.e.
border of segmented object.

Curvature forces the resulting level set model to have less surface area and thus
protect negative effects like leaking into unwanted places shown in the figure 4.5.
Note: if α = β = 0, the result is the same as flood-fill method result because there is
only the speed term taking place in the calculations.

CHAPTER 4. IMAGE SEGMENTATION 37

Model
Contracts

Model
Expands

T TTlow himid

pixel values

function values
Figure 4.4: Gray rectangle encloses interval where the speed function is positive,
i.e. the model expands. The fastest expansion is in the Tmid point

Figure 4.5: Illustration of leaking artefacts. Initial level set - circle (left). Without
curvature forces, segmentation leaks into unwanted places (center). Segmentation
with curvature forces (right).

CHAPTER 4. IMAGE SEGMENTATION 38

We omitted the edge term so there are only two parameters in our method. Tun-
ing of the term weights has to be performed in order to have the best results.

4.3.5 Level set methods on streaming architectures

There were some attempts for porting level set method onto special stream device.
There are some obstacles due to streaming architecture that has to be overcomed to
efficiently solve the problem. Firstly the streams of data must be large, contiguous
blocks in order to take advantage of streaming architecture. Thus the points in
discrete grid near the level-set surface must be packed into data blocks that can
be further processed by streaming processors. Another difficulty is that the level
set moves with each time step, and thus the packed representation must be quickly
adapted.

For example Cates at al. [11] or Lefohn at al. [13] ported level set segmentation
method to GPU. GPU is a streaming architecture with many, nowadays hundreds,
of streaming cores. They run short programs called shaders. In porting to GPU ar-
chitecture a texture memory is used to store input data in a large continuous block.
Actual computation is then managed by vertices that flow into the shader and play
a role of pointers to the texture memory. This is some kind of trick because the tex-
ture memory is not addressed directly by address number like in single dimension
continuous address space in common processors but instead by a 2D coordinate
vector. Because vertices comes as 3D points, virtual memory system that map 3D
vertices to 2D texture coordinates has to be created. Such system proposed Lefonh
at al. [13]. See the figure 4.6.

Another workaround has to be performed when computed data is transferred
back to the CPU. This direction is much slower than the CPU to GPU direction
and thus the results has to be somehow packed. Lefonh at al. [13] describes this
packaging as well. There are although some advantages. One is the high count of
the processors and extreme fast dedicated memory so the results can be impressive.
Another is that the calculation can be directly visualized by the GPU.

Although the Cell/B.E. has some parts of the approach in common with GPU it
need not to overcome the GPU obstacles. For instance no virtual memory system
need to be implemented because the SPE has its own flat address space by default.
Also the result packing for sending back to CPU is not necessary because transmis-
sion of data from and to SPE has the same speed and can be performed directly.
All these Cell/B.E. processor features could result easier and more straightforward
process of porting of level set method. But speed of the Cell/B.E. result will not
probably exceed the GPU solution speed.

CHAPTER 4. IMAGE SEGMENTATION 39

Figure 4.6: Illustration of virtual memory system (taken from [13]). 3D space level
set domain (that incoming vertices come from) is mapped via page table to 2D
texture coordinate system.

Chapter 5

Design and implementation

This chapter will describe details of implementation and design of our test appli-
cation. It will start with listing of used frameworks continuing with description of
the process of the test application incorporation into the frameworks. After that re-
sults of profiling of the application will be summarized. Followed by a new design
description which was necessary due to unexpected profiling results. The rest of
chapter will present actual porting process with all its problems, solutions, recom-
mendations and all the usable information that we discovered during the porting
process.

5.1 Original idea of the porting process

We wanted to follow the common scenario of porting process as described in 3.5.1.
In our case this means:

1. choose base implementation

2. clean it up

3. port it to PPE

4. profile it to find hotspots

5. offload hotspots to SPEs and right away to use multi-buffering technique for
DMA transfers

6. optionally try some optimization steps if the results were not satisfactory

40

CHAPTER 5. DESIGN AND IMPLEMENTATION 41

5.2 Chosen algorithm and frameworks

We decided to choose sparse field algorithm of level set solving for porting to
Cell/B.E. It is a quite complex image processing algorithm that could test the
Cell/B.E. programming as a whole.

We took ITK [12] implementation of the algorithm as a base. Therefore we had
to get familiar with this huge project. It contains many algorithm implementations
as well as necessary infrastructure content such as loading and saving variety of
formats. The base concept of this project is a pipeline and filters.

To get some work done a pipeline has to be build from filters. Filter is an entity
that represents an algorithm. When a pipeline is created the last filter is started.
Starting event then propagates towards the beginning of the pipeline where actual
computation starts. Output from one filter is input of the following one. Filters thus
create a building blocks for a more complicated method.

After several first test with examples and tutorials we wrote our own testing
application (originally with code name ’pok’). It was able load an image, run a
level set filter and save the results. Some reasonable parameter values were found
with the pok application. It was controlled via bash scripts that is not much easy
nor user friendly solution. There was also no way how to visualize the results.
Therefore we decided to use another framework to overcome these problems, the
MedV4D project [16].

This project was originally started as a software project and is basically frame-
work for creation of medical applications. Its purpose is to simplify the process of
GUI creation as well as actual computation model design. It let the programmer
to focus only on actual problem solution. Filter is the basic building block as well
in this framework. Filters can be composed into pipeline just like in ITK. But the
MedV4D filters are more low-level and thus faster than ITK ones. The pipeline then
offer some implicit locking of data set parts to allow parallel computation.

5.3 Incorporation into MedV4D framework

The most convenient way how to use an ITK pipeline that can be run on the
Cell/B.E. seemed the client/server architecture. The part of the application that
is to be run on the Cell/B.E. is a server. While client part loads initial data or saves
the results, visualize the results and act as GUI with controls for parameter setting.

Whole process can be described as following: a client loads the input data sends
them to a server and waits for results. As soon as the results are read back they are
visualized. Then the result can be saved or sent to the server again for computation

CHAPTER 5. DESIGN AND IMPLEMENTATION 42

Load data tune params

send to server

Server computation

Save data visualize results
result ok result bad

Figure 5.1: Client acts like a GUI for the server side that performs actual computa-
tion

with another parameters. See the figure 5.1 showing how the application with code
name ’LevelSetClient’ works.

There were two main goals which were necessary for incorporation pok appli-
cation into MedV4D framework:

1. Remote computing infrastructure

Infrastructure for sending commands to server along with data or parameter
values as well receiving response messages along with resulting data had to
be implemented into the MedV4D. It lead into designing whole new library
of the MedV4D called remote computing (RC). On the client side there is a
remote filter that encapsulates the whole infrastructure necessary for sending
of a pipeline to the server as well as the result handling. The server side had
to be designed completely as a whole.

2. ITK integration

This is performed by a wrapper MedV4D filter that is connected into the
MedV4D pipeline. Within this filter there are two ITK images that serves as
input and output for inner ITK pipeline. Actual data of this ITK images point
to data of the wrapping MedV4D filter (see figure 5.2 for details).

CHAPTER 5. DESIGN AND IMPLEMENTATION 43

INPUT
data

OUTPUT
data

INPUT
Medv4D
image

OUTPUT
Medv4D
image

ITK pipeline

ITK wrapping Medv4D filte

INPUT
ITK

image

OUTPUT
ITK

image

Figure 5.2: Basic elements are the two ITK images whose data are actually
MedV4D images’ data

5.3.1 Client part

As mentioned above the base element of client RC part is a remote filter. It imple-
ments actual command sending and result receiving functionality. It is derived from
a pipeline MedV4D filter so it can be added into a pipeline and thus represent a part
of the pipeline that run on a remote server. Listing of commands that the remote
filter issue to the server follows:

1. CREATE

This command is a create request. It identify the type of the filter that the
remote filter represents and that should be instantiated on the server side.
Server parses the command message and instantiate appropriate filter along
with the whole pipeline (remote pipeline).

2. DATASET

Tells the server to read actual data set that the computation will be performed
on. The data set is parameter of the command.

3. EXEC

This command requests actual execution of the remote pipeline. But filter pa-
rameter values should be parsed before the actual execution. These values are
within the only parameter of this command. After the parsing and association
of the filter parameters with the actual filter the remote pipeline is executed.

Purpose of the commands is to divide actual execution into stages and thus to
define a state of remote execution. This is because it would be worthless to send
actual data set to server again when user wants to execute the remote pipeline again
with the same data set but only with different parameters. Commands allow this

CHAPTER 5. DESIGN AND IMPLEMENTATION 44

PrepareOutputDataset

CREATE command

ProcessImage

DATASET command

EXEC command

IN data chaged

parameter tunning & pipeline execution

server

server response processing

exit

data

filter propertie

Figure 5.3: Shows three basic states of a remote filter and when particular com-
mands are sent to a server.

because remote pipeline has a state telling ’data already received, now waiting for
EXEC command as many times as wanted without no more input data transmis-
sion’.

The MedV4D pipeline filter defines also some stages that the behaviour of re-
mote filter benefits. One of them is a method that is called only when input data
changes (PrepareOutputDataset). This is perfect place to send DATASET com-
mand to server. Because this is called only on input data change thus DATASET
command will be issued on input data change as well. CREATE command has to be
sent before the DATASET command to build the remote pipeline before data set is
transmitted. CREATE command is sent with DATASET command because remote
pipeline has to be recreated every time a new dataset arrives.

The EXEC command is sent within a function that is called when the pipeline
is executed making actual computation started (ProcessImage). Whole cycle shows
the figure 5.3.

Server’s response can be either OK or FAILED. In case of OK resulting data set
is received in contrast to FAILED case when no data set is expected.

CHAPTER 5. DESIGN AND IMPLEMENTATION 45

accept

deserialize ident. & build pipeline

run pipeline

accepted

deser. DS prop. & connect to pipe.
client

send results to client

CREATE

DATASET

EXEC

wait for DATASET command

wait for EXEC command

discard pipe & reset

on exception

client disconnected

on exception

client disconnected

Figure 5.4: Illustration of server state diagram. The states correspond to the com-
mands that are accepted by the server.

5.3.2 Server part

Server part is counter part of the client one so the design reflects this. Goal of server
is to sit and wait for an incoming connection. One connection means one session of
computation. Currently only one session at a time is held. In context of a session
command from the connected client are parsed and appropriate actions performed
(see figure 5.4).

Like in every client/server application some kind of stubs are needed. In our
application serialization and de-serialization methods are the stubs. Goal of the
methods is to ensure that the data that the client sends will be received in exactly
same order and data types.

CHAPTER 5. DESIGN AND IMPLEMENTATION 46

Good example is the CREATE request. In this request identifier of remote filter
is sent along with filter class template parameters identifiers. In case of mismatch
of that identifiers completely different class would be instantiated on the server side
Hierarchy of virtual methods of data set classes defines interface for such stubs.
Interface of remote filter properties class hierarchy does the same for the remote
filter.

Another issue is endianess. Endianess identifier is sent along every command.
On the other side is made decision if byte swapping should be performed. This
allows to perform byte swapping only when it is really necessary.

Currently only one remote filter is implemented - the level set segmenta-
tion. But other filters can be easily added by appending one switch branch in
remoteFilterFactory.cpp source. The level set segmentation filter is implemented
as a successor of ITK filter that contains appropriate ITK pipeline. This pipeline is
the most interesting part related to this work so the further content will decribe it.

5.4 Level set segmentation pipeline

This pipeline contains three ITK filters.

1. fast marching filter

Is responsible for initial level set computation. Parameters of this filter are
point ~x in data set and distance d. Output is data set of distances from a ball
shaped object with centre in the ~x with radius d. This data set is the initial
level set front.

2. level set segmentation filter

Performs actual level set segmentation method. Parameters of this filter are
threshold interval, maximal count of algorithm iterations, curvature and speed
scaling (explained above).

3. binary thresholding filter

Purpose of this filter is extract resulting object. It is thresholding that select
pixels with values less that zero that corresponds to inner part of the resulting
level set.

The fast marching and binary thresholding filter have not been changed and
are used as is part of the ITK framework. The only filter that has been changed
was the level set segmentation (LS) filter. This filter performs the sparse field level
set solving algorithm we have chosen to port to Cell/B.E.. This algorithm uses
linked lists to represent the sparse field layers. The actual algorithm, as described

CHAPTER 5. DESIGN AND IMPLEMENTATION 47

higher (4.3.3), is implemented in several classes. These classes form an original LS
hierarchy (OLSH).

5.5 Pre-porting steps

Due to the mapping of the algorithm to Cell/B.E. and due to poor lucidity and high
universality of the ITK code radical changes were necessary. We decided to rebuild
appropriate part of the OLSH responsible for the sparse field level set computation.
Our own LS image segmentation filter should be the result of that changes.

There are actually two class hierarchies in the OLSH. One represents the filter
that performs level set algorithm, the filter hierarchy. And the other computes the
FDE using the upwind scheme [15], the finite difference function hierarchy.

At the top of the function hierarchy there is FiniteDifferenceFunction that com-
putes the upwind scheme with assistance of virtual methods that are implemented
in successors. Successors are:

1. LevelSetFunction

It provides curvature term computation methods.

2. SegmentationLevelSetFunction

It manages speed image computation infrastructure.

3. ThresholdSegmentationLevelSetFunction

It computes actual speed image.

The base of the filter hierarchy is FiniteDifferenceImageFilter. It computes the
main loop of level set calculation (see step 1 in 4.3.3). Virtual methods of its suc-
cessors are used to implement the appropriate sub steps.

The first successor is the SparseFieldLevelSetImageFilter provid-
ing implementation of algorithm’s Step 1a through the update cal-
culation function. Other steps are performed by the apply up-
date function. Next successors SegmentationLevelSetImageFilter and
ThresholdSegmentationLevelSetImageFilter only manage difference function
in appropriate manner. The ThresholdSegmentationLevelSetImageFilter calculates
speed function as described in 4.7. The function is computed at the beginning for
the whole data set into pre-allocated image. This image is another notable amount
of memory that cannot be accepted for our purpose (see paragraph B.4).

CHAPTER 5. DESIGN AND IMPLEMENTATION 48

Figure 5.5: Illustrates the original ITK FiniteDifferenceFunction hierarchy and the
FiniteDifferenceImageFilter hierarchy and their relationship

Our approach calculates the speed function every time it is needed without any
pre-calculations. This approach could be possibly better for the Cell/B.E. streaming
nature.

We have simplified these two hierarchies. One reason of the simplification was
the removal of the pre-calculated image. The other one was code clean-up and
refactorization. Result of these changes is our own filter (ThreshSegLevelSetFilter,
OOF). It omits all unnecessary part of the OLSH and uses reasonable parts of the
original ITK level set segmentation filter (see the figure 5.6). It is also ready to be
ported for the Cell/B.E.

In the function hierarchy only the base class that the resulting
ThresholdLevelSetFunc class is derived has left. This new class does the
same job as original LS function hierarchy and omitts the pre-allocation of the
speed image. The computation of particular up-wind scheme terms was separated
into standalone classes for more code readability and modularity.

The filter hierarchy was shortened and begins already in
SparseFieldLevelSetImageFilter. All its successors in the original hierarchy
was omitted since they did anything reasonable for our purpose. Some function
implementation from the SparseFieldLevelSetImageFilter was borrowed into the
new OOF to be ported for the Cell/B.E.

CHAPTER 5. DESIGN AND IMPLEMENTATION 49

Figure 5.6: Show result of original LS hierarchy rebuilding. Some unnecessary
parts was omitted to clean-up the code and to change behaviour towards a streaming
architecture as well as the term computation was separated into supporting classes
for modularity

Profiling results
function name subroutine time spend percent

in calculations %
(in seconds)

ApplyUpdate() 20.15 75.21
PropagateAllLayerValues() 16.64 62.11
UpdateActiveLayerValues() 2.27 8.47

CalculateChange() 6.11 22.8
ComputeUpdate() 3.97 14.82

TOTAL 26.79 100

Table 5.1: Results of profiling showed that ComputeUpdate step that was originally
thought to be hotspot takes only 14.82% of computation time.

5.6 Profiling

As the first step of the porting process the server application with the OOF within
was build and profiled with following results:

The profiling results (see Table 5.1) show that the most time consuming part of
the program is not the difference solving in update calculation step but the update
application step. The original idea was to offload only the difference solving within
the update calculation step which is performed on 33 voxel matrix and calculated
independently of the others which makes this job perfectly suited for offloading to
the SPE. But the time necessary for computation of this part is only the fragment of
the whole. This is the reason for another changes to the OOF.

CHAPTER 5. DESIGN AND IMPLEMENTATION 50

MySegmtLevelSetFilter

Initial level set comp.

Intial layers comp.

SPE program manager

SPE program

UpdateCalculator

ApplyUpdateCalculator

Figure 5.7: Diagram of new design components. Calculation of only the initial
states is performed by the PPE. The rest is moved to the SPEs through the SPEM-
anager that perform all necessary steps to run the SPEs.

5.7 New design

Actually the whole OOF had to be rebuild and from original ITK class hierarchy
last nothing. Everything replaced by the OOF and our own version of original
FinititeDifferenceImageFilter (FDIF) where the main loop of the algorithm as well
as stopping conditions resides. The reason of replacing even the FDIF is that it
suppose usage of a difference function and its virtual methods. But in the new
design the difference function is offloaded to the SPE so it was taken out completely
through the FDIF.

In the figure 5.7 can be noticed that almost whole original ITK pipeline is of-
floaded to SPE. Only initialization routines are left to the PPE. This lead to create
the SPE program manager that will manage computations on SPEs. It is responsible
for SPE thread initialization and run, and SPEs synchronization.

SPE part consists of two main parts. The UpdateCalculator, performing update
calculation and the ApplyUpdateCalculator, performing update application. The
UpdateCalculator traverse over layer0 and computes update values for its points. It
performs STEP 1 of sparse fields algorithm 4.3.3. The computed values are stored
in a update buffer.

Then is the ApplyUpdateCalculator’s turn that performs the rest of that algo-
rithm on the calculated update values within the update buffer. In context of our
implementation the particular steps mean:

• STEP 2

For every layer0 compute new level set value and perform the test if it stays
in the interval [-1

2 ,1
2]. If not, move the point into appropriate status list. This

is performed by the UpdateActiveLayerValues method.

CHAPTER 5. DESIGN AND IMPLEMENTATION 51

• STEP 3

Is performed by sub-component of the ApplyUpdateCalculator, the
LayerValuesPropagator. This traverses over all layers, process their values
and remove nodes if they are no longer in a layer. Step processed by the
PropagateAllLayerValues.

• STEP 4

Traverse over status lists in innermost to outermost order and process their
nodes. A node is moved to inward (outward) status list and simultaneously
appropriate layer if needed. This is performed by the ProcessStatusLists
method.

5.7.1 Data flow

In porting process is necessary to know the data flow i.e. find out what data are sent
and where. What data are there produced and especially the size of all the data.
This is because of decision where they will be stored. Whether in the SPE local
store or in the central memory. For the first case their size has to be limited because
of limitation of the local store. For the second case a communication via DMA will
be necessary but the data size is not limited.

There are both cases in our application. The ProcessStatusLists method can be
performed completely within the SPE without loading any data from the central
memory. But the rest of processed data is too big and can not reside within the SPE.
It has to be DMAed in chunks from the central memory. The big data are statuses,
actual level set values and features that are stored within status, output and feature
images. So it is necessary to load and store parts of that images. Computation is
performed on small neighbourhood of voxels 3x3x3 (neighbourhood). So 27 voxels
(resp. statuses) has to be transferred for one node processing. Another big data are
nodes within actual layers which are linked list chains of nodes. Traversal over
the chains is performed sequential by loading one node after another. For each
loaded node one or more neighbourhoods shall be loaded. The computation is then
performed on those neighbourhoods.

There are other data that have to be stored within central memory and that con-
tribute to the data flow as well. Next list describe what data are processed in most
important methods resp. steps within our application:

• UpdateCalculator

It needs an array which is as long as the layer0. The size of the layer can be
very big so it is impossible to store it within SPE local store. Therefore the
array has to reside in central memory and its content has to be load into SPE
local store buffer while the list traversal.

CHAPTER 5. DESIGN AND IMPLEMENTATION 52

• UpdateActiveLayerValues

It process the array from UpdateCalculator so it has to load it from the central
memory. It operates on layer0. Some nodes are moved into status list and
simultaneously UNLINKed from layer0 list. Layer resides in central memory
so beside the loading nodes for traversing, some special operation has to be
defined on the layers which perform the UNLINK action.

Status lists are temporary objects. They live only during one
ApplyUpdateCalculator turn. So they can reside within SPE’s local store.
Therefore no special operation communicating with the central memory has
to be defined. But processing of the list0 has to be changed. In original ITK
code the UpdateActiveLayerValues operates on the whole layer0. One call to
this method can produce too long status list that would not fit into the local
store. So iteration over layer0 has to be limited to produce limited length
status lists. We have defined the limit with constant MAX TURN LENGHT
and call processing the limited segment of the layer0 a ’turn’.

• ProcessStatusLists

It works on the limited length status lists. During the lists processing some
nodes are moved from one to another layer which means they have to be un-
linked from one and linked into another. Linking into another layer defines
another layer operation, PUSH. One status list is processed untill it is empty
therefore all status lists remain empty and thus ready for the next UpdateAc-
tiveLayerValues turn after the ProcessStatusLists method finishes.

• PropagateAllLayerValues

This method traverse over all the layers and performs moving nodes among
the layers. This means operations PUSH and UNLINK as well as layer traver-
sal and appropriate neighbourhoods loading.

There are some actions and operations defined above that need communication
with the central memory. These are parts of the program where PPE - SPE commu-
nication features of the Cell/B.E. take place. Other SPE code need not to know if
it is run on the SPE or the PPE. Therefore set of tools that performs the PPE - SPE
communication was developed.

5.7.2 Tools

Tools are parts of the program that perform data transfer between the PPE and the
SPE. All these tools perform multi-buffering to avoid waiting for data.

CHAPTER 5. DESIGN AND IMPLEMENTATION 53

1. NeighbourhoodCell

Represent the part of an image (33 voxel matrix) needed for one node com-
putation. It uses DMA transfer list that allow data handling in scatter-gather
manner. Neighbourhoods are grouped within PreloadedNeigborhoods con-
tainer that manages which neighbourhood is being loaded, used in computa-
tion or saved i.e. actually performs multi-buffering.

2. RemoteArrayCell

Represents an array stored in the main memory. This tool is used
for the UpdateCalculator to save computed update values and in the
ApplyUpdateCalculator to retrieve the values which the UpdateCalculator
has stored. Its role is to perform DMA transfers not for every single value
save but on a buffer of that values.

3. LinkedChainIteratorCell

It traverse over a layer which is linked list data structure. As soon as one item
is retrieved, transfer of the next one is immediately started before the retrieved
item is processed letting the started transfer complete before the loaded item
processing finishes.

PUSH and UNLINK operations are related to linked chains of nodes, the layers.
We decided to implement them using mailboxes. Mailbox is another SPE to PPE
communication channel which is able to transfer 32bit integers synchronously.

Because of the 32bit integers transfer limitation actual PUSH and UNLINK pa-
rameters have to be decoded and encoded.

1. PUSH

Has to push a node into specified layer. Node coordinates and number of
layer is encoded and sent over mailbox to the PPE. On the other side the PPE
creates a new node appropriately according decoded coordinates and puts it
into specified layer.

2. UNLINK

Operation has to unlink a node from a specified list. Address of the node and
the layer number are the parameters. Address is transferred in 32 bit chunks
(because mailbox has 32 bit size) which are decoded on the PPE side to actual
node address that is then unlinked from specified layer.

Another support tool that is worth mentioning is ObjectStore which is simple
memory allocator templated with class of item it provides and size of an array that
the items are taken from. Provides two main methods, Borrow and Return. It is

CHAPTER 5. DESIGN AND IMPLEMENTATION 54

used for allocation of status layer nodes. They reside in the local store and thus
should be allocated on the stack.

Great advantage of the tools is also that the whole code uses only the tools for
the central memory communication. Therefore debugging transfer issues means
debugging the tools.

5.7.3 Work balancing

The sparse field layers are the central part that defines the amount of work to be
performed. So it is necessary to balance their length among the SPEs that process
them. This work is left to Work manager. Its goal is to ensure that all the layers are
divided among SPEs uniformly.

For this purpose the UNLINK and PUSH operations implemented using mail-
boxes fits well. The idea behind is that actual operation on the linked list is dele-
gated to the Work manager. It decides which SPE layer segment should be the node
appended into.

The whole process can be compared with a company department where are
several workers doing actual work and where is one manager who distributes the
work among the workers.

5.8 Actual porting process

Here we will describe our experience with actual porting procedure, problems that
the procedure has brought and our solutions of those problems.

5.8.1 PC as Cell/B.E. simulator

Because remote debugging program running on PS3 is quite time consuming i.e.
seconds for step into command and the like and because of small amount of mem-
ory (see paragraph B.4) we decided to left actual porting to the very end of the
process. Features that are needed for running on the SPE were gradually added into
the original code. Some parts were rewritten e.g. the UpdateActiveLayerValues
turn to allow some data to live in the SPE’s local store. All the changes have not
changed the programs’ output, so one can say that the all the programs in every
step were equivalent. All the debugging was performed on PC platform locally and
thus quickly. The Cell/B.E. special features like DMA transfer was simulated by
the memcpy function or the mailbox issues trough a simple queue.

CHAPTER 5. DESIGN AND IMPLEMENTATION 55

5.8.2 Moving to PPE

It seems that moving the code to PPE is easy and there could be no problem. But we
faced a problem that is worth to mention. Because our code uses a lot of third party
libraries there are quite much paths to include folders. It is necessary to manage
them well and not to mix architecture dependent ones.

We have mixed up include files of the boost library when cross-compiling and
experienced a totally strange behaviour. We thought that we can use boost library
includes that come from repository for i686 architecture. The code crashed on boost
code that should be debugged and stable. For instance opening a file has crashed
for an unknown reason. When program was compiled with includes from ppc(64)
repository all the problems have disappeared.

5.8.3 Tools porting

Next step was to port the tools for SPE. In fact is to rewrite usage of memcpy that
simulate the DMA transfer to use real DMA transfer.

Data that are transferred through DMA (DMAed) within the Cell/B.E. should
meet size and align conditions (see [5], Chapter 4). Data that does not meet this
condition will generate a BUS error. This condition force that all data that are being
DMAed should be allocated to aligned addresses (see objectStore.h or updateVal-
sAllocator.h).

Debugging within this step have been performed already on a Cell/B.E. ma-
chine. We used both PS3 and systemsim. Systemsim can detect which DMA
transfer brakes align rules and thus cause the BUS error but it is really slow. In-
stead using systemsim we have implemented a DMAGate (see DMAGate.h) that all
DMA transfer go through and where are all the conditions checked. Such central
point for all DMA transfer is really important part of Cell/B.E. program because it
gathers all DMA stuff into one place making debugging much more easier.

5.8.4 Memory checking tools

Gradual code porting for SPE was really time consuming due to fact that tools
operates with a stack memory. Debugging such parts needs extra care for what
is where rewritten. Since a stack memory is used some part of call stack would
become corrupted and the program becomes undefined. The worst thing is that
it can continue without crash or to crash on totally different place. Errors of this
type are always hard to track. There is need of usage of some memory checking

CHAPTER 5. DESIGN AND IMPLEMENTATION 56

tools. For us memcheck tool, part of Valgrind, proved to be useful to detect stack
corruptions.

Usage of DMA transfers (or memcpy) is also dangerous. It rewrites destination
memory without checking what is within that memory. Then many errors causing
segmentation faults arise.

We have spent lots of time debugging plenty of such errors. Even in resulting
application can occur some errors of this kind. Debugging every single this kind
error is a never ending story. So we recommend either to develop additional tools
that will check such errors or to use memory checking software such as Valgrind [8].
We used the Valgrind but not from the beginning. So when we check the program
there was too much warnings of the same kind. Solving them was impossible in
that time.

Checking the program with memory checking tools is necessary already from
the very beginning of the development and quite often. It is advisable not to make
huge code changes not only due to memory checking but due to actual process
as such. It is better to develop gradually in a small steps. One can then find an
error more simply. This is universal rule for programming but we believe it is valid
specially for the Cell/B.E. porting process.

Chapter 6

Results

In this chapter speed measurements of our application will be presented as well
as a few pictures of the results. Because we have not accelerated the computation
over traditional processors a discussion of the reasons will follow. We will mention
possible changes in design to speed up the execution. Then some consideration
how shall the algorithm that is well suited for the Cell/B.E. look like. Chapter will
be finished with comparison of complexity of programming for the Cell/B.E. and
conventional processors.

6.1 Speed measurements

Actual speed measurement is performed within GenerateData method of the
FiniteDifferenceFilter. Counter is started right after initialization phase i.e. be-
fore main algorithm loop and stopped right after the loop. The program memory
usage was tuned to use only really necessary amount of memory within the mea-
sured interval. Valgrind’s massive tool was used for the memory usage tuning. This
was necessary because of the PS3 limited memory, see paragraph B.4

Beside the server memory usage tuning other changes was made also within the
client part. There has been a special filter developed. The filter shrinks a data set
to a given size and cast its voxels to float. The shrinking is performed by a linear
interpolator. The purpose of the float casting is avoidance of allocation of additional
memory on the server side that would be necessary for float data set.

It is strange that the command top shows far bigger memory usage than the
Valgrind’s massif. We have not cared much about it but the idea is that the top
shows all memory requested from the system while the massif shows exact memory
used by the process.

57

CHAPTER 6. RESULTS 58

Measurement results
data set size seed init. max. arch. time

dist- itera- spend
ance tions (sec)

3slices 512x512x3 [256,256,1] 40 800 Cell/B.E. 16.48
(skull 1) i686 . 1.89
skull 1 256x256x80 [128,110,20] 20 500 Cell/B.E. 471.89

i686 95.23
skull 1 256x256x80 [128,110,20] 4 500 Cell/B.E. 325.93

i686 61.74
skull 2 256x256x80 [128,110,20] 4 500 Cell/B.E. 319.47

i686 55.88
skull 2 256x256x80 [128,128,40] 4 500 Cell/B.E. 366.63

i686 76.9

Table 6.1: Results of speed measurement. The first difference is a bit big probably
because of the small data set and insufficient time to take advantage of parallelism
of six SPE. The second measurement shows that the PC implementation is about
five times faster. The rest of measurements, performed on different data set and
parameter configurations prove the coefficient five.

Results of the speed measurement is summarized in the table 6.1. Every mea-
surement was run with the same curvature and speed-scaling factors. But with dif-
ferent initial distance, maximum iterations and seed parameters. These parameters
were set according to data set size.

Three different data sets were measured. All of them was CT images of a skull
that were scanned for anthropological purposes. Measurement of some volumet-
ric parameters of such images is a valuable source of data for the anthropologist.
Method implemented in our application could be used in the praxis for such pur-
poses if the application is quick enough. Therefore speed-up of the current methods
is necessary.

6.2 Reasons of slowdown and possible improvements

Porting the code to run on SPEs and distribution of the calculations among the
available SPEs is not sufficient to get more speed from the Cell/B.E. over traditional
processors. The optional speed-up porting phases are necessary to be performed.
But our program has another speed pitfalls.

The biggest problem is the CellNeighbourhood that represent a small part of an
image (the 33 voxel matrix). It is transferred for every layer item. In some parts

CHAPTER 6. RESULTS 59

1 2 3 4 ...

1 2 3 4

quadword

...

central memory array

LS array

word (32 bits)

Figure 6.1: Illustration of transfer of data that are smaller than quad-word. Hard-
ware automatically increases address within the local store buffer in such way that
every transferred item is quad-word aligned.

1 2 3 4 ...

1 2 3 4

quadword

...

central memory array

LS array

word (32 bits)

list 1 (1st word within quadword)

list 2 (2nd word within quadword)

list 3 (3rd word within quadword)

list 4 (4th word within quadword)

...

Figure 6.2: Workaround for transfer for smaller than quad-word chunks. It uses
more than one DMA list. One per quad-word align e.g. for chars 16 DMA lists are
needed.

the both output and status image neighbourhoods are transferred. We wanted to
perform the transfer in scatter-gather manner through DMA lists but we have faced
some problems. The DMA transfers and specially using DMA lists are designed for
big amount of aligned data. When they are used for small amounts (smaller than
16bytes per list item) performance goes down because of unaligned data transfer.
When smaller than 16 bytes (quad-word) data are being transferred every single
item is automatically aligned to quad-word address within the local store buffer
(see figure 6.1).

This increase required size of a buffer that is needed for the transfer. This can
be partially solved by usage of multiple DMA lists (one for each quadword align).
This is illustrated in the figure 6.2. For details see [10].

We have adopted this workaround and used it within the neighbourhood transfer.
Because of the automatic local store quadword address aligning we had to use a
translation table. This table maps position of actual neighbourhood members into

CHAPTER 6. RESULTS 60

Figure 6.3: Comparison of one slice segmentation on different architectures. The
left was computed on PC (i686), the right on Cell/B.E. Although the segmentation
was run with the same parameters there is small difference between those two im-
ages. The Cell/B.E. level set has not reached as far as the PC one. It is because of
duplicate nodes within layers.

position within the local store buffer. This is working solution but overhead is
incredible and thus the solution is useless (see cellNeigbourhood.tcc for details).

Another problem is order of layer nodes resp. neighbourhoods processing.
When there are two nodes within one layer that are next to each other processed
subsequently changes made to the first processed neighbourhood would not appear
to already preloaded next one. Therefore another merging was necessary to be
performed. This coerced another changes to neighbourhood transfer and made the
actual transfer unbearably expensive operation.

Another pitfall is the situation when sibling nodes are processed by two differ-
ent SPEs. Adding nodes to layers is based on information from neighbours of the
currently processed node. So it is possible that two different SPE inserts the same
nodes subsequently into one layer because they process sibling nodes i.e. overlap-
ping neighbourhoods. This makes no changes to output but means additional over-
head due to processing multiplied nodes. Solution to this problem would require
synchronization among the SPEs.

Additional improvements of neighbourhood transfers should be done to speed
up the execution. This corresponds to data transfer optimization step of porting
process (see paragraph 3.5). In our case this would mean radical simplification
of neighbourhood transfer. This transfer should take only a few instructions to be
effective. In the SDK examples transfers are performed by simple macros which
is probably the most effective way. In our case simplification if the neighbourhood
transfer would mean utilization of bigger image part transport within a single DMA
transfer to avoid automatic local store alignment. This would mean a bigger local

CHAPTER 6. RESULTS 61

store array to store the image part. But processing of nodes that are associated
with the part would be somehow gathered and thus the count of transfers would
be lower. Processing of nodes should take into account their spatial information
when inserted into a layer and thus to gather the node processing on the bigger
neighbourhood. But such computation scheme would coerce complete redesign of
the application and begining from scratch.

6.3 Code and design complexity

The Cell/B.E. programming means mainly programming for the SPEs because of
their performance and count. Because of indirect memory access and need of usage
of some multi-buffering memory transfer scheme the design is quite more complex
over common processor. With another limitation which is the local store size is
design of a Cell/B.E. application a challenge.

The Cell/B.E. is designed for intensive computation applications. For a pro-
grammer this means utilization of all SPEs and all their features at the maximum
level. It is only possible for certain class of algorithms. Let’s call them streaming
parallel algorithm. But what is it? What is the definition? Work on our application
has showed us what the streaming parallel algorithm is not. Therefore by nega-
tion of the features that slow down our program we could get a definition of the
streaming parallel algorithm. It would look like the following:

1. Streaming nature

Data of that program are uniform and can be processed in a small pieces
(chunks) which are mutually independent and which can fit in the local store
memory. This means that for a chunk processing only this chunk is necessary
and not any part of the other chunks. When this chunk is once processed it is
stored and is never retrieved for processing again.

For our application this is not true. At least not for all the input data. Process-
ing of a sparse field layer meets the streaming nature. But processing of parts
of underlying images (neighbourhoods) associated with these nodes does not.
The neighbourhoods are mutually dependent see 6.2.

2. Paralel nature

Input data can be divided into parts which are again mutually independent
and which can be sent to particular cores for processing. This avoids any
mutual synchronizations among the SPEs.

For our application is again not true. Work that is divided among the cores
is not independent because of dependency of particular neighbourhoods. See
6.2 what causes problems.

CHAPTER 6. RESULTS 62

When algorithm does not meet the streaming parallel definition then it should
not be implemented or it must be changed. This means e.g. to use different data
structures or to change the way the current data structures are used. In our case,
change of the data structure to somehow gather node processing to specific image
part would mean change of the algorithm we implemented. But then it would not
be the original algorithm any more.

In contrast there are algorithms that fits the streaming parallel algorithm defini-
tion. The examples in the SDK that meet the definition. Except them e.g. thresh-
olding meets the definition as well. It operates on an image that has uniform data
- pixels. It apply simple condition on each pixel which result depends only on
the processed pixel. Processing can be divided into chunks. These three features
meets the streaming condition. Moreover the data can be divided into independent
sets that can be processed by multiple cores (the parallel nature). Implementation
of this algorithm can therefore result huge performance gain on the Cell/B.E. than
conventional processors.

Our work has showed importance of the initial consideration and the design
phase. When there are more algorithms that are solving a desirable problem pro-
grammer should think carefully which one will be the best for porting to the
Cell/B.E. First stage of the initial consideration should be a model of the application
implementing chosen algorithm. Consideration what kind of data are processed. If
they are uniform. If they are divisible into chunks. If the computing can be divided
into independent parts i.e. what entity defines amount of work to be done. These
are questions that lead to answer if the chosen algorithm is or is not the streaming
parallel. If the answer is no, implementation of that algorithm is rather worthless
and will result such a suboptimal program as the ours.

Another thing is the code complexity. Performing the optimisation porting cycle
steps utilise all the Cell/B.E. features and thus leads to gain more performance.
Usage of language intrinsics, different kind of special instruction of macros for
variety of purposes, multi-buffering, etc. increases actual code complexity whereas
decreases code readability. It is also time consuming and hard to perform.

There is still another question to be answered. Is the porting of an algorithm
worth at all? Since only some special machines are equipped with the Cell/B.E.
actual data have to be sent to the machine for computing and results have to be sent
back. Therefore only complex algorithms where performance gain would be bigger
than the time spent in transfer of actual data set are worth to port. The algorithm
we have tried to implement is complex enough to be offloaded to compute on re-
mote machine while the mentioned thresholding would not. As soon as common
machines such as notebooks, desktops are equipped with the Cell/B.E. processor
even a class of such simple image processing algorithms that is implemented in
everyday-use software such as the thresholding or variety of masking or edge de-
tections is worth to port.

Chapter 7

Conclusion

At the beginning we studied available literature to find out what is actually the
Cell/B.E. and what benefits it brings. What special features it has and what they
are good for. Then we have been trying to install SDK to start actual development
process. During this phase we faced some obstacles such as bugs, incompatibili-
ties among tools, the libraries that the tools use and even the operating system vs.
SDK incompatibilities. Therefore we had to go through variety of forums and other
sources to find the solutions. As a side effect we improved our Linux knowledge.
Eventually we managed to install SDK and was able to start developing. Then
we have been testing variety libraries, tools and examples to get familiar with the
Cell/B.E. development.

We have chosen sparse field algorithm implementing level set based segmen-
tation to port to Cell/B.E. platform. This is quite complex algorithm to test the
platform’s potential. We adopted ITK implementation of that algorithm. Therefore
we had to study ITK tool kit and its internals. We have also incorporated the whole
program into MedV4D framework. That means we have implemented new modules
that allow using ITK and can offload some part of processing to remote machine.

Actual porting process started with cleenup the ITK code. Then profiling of
existing application took place finding out hot spots of the code which can be in
turn offloaded to SPE to take advantage of Cell/B.E.. But profiling results was
quite unexpected so another redesign of application followed. In this new design
almost whole original ITK code was offloaded to the SPE. A big code restructuring
was necessary to allow us to perform actual computations on the SPE. We have
repeatedly debugged same kind of errors due to corruptions of stack memory caused
by DMA transfers. This has proved importance of usage memory checking tools.
Finally we have been able to run the whole algorithm on SPE and to measure time
need for computations.

The result of measurement showed that simple move the computation to the

63

CHAPTER 7. CONCLUSION 64

SPEs is not sufficient because it does not utilize all the Cell/B.E. features. We
have identified some bottlenecks of the application and discussed possible solutions.
Implementation of these solutions would require whole application redesign using
another data structure. These changes would actually mean change of the used
algorithm.

Because of complexity of the chosen algorithm and the base implementation we
spent so much time with uninterresting work and in many cases we have done the
porting process in wrong way. This lead to silly mistakes and another time wastings
in debugging bugs. But on the other hand the improvization was the reason of
appearing of interresting ideas like the PC as the Cell/B.E. simulator.

Our work has proven that taking an implementaion of an algorithm and gradu-
ally change it to let it run on the SPE is not a good way of proting process. Instead
it is necessary to think if the algorithm is well suited for porting. And if it is then
implement it from scratch considering all the Cell/B.E. features utilization already
from beginning. The gradually changing the original implementation with the idea
of utilisation all the Cell/B.E. features as soon as it is able to run at least on the SPE
is wrong. Then it could meand the whole application redesign like in our case.

We have also discussed differences between the programming for conventional
processors and Cell/B.E. As well as question of actual algorithm complexity and
worthiness of porting them to Cell/B.E.

The Cell/B.E. platform is very interesting for its variations of use scenarios and
ability of program tuning and customization. We think the pallet of tools and fea-
tures of the Cell/B.E. can make it interesting alternative to conventional processors
whose lifetime is getting shorter due to limitations in manufacturing process. The
Cell/B.E.’s great potential has already been proven but it is still waiting for wider
spectrum of programmers.

If the process of the Cell/B.E. development starting became simpler we believe
much more new programmers would start using and programming it. Nowadays
there are plenty of information about the Cell/B.E. but they are somehow unsorted
or out of date. The best information source are documents shipped along with the
SDK. But they are targeted to contain all the information regardless the level of
experience of the reader. That means when a programmer wants to start developing
applications on the Cell/B.E. he/she would go trough a plenty of that information
before he/she can start actual work. It is a pity there is total lack of information
for PS3 users within SDK documentation. This is quite problem when a major
part of beginners has a PS3 available. There is simply lack of some ’cookbook
for beginners’ with practical information and some howtos. We believe this work
could be such a cookbook with such practical information that potentially may help
to some other programmers who would like to start developing for the Cell/B.E.

Bibliography

[1] Mike Acton. Cell performance website. www.cellperformance.com, 2009.
[Online; accessed 15-May-2009].

[2] Mike Acton. Understanding strict aliasing article. http://www.

cellperformance.com/mike_acton/2006/06/understanding_strict_

aliasing.html, 2009. [Online; accessed 22-May-2009].

[3] David Adalsteinsson and James A. Sethian. A fast level set method for prop-
agating interfaces. J. Comput. Phys., 118(2):269–277, 1995.

[4] Jonathan Bartlett. Programming high-performance applications on the
cell be processor series. http://www.ibm.com/developerworks/views/

power/libraryview.jsp?search_by=Programming+high-performance+

applications&Submit.x=47&Submit.y=17&url=%2Fdeveloperworks%

2Fviews%2Fpower%2Flibrary.jsp, 2009. [Online; accessed 22-April-2009].

[5] IBM corp. Programmer’s guide. /opt/cell/sdk/docs/index.html.

[6] IBM corp. Cell Broadband Engine resource center website. www.ibm.com/

developerworks/power/cell, 2008. [Online; accessed 12-December-2008].

[7] IBM corp. SDK documentation. www.ibm.com/developerworks/power, 2009.
[Online; accessed 14-February-2009].

[8] Valgrind developer team. Valgrind memory check tools documentation.
valgrind.org, 2009. [Online; accessed 20-March-2009].

[9] Marc Droske, Bernhard Meyer, Martin Rumpf, and Carlo Schaller. An adap-
tive level set method for medical image segmentation. In IPMI ’01: Pro-
ceedings of the 17th International Conference on Information Processing in
Medical Imaging, pages 416–422, London, UK, 2001. Springer-Verlag.

[10] Cell/B.E. forum. DMA list issues thread. http://www.ibm.com/

developerworks/forums/thread.jspa?threadID=143212, 2009. [Online; ac-
cessed 24-April-2009].

65

BIBLIOGRAPHY 66

[11] Ross T. Whitaker Joshua E. Cates, Aaron E. Lefohn. Gist: An interactive,
GPU-Based level set segmentation tool for 3D medical images. School of
Computing University of Utah Salt Lake City, UT 84112 USA, 2004.

[12] Kitware. ITK website. www.itk.org, 2009. [Online; accessed 4-January-
2009].

[13] Aaron E. Lefohn, Joe M. Kniss, Charles D. Hansen, and Ross T. Whitaker. A
streaming narrow-band algorithm: interactive computation and visualization
of level sets. In SIGGRAPH ’05: ACM SIGGRAPH 2005 Courses, page 243,
New York, NY, USA, 2005. ACM.

[14] Fedora maintainer team. Fedora project site. http://fedoraproject.org/,
2008. [Online; accessed 22-December-2008].

[15] Stanley Osher and James A. Sethian. Fronts propagating with curvature-
dependent speed: algorithms based on hamilton-jacobi formulations. J. Com-
put. Phys., 79(1):12–49, 1988.

[16] CGG team. project MedV4D. http://cgg.mff.cuni.cz/trac/medv4d, 2009.
[Online; accessed 15-January-2009].

[17] OpenCV team. Optimization strategy article. http://cell.fixstars.com/

opencv/index.php/Optimization_Strategy, 2009. [Online; accessed 21-
May-2009].

[18] Ross T. Whitaker. A level-set approach to 3D reconstruction from range data.
Int. J. Comput. Vision, 29(3):203–231, 1998.

[19] Wikipedia. Segmentation (image processing) — Wikipedia, the free encyclo-
pedia. http://en.wikipedia.org/wiki/Segmentation_(image_processing),
2009. [Online; accessed 22-April-2009].

[20] Terry S. Yoo. Insight into Images: Principles and Practice for Segmentation,
Registration, and Image Analysis. AK Peters Ltd, 2004.

Appendix A

Images

Figure A.1: 3D View of the segmented data set. VTK viewer used to visualize the
data set. On the left part there is the parietal part of the skull. This part is quite well
segmented as illustrate the figure A.2 The segmentation of the front skull part (on
the right side) is poor due to leaking through the eye sockets (see the figure A.4).

67

APPENDIX A. IMAGES 68

Figure A.2: Here is an illustration of the parental part of a skull segmentation.
Cavities that should be segmented are small enough to let the level set reach all
the edges. The segmentation has not completely leaked through the holes on both
sides due to the curvature term. But if the holes were wider there would be leakings
similar to the ones showed on the following figures.

APPENDIX A. IMAGES 69

Figure A.3: This image set shows middle slices of the skull data set segmentation.
Some edges are reached by the level set (on the right side of the skull mostly) while
some are not. This is caused by insufficient count of algorithm iterations (500) or
improper initial level set placement. It proves that result is highly initial parameters
setting sensitive.

APPENDIX A. IMAGES 70

Figure A.4: These three images illustrate the leaking of level set through throat
hole, cavities near nose and eye sockets.

APPENDIX A. IMAGES 71

Figure A.5: This slice is really poorly segmented due the leaking of the level set
through the previous slices (see the figure A.4).

Figure A.6: The original skull data set was blended (the red background) with the
result of segmentation (the bluegreen overlay).

Appendix B

Tools setup

This part is a cookbook how to install all the necessary content to be able to begin
development for the Cell/B.E. It also covers some bugs fixing as well as useful hints
how to use the partial SDK content. The instruction concerning the SDK installation
was based on installation on a i686 machine. But shall be the same for the other
architectures since it operates on the same operating system and repository versions
of third party software.

The first step is installation of Fedora operating system. For details see fedora
official site [14].

B.1 SDK installation

As first you have to do is to download actual SDK. Go to http://www-128.ibm.com/

developerworks/power/cell/downloads.html?S_TACT=105AGX16&S_CMP=LP. You
should download following files:

1. SDK 3.1 Installer cell-install-3.1.0-0.0.noarch.rpm (11MB), contains install
script and other stuff for SDK installation.

2. SDK 3.1 Developer package ISO image for Fedora 9 CellSDK-Devel-
Fedora 3.1.0.0.0.iso (434MB), contains rpm packages that actual SDK is
composed from (SDK packages)

3. SDK 3.1 Extras package ISO image for Fedora 9 CellSDK-Extras-
Fedora 3.1.0.0.0.iso (34MB), contains some extra packages for Fedora

Download it wherever you want (even though in documentation is /tmp/cellsd-
kiso). Lets call the folder ISODIR. First you shall stop the YUM updater daemon.

72

APPENDIX B. TOOLS SETUP 73

/etc/init.d/yum-updatesd stop

If it outputs: ”bash: /etc/init.d/yum-updatesd: No such file or directory”, you do
not have any YUM updater daemon installed so you can skip this step. Now issue
following command to install required utilities for SDK installation

yum install rsync sed tcl wget

Now install the downloaded installation rpm.

rpm -ivh ISODIR/cell-install-3.1.0-0.0.noarch.rpm

After this step you have new stuff in /opt/cell installed. There is SDK instal-
lation script (cellsdk) located as well. It is wrapper for YUM that manages the SDK
packages. Run it with parameter –help to see the usage. So next step is to run it.

/opt/cell/cellsdk --iso ISODIR -a install

Parameter –iso tells to use the downloaded ISOs and path where they can be
found for mounting onto a loop-back device. Parameter -a disables agreeing li-
censes. Otherwise you have to write some ’yes’ to agree. Process begins with
setting local YUM repositories pointing to the ISOs. Then all default packages are
installed with all their dependencies. To check result of the installation issue

/opt/cell/cellsdk verify

Now we have SDK installed. Lets continue with installation of IDE. It consists
again of packages. Now install yumex that provides graphical interface to YUM to
simplify processing packages. It let you simply check packages that you want to
install.

yum install yumex

To install CellIDE run yumex, go to Group View→Development→Cell Devel-
opment Tools. Check cellide, that is actual IDE (Eclipse with cell concerning stuff)
and ibm-java2-i386-jre, that is Java Runtime Environment, JRE needed for running
of the IDE. Click ’Process Queue’. Note: you should have the ISOs mounted onto a
loop-back device. Otherwise you get ’Error Downloading Packages’ after clicking
’Process Queue’. Therefore you have to mount ISOs whenever you want to install
package concerning the SDK

APPENDIX B. TOOLS SETUP 74

/opt/cell/cellsdk --iso ISODIR mount

After the installation you have two new folders. /opt/cell/ide that contains
the IDE and /opt/ibm/java2-i386-50 where the JRE resides. To run the ide you
have to specify folder where the JRE is (through -vm param).

/opt/cell/ide/eclipse/eclipse -vm /opt/ibm/java2-i386-50/jre/bin/

B.1.1 Bug fixing

If you start the IDE and it crashes with unhandled exception it is probably caused
by xulrunner library. It is usually installed with Firefox3. There is following
workaround:

1. download an older version of the xulrunner

e.g. from: http://releases.mozilla.org/pub/mozilla.org/xulrunner/

releases/1.8.1.3/contrib/linux-i686/xulrunner-1.8.1.3.en-US.

linux-i686-20080128.tar.gz

2. untar to an accessible directory

Lets call it XULDIR.

3. edit the

/opt/cell/ide/eclipse/eclipse.ini file as follows:

...
-vmargs
-Dorg.eclipse.swt.browser.XULRunnerPath=XULDIR
...

Now you should start the IDE without the crash. Screenshot of a common eclipse
view is on the figure B.1.

B.2 IBM Full-System Simulator

The last part of development environment is the IBM Full-System Simulator
(systemsim). It is not part of the SDK so you have to download it separately.
Visit http://www.alphaworks.ibm.com/tech/cellsystemsim/download and down-
load rpm with the simulator appropriate to the platform you are currently using. Be
sure to download fedora 9 version of the simulator (cell-3.1-8.f9.*). Then install it.

APPENDIX B. TOOLS SETUP 75

Figure B.1: Sreenshot with opened source, project explorer and remote environ-
ments windows.

rpm -ivh ISODIR/systemsim-cell-3.1-8.f9.i386.rpm

Maybe some dependencies will be missing. So you have to install it. In our case
it was libBLT24 and libtk8.5.

yum install blt tk

Now you have simulator installed. But it has nothing to simulate. Image with
image of simulated Fedora 9 system is needed (sysroot image). It is among SDK
rpms so install it using yumex (Cell Development Tools→sysroot image). Now all
necessary stuff is installed. You could start the IDE and start development. But
there are some bugs to fix yet.

B.2.1 Bug fixing

One issue (stack issue) is with tcl (scripting language that is used for configuration
of the systemsim). There is bug with stack size checking that causes cycling of
tcl code. To workaround this problem use ulimit command that changes default
environment of Linux programs and disables the stack size checkings.

ulimit -s unlimited

APPENDIX B. TOOLS SETUP 76

Figure B.2: Screenshot of Eclipse cellide after simulator startup. Remote environ-
ments window contain Local Cell Simulator item that is in paused state. Above this
window is simulator console with few last outputs. On the upper left side is part of
simulator control window.

The last is to fix actual tcl script that manages loading the sysroot image
(21% issue - loading of the sysroot image freezes on 21% so is not started and
thus unusable). It is caused by wrong triggers that are triggerd when some
text is output to the simulator console during the sysroot image loading. There
are probably triggers that wait for text from a previous version of SDK that
is never output in the current version. That is why the loading freezes on
21%. To fix it you have to edit /opt/cell/ide/eclipse/plugins/com.ibm.celldt.
simulator.profile.default_3.1.0.200809010950/simulator_init.tcl file. Re-
place the ”Welcome to Fedora Core” string with ”Welcome to Fedora” and ”INIT:
Entering runlevel: 2” with ”Starting login process”.

It is useful to create starting script that solve the stack issue and add systemsim
directory to PATH (needed for running).

ulimit -s unlimited
PATH=/opt/ibm/systemsim-cell/bin:\$PATH
/opt/cell/ide/eclipse/eclipse -vm /opt/ibm/java2-i386-50/jre/bin

Startup of the simulator shall finish to paused state after application of the fixes.
Screenshot of started simulator is on the figure B.2.

APPENDIX B. TOOLS SETUP 77

B.2.2 Installation of libraries into sysroot image

Because sysroot image is provided as an image of installed Fedora 9 without any
Cell/B.E. libraries so next step is to install them into sysroot image.

/opt/cell/cellsdk_sync_simulator install

This shell script installs all rpms for ppc and ppc64 platforms that finds in /tmp/

cellsdk/rpms. By default these rpms are copied into /tmp/cellsdk/rpms during the
install process. If they are not still there (or in installed subdirectory) you have to
copy them by hand from ISOs (note: ISOs has to be mounted).

cp \
/opt/cell/yum-repos/CellSDK-Devel-Fedora/rpms/*.{ppc,ppc64}.rpm\
/tmp/cellsdk/rpms

B.2.3 Copying content into sysroot image

Sysroot image is a common binary image that can mounted and thus some addi-
tional content can be copied into. This is useful when extra third party libraries that
are not part of the default image need to be used. In my case that was e.g. boost
libraries. To mount the sysroot image issue:

mount -o loop /opt/ibm/systemsim-cell/images/cell/sysroot_disk\
<your mount point>

And then copy whatever you want.

B.2.4 Simulator hints

You can ssh to running simulator. It is better to use real bash that the console within
IDE. You have all the bash advantages like command and path completion available
in contrast to ’text mode’ of the IDE console.

Sometimes root user is needed for an operation performed in the simulator. Its
password should be disabled. It can be done when sysroot image is mounted. Un-
der host machine root account the <sysroot_image_mount_point>/etc/passwd file
should be edited. The first line is the root’s so deletion of ’*’ character from the
second field (after the second ’:’ character) will disable the root’s password. Note
that this action must be performed when the simulator is not running otherwise the
changes will be overwritten by the simulator.

APPENDIX B. TOOLS SETUP 78

B.3 Using examples

Examples are installed in /opt/cell/sdk/src as tarballs. So you have to untar each
you want to use. It is good to start with the examples and tutorial sources. Each
folder has its own makefile that manages the makefiles in its sub folders. So you
can call only the top level one to build all projects in the sub folders or any from the
sub folders to build the particular projects.

It is convenient to use the sample sources in CellIDE where you can build it as
well and create run/debug configuration for running within a cell environment. To
use the example code (for example /opt/cell/sdk/src/tutorial/simple) create
new c++ makefile project. Click right button on it to get into properties. C/C++
general tab → Paths and Symbols → Source location. Here you have to add the
folder with the sources (/opt/cell/sdk/src/tutorial/simple) by ’create / link
folder’ button→advanced→ link to folder in filesystem. Now you have two folders
in list. The first one is the original, created during project creation and the other
newly linked folder with the source. You can delete the original one since you
are not going to use it. Next is necessary to set up ’Build directory’ to tell the
IDE where shall search for the makefile. It is C/C++ Build tab. Use ’Workspace’
button to specify the folder because it will use workspace loc variable and thus
independent on exact location on filesystem.

B.4 Tuning memory usage on PS3

PS3 has only 256MB RAM memory and even not the whole is visible for operat-
ing system. This is very small amount for operating system and programs together.
When install fedora system with default state and boot it up, the amount of re-
maining free memory is about 10MB. It is insufficient for either debugging and
compilation. So some of the resources has to be switched off. Our PS3s are ac-
cessed remotely via ssh so there is no need for X server. So this is the first thing
you can turn off. This is performed by change of default runlevel from 5 to 3. Run
level setting is in /etc/inittab file. So change in line

"id:5:initdefault:"

the 5 to 3.

Another resource are services. Here you have to consider if the service you
want to turn off is really unnecessary. In Our PS3 NeworkManger and Wireless
supplicant was turn off. NOTE: when you turn off the network manager, you have
to turn on the network service otherwise the networking will not run properly. For

APPENDIX B. TOOLS SETUP 79

service management within ssh console the /usr/sbin/ntsysv manager is quite
useful. After disabling all unnecessary services we got about 130MB of free space.

Yellow dog distributions goes even beyond. They can access another 256MB in
PS3 locked for graphics. Special device is created and the graphic memory is then
used as a swap partition. For details see http://us.fixstars.com/products/ydl/.

B.5 Performance tools

Information about packages concerning performance tools can be obtained by:

yum groupinfo "Cell Performance Tools"

If they are not already installed issue following command to install them.

yum groupinstall "Cell Performance Tools"

B.6 Visual Performance Analyser - VPA

Another useful tool is VPA. It is not part of SDK so it should be downloaded
separately. Visit http://www.alphaworks.ibm.com/tech/vpa for details. After in-
stalling (actually unpacking) the downloaded file similar fix to the one in eclipse.ini
file (see paragraph B.1.1) should be done to run the VPA correctly.

B.7 Cell/B.E. cross compilation

When cross-compiling a Cell/B.E. program which uses lot of third party libraries it
is good idea to share some folders on actual Cell/B.E. machine. It avoids necessity
of copying different architecture stuff to the machine where the cross-compilation is
performed as we did. In our case it was boost and ITK libraries and we performed
cross-compilation for Cell/B.E. on a i686 machine. We wanted to use repository
versions of the Cell/B.E. resp. ppc64 libraries on our i686 machine. So the first
thing we tried was to install appropriate packages of different architecture. But
we have not found a way how to do it. Every try has failed due to architecture
mismatch. So we believe that mounting remote Cell/B.E. machine shared folders is
the only way how to use repository content directly and avoid copying the different
architecture content.

Appendix C

Content of the DVD

There is an index.htm that could be used as starting point. It points to this thesis
as well as to install all additional third party content required by test applications.
There are also instructions how to compile and use attached code and data.

The index file also contains user documentations of all the test applications.

80

