
Univerzita Karlova v Praze

Matematicko-fyzikálńı fakulta

DIPLOMOVÁ PRÁCE

Marek Vondrák

Dynamika živých organismů

Kabinet software a výuky informatiky

Vedoućı diplomové práce: RNDr. Josef Pelikán

Studijńı program: Informatika

Rád bych poděkoval vedoućımu diplomové práce RNDr. Josefu Pelikánovi za poskytnut́ı stu-
dijńıch materiál̊u a dále pak Mgr. Jaroslavu Semanč́ıkovi za jeho ohromuj́ıćı motion capture
výstup, zpracováńı motion capture dat a jejich zap̊ujčeńı pro účely předvedeńı možnost́ı animačńı
knihovny, která je součást́ı této práce.

Prohlašuji, že jsem svou diplomovou práci napsal samostatně a výhradně s použit́ım cito-
vaných pramen̊u. Souhlaśım se zap̊ujčováńım práce.

V Praze dne 14. prosince 2005 Marek Vondrák

Contents

1 Introduction 1
1.1 Background . 1
1.2 Goals . 4

2 Differential Equations 7
2.1 Definitions . 7
2.2 Numerical Solvers . 9

2.2.1 Euler Solver . 9
2.2.2 Higher Order Solvers . 10
2.2.3 Step Size Control . 12

2.3 Abstraction . 13

3 Particle Dynamics 15
3.1 Concepts . 15
3.2 Equations of Motion . 17
3.3 Abstraction . 19
3.4 Penalty Forces . 21

4 Constrained Particle Dynamics 23
4.1 Lagrange Multiplier Method . 23

4.1.1 Method Background . 23
4.1.2 Constraint Formulation . 24
4.1.3 Constraint Force Basis . 25
4.1.4 Lagrange Multipliers . 26
4.1.5 An Example . 28

4.2 Constraint Abstraction . 29
4.2.1 Combining Constraints . 30
4.2.2 Abstraction . 31

4.3 Constraint Stabilization . 32

5 Rigid Body Dynamics 35
5.1 Concepts . 35

5.1.1 Mass Properties . 35
5.1.2 Position and Orientation . 36
5.1.3 Linear and Angular Velocity . 37
5.1.4 Force and Torque . 39
5.1.5 Linear and Angular Momentum . 40

5.2 Equations of Motion . 42

v

vi CONTENTS

5.2.1 Momentum Form . 43
5.2.2 Velocity Form . 43
5.2.3 Mass Matrices . 44
5.2.4 Numerical Issues . 46

5.3 Abstraction . 46

6 Constrained Rigid Body Dynamics 49
6.1 Beyond Particles . 49

6.1.1 Notation . 50
6.1.2 Equality Constraints . 51

6.2 Acceleration-Level Constraints . 54
6.2.1 Equality Constraints . 54
6.2.2 Inequality Constraints . 55
6.2.3 Bounded-Equality Constraints . 56
6.2.4 Reduction to LCP . 58
6.2.5 Dantzig LCP Solver . 59

6.3 Velocity-Level Constraints . 64
6.3.1 Impulses . 64
6.3.2 Constraints . 66
6.3.3 Handling Constraints . 68

6.4 Position-Level Constraints . 69
6.4.1 Constraint Formulation . 69
6.4.2 Equality Constraints . 70
6.4.3 Inequality Constraints . 71

6.5 Contact . 74
6.5.1 Collision Detection . 74
6.5.2 Non-Penetration . 76
6.5.3 Contact Forces . 79
6.5.4 Contact Impulses . 84

6.6 Soft Constraints . 86

7 Simulator 89
7.1 Overview . 89
7.2 Characteristics . 91
7.3 Components . 92

7.3.1 Algebra . 92
7.3.2 Geometry . 93
7.3.3 Differential Equation Solver . 94
7.3.4 Simulation . 95
7.3.5 Constraint Solver . 97
7.3.6 LCP Solver . 99

7.4 Joints . 99
7.4.1 Anchors . 100
7.4.2 Motors . 101

CONTENTS vii

8 Figure Library 103
8.1 Overview . 103
8.2 Skeletons . 104
8.3 Controllers . 105
8.4 External Influences . 107

9 Results 109
9.1 Tests . 110

9.1.1 Contact Tests . 111
9.1.2 Joint Tests . 112
9.1.3 Performance and Robustness Tests . 112
9.1.4 Integration Precision Tests . 112
9.1.5 Global Tests . 114
9.1.6 Figure Library Tests . 114

9.2 Demo Application . 115
9.2.1 Kinematic Animation . 115
9.2.2 Animation With Loose Arms . 116
9.2.3 Animation With Limited Forces . 116
9.2.4 Editing Animation . 116
9.2.5 Retargetting and Combining Animations 117
9.2.6 Optical Motion Capture To Skeletal Motion 117
9.2.7 Rag Dolls . 118

10 Conclusions 119
10.1 Future Work . 119

Název práce: Dynamika živých organismů
Autor: Marek Vondrák
Katedra: Kabinet software a výuky informatiky
Vedoućı diplomové práce: RNDr. Josef Pelikán
e-mail vedoućıho: Josef.Pelikan@mff.cuni.cz
Abstrakt: Poč́ıtačová animace artikulovaných postav je jedna z nejzaj́ımavěǰśıch a nejv́ıce se
rozv́ıjej́ıćıch oblast́ı moderńı poč́ıtačové grafiky. Ćılem této práce je seznámit čtenáře s teoríı
simulace tuhých těles s omezeńımi, která je následně použita ke konstrukci obecného simulátoru
tuhých těles s omezeńımi a třeńım a animačńı knihovny pro artikulované postavy. Postavy jsou
reprezentovány soustavami tuhých těles (segment̊u) propojených klouby a jejich pohyb určen
dynamikou př́ıslušných segment̊u. Dodatečná omezeńı, předepisuj́ıćı např. požadované úhly v
kloubech nebo pozice vybraných bod̊u na povrchu segment̊u, umožňuj́ı ř́ıdit pohyb postav. Bo-
haté interaktivńı demonstračńı př́ıklady předvád́ı vlastnosti samotného simulátoru a možnosti
animačńı knihovny pro zpracováńı motion capture dat (přehráváńı animaćı, přizp̊usobováńı an-
imaćı exterńım vliv̊um, mapováńı “syrových” motion capture dat na pohyb segment̊u, atd.).
Kĺıčová slova: tuhé těleso, simulace, dynamika, omezeńı, artikulovaná postava, ř́ızeńı pohybu

Title: Dynamics of Vertebratea
Author: Marek Vondrák
Department: Kabinet software a výuky informatiky
Supervisor: RNDr. Josef Pelikán
Supervisor’s e-mail: Josef.Pelikan@mff.cuni.cz
Abstract: Computer animation of articulated figures is one of the most interesting and the most
developing areas of modern computer graphics. The goal of this thesis is to get reader acquainted
with the theory of constrained rigid body simulation, which is subsequently used to construct
a generic rigid body simulator with constraints and friction and the figure library suitable for
the animation of articulated human-like figures. Articulated figures are represented by sets of
rigid bodies (segments) connected by joints and their motion is determined by the dynamics of
the corresponding segments. Additional constraints, specifying e.g. desired angles at joints or
the positions of selected sites on the surfaces of the figure segments, allow to control the figure
motion. A rich set of interactive demonstration examples presents the features of the actual
simulator and the capabilities of the figure library to process motion capture data (replay motion
capture data, adapt the data to external influences, map the “raw” motion capture data to the
motion of figure segments, etc).
Keywords: rigid body, simulation, dynamics, constraint, articulated figure, motion control

x CONTENTS

Chapter 1

Introduction

Computer animation of human-like figures has always been an interesting and no doubt chal-
lenging topic pursued by many researchers and computer graphics since the very beginning of
modern computer graphics. The purpose of this work is to get reader acquainted with the the-
ory of physical-based animation of articulated figures, present the most recent results of the
research in that area and to demonstrate that the technology is ready to be used in the pro-
duction environment (animation systems, computer games). To prove this, industry standard
dynamics simulator, capable of running at interactive rates on today’s low-end computers, was
implemented.

The thesis consists of a theoretical part, describing the dynamics theory and some algorithms,
and an implementation part, describing the implementation of the simulator and a figure library
built on top of it. No prior awareness of the theory is required to read this thesis, however basic
knowledge of calculus and linear algebra are demanded.

This chapter provides the reader with a brief information on the character animation back-
ground, gets the reader acquainted with the topics covered by the thesis and its goals. It is relied
upon the reader’s acquaintance with the computer animation basics as we will advance rather
quickly and informally.

1.1 Background

The mere purpose of this section is to identify the context of the area of dynamics discussed
throughout this thesis. We will briefly survey the most commonly used animation techniques of
human-like figures and point out their advantages and disadvantages.

We proceed from the oldest and the most primitive techniques to more advanced ones. Older
techniques are more “low level” as animators have to control every aspect of the produced an-
imation and their work much resembles the work of traditional animators. While “lower level”
techniques are very close to the raw figure representation (often assorted polygonal mesh), “higher
level” techniques attempt to abstract the figure representation and motion to be generated. Such
techniques are often domain specific (fit for a particular use only) and always use special proper-
ties of the figure to be animated (for example, they are aware of the fact that the figure consists
of a torso, limbs, etc. and take advantage of it).

The most primitive approach, vertex key-framing, treats the whole figure as a polygonal
mesh, where each polygon vertex is animated independently on each other. Animators provide
the animation system with positions of polygon vertices in time (animation curves), defined at
key-frames, and the animation system computes in-between-frames automatically by interpolating

1

2 CHAPTER 1. INTRODUCTION

data from the key-frames. This simplifies the animation process a little, compared to the lowest
level approach ever possible, where animator has to animate all frames by hand, but the work is
still quite laborious1. Probably the greatest drawback of the method is the fact that all vertices
are treated the same and has to be animated.

It became clear soon that it was advantageous to separate the animation of the figure’s “skin”
from the animation of its “skeleton”. The idea is that the animator would control figure’s posture
by animating its skeleton and the skin would deform accordingly (for the time being we can think
of the skeleton as of the actual figure’s skeleton, consisting of rigid segments corresponding to
bones and joints connecting the segments, and treat its skin as the skeleton envelope, drawn by
the animation system). The animation of the “skin”, driven by the animation of the skeleton,
is called the skeletal animation. However since it is the animation of the skeleton what makes
the overall impression of the motion, interests of many researchers and animators have focused
at the animation of skeleton, in fact it is probably the area that has been developing the most in
the last decade.

Depending on the way how figure’s skeleton is animated, we distinguish forward and backward
kinematics and forward and backward dynamics. All these techniques treat figure segments2 as
rigid body segments connected by joints that can restrict relative orientation and position of the
attached segments. In 3D kinematics, a figure segment state consists of the segment position and
orientation in the world space and can be parametrized by six scalar parameters called degrees-
of-freedom, DOFs, where three scalars parametrize segment displacements along the three world
space axes and the other three scalars parametrize angles about the axes3. Segment states are
represented by vectors from R6 called the segment state space. If a segment gets connected to
another segment, some of its DOFs will become constrained, that is their values will be determined
by the values of other unconstrained DOFs in the system, and so the set of valid4 states will
reduce. The valid states of the constrained figure segments can be then parametrized either by
a set of six constrained coordinates, called the maximal coordinates, or by a reduced set of < 6
unconstrained coordinates, called the generalized coordinates. In the latter case the constrained
DOFs are actually removed from the system because the generalized coordinates can serve the
purpose of the new unconstrained DOFs. By concatenating individual maximal or generalized
coordinates of the figure segment states in a certain order, one gets the maximal or generalized
parametrization of the whole figure state. That segment that was concatenated the first is called
the root segment.

For example if we have a figure consisting of two segments A and B, where A is the root segment and B is
attached to A by a joint that allows B only to rotate with respect to A along an axis attached to A (thus removing
all translational and two rotational DOFs, leaving the one rotational DOF unconstrained), then we can write:

(Ax, Ay, Az︸ ︷︷ ︸
translational DOFs

, Aα, Aβ , Aγ︸ ︷︷ ︸
rotational DOFs

) state vector of A

(Ax, Ay, Az, Aα, Aβ , Aγ) parametrization of state of A

(Bx, By, Bz, Bα, Bβ , Bγ) state vector of B

(Bangle) parametrization of state of B

(in generalized coordinates)

1There is an analogy with the traditional approach used by many animation studios in the 1950s, where senior
animators drawn the key frames and less experienced animators drawn the inbetweens.

2Figure segments are skeleton segments with a geometry and possibly also volume and mass.
3More generally, any coordinates that parametrize a subset of segment state space are called DOFs. That way,

if appropriate parametrization is chosen, we can define a DOF that controls both rotation and displacement.
4Physically consistent states that obey constraints imposed by figure’s joints. When the segment is uncon-

strained, the set spans the whole R6 space.

1.1. BACKGROUND 3

((Ax, Ay, Az, Aα, Aβ , Aγ), (Bangle)) parametrization of figure

(in generalized coordinates)

Since B is attached to A, its state vector (Bx, By, Bz, Bα, Bβ , Bγ) is a function of (Ax, Ay, Az, Aα, Aβ , Aγ ,
Bangle), where Bangle is the angle about the axis attached to A the segment B is rotated about with respect to
the initial posture.

There is a fundamental difference between maximal coordinate systems and reduced coordinate systems. While
maximal coordinate systems operate in terms of maximal coordinates and have to ensure that the figure remains
in a valid state by considering the constraints (the set of valid states is defined implicitly), reduced coordinate
systems operate on valid states only in terms of unconstrained generalized coordinates (the set of valid states
is parametrized explicitly by generalized coordinates, granted the parametrization is available). Kinematics-only
systems always use the reduced coordinates approach.

In the case of forward kinematics, animator specifies the figure state coordinates at given
key-frames (usually a position and an orientation of the root segment and angles/displacements
at joints, parametrization by generalized coordinates) and the animation system computes figure
states, thus generating figure (skeleton) posture at each frame. Often it is more natural to
specify desired positions of “end effectors” (zero DOF joints, “joints” with no children segments
attached to them) and let the animation system compute appropriate state vectors, considering
additional constraints such as joint angle limits, etc. Such an approach is called backward (inverse)
kinematics. Unfortunately, present backward kinematics systems are often restricted to operate
on a subset of the figure only (for example an arm)5 and the rest of the figure has to be animated
using forward kinematics techniques.

Dynamics-based approaches treat figure segments as volumes with certain mass properties
that respond to forces and torques exerted at them6. In the case of forward dynamics, animator
specifies forces and torques that act on figure segments at given times (virtually at the key-
frames only) and the animation system produces a motion that is the result of the corresponding
physical simulation. Clearly, such a system always produces physically correct motion, but it
might be rather tedious to come up with appropriate forces to pose the figure as requested.
Backward (inverse) dynamics systems are like forward dynamics systems but are also able to
compute appropriate forces and torques according to constraints specified by animator (desired
joint angles, joint angle limits, desired positions of end effectors, etc.)7, yet able to produce
physically correct motion and thus combining the good properties of both the dynamics and
kinematics worlds.

Although both kinematic and dynamic approaches are able to produce plausible results, the
quality of the generated motion mostly depends on the ability of the animator to supply appropri-
ate inputs (say desired joint angles and/or positions of end effectors). While in kinematics-based
approaches animator is responsible for every aspect of the generated animation, in dynamics-
based approaches animator might want to control selected joints only (joints whose control is
crucial for certain figure behaviour or to distinguish that behavior from others) and let the other
joints move freely. For example, to animate a figure of a human who is leaning forward, it might
be sufficient to explicitly animate the figure’s spine only.

Recently motion capture has become a number one technology for animation of human-like
figures. An actor, equipped with motion capture sensors, performs a desired motion that is to
be captured by the motion capture device. Data from the motion capture sensors are analysed
and mapped to skeletal motion (usually in the form of the trajectory of the root joint and joint
angles), ready to be replayed using a forward kinematics technique. Although the motion capture

5To be more precise, they can operate on selected subsets of the figure, however each subset is treated as an
isolated figure, not aware of the rest of the body.

6Segment states are extended by dynamics-specific quantities.
7Simulator described in this thesis can be treated as a backward dynamics system according to this classification.

4 CHAPTER 1. INTRODUCTION

is capable of producing realistic looking motions with a minimum effort it also has its hitches.
It is relatively hard to retarget the captured motion to a different actor (say with a different
body proportions than were those of the real actor who performed the motion, to say nothing of
“capturing” a motion of non-existent figures or the motion of animals) or edit or even combine
the captured motions. Furthermore, such a basic requirement as altering the motion of the arm
to make it point in the specified direction might be a problem. Later on, it will be demonstrated
that some of these problems can be solved using a backward dynamics system. Introductory
information on the motion capture technology can be found in [19].

The problem of the inability to edit or combine motion capture segments to produce a com-
posite animation of a desired expression can be solved by the use of motion libraries, which is an
off-line pure kinematic approach. The library consists of a vast number of short motion sequences
whose frames are annotated (described) by what the actor is doing and what their posture is (for
example, right foot is now on the floor and left arm pointing up). Frames from all sequences are
organized into a directed graph of frames (motion graph), where two frames are connected by an
edge if the transition from the first frame to the second frame is possible8, edges are annotated by
the “costs” of transitions. Animator specifies a sequence of (time, desiredannotation) pairs and
the animation systems finds a frame sequence that approximates the desired motion expression
best, that is, it finds a path in the motion graph with the minimum total cost of frame transitions
that honors the specified motion constraints. It is an off-line optimization process.

Other researchers attempt to generate motion of certain type from parametric descriptions
(where parameters might be the figure’s sex, height, weight, age, motion speed, plausibility of
the motion, . . .) or simulate human behavior in particular situations, with the distant goal of
creating an autonomous ultimate digital actor. Although these problems are very hard to solve,
several classes of human motion have been described with a success, namely walking and running.
These approaches often use algorithms borrowed from robotics and artificial intelligence.

1.2 Goals

This thesis focuses at the study of constrained rigid body dynamics whose equations of motion are
formulated in terms of maximal coordinates approach. Constraints are enforced by introducing
constraint forces into the system, rather than by removing the constrained DOFs.

As we will see later, such an approach will allow us to combine arbitrary set of constraints
interactively, without the need for searching for the new parametrization of the set of valid states
and reformulating equations of motion in terms of the new generalized coordinates. This is
remarkably important for interactive computer graphics applications, such as games. No less
important is the fact that maximal coordinates approach encourages a modular design of the
simulation system, [9]. The primary goal is to describe such a system.

The other goal is the implementation of the simulation system utilizing the best (most re-
cent) algorithms published by authorities in this area of computer graphics, allowing it to run
at interactive rates. An extra attention is paid to the design and the implementation of the
simulator, the abstraction of motion equation solver (differential equation solver, “integrator”)
and constraint solver. Ideally, both the performance capabilities of the simulator, its design and
the quality of implementation should make it competitive with other simulators at the market.

The implementation is mostly based on the work and research of David Baraff. The theory
behind (dynamics model) as well as the implementation ideas draw from his interesting papers,

8Either both the frames belong to the same motion sequence and the second frame immediately follows the first
frame, or the two frames belong to different motion sequences but are “similar” to each other.

1.2. GOALS 5

tutorials and dissertation thesis, [7], [9], [10], [6]. Several implementation tricks were adopted
from the ODE library by Russell Smith, [22].

The implementation of a dynamics-based figure library suitable for interactive animation of
human-like figures is our another goal. The library should present the capabilities of dynamics-
based simulators to solve some of the problems associated with editing, retargetting or combining
motion capture (or any other kinematics-based) data. Finally, we will show how raw optical
motion capture data can be mapped to skeletal motion using the figure library.

6 CHAPTER 1. INTRODUCTION

Chapter 2

Differential Equations

This chapter will guide the reader through the problems of ordinary differential equations (ODEs)
as required by their application in the practice. We will be mostly interested in the numerical
solving of the equations and the theory will be avoided whenever possible. The derivations and
discussion will be based on [10] and [14].

The area of ODEs is widely exploited in the practice, many real world problems can be
modelled by the use of ODEs with a success. It is no surprise that the equations of motions,
pursued by dynamics, are ODEs too. Therefore we find the problems of ODEs essential for
understanding the dynamics theory and start off this way.

2.1 Definitions

Differential equation is any equation that involves an unknown function (to be solved for) and its
derivative(s), representing a relation between the unknown function and the derivatives. When
we talk about solving the equation we refer to the process that finds a function that satisfies
the desired relation. We are particularly interested in a certain class of differential equations,
called the ordinary differential equations and a special class of problems called the initial value
problems.

Convention 1 Vectors we will work with will be denoted by~ symbols, such as ~a,~b, and will be
considered as columns (m× 1 matrices) unless stated otherwise. This will be also true when the
vectors are specified by their components.

For example ~a = (a1, a2, a3) will refer to a column vector filled with a1, a2, a3 values. One
might as well write ~a = (a1, a2, a3)T to stress that ~a is really a column vector, but we will not do
that, according to our convention.

Definition 1 Ordinary differential equation is any equation of the form ~y′(t) = ~f(t, ~y(t)), where
t ∈ R, ~y : R → Rn is the unknown function of t, ~f : Rn+1 → Rn is a known function of t and
~y(t), ~f(t, ~y(t)) = ~f(t, y1(t), . . . , yn(t)) and ~y′(t) = ∂

∂t~y(t) = ∂
∂t(y1(t), . . . , yn(t)) = (∂

∂ty1(t), . . .,
∂
∂tyn(t)).

The relation defined by an ODE equation can be interpreted as follows. Imagine that t
represents time and ~f(•, ~y) defines vectors of an n-dimensional vector field at time t (~f(t, ~y) is
the vector (value) of the vector field at point ~y of the field at time t1). The ODE then defines

1Since ~f is a function of time, vectors of the vector field may change over time.

7

8 CHAPTER 2. DIFFERENTIAL EQUATIONS

a relation between a position ~y(t) of an imaginary particle in the vector field at time t and its
instant velocity ~y′(t). It says that “if the particle is at position ~y(t) then its velocity ~y′(t) must
equal ~f(t, ~y(t))”. This is easy to visualize in the case of n = 2, [10].

The equation of the form ~y′ = ~f(t, ~y) does not determine the solution function ~y uniquely.
Treating the function ~y(t) as a parametrization of the trajectory of an imaginary particle that
“follows” vectors in the vector field, it is easily seen that the actual trajectory the particle goes
along depends on the point where the particle is initially dropped to the vector field. To pick a
particular trajectory one has to specify what the initial position of the particle should be, that
is to specify ~y(t0) = ~y0.

Definition 2 Ordinary differential equation ~y′ = ~f(t, ~y) with an additional condition ~y(t0) = ~y0,
t ≥ t0 is called an initial value problem. The variable t is often interpreted as time, t0 as an
initial time, ~y(t) as a state of a system at time t and ~y0 as an initial state.

The solution of the initial value problem is an integral curve that starts at ~y0 and is parametrized
by ~y(t), where t ≥ t0. Vector ~y0 can be seen as an initial state of a system whose evolution in time
is given by the ODE. Knowing the initial state ~y0, the ODE determines what the system state
at time t is — this is the value of ~y(t). We thus have got two interpretations of ODE equations
and ~y(t), either as a position of a particle in a vector field or a state of a system. It is usually a
good idea to recall this when in doubt about the way certain concepts work.

If it is the first derivative of the unknown function ~y that appears in the ODE equation (that
was the case in our definition), then it is said that it is a first order ODE. Equations with higher
derivatives, however, occur frequently in the practice, but can be transformed into equivalent
first order ODEs.

The trick is to make higher order derivatives part of the extended system state (position in the vector field).
Consider an equation x′′′ = const which contains a third order derivative. To make it a first order ODE, we
will define a = x, b = x′, c = x′′ ((x, x′, x′′) will be the new system state, a will be the solution to the original
equation, b and c will be computed by-products), which will turn the original equation to a set of coupled first
order equations:

(a′, b′, c′) = (b, c, const)

This example is correct regardless of the fact whether x is a scalar or a vector. However in the case of vectors,

we would actually get a set of vector equations which would have to be expanded by their components in order to

match the ODE definition. The following paragraph elaborates more on this and it is the reason why it might be

somewhat tedious to read.

Definition 3 Ordinary differential equation of order m is any equation of the form ~u(m) = ~f(t,
~u, ~u′, . . ., ~u(m−1)), where t ∈ R, ~u : R → Rn is the unknown function of t, ~f : Rn·m+1 → Rn

is a known function of t and ~u(t), ~u′(t), . . ., ~u(m−1)(t) and ~f(t, ~u(t), ~u′(t), . . ., ~u(m−1)(t)) = ~f(t,
u1(t), . . ., un(t), u′1(t), . . ., u′n(t), . . ., u

(m−1)
1 (t), . . ., u

(m−1)
n (t)). If a set of additional conditions

~u(t0) = ~u0, ~u′(t0) = ~u′0, . . . , ~u(m−1)(t0) = ~u
(m−1)
0 , t ≥ t0 is given, then this is an initial value

problem of order m.
Let us define a set of n · m unknowns y11 = u1, . . ., y1n = un, y21 = u′1, . . ., y2n = u′n, . . .,

ym1 = u
(m−1)
1 , . . ., ymn = u

(m−1)
n and a vector y = (y11, . . ., ymn) ∈ Rn·m. Then the following

equation (y′11, . . ., y′1n, . . ., y′m−1,1, . . ., y′m−1,n, y′m1, . . ., y′mn) = (y21, . . ., y2n, . . ., ym1, . . ., ymn,
f1(t, ~y), . . ., fn(t, ~y)) is the corresponding first order ordinary differential equation and the initial
value condition of order m transforms to the first order condition ~y(t0) = ~y0 = (u1(t0), . . ., un(t0),
u′1(t0), . . ., u′n(t0), . . ., u

(m−1)
1 (t0), . . ., u

(m−1)
n (t0)), t ≥ t0.

2.2. NUMERICAL SOLVERS 9

If ~u(t) is a solution of the system of order m, then ~y(t) = (u1(t), . . ., un(t), u′1(t), . . ., u′n(t), . . .,
u

(m−1)
1 (t), . . ., u

(m−1)
n) is a solution of the corresponding first order system. Contrary, if ~y(t) is

a solution of the first order system, then ~u(t) = (y11, . . ., y1n) is a solution of the original system
of order m.

In the rest of the chapter we will study first order systems only.

2.2 Numerical Solvers

Analytical solution of an ODE is a closed-form formula that can be evaluated at any point t. In
contrast, numerical solution is a set of approximate values evaluated at a discrete set of points.

We restrict ourselves to first order initial value problems and the corresponding numerical
solution methods. Traditionally, ~y(t) will be called the system state at time t and ~y0 = ~y(t0)
initial state.

The purpose of the numerical solver is to estimate ~y(tk+1) (k+1 ≥ h, where h ≥ 1 is a constant
specific to the solver2, k ∈ N0), given tk+1, a sequence of h previous states together with the
times when they were estimated, {(ti, ~y(ti))}k

i=k−h+1, and function ~f that can be evaluated for
arbitrary t and ~y. No other special knowledge of the function ~f is required by the solver.

To solve the equation, the solver proceeds in discrete time steps. At each step tk+1 one or
more evaluations of ~f for a given ~y and t are performed (vector field is sampled) and the obtained
information together with the information from previous h states utilized to approximate the
system state change from the previous state ~yk to ~yk+1, yielding an estimate of the new state at
tk+1. This process can be seen as a simulation of the evolution of the system from a specified
initial state, as controlled by the ODE.

2.2.1 Euler Solver

Euler solver is the simplest numerical solver ever, often hard-coded to low-end numerical software.
It uses a history of length 1, therefore the overall effect at each step is the same as if the solver
was just “started” from the previous state, as if the previous state was the initial state. We can
thus assume that k = 0.

Let us return to the analogy with the tracing of the trajectory of a particle. If an imaginary
particle is dropped to ~y0, ODE will dictate what its velocity should be, which equals ~f(t0, ~y0).
Knowing the initial position ~y0, its desired velocity ~f(t0, ~y0), a step size h = t1− t0 and assuming
that the desired velocity is constant within the < t0, t1) range, the new position ~y1 at t1 = t0 + h
can be computed as follows

~y(t0 + h) = ~y0 + ~y′(t0) · h = ~y0 + ~f(t0, ~y0) · h,

which is the formula used by the Euler solver when taking a step.

Approximation Error

While stepping from one discrete point to the next, due to various approximations made by the
algorithm (here, it was assumed that ~y

(k>1)
0 was zero), we incur some error and do not follow

the integral curve precisely. In fact, our particle will drift and, at the end of the step, will end
up on another curve, different from the curve we started from (at the beginning of the step).

2If h > 1 then the solution method is a multi-step method. Otherwise it is a single-step method.

10 CHAPTER 2. DIFFERENTIAL EQUATIONS

This error, gained while taking a step, is called the local error. Contrary, the difference between
the true (expected) solution (curve due to the position of the particle at the very beginning of
the simulation) and the estimated solution is called the global error, [14]. Global error is always
gained indirectly, by the accumulation of local error (it need not equal the sum of the local errors,
though; an imprecision due to the used floating-point system is ignored). The goal is to keep
global error small, but only local error can be controlled directly.

Local error at step k is the difference between an approximate solution ~yk+1 at tk+1 and a true solution ~y(tk+1)
with ~y(tk) = ~yk initial condition.

Global error at step k is the difference between an approximate solution ~yk+1 at tk+1 and a true solution
~y(tk+1) with ~y(t0) = ~y0 initial condition.

The process of solving an ODE is often called the integration of the ODE and the local error called the

integration error per step.

Consider a 2D vector field ~f , whose integral curves are concentric circles with their centers at the origin. An

imaginary particle put to an arbitrary circle is supposed to orbit on that circle forever. Instead, with each Euler

step, the particle will move in the direction tangent to the current circle ending up at a circle with a larger radius

and local error is gained. As a result, the particle will follow a polygonal path that approximates an outward spiral

(continuously drifting away from the origin) instead of the circle.

Further on we will discuss more accurate methods, capable of producing less local error with
respect to a given step size. Such methods perform more than two system state derivative
evaluations at each step, but the extra cost (cost per step) is compensated by the larger step
size they allow, yet preserving the same local error. We will almost entirely restrict ourselves
to methods that utilize histories of length 1, because such methods are self-starting and do not
require a history to be specified (except for the initial state) in order to start.

2.2.2 Higher Order Solvers

Assuming that the unknown function ~y to be solved for is differentiable up to order n + 1 in the
range < t0, t0 +h >, we can approximate its value at the end of the step by its value and a set of
its derivatives at the beginning of the step, in the form of Taylor polynomial of order n, so that:

~y(t0 + h) = ~y(t0) + ~y′(t0) · h + ~y′′(t0) ·
h2

2!
+ · · ·+ ~y(n)(t0) ·

hn

n!
+ O(hn+1), (2.1)

where O(hn+1) is the approximation error term of order3 hn+1 (difference between the untrun-
cated Taylor series4 and the polynomial).

Taylor Series Based Solvers

Equation (2.1) serves as a basis for a specific class of solvers called Taylor series based solvers.
In particular, if the equation of order n is used to update the states, one would get a solver of
order n with a guaranteed local error (accuracy) of order O(hn+1). For example by letting n = 1
we get the update formula used by Euler solver. It follows from this that Euler solver is a first
order method with O(h2) accuracy and produces no local error only if ~y(k>1)(t0) were all zeroes
— in other words ~y(t) had to be a linear function of t for t ∈< t0, t0 + h).

3Its constant is specific to ~y(t0).
4Taylor polynomial where n →∞.

2.2. NUMERICAL SOLVERS 11

But where do we get the higher derivatives of ~y if we have a direct access to the first derivative
only?5 If ~y′(t) = ~f(~y(t)) then the derivatives of ~y can be expressed in terms of its lower order
derivatives and the derivatives of ~f . Although we can not evaluate derivatives of ~f directly (which
would be impractical anyway), we can approximate them by evaluating ~f multiple times in the
< t0, t0 + h) range, that is sampling the vector field. By repeating the process, all derivatives
can be eliminated and finally approximated in terms of ~f and ~y. To summarize, the problem of
evaluation of ~y derivatives can be reduced to the problem of evaluation of ~f derivatives and those
derivatives can be approximated.

Let us show how a second order derivative of ~y can be computed from ~f and ~f ′, which will
be approximated from ~f by utilizing its first order Taylor expansion at ~y(t) (differentiability of
~f is assumed at all points):

~f(~y(t) + ∆~y) = ~f(~y(t)) + ~f ′(~y(t)) ·∆~y + O(‖∆~y‖2)

~f ′(~y(t)) ≈
[
~f(~y(t) + ∆~y)− ~f(~y(t))

]
· 1
∆~y

Now we will use the approximation of ~f ′ to approximate ~y′′ in terms of ~f and ~y:

~y′(t) = ~f(~y(t)) ~y′′(t) = ~f ′(~y(t)) · ~y′(t)

~y′′(t) ≈
[
~f(~y(t) + ∆~y)− ~f(~y(t))

]
·

~f(~y(t))
∆~y

(2.2)

If we let ∆~y = ~f(~y(t0)) · h
2 , substitute to (2.2) and ~y′′ to (2.1) of order 2, we can predict ~y(t0 +h)

as

~y(t0 + h) = ~y(t0) + ~y′(t0) · h + ~y′′(t0) ·
h2

2
=

~y0 + ~f(~y0) · h +
[
~f(~y0 + ~f(~y0) ·

h

2
)− ~f(~y0)

]
·

~f(~y0)
~f(~y0) · h

2

· h2

2

After rearranging, we will obtain an update formula for second order midpoint method6:

~y(t0 + h) = ~y(t0) + ~f(t0 +
h

2
, ~y(t0) + ~f(t0, ~y(t0)) ·

h

2
) · h

Midpoint solver first takes an Euler step of size h/2 to an intermediate state7 ~y0 + ~f(~y0) · h/2
called the midpoint, system state derivative is evaluated at the midpoint and an Euler step of
size h from ~y0 in the direction of the midpoint’s derivative is taken.

Runge-Kutta Methods

There is another class of self-starting higher order methods, generally called Runge-Kutta meth-
ods. These methods simulate the effect of higher order derivatives by sampling the vector field

5To simplify further discussion, we will assume that ~f depends on t only indirectly, through ~y(t), and will treat
~f as a function of a single variable ~y(t).

6From now on we will again treat ~f as a function of t.
7States ~y, where the state derivative ~y′ is evaluated just for the purposes of predicting ~y(t0 + h), are generally

called intermediate states. The other states are called regular states.

12 CHAPTER 2. DIFFERENTIAL EQUATIONS

over < t0, t0 +h) range, [14]. Probably the most popular Runge-Kutta method is a Runge-Kutta
of order 4 (with a local error of O(h5)):

~k1 = ~f(t0, ~y0) · h

~k2 = ~f(t0 +
h

2
, ~y0 +

~k1

2
) · h

~k3 = ~f(t0 +
h

2
, ~y0 +

~k2

2
) · h

~k4 = ~f(t0 + h, ~y0 + ~k3) · h

~y(t0 + h) = ~y0 +
1
6
~k1 +

1
3
~k2 +

1
3
~k3 +

1
6
~k4

2.2.3 Step Size Control

Choosing an appropriate step size h is often a problem. Naturally, we would like to take as large
steps as possible to minimize computational cost, but have to consider stability and accuracy. If
we chose a fixed step, we could proceed only as fast as the “worst” sections of ~y allowed. The
remedy seems to be to adapt h to the current section of ~y that is being evaluated at the moment.

Adaptive Time Stepping

Given a local error estimate e(h) as a function of step size h and the maximum local error per
step E we can tolerate, the idea of adaptive time stepping is to adjust h so that the desired
accuracy is attained. If we know that the order of the underlying solver is n, then the local error
is of order O(hn+1) and thus e(h) ≤ k ·hn+1 for an appropriate constant k specific to the current
step. We would like to find a step size shrink factor c so that e(h′ = h · c) ≤ E (h′ would be the
new step size). We will assume that e(h′) can grow as big as k · (h′)n+1, thus e(h′) ≤ k · (h′)n+1 ≤

k · hn+1 · cn+1 = e(h) · cn+1 ≤ E and so c ≤
(

E
e(h)

) 1
n+1 and conclude that we can take a step as

large as

h′ = h ·
(

E

e(h)

) 1
n+1

. (2.3)

Local Error Estimation

There are multiple ways how local error can be estimated. These methods are often based on the
evaluation of differences between results obtained using methods of different orders or step sizes.

Remember that local error at step k is the difference between an approximate solution ~yk+1 at
tk+1 and a true (unknown) solution ~y(tk + hk) with ~y(tk) = ~yk as the initial condition. Knowing
~yk+1, the local error gained during step k can be estimated by rolling back to ~yk and using a
different (and more accurate) method to advance to tk+1 — a higher order method or even the
same method that takes multiple shorter stops would do. That way, we will be produced with
two estimates of ~y(tk+1) and their difference can be used to estimate e(hk) at tk.

In particular we might step from tk to tk+1 and let ~a = ~yk+1, rollback to tk, step to tk + hk/2, step from

this intermediate state to tk + hk, ending up at state ~b. Having two estimates of the system state at tk+1 we let

e(hk) = ‖~a−~b‖, update the current step size according to (2.3) and let ~yk+1 = ~b, because~b is a better approximation

of ~y(tk+1) than ~a.

2.3. ABSTRACTION 13

Alternatively, one can grasp that the local error more or less corresponds to the error due to
truncation of the Taylor series in the Taylor polynomial of order n (2.1). It is well known that

the truncation error can be expressed as ~y(n+1)(ξk) ·
hn+1

k
(n+1)! for an appropriate ξk ∈< tk, tk+1 =

tk + hk >. If we assume that ξk = tk, we can approximate the local error at step k as e(hk) =

‖~y(n+1)(tk)‖ ·
hn+1

k
(n+1)! , where ~y(n+1) has to be approximated in terms of ~f and ~y or in terms of the

state history (for example ~y′′ ≈ ~yk−~yk−1

tk−tk−1
).

2.3 Abstraction

In this section we will discuss an abstraction of ODE equations with respect to solvers and present
a common interface that will allow applications to use the same solvers to solve ODEs representing
very different kinds of problems and, through the use of the common interface, allow to replace
solvers without affecting the rest of the system. As we will see later, rigid body dynamics is
governed by ODEs and this abstraction will the system to prefer accuracy over computational
cost upon user’s request, for example.

Although many programmers are aware of the ODE theory, they often design their simulators
in such a way, that the simulation state (which corresponds to the state of the ODE) is kept in
objects managed by the application and that it is the application who implements the simulation
loop and takes the steps (there is no abstraction of the ODE equation). Used numerical solver
method is hard-coded into the application’s simulation loop, which has to be redesigned whenever
the used solver needs be replaced by a different solver. Contrary, we will present an abstraction
of ODEs and the interface to ODE solvers which manage the simulation state, implement the
simulation loop and control the step size.

Assuming that the simulator will operate in terms of objects, whose states are to be controlled
by an ODE, and noting that the generic ODE solver can operate merely in terms of vectors ~y and
~f , treating ~f as a black-box function that can be evaluated for any given t and ~y(t), the interface
will have to provide a way to map the object states to the components of ~y and back. This is the
key idea of the abstraction. ODE state will be kept by the ODE solver and will be “installed”
into application objects whenever the system state derivative is to be evaluated or the new state
presented. To support this approach, simulator will have to provide the implementation of the
following functions, invoked by the ODE solver:

• Retrieve the size of the vector ~y (get state dimension).

ODE solver has to know what the dimension of system states and state derivatives is.

• Copy current object states to the state vector ~y (get state), load object states from the
state vector ~y (set state).

ODE solver has to retrieve the initial system state and install the new state at the end of
the step. Moreover it might request to install an intermediate state in order to evaluate ~f
at that point.

• Evaluate ~f at the current state (evaluate derivative).

From the simulator’s perspective, the ODE solver has to provide the following functions,
called by the simulator:

• Restart the solver from the current state (restart).

14 CHAPTER 2. DIFFERENTIAL EQUATIONS

Simulator has to tell the ODE solver what the new initial state is and that the state history
should be discarded.

• Advance the system to a specified time (advance).

Simulator has to tell the ODE solver when to advance and to what time.

• Set solver parameters (set parameters).

Simulator has to tell the ODE solver what the desired accuracy is. Parameters like maxi-
mum local error, minimum/maximum step size might be specified.

For example an unoptimized fixed-step Euler solver, as defined by (2.2.1), can be implemented in this way
(implementation of restart and advance in pseudo-code is given):

restart(time)
{
n =get state dimension();
resize vector(current state, n);
resize vector(current state derivative, n);
get state(current state);
evaluate derivative(time, current state derivative);
current time =time;
}

advance(time)
{
while(time > current time)

{
step size =min(time - current time, maximum step size);
scale vector(current state derivative, step size);
add vector(current state, current state derivative);
current time =current time + step size;
set state(current state);
evaluate derivative(current time, current state derivative);
}

}

Chapter 3

Particle Dynamics

Particle systems dynamics is a part of mechanics that studies the motion of particles, bodies that
can be approximated by objects characterized by their position, velocity and mass (but with no
spatial extents), in response to forces that act on them. Collections of particles are called the
particle systems. Although being simple, particle systems can be used to model many interesting
non-rigid structures such as soft bodies, cloths, fluids, etc.

The most of the particle systems theory generalize nicely for rigid body dynamics and so we
will treat the theory as a starter for the latter. The concepts and derivations are based on [10]
and [13].

3.1 Concepts

We will present some definitions first describing the structure of particles from the point of
kinematics. We will intuitively treat particles as volume-less points that move in a reference
space (“world”). Reference space together with a coordinate system will be simply called the
system.

Definition 4 Particle is a structure with mass m > 0 and position ~r(t), where ~r(t) is a vector
pointing from the origin of the reference space towards the position of the particle. A curve in
the reference space parametrized by ~r(t), where t is interpreted as time, is called the trajectory
of the particle (in the reference space).

By taking the time derivative of the position ~r(t), we get the particle velocity ~v(t), expressed
as a function of t. Differentiating the velocity, we get the particle acceleration ~a(t), expressed as
a function of t:

~v(t) = lim
∆t→0

~r(t + ∆t)− ~r(t)
∆t

=
∂

∂t
~r(t) = ~̇r(t)

~a(t) = lim
∆t→0

~v(t + ∆t)− ~v(t)
∆t

=
∂

∂t
~v(t) =

∂2~r(t)
∂t2

= ~̈r(t) = ~̇v(t).

It is said that the particle is moving uniformly if its velocity ~v(t) is constant, that is its
acceleration is zero (~a(t) = ~0). Note that particles with zero velocity (at rest) are considered to
be moving uniformly.

Force ~F (t) is a vector physical quantity that characterizes interaction among particles. It is
described by the particle it acts upon, a magnitude and a direction1. The magnitude and the

1And the point of work in the case of bodies with spatial extents.

15

16 CHAPTER 3. PARTICLE DYNAMICS

direction capture the effects of the interaction of this particle with other particles in the system.
Newton’s laws stipulate how forces exerted on particles affect their motion.

We will say that the particle is isolated if there is no force acting on it.

Definition 5 (Newton’s First Law) Inertial systems exists. Isolated particles move uniformly
in an inertial system.

The first law says that if there is no force acting on a particle then it must move uniformly
in an inertial system. If it does not move uniformly (accelerates or decelerates) then there must
be a force acting on it or the system is not inertial (the “missing” force, that would have to be
exerted on the particle in order to make it exhibit the observed behavior in an inertial system, is
called the inertial force). We will restrict ourselves to inertial systems only.

Let us define the linear momentum ~P (t) of a particle at time t as

~P (t) = m · ~v(t). (3.1)

The momentum characterizes the kinetic state of the particle and the first law can be then
interpreted in that way that the linear momentum of a particle in an inertial system can only
change in response to a force acting on that particle. The second Newton’s law, defined below,
elaborates more on this and defines what the actual relation between an exerted force and the
change of the linear momentum is.

Definition 6 (Newton’s Second Law) If ~F (t) is a force acting on a particle with the linear
momentum ~P (t) then

~F (t) =
∂

∂t
~P (t) =

∂m · ~v(t)
∂t

= m · ∂

∂t
~v(t) = m · ~a(t)

and the particle will gain an acceleration ~a(t) = ~F (t)/m.

If we have a set of forces ~F1(t), . . . , ~Fn(t) acting on the same particle then the net effect equals
the effect due to a single force ~Ftotal(t) = ~F1(t) + . . . + ~Fn(t) (superposition principle).

Definition 7 (Newton’s Third Law) If force ~FAB(t) due to particle A is exerted on particle
B by particle A (action force), then ~FBA(t) = −~FAB(t) is exerted on A by particle B (reaction
force). Both the forces lie on the same line of action, and begin/stop acting at the same time.

Particle system is a collection of particles. If the system consists of N particles with masses
m1, . . . ,mN and positions ~r1(t), . . . , ~rN (t) then the total mass M and the center of mass ~rcm of
the particle system are defined as

M =
N∑

i=1

mi, ~rcm(t) =
∑N

i=1 mi · ~ri(t)
M

.

The total mass is defined simply as a sum of the particle masses and the center of mass as a
weighted sum (convex combination) of the particle positions. The sum weights (coefficients of
the convex combination) are proportional to the particle masses relative to the total mass. If all
particles had the same mass then the center of mass of the particle system would correspond to
the geometric center (average) of the particle system.

Let ~F j
i , 1 ≤ j ≤ n be all forces acting on particle i in the particle system and ~F total

i (t) be the
sum of those forces. This sum can be decomposed to the sum of internal forces (denoted ~F int

i (t),

3.2. EQUATIONS OF MOTION 17

the sum of all forces exerted on particle i by other particles j 6= i in the particle system) and the
sum of external forces (denoted ~F ext

i (t), the sum of all forces exerted on particle i by particles
not belonging to this particle system), that is

~F total
i (t) = ~F 1

i (t) + . . . + ~Fn
i (t) = ~F ext

i (t) + ~F int
i (t).

If we define the total force ~F system
total (t) acting on the particle system as

~F system
total (t) =

N∑
i=1

~F total
i (t) =

N∑
i=1

~F ext
i (t) +

N∑
i=1

~F int
i (t),

then the Newton’s Third Law tells us that ~F system
total =

∑N
i=1

~F ext
i (t) and so the internal forces

cancel out each other. This is an important result that we will exploit later when we are going
to model rigid bodies as a set of constrained particles.

3.2 Equations of Motion

In this section we will utilize our knowledge of Newton laws to formulate the equation of motion
for a single particle and a set of particles (particle system) and will be interested in the way the
equation can be used to simulate the system. For now, let us assume that we are provided with
a mechanism to compute interaction forces.

If ~r(t) denotes the position of a particle with mass m, ~̈r(t) = ~a(t) the acceleration of the
particle and ~Ftotal(t) the total force acting on the particle then the Newton’s second law mandates
that

~̈r(t) = ~Ftotal(t)/m. (3.2)

This is called the particle’s equation of motion. Assuming an inertial system, this equation
describes the particle dynamics fully and obeys both the first and second Newton’s laws. The
third law has to be obeyed by the mechanism that computes ~Ftotal(t).

As it will turn out, when studying constrained particle dynamics, it is often advantageous to
rewrite the equation of motion as

M · ~̈r(t) = ~Ftotal(t), (3.3)

where M is a n×n diagonal matrix with the particle’s mass m on the diagonal, n is the dimension
of the ~a(t) vector (usually n = 3) and ~Ftotal(t) is the net force exerted on the particle at time t.
Matrix M is called the mass matrix of the particle

M =

m 0 . . . 0
0 m . . . 0
...

...
. . .

...
0 0 . . . m

 .

Both the two equations (3.2) and (3.3) are equivalent second order ODEs, where the first
equation is expressed in the canonical second order ODE form and the second equation is the
rearranged first equation. When we will refer to an equation of motion we will mean either of
these two equations.

To simulate the particle, we will have to track its position ~r(t) according to its equation of
motion, say (3.2). Fortunately, the equation is an ODE where ~r(t) is the unknown function and
so the numerical solving of the ODE corresponds to the motion simulation.

18 CHAPTER 3. PARTICLE DYNAMICS

In order to solve (3.2) using our first order ODE solver, we have to convert it to a first order
ODE by letting ~̇r = ~v and making the velocity of the particle a part of the ODE state. We also
have to expand the obtained coupled vector equations by their components so that the resulting
equations would match our canonical ODE definition2. The ODE state will be characterized by
the components of the particle position ~r(t) and the velocity ~v(t) concatenated into a 6-vector
~y(t) = (r1(t), r2(t), r3(t), v1(t), v2(t), v3(t)):

ṙ1(t) = v1(t) ṙ2(t) = v2(t) ṙ3(t) = v3(t)

v̇1(t) = (Ftotal)1(t)/m v̇2(t) = (Ftotal)2(t)/m v̇3(t) = (Ftotal)3(t)/m

(ṙ1, ṙ2, ṙ3, v̇1, v̇2, v̇3)︸ ︷︷ ︸
~y′(t)

= (v1, v2, v3, (Ftotal)1/m, (Ftotal)2/m, (Ftotal)3/m)︸ ︷︷ ︸
~f(t,~y(t))

(3.4)

The equation of motion for a system of N particles is obtained by concatenating the equa-
tions of motion due to individual particles. The corresponding first order ODE needed for the
simulation of the particle system is obtained by concatenating the individual scalar first order
ODE equations.

If we define ~r = (r1
1, r

2
1, r

3
1, . . . , r

1
N , r2

N , r3
N), ~Ftotal =((~F total

1)1, (~F total
1)2, (~F total

1)3, . . ., (~F total
N)1,

(~F total
N)2, (~F total

N)3) and ~m = (m1, m1, m1, . . ., mN , mN , mN), where ~ri is the position of the i-th
particle, ~F total

i net force exerted on that particle and mi is its mass, then the equation of motion
for the particle system can be written as

~̈r(t) = ~Ftotal(t) ·
(
E · ~m−1

)
,

where ~m−1 = (m−1
1 ,m−1

1 ,m−1
1 , . . . ,m−1

N ,m−1
N ,m−1

N) and E is a 3N × 3N identity matrix.
If we define matrix M as a 3N × 3N diagonal matrix with the values of the vector ~m on its

diagonal, we can express (rearrange) the equation of motion for the particle system in terms of
M , which is called the mass matrix of the particle system

M · ~̈r(t) = ~Ftotal(t).

Convention 2 To improve readability and avoid messy equations, we will often define matrices
and vectors in a block fashion, meaning that the elements of the matrices and vectors can be other
matrices and vectors “embedded” at the particular position of the enclosing matrix or vector. For
example if we have vectors ~a = (a1, a2, a3) and ~b = (b1, b2, b3) then ~c = (~a,~b), defined in a block
fashion, will refer to a vector (a1, a2, a3, b1, b2, b3).

Operations on matrices and vectors defined in a block fashion are defined in terms of operations
performed on the blocks. For example if 2 · ~c refers to a vector ~c whose components are to be
multiplied by the scalar 2 then 2 ·~c = (2 ·~a, 2 ·~b) which refers to (2 ·a1, 2 ·a2, 2 ·a3, 2 ·b1, 2 ·b2, 2 ·b3)
according to our convention.

If Mi are the mass matrices of the individual particles, ~r = (~r1, . . . , ~rN) and ~Ftotal =
(~F total

1 , . . . , ~F total
N) are block vectors and M , called the mass matrix of the particle system, is

a square diagonal block matrix with matrices Mi on the diagonal then the equation of motion of
the particle system can be written as

M · ~̈r(t) = ~Ftotal(t) (3.5)

M =

M1 0 . . . 0
0 M2 . . . 0
...

...
. . .

...
0 0 . . . Mn

2We are assuming that the particle moves in R3.

3.3. ABSTRACTION 19

and the corresponding first order ODE ∂
∂t~y(t) = ~f(t, ~y(t)), defined in a block fashion, has the

form of
∂

∂t
((~r1, ~v1), . . . , (~rN , ~vN)) = ((~v1, ~F total

1 /m1), . . . , (~vN , ~F total
N /mN)). (3.6)

3.3 Abstraction

The abstraction of particles, real-world laws to model particle interaction by forces and the
representation of forces in the simulator is discussed in this section. Granted we know how to
compute appropriate forces that act on particles at given times (~F total

i (t) ∀ particle i) we have
got an almost complete particle simulator — to simulate particles, we have just to provide and
implement functions to manage the simulation state and evaluate state derivatives (compute
acting forces) as required by our ODE solver (see page 13), the rest of the task is accomplished
by the ODE solver. The implementation of these functions is simple and pretty straightforward
though.

Generally, we will be using force laws, as opposed to the laws of physics, to model particle
interaction by forces. Our laws will often be using approximations of real-world laws to simplify
the force computation or will be purposefully designed to make the particle system exhibit a
desired behavior. It will be up to our laws to ensure physical correctness. We will assume that
the particle system is simulated according to (3.6) and that the following abstraction of particles,
force laws and forces is used.

Particles are represented by objects so that the representation of particle i would

• store the particle’s ODE state (~ri and ~vi vectors)

This state corresponds to a cached block of the global ODE state vector ~y that is associated
with this particle. The most recent version of the block is always stored in ~y maintained
by the ODE solver and mechanisms to synchronize the local state with the corresponding
block in ~y are defined3:

– ODE solver keeps and maintains the whole simulation state and pushes the state
changes to individual particles as simulation advances.

– Whenever a particle needs to change its state on its own behalf, it must notify the
ODE solver so that it could restart self and pick up the new particle’s state.

The simulation state is thus fully managed by the ODE solver, can be handled globally
and remains opaque to the application. This allows to implement certain advanced features
such as adaptive time stepping, rolling back on penetration, support for multiple simulation
groups as well as employ several optimizations.

• provide functions to copy the particle’s ODE state to the corresponding block of the global
state vector ~y and vice versa (get state, set state) and to evaluate the block of the global
system state derivative vector (evaluate derivative)

These functions are invoked by the simulator to satisfy ODE solver requests described on
page 13. Whenever such a request is intercepted, the list of all particles is traversed and
the corresponding operations on the relevant blocks of ~y or ~f are performed. For example
if the ODE solver triggers a set state operation, set state is called on individual particles
to distribute the blocks of ~y to the particles.

3Particles do not access the content of the blocks directly but use a local cache. That is because the extra
indirection at each access might be costy and would prevent certain optimizations to take place.

20 CHAPTER 3. PARTICLE DYNAMICS

• hold ~F total
i force accumulator that is used to accumulate the force (as a quantity) to be

exerted on that particular particle at the current time. Note that we are only interested in
the net force exerted on that particle by the superposition principle and so can get along
with a single force accumulator per a particle.

Forces ~F k
i that contribute to ~F total

i accumulators are represented by force objects that record
the force types, lists of “attached” particles that the forces act on and provide functions that can
“apply” (add) the represented forces to the ~F total

i accumulators of the attached particles4. Since
all potential interactions are modelled by force objects, we know what particles can potentially
affect other particles which can be used to partition particles to independent (isolated) simulation
groups. Forces ~F k

i are computed according to force laws.
Particle system maintains a list of all particles and force object structures, which allows

it to cooperate with the ODE solver when managing simulation state and evaluating system
state derivative. The evaluation of the state derivative involves the computation of ~F total

i for all
particles i. This is done by clearing force accumulators, traversing the list of all forces and adding
corresponding force constributions to relevant accumulators.

According to the number of particles the particular force object acts or depends on (the
number of particles whose accumulators are affected by the force object or whose states are read
by the force object in order to compute and apply a force), the following categories of forces (or
force laws)5 can be defined:

• Unary forces, acting independently on each particle.

Exerted force can be either a constant force or a force that can depend on the current time
and/or the state (position, velocity) of the particle whose accumulator is to be updated.

Gravity ~f = m ·~g, where ~g is a gravitational constant, or viscous drag ~f = −kd ·~v, where kd

is a coefficient of drag, acting to resist particle motion, might be examples of unary forces.

Although unary forces do not exist in a real world (all real forces are due to particle
interaction), they are often used in simulators to simplify the real-world laws. For example
our gravity force approximates the interaction between a particle and the Earth, viscous
drag approximates the interaction of the particle and particles in the air, which are not
represented in the particle system.

• n-ary forces, acting and depending on a fixed set of particles.

These forces approximate forces due to interaction of a fixed set of particles or simulate
mechanisms that are not represented by particles in the particle system. They are designed
purposely to attract the system state to a desired configuration. Springs, or more generally
penalty forces, can be examples of such forces.

• Spatial interaction forces, acting and depending on any n-tuple of particles.

These forces are used to implement attraction or repulsion of particles. Unlike n-ary forces,
spatial interaction forces can act on any n-tuple of particles, depending on their positions.
Usually, local interaction (interaction of particles that are close to each other) is considered
only.

Dynamics of fluids can be approximated by spatially interacting particles.

4Multiple ~F k
i forces can be represented by the same force object.

5We will often treat the terms force and force law as synonyms.

3.4. PENALTY FORCES 21

3.4 Penalty Forces

In this section we will describe a certain class of forces called the penalty forces that can be
used to pull the system towards a desired state. Given a vector function ~Cp defined in terms of
positions of n particles6 that measures how much “bad” the current state is, we will present a
procedure to derive a force law that will act on the n particles in order to attract the system
state towards a state with a “lower badness”, ideally to ~Cp = ~0. The particles will be guided
to approach states where ~Cp = ~0, and their behavior thus controlled by ~Cp, called the behavior
function.

Penalty forces can be used to implement various kinds of springs, approximate (sloppy) con-
straints and such. However due to the nature of the forces, penalty forces will compete with other
forces and it is not guaranteed that the system state will eventually reach (or even approach) a
desired state.

Let ~Cp(~r1(t), . . . , ~rn(t)) be a behavior function of a set of particles indexed from 1 to n, which
returns state “badness” measured as a column vector from Rm. We will define the potential
energy of the set of particles in terms of vector dot product of ~Cp as

E(~r1(t), . . . , ~rn(t)) =
~CT

p · ~Cp

2
(3.7)

and the force due to the potential energy acting at particle i as

~fi(t) = −
(

∂E

∂~ri(t)

)T

. (3.8)

The energy function is nothing else than an appropriately scaled square magnitude of ~Cp and the
force ~fi is defined so that it points in the direction opposite to the energy gradient with respect
to the particle position, thus making the particle “want to accelerate” towards a nearby state
with a lower energy, [10], [13]. By taking the definition of the energy function E, realizing how
vector dot product is differentiated7 and assuming that ~Cp = (C1

p , . . . , Cm
p) and ~ri = (r1

i , r
2
i , r

3
i)

we get

~fi(t) = −
(

∂E

∂~ri(t)

)T

= −
(

∂ ~Cp

∂~ri(t)

)T
· ~Cp = −JT

i · ~Cp

~fi(t) = −
(

∂E

∂r1
i

,
∂E

∂r2
i

,
∂E

∂r3
i

)
= −

(
∂ ~CT

p

∂r1
i

· ~Cp,
∂ ~CT

p

∂r2
i

· ~Cp,
∂ ~CT

p

∂r3
i

· ~Cp

)

= −

∂C1

p

∂r1
i

∂C1
p

∂r2
i

∂C1
p

∂r3
i

...
...

...
∂Cm

p

∂r1
i

∂Cm
p

∂r2
i

∂Cm
p

∂r3
i

T

·

 C1
p
...

Cm
p

 = −JT
i · ~Cp, (3.9)

where Ji = ∂ ~Cp

∂~ri
is called the Jacobian matrix of ~Cp due to particle i.

There are fundamental problems with ~fi:

• First, ~fi will compete with other forces acting on the particle and its effects can be cancelled
by the other forces.

6The p subscript is used to stress out that we are working with particle positions. Since the positions are a part
of the system state, ~Cp assesses the system state with respect to the positions of the n particles.

7(~u · ~v)′ = ~u′ · ~v + ~u · ~v′, (α · ~u)′ = α · ~u′.

22 CHAPTER 3. PARTICLE DYNAMICS

• Second, since ~Cp is defined in terms of particle positions (and so is Ji), ~fi merely suggests
the direction the particle i should accelerate along. Its magnitude is determined by the
current value of ~Cp, which is independent of the particle mass8 and other forces exerted
on the particle. To “correct” this, user has to specify a spring constant ks that is used
to scale the former force to account for the particle mass. Constant ks must be tuned by
trial-and-error and it is extremely hard and tedious to make the system behave as expected.
Very small changes made to the scene definition (parameter changes, introduction of new
springs, etc.) often require the user to tune all ks constants once again from scratch.

• Third, if ~Cp is meant to measure a constraint error, the constraint must be violated first
(~Cp must become non-zero) in order the force ~fi would begin to act (~Cp = ~0 ⇒ ~fi = ~0).
This implies that the system will (at best) oscillate around ~Cp = ~0 and a damping force,
controlled by a tuned damping constant kd, must be added. An attempt to make the
constraint more accurate by making the spring constant big, so that a very small constraint
error would induce a very large restoration force, produces unstable/stiff ODEs and an
extremely small time step must be taken in order to solve the ODE, [10].

To fight some of these problems, penalty force due to ~Cp acting at particle i is defined instead

as ~fi = JT
i · (−ks · ~Cp − kd · ~̇Cp), where ~̇Cp = ∂

∂t
~Cp and Ji = ∂ ~Cp

∂~ri
.

A zero-length spring attached to particles 1 and 2 can be described by ~Cp = ~r1 − ~r2 = ~0 behavior function,

which yields ~f1 = −ks · (~r1 − ~r2)− kd · (~̇r1 − ~̇r2) = −ks · (~r1 − ~r2)− kd · (~v1 − ~v2), because J1 is an identity matrix.

Similarly we get ~f2 = −~f1, because J2 = −J1.

8This implies that the behavior of the system will become totally different if the mass is changed.

Chapter 4

Constrained Particle Dynamics

In this chapter we will cover the basics of constrained particle dynamics, which will nicely gener-
alize for the case of constrained rigid body dynamics, discussed later. The problem of constrained
particle dynamics is to obey both Newton laws and a set of constraints specified by user.

There are two approaches to enforce constraints. The first approach called the reduced co-
ordinates approach expresses equations of motion of the constrained particles in terms of new
unconstrained DOFs, that parametrize (capture) the set of valid particle states. The second
approach called the maximal coordinates approach expresses equations of motion in terms of
maximal (full) coordinates, that are constrained by the set of constraints. Constraint forces are
introduced into the system to enforce the constraints (make the particle states remain in the set
of valid states). The derivations will follow [10], but the used notation will correspond to [9] so
that the material could be generalized for rigid bodies.

4.1 Lagrange Multiplier Method

We will study a Lagrange multiplier method that operates in terms of maximal coordinates. This
method allows to handle each constraint in the same way (by introducing a clever constraint
abstraction) and allows to combine constraints automatically.

4.1.1 Method Background

Constraints will be described by implicit functions (equations) defined either in terms of particle
positions or particle velocities so that given system state would be considered valid and the
constraint maintained if the constraint function returns zero for that state (equation will hold)1.
Granted the constraint is maintained already, constraint solver will compute an appropriate
constraint force so that the simulator would not advance to an invalid state. Constraint forces
are constructed so that they would cancel exactly those components of ~Ftotal accumulators that
would make the particles accelerate towards invalid states, thus forcing the particles to remain
in the set of valid states. To do this, constraints are reformulated to conditions on particle
accelerations, which allows to compute appropriate constraint forces.

This is the principal difference from the penalty method, where constraints implemented by
penalty forces must be violated first in order the restoration force would begin to act to correct the

1Constraints defined in this way are called equality constraints. In this section we will restrict ourselves to this
class of constraints only.

23

24 CHAPTER 4. CONSTRAINED PARTICLE DYNAMICS

constraint error (small constraint errors would induce large restoration forces and the underlying
ODE will become unstable and stiff).

4.1.2 Constraint Formulation

Definition 8 Let particles to be constrained are indexed by 1, . . . , n, then the implicit function
(equation) of the form ~Cp(~r1(t), . . . , ~rn(t)) = ~0 ∈ Rm defines a position-level constraint on the
particles and m is called the dimension of the constraint or the number of DOFs constrained
(removed from the system) by the constraint.

Individual scalar equations (“constraint rows”) Ci
p = 0, 1 ≤ i ≤ m correspond to the removed

DOFs in such a way that the i-th equation corresponds to the i-th DOF removed from the system.
Vectors ~r1(t), . . . , ~rn(t), where ~Cp(~r1(t), . . . , ~rn(t)) = ~0, implicitly define the set of valid par-

ticle positions.

To simplify the manipulation with vectors due to individual particles, let us conceptually
concatenate vectors ~r1, . . . , ~rn to a single block vector ~r = (~r1, . . . , ~rn) and define ~v = ~̇r, ~a = ~̈r.
This allows us to manipulate all particles altogether, treat the constrained particles as a monolith
and to write, for example, that vectors ~r, where ~Cp(~r) = ~0, define the set of valid particle
positions, meaning that the components of the first block ~r1 of such ~r vectors correspond to the
valid positions of the first particle, etc. We will be working in R3 and so the dimensions of ~ri, ~vi

and ~ai vectors will be 3× 1 and the dimensions of the ~r, ~v and ~a vectors 3n× 1.

If we differentiate ~Cp = ~0 with respect to time we will get the corresponding velocity-level
constraint ~Cv = ~0 that imposes conditions on the valid particle velocities

~Cv(~r,~v) = ~̇Cp =
∂ ~Cp(~r)

∂t
=

∂ ~Cp

∂~r
· ∂~r

∂t
= J(~r) · ~v = ~0,

where J(~r) = ∂ ~Cp

∂~r is the Jacobian matrix of ~Cp with dimensions m× 3n.

By differentiating the velocity-level equation ~Cv = ~0 with respect to time, we will get the
corresponding acceleration-level constraint ~Ca = ~0 that imposes conditions on the valid particle
accelerations

~Ca(~r,~v,~a) = ~̈Cp =
∂2 ~Cp

∂2t
=

∂

∂t
~Cv(~r,~v) =

∂J · ~v
∂t

= J̇ · ~v + J · ~a = ~0.

By the chain rule we also get

∂

∂t
~Cv(~r,~v) =

(
∂ ~Cv

∂~r
· ∂~r

∂t

)
+

(
∂ ~Cv

∂~v
· ∂~v

∂t

)
=
(
J̇ · ~v

)
+ (J · ~a) ,

which implies that

J̇ =
∂ ~Cv

∂~r

J =
∂ ~Cv

∂~v
=

∂ ~Cp

∂~r
=
(

∂ ~Cv
∂~v1

. . . ∂ ~Cv
∂~vn

)
=
(

∂ ~Cp

∂~r1
. . .

∂ ~Cp

∂~rn

)
(4.1)

and both the velocity-level and acceleration level equations use the same Jacobian matrix J ,
this time written by blocks due to individual particles. Finally, by rewriting and introducing

4.1. LAGRANGE MULTIPLIER METHOD 25

~c(~r,~v) = −J̇ · ~v we can express the acceleration-level constraint ~Ca(~r,~v,~a) = ~0 as ~Ca(~r,~v,~a) =
J(~r) · ~a− ~c(~r,~v) = ~0 or simply as

J(~r) · ~a = ~c(~r,~v). (4.2)

Having known ~Cp, ~̇Cp = ~Cv and ~̈Cp = ~Ca, the constraint of the ~Cp = ~0 form can be enforced
on the acceleration level by:

• starting from an initial state where ~Cp = ~̇Cp = ~0 and

• requiring that ~̈Cp = ~0 at each step.

The first condition ensures that the initial positions and velocities are consistent with the
constraint and the second condition ensures that ~̇Cp will remain equal to ~0 (velocities will remain
valid), which in turn ensures that ~Cp will remain equal to ~0 (positions will remain valid). Moreover
~̈Cp = ~0 is a condition on the particle accelerations and will be used to derive the constraint force.

In the further discussion we will assume that the velocity-level constraint function is provided
directly, instead of being derived from the position-level constraint function ~Cp. The constraint
is assumed to be defined as ~Cv(~r,~v) = J(~r) ·~v−~k = ~0, where ~k is a constant vector, or simply as

J(~r) · ~v = ~k. (4.3)

This is more general because it allows to specify velocity-dependent (non-holonomic) constraints2,
that can not be formulated on the position-level, as well as position-dependent constraints, by
taking the time derivative of ~Cp. By differentiating (4.3) with respect to time we will get the
corresponding acceleration-level constraint in the form of (4.2).

4.1.3 Constraint Force Basis

Lagrange multiplier method computes the constraint force ~Fc as a linear combination of basis
vectors ~F1, . . . , ~Fm, derived from the constraint and known a priori. The coefficients of the linear
combination are called the Lagrange multipliers and are concatenated into a vector ~λ. Lagrange
multipliers are the unknowns we have to solve for.

~Fc = λ1 · ~F1 + . . . + λm · ~Fm

~λ = (λ1, . . . , λm) (4.4)

~Fc is a block vector organized similarly to ~v, that is ~Fc = (~F c
1 , . . . , ~F c

n), where ~F c
i is the constraint

force to be exerted on particle i. Basis vectors ~Fi are organized in the same way. We will now
derive what the vectors ~Fi should be, given a velocity-level constraint (4.3).

Recall that vector pairs (~r,~v) that satisfy equation (4.3) define the set of valid particle ve-
locities ~v with respect to particle positions ~r. Let us treat vectors ~r and ~v as points in multi-
dimensional spaces called the position and velocity space, fix ~r to its current value ~r• (particle
positions at the current time) and characterize the condition in terms of the velocity space, as
~Cv(~r•, ~v) = ~C(~v) = ~0. Since this is a vector equation, it can be rewritten by the components
of (C1, . . . , Cm) = (0, . . . , 0), yeilding m scalar equations Ci = 0 (1 ≤ i ≤ m). Each such an
equation is an implicit functions of ~v (~r remains fixed). The sets of vectors ~v that satisfy a
given Ci = 0 constraint correspond to hypersurfaces in the velocity space and the set of valid

2Such as ~Cv = ~v1 − ~v2 − ~k = ~0, where ~k is a constant vector.

26 CHAPTER 4. CONSTRAINED PARTICLE DYNAMICS

velocities with respect to the current particle positions thus corresponds to the intersection of
the hypersurfaces (all Ci = 0, 1 ≤ i ≤ m constraints must hold).

Let us assume that ~v already lies on the intersection of the hypersurfaces. In order to maintain
the constraint we must ensure that ~r will not accelerate in such a way so that ~v will be driven off
the hypersurface i due to Ci = 0, 1 ≤ i ≤ m, that is, the acceleration of ~r in the position space
along the normal of the hypersurface i, which equals an appropriately scaled vector

(
∂Ci(~v)

∂~v

)
,

must be constrained3. This vector would thus be our ~Fi. By utilizing equation (4.3) we can write
that

~Fi(~r•)T =
∂Ci

∂~v
=

∂
[
~Cv(~r•, ~v)

]
i

∂~v
=

∂
[
J(~r•) · ~v − ~k

]
i

∂~v
= [J(~r•)]i ·

∂~v

~v
− ∂ki

∂~v
= [J(~r•)]i ,

or, more readily, that
~F1 = [J]T1 , . . . , ~Fm = [J]Tm ,

where []i operator is used to index rows4. The rows of the Jacobian matrix J will be the vectors
~F1, . . . , ~Fm and these vectors will indeed form a basis because J is expected to have a full-rank
(there would be infeasible or duplicate constraints otherwise). See figure (4.1) for illustration.

By substituting vectors ~Fi into equation (4.4) we get that the constraint force ~Fc can be
expressed as

~Fc = JT · ~λ. (4.5)

Constraint force ~F c
i = (JT · ~λ)i = JT

i · ~λ to be exerted on particle 1 ≤ i ≤ n resembles the
penalty force equation (3.9). In both the cases, the constraint force and the penalty force are
defined as a linear combination of a priori known basis vectors (the rows of the Jacobian matrix),
but the multipliers used to combine the basis are different. In the case of penalty forces the
multipliers are given by the current value of the behavior function, ignoring the effects of other
forces. In the case of constraint forces, however, the multipliers are considered unknown and
their values are determined globally so that all constraints would be maintained.

4.1.4 Lagrange Multipliers

At last we get to the computation of the constraint force ~Fc in terms of the multipliers ~λ. But
before we do so, let us summarize and interpret some facts that we have discovered so far.

• Position-level constraints and velocity-level constraints (with constant vectors ~k on the
right-hand side) can be transformed to acceleration-level constraints in the form of

J · ~a = ~c,

where J is a m×3n Jacobian matrix, m is the dimension of the constraint, n is the number
of constrained particles and the particles are indexed 1, . . . , n by differentiating the original
constraint with respect to time once or twice.

• Position-level constraints and velocity-level constraints can be maintained

3To ensure that ~v is not driven from the hypersurface in the velocity space, ~̇v along the hypersurface normal
is constrained. Since ~̈r = ~̇v = ~a, the acceleration ~a of ~r in the position space along the hypersurface normal is
constrained actually.

4This is just for clarification and to avoid confusion. In most other places Ji denotes the i-th block of J , the
Jacobian due to particle i. If there are multiple constraints in effect, Ji denotes the Jacobian due to constraint i
and Ji,j the j-th block of Ji, the Jacobian due to constraint i and particle j.

4.1. LAGRANGE MULTIPLIER METHOD 27

Figure 4.1: Illustration of the hypersurface and the constraint force due to the i-th DOF of
a constraint. Having a point ~r = (~r1, . . . , ~rn) in the position space describing the positions
of particles, point ~v = ~̇r in the velocity space describing the particle velocities and already
lying on the hypersurface due to Ci = 0 then ~a = ~̇v due to the total external force ~Ftotal =
(~F total

1 , . . . , ~F total
n) must be corrected so that the new ~a∗ = (~a∗1, . . . ,~a

∗
n) would not drive ~v from

the hypersurface. This is done by introducing a constraint force JT
i · λi that acts along the

hypersurface normal.

�
�
�
�
�
�
�

�
�
�
�
�
�
�

Ci = 0

�
��r
JT

i

(~v1, . . . , ~vn)
�

�
�

���

(~a1, . . . ,~an)

PPPq (~a∗1, . . . ,~a
∗
n)�

�
�
�
��

– by starting from a state that is consistent with the position-level5 and velocity-level
formulation of the constraint and

– obeying the corresponding acceleration-level constraint instead of the original position-
level or velocity-level constraint.

• Acceleration-level constraints are maintained by introducing a block vector constraint force
~Fc = (~F c

1 , . . . , ~F c
n) = JT · ~λ, where ~λ is a vector of Lagrange multipliers of length m and

~F c
i is the constraint force to be exerted on particle i. Multiplier λi defines a block vector

constraint force that is exerted due to the i-th constraint row (due to the i-th DOF removed
from the system) at the constrained particles and the exerted force equals JT

i · λi. In order
to compute ~Fc, multipliers ~λ must be computed.

Now let us assume that ~Ftotal is a block vector whose blocks consist of vectors of the net
forces exerted on the individual particles, that is ~Ftotal = (~F total

1 , . . . , ~F total
n), where ~F total

i is the
net force exerted on particle i. We will compute ~Fc = JT ·~λ so that the acceleration-level equation
J · ~a = ~c would hold when constraint force ~Fc is exerted.

Dynamics of particles 1, . . . , n, with mass matrices M1, . . . ,Mn can be described in a block
fashion by the following equation of motion (see (3.5))

M · ~̈r(t) = ~Ftotal(t),

where M is the block diagonal matrix

M =

M1 0 . . . 0
0 M2 . . . 0
...

...
. . .

...
0 0 . . . Mn

 .

When ~Fc is exerted on the particles then the total force acting on the particles would be equal
to ~Ftotal + ~Fc, therefore

M · ~̈r = ~Ftotal + ~Fc

5If the original constraint is a position-level constraint.

28 CHAPTER 4. CONSTRAINED PARTICLE DYNAMICS

and thus
~a = ~̈r = M−1 · (~Ftotal + ~Fc)

~a = M−1 · ~Ftotal + M−1 · ~Fc.

By utilizing the fact that Fc = JT · ~λ (4.5) and that J · ~a = ~c should hold when ~Fc is exerted
(4.2), we get

~a = M−1 · ~Ftotal + M−1 · JT · ~λ

J · ~a = J ·M−1 · ~Ftotal + J ·M−1 · JT · ~λ = ~c(
J ·M−1 · JT

)
· ~λ +

(
J ·M−1 · ~Ftotal − ~c

)
= ~0,

finally producing a linear condition on the multipliers ~λ at the current time t:

A · ~λ +~b = ~0, (4.6)

where A = J ·M−1 ·JT is a m×m matrix and ~b = J ·M−1 · ~Ftotal−~c is a m×1 column vector and
both A and ~b are evaluated with respect to the current time t, particle positions ~r and velocities
~v6.

Since J is assumed to be regular and M is positive-definite, A can be factored using standard
factorization techniques to solve for ~λ. Once ~λ multipliers are computed, constraint force ~Fc =
JT · ~λ can be exerted on the particles.

This is a theoretical result. In the practice, however, special properties of J and M matrices
are utilized in order to compute ~λ efficiently and achieve interactive performance even for highly
constrained systems.

4.1.5 An Example

In this section we will show how the Lagrange multiplier method can be used to constrain two
particles with indices 1 and 2 (n = 2) so that their relative distance will remain fixed.

The discussed constraint can be formalized as a one-dimensional position constraint (m = 1)
in the form of

Cp(~r1, ~r2) = ‖~r1 − ~r2‖2 − d2 = 0,

where d > 0 is the desired relative particle distance.
To simplify further derivation we will define ~x = ~r1 − ~r2, which will allow us to rewrite the

constraint as
Cp = ~x · ~x− d · d = 0.

Now we have to produce the corresponding velocity-level and acceleration-level equations Ċp and
C̈p

Ċp = 2 · ~̇x · ~x = J · ~v = 0

C̈p = 2 · ~̈x · ~x + 2 · ~̇x · ~̇x = J · ~a + J̇ · ~v = 0,

where ~v = (~v1, ~v2) and ~a = (~a1,~a2) are defined in a block fashion and ~̇x = ~v1−~v2 and ~̈x = ~a1−~a2.
By rewriting we get

Ċp = 2 · (~v1 − ~v2) · (~r1 − ~r2) =
2 · (~r1 − ~r2) · ~v1 − 2 · (~r1 − ~r2) · ~v2 =

6For example, as we already stated, J is a function of ~r.

4.2. CONSTRAINT ABSTRACTION 29

J · ~v = 0
C̈p = (2 · (~r1 − ~r2) · ~a1 − 2 · (~r1 − ~r2) · ~a2) +

(2 · (~v1 − ~v2) · ~v1 − 2 · (~v1 − ~v2) · ~v2)) =
J · ~a + J̇ · ~v = 0

J · ~a = c = −J̇ · ~v

and thus obtain

J = (2 · (~r1 − ~r2)T | −2 · (~r1 − ~r2)T) = (J1 J2)
J̇ = (2 · (~v1 − ~v2)T | −2 · (~v1 − ~v2)T) = (J̇1 J̇2)

c = −J̇ · ~v = −2 · (~v1 − ~v2) · (~v1 − ~v2),

where J and J̇ are 1×6 matrices (m×3n, m = 1, n = 2) defined in a block fashion. As we already
know J1 = ∂Cp

∂~r1
=
(

∂Cp

∂r1
1

∂Cp

∂r2
1

∂Cp

∂r3
1

)
1×3

= ∂Ċp

∂~v1
=
(

∂Ċp

∂v1
1

∂Ċp

∂v2
1

∂Ċp

∂v3
1

)
1×3

and J2 = ∂Cp

∂~r2
= ∂Ċp

∂~v2 .

Now if ~F total
1 and ~F total

2 are the net forces acting on the first and second particles and M1 and
M2 their mass matrices due to masses m1 and m2, we can form equation (4.6), A ·λ+ b = 0, and
solve for λ (which is a scalar value likewise b, because m = 1).

A = (J1 J2) ·
(

M1 0
0 M2

)−1

·
(

JT
1

JT
2

)
=

(
(J1 J2) ·

(
M−1

1 0
0 M−1

2

))
·
(

JT
1

JT
2

)
= (J1 ·M−1

1 J2 ·M−1
2) ·

(
JT

1

JT
2

)
= J1 ·M−1

1 · JT
1 + J2 ·M−1

2 · JT
2

b = (J1 J2) ·
(

M1 0
0 M2

)−1

·
(

~F total
1

~F total
2

)
− c = J1 ·M−1

1 · ~F total
1 +

J2 ·M−1
2 · ~F total

2 − c

Since J2 = −J1 = −2 · ~xT , Mi =

(
m−1

i 0 0
0 m−1

i 0
0 0 m−1

i

)
and c = 2 · ~̇x · ~̇x we have

A =
1

m1
· J1 · JT

1 +
1

m2
· J1 · JT

1 = (
1

m1
+

1

m2
) · 4 · ~x · ~x

b =
1

m1
· J1 · ~F total

1 − 1

m2
· J1 · ~F total

2 − 2 · ~̇x · ~̇x

=
1

m1
· 2 · ~x · ~F total

1 − 1

m2
· 2 · ~x · ~F total

2 − 2 · ~̇x · ~̇x

λ = A−1 · (−b) =
m1 ·m2 · ~̇x · ~̇x + ~x · ~F total

2 ·m1 − ~x · ~F total
1 ·m2

2 · (m1 + m2) · ~x · ~x

If Cp = Ċp = 0 then A 6= 0 because ‖~x‖ > 0 (d > 0) and λ can be computed. Having known

λ, constraint force ~Fc = (~F c
1 , ~F c

2) = JT · λ = (JT
1 · λ, JT

2 · λ) is evaluated, ~F c
1 applied to the first

particle, ~F c
2 to the second particle and the simulator can advance further, obeying the constraint.

4.2 Constraint Abstraction

In the previous example we have shown how a particular constraint can be implemented by sym-
bolically deriving the constraint function derivatives and building the equation (4.6) to compute
the multipliers and the constraint force. What we actually did was that we hard-coded a certain
particle model that would have to be updated (reprogrammed) whenever a new constraint had

30 CHAPTER 4. CONSTRAINED PARTICLE DYNAMICS

to be added or removed. Although simple static models could be implemented this way, it would
not be practical. We would like to have the model dynamic so that constraints could be added
or removed on the fly (this is essential for a proper implementation of contacts), the simulator
would formulate equation (4.6) itself and would be able to compute and apply the appropriate
constraint force automatically. In this section we will discuss a constraint abstraction that would
allow to implement this model.

4.2.1 Combining Constraints

So far we assumed that there was a single global velocity-level constraint ~Cv = ~0 in effect. In
order to make the dynamic behaviour possible, ~Cv will have to vary over time, constrain a variable
set of particles and be (conceptually) reformulated at each step.

Let N be the number of particles in the particle system, ~ri the position of the i-th particle,
~vi the velocity of the i-th particle, c number of constraints. Let us concatenate the particle
positions, velocities and accelerations to block vectors ~r = (~r1, . . . , ~rN), ~v = ∂

∂t~r and ~a = ∂
∂t~v

and define the i-th velocity-level constraint in the form of equation (4.3) as ~Cv
i (~r,~v) = ~0 ∈ Rmi ,

where mi is the dimension of the constraint, or equivalently as

Ji(~r) · ~v = ~ki,

where Ji is a mi × 3N Jacobian matrix and ~ki is a constant vector of length mi. Note that each
constraint might constrain all particles 1, . . . , N and so the equation involves the whole ~r and ~v
vectors.

According to (4.1), Ji Jacobians can be treated as block matrices consisting of mi × 3 blocks

Jij , 1 ≤ j ≤ N , where Jij = ∂ ~Cv
i

∂~vj
, and so the i-th constraint ~Cv

i = ~0 can be rewritten as

Ji1 · ~v1 + . . . + JiN · ~vN = ~ki

The global constraint ~Cv = ~0 that acts on the particles at the given time and captures the effects
of all individual constraints is simply a vector equation whose components are the components
of the individual constraints ~Cv

i = ~0 that are currently in effect. This can be expressed in the
block form as ~Cv(~r,~v) = (~Cv

1 (~r,~v), . . ., Cv
c (~r,~v)) = (~0, . . ., ~0) = ~0, or equivalently as J11 . . . J1N

...
. . .

...
Jc1 . . . JcN

 ·
 ~v1

...
~vN

 =

~k1
...

~kc

J(~r) · ~v = ~k,

where ~k is defined by blocks ~ki and the matrix J by blocks Jij , called the Jacobian matrices
due to the constraints i and the particles j. Note that Jij is zero iff the constraint i does not

constrain (affect) the particle j. Also since Jij = ∂ ~Cv
i

∂~vj
= ∂(~Cv)i

∂~vj
, it follows that J = ∂ ~Cv

∂~v and so J

is the Jacobian matrix of ~Cv.
This shows that the global velocity-level constraint ~Cv = ~0, that captures the effects of

multiple ~Cv
i = ~0 constraints, uses a “global” Jacobian matrix J and a right-hand side vector ~k,

that are built from the Jacobian matrices Ji and the right-hand side vectors ~ki of the individual
constraints — the individual constraints contribute to the slices of the global J and ~k. The same
can be said about the Jacobian matrix J and the right-hand side vector ~c of the corresponding

4.2. CONSTRAINT ABSTRACTION 31

global acceleration-level constraint ~Ca = ~̇Cv = ~0 and the individual acceleration-level constraints
~Ca

i = ~̇Cv
i = ~0. That is, ~Ca(~r,~v,~a) = (~Ca

1 (~r,~v,~a), . . ., ~Ca
c (~r,~v,~a)) = (~0, . . ., ~0) = ~0, or equivalently J11 . . . J1N

...
. . .

...
Jc1 . . . JcN

 ·
 ~a1

...
~aN

 =

~c1
...
~cc

J(~r) · ~a = ~c(~r,~v). (4.7)

Note that the vector of multipliers ~λ for the global acceleration-level constraint can be inter-
preted as a block vector ~λ = (~λ1, . . . , ~λc) so that ~F c

i = JT
i · ~λi is the constraint force due to the

i-th constraint.

4.2.2 Abstraction

In this section we will describe the abstraction of individual constraints and a simulator compo-
nent called the constraint solver that uses this abstraction to compute constraint forces.

Constraints will be abstracted as a special kind of force objects. The representation of con-
straint i will provide information on

• the dimensionality mi of the constraint,

• the list pi(j) of ni < N constrained particles so that pi(j), 1 ≤ j ≤ ni, would return the
index of the j-th constrained particle, and

• the formulation of the constraint on the acceleration level:

– mi × 3N Jacobian matrix Ji, represented by an ordered set of ni non-zero blocks
(Ji,p(1), . . . , Ji,p(n)) of dimensions mi × 3 and

– the right-hand side vector ~ci of length mi.

This is a general enough representation because it allows to implement position constraints,
velocity-dependent constraints (with constant right-hand side vector), and even acceleration-
dependent constraints (by supplying the Ji · ~a = ~ci equation directly), and, as we saw in the
previous section, combine the constraints automatically.

The global matrix J is sparse because each constraint i usually constrains only a small subset
of all particles (ni � N). Non-zero blocks Ji,p(j) due to constraints and constrained particles are
stored only. Parameter ni is often fixed to a certain constant value (ni = 2) so that ~λ multipliers
can be computed efficiently using specialized algorithms that exploit the special structure of J .

To enforce all constraints at time t, constraint solver will have to build the global Jacobian
matrix J and vector ~c, that is to formulate the global acceleration-level constraint (4.7) from
the descriptions of the individual constraints, formulate equation (4.6) for the global constraint,
solve for global ~λ and evaluate and apply the constraint force (4.5). We will now describe some
of these steps in detail:

• First the constraint solver indexes all active constraints and particles and determines the
total number of DOFs d removed from the system (d =

∑c
i=1 mi). The constraint and

particle indices together with the list of particles constrained by a given constraint define
the dimensions and layout of the global matrix J (d×3N) and vector ~c (d×1) — the order
of row and column blocks. Constraint indices induce the assignment of the components of
the global ~λ (d× 1) to the scalar rows of the global matrix J (each scalar row corresponds
to a DOF removed from the system, each block row corresponds to a constraint).

32 CHAPTER 4. CONSTRAINED PARTICLE DYNAMICS

• Jacobian blocks and right-hand side vectors due to the individual constraints are gathered
to the global matrix J and vector ~c. Equation (4.6) is formed, obtaining the matrix A
(d× d) and vector ~b (d× 1). Global multipliers ~λ are computed.

• Global multipliers ~λ and the global matrix J are used to compute the constraint force. The
force is added to the force accumulators of the constrained particles.

Let us consider an example with four particles indexed 1, 2, 3, 4 and two constraints. The first constraint
has index 1, dimensionality m1 = 2 and will constrain particles 1 and 2. The second constraint has index 2,
dimensionality m2 = 3 and will constrain particles 1, 3 and 4. According to our abstraction and the assignment of
indices to particles and constraints, the constraints can be represented by the following structure

Index DOFs removed Particles Jacobian blocks Vector ~c

1 2 1, 2 J11, J12 ~c1

2 3 1, 3, 4 J21, J23, J24 ~c2

and the global matrix J has this layout

J =

(
J11 J12 0 0
J21 0 J23 J24

)
.

4.3 Constraint Stabilization

Until now we assumed that the underlying ODE solver was absolutely precise and no integration
error was gained. This is however not true and, regardless of the precision of the computed
constraint force, particles will “drift” due to the accumulation of the local integration (ODE)
error, failing to obey the constraint. The problem is highlighted because constraints are supposed
to be maintained incrementally, under an assumption that the constraints hold at the beginning
of each time step.

Consider a position-level constraint ~Cp = ~0. Since the constraint is maintained on the

acceleration-level, integration error creeps into ~̇Cp which results in the fact that ~̇Cp 6= ~0 at
the end of the time step and the error propagates to ~Cp. The corresponding acceleration-level

constraint ~̈Cp = ~0 however assumes that ~Cp = ~̇Cp = ~0 at each step.
Now, for an illustration, assume that we have a position-level constraint that constrains two

particles to occupy the same world-space position. Thus we have ~Cp = ~r1 − ~r2 = ~0, where
~r1 and ~r2 are the positions of the two particles. By differentiating the constraint with respect
to time once and twice respectively we get the velocity-level and acceleration-level equations
~̇Cp = ~v1 − ~v2 = ~0 and ~̈Cp = ~a1 − ~a2 = ~0. When ~Cp 6= ~0 or ~̇Cp 6= ~0 we would like to bring these
quantities back to a zero vector, that is to stabilize the constraint. We can do that as follows.
Instead of requiring that ~̈Cp = ~0, we might request the particles to accelerate against each other

with a non-zero acceleration so that ‖ ~̇Cp‖ and ‖~Cp‖ would decrease. Therefore we might require

that ~̈Cp = −α · (~r1 − ~r2)− β · (~v1 − ~v2), where α, β are small positive constants.
This technique can luckily be generalized for any position-level ~Cp or velocity-level ~Cv con-

straint by adding extra terms to the corresponding acceleration-level equation right-hand side
vector ~c.

4.3. CONSTRAINT STABILIZATION 33

Let us first look at the stabilization of position-level constraints. We have ~Cp = ~0 (measuring

position error, relative particle positions), ~̇Cp = J · ~v = ~0 (measuring velocity error, relative

particle velocities) and ~̈Cp = J ·~a−~c = ~0, where ~c = −J̇ ·~v (measuring acceleration error, relative
particle accelerations). In order to stabilize the constraint, we would like to affect the relative

acceleration so as to decrease the magnitudes of the components of ~Cp as well as of ~̇Cp. We might
introduce an energy function analogously to (3.7) and request the particles to accelerate against
the energy gradient, which is given by J (the acceleration speed along the gradient would be
proportional to the current constraint error). Since the acceleration-level equation (4.2) actually
measures the relative acceleration along the gradient (the acceleration equals J · ~a− ~c), we have
just to modify its right-hand side vector ~c,

J · ~a = ~c,

~c = −J̇ · ~v − α · ~Cp − β · ~̇Cp = −J̇ · ~v − α · ~Cp − β · J · ~v. (4.8)

This is the final acceleration-level equation with stabilization terms that corresponds to the origi-
nal ~Cp = ~0 constraint. Scalars α, β are small positive constants whose purpose is to “absorb” the
integration error. They determine how fast the constraint error should be corrected. Bigger val-
ues indicate faster restoration, but really big values might cause the stabilization to “overshoot”
or make the simulation unstable. If the values are set to zero, then no stabilization will take
place and the modified equation will just turn to (4.2). Consult [12] or [22] for more information.

Velocity-level constraints (4.3) of the form ~Cv = J · ~v − ~k = ~0, where ~k is a constant vector,

are stabilized similarly. We have ~̇Cv = J · ~a + J̇ · ~v = J · ~a − ~c = ~0, where ~c = −J̇ · ~v. In order
to stabilize the constraint, we would like to affect the relative acceleration so as to decrease the
magnitudes of the components of ~Cv = J · ~v − ~k. We will do so by requesting the particles to
accelerate against the gradient of the energy function due to ~Cv, which is again given by J , with
a speed proportional to the current constraint error J · ~v − ~k. We obtain,

J · ~a = ~c,

~c = −J̇ · ~v − β · ~Cv = −J̇ · ~v − β · (J · ~v − ~k), (4.9)

where β is a small positive constant.
This stabilization method is called the Baumgarte stabilization and is quite popular because

of its simplicity, almost no additional computational overhead and ability to incorporate stabi-
lization directly to the evaluation stage of vector ~c, [12]. Let us note that generalized coordinates
approaches derive the equations of motion with respect to a reduced set of unconstrained co-
ordinates, the constrained particles can not get into an invalid state and so no stabilization is
required.

34 CHAPTER 4. CONSTRAINED PARTICLE DYNAMICS

Chapter 5

Rigid Body Dynamics

In this chapter we will generalize constrained particle systems to rigid body structures, make the
reader acquainted with the most important rigid body concepts and finally present equations of
motion for rigid bodies in the form of ODE. That way we will be able to simulate rigid bodies in
the same way how we simulated particle systems. Later on, constraints will be incorporated in
the form of constraint forces.

We will proceed quite informally, because the matter would be rather involved otherwise and,
according to our opinion, exact mathematical derivations would not offer much insight anyway.
Although everything what needs be explained will be covered by these notes, introductory level
information on rigid body dynamics can be found in [11]. The concepts will be defined according
to [10].

5.1 Concepts

Rigid bodies will be intuitively treated as solid structures with fixed shapes that can translate
and rotate in response to forces exerted on them. Unlike particles, rigid bodies have assigned
volumes to them and their spatial states are augmented by the representation of the volume
orientation. Since rigid bodies can not deform, their shapes and volumes can be defined in terms
of local coordinate systems, specific to particular bodies, called the body spaces. Positions and
orientations of bodies in the world space are then characterized by transformations (rotations
followed by translations) that map points from the body spaces to the points in the world space.

Rigid bodies are often imagined as constrained particle systems consisting of a large (infinite)
number of particles constrained to remain at the same relative positions in the body space, where
constraint forces correspond to the spatial interaction forces that prevent the body from being
deformed. Many rigid body concepts are based on this view and can be derived from it. Rigid
body dynamics abstracts this kind of constrained particle system.

5.1.1 Mass Properties

In this section we will define certain rigid body properties that are derived from the distribution
of mass over the body volume. These properties are constant throughout the simulation and,
as we will see, determine body response to an exerted force. In this sense they serve the same
purpose like particle masses in particle systems.

Given a rigid body, let us assume that ρ : R3 → R+ is a density function that characterizes
the body’s mass distribution over the points ~rb from the body space. The density function is
non-zero (and positive) for points that form the body’s volume and zero outside the volume.

35

36 CHAPTER 5. RIGID BODY DYNAMICS

Definition 9 If ρ(~rb) is a density function of a rigid body, then

total mass M =
∫

ρ(~rb) d~rb

center of mass in body space ~rb
cm =

∫
~rb · ρ(~rb) d~rb

M

moment of inertia about x axis Ixx =
∫

((rb
y)

2 + (rb
z)

2) · ρ(~rb) d~rb

moment of inertia about y axis Iyy =
∫

((rb
x)2 + (rb

z)
2) · ρ(~rb) d~rb

moment of inertia about z axis Izz =
∫

((rb
x)2 + (rb

y)
2) · ρ(~rb) d~rb

product of inertia about x, y axes Ixy =
∫

rb
x · rb

y · ρ(~rb) d~rb

product of inertia about x, z axes Ixz =
∫

rb
x · rb

z · ρ(~rb) d~rb

product of inertia about y, z axes Iyz =
∫

rb
y · rb

z · ρ(~rb) d~rb,

where moments of inertia Ixx, Iyy, Izz and products of inertia Ixy, Ixz, Iyz are expressed relative
to the origin ~0 of the body space. All quantities are computed in the body space.

As we already stated, the volume of a rigid body can be imagined as a discrete set of particles
with fixed positions in the body space. Assume that we have N such particles with positions ~rb

i
in the body space and masses mi. Mass properties can be then approximated by finite sums as

M =

N∑
i=1

mi ~rb
cm =

∑N

i=1
mi · ~rb

i

M
Ixx =

N∑
i=1

mi · ((~rb
i)

2
y + (~rb

i)
2
z)

Iyy =

N∑
i=1

mi · ((~rb
i)

2
x + (~rb

i)
2
z) Izz =

N∑
i=1

mi · ((~rb
i)

2
x + (~rb

i)
2
y)

Ixy =

N∑
i=1

mi · (~rb
i)x · (~rb

i)y Ixz =

N∑
i=1

mi · (~rb
i)x · (~rb

i)z

Iyz =

N∑
i=1

mi · (~rb
i)y · (~rb

i)z.

Convention 3 In order to simplify further derivations we will assume that the body space coor-
dinates are designed so that the rigid body’s center of mass lies at the origin of the body space,
that is, ~rb

cm = ~0.

5.1.2 Position and Orientation

When we were working with particles it was sufficient to use a single vector ~r(t) to locate the
particle in the world space. However for rigid bodies this is no longer true because rigid bodies
have volumes assigned to them. In order to locate a rigid body in the world space, a world space
position of its “reference point”, chosen arbitrarily but fixed in the body space, and an orientation
of body space axes in the world space must be given. We will formalize these concepts now a
little.

5.1. CONCEPTS 37

By orientation of a rigid body we will mean a rotation (linear transformation) that maps the
body space axes, attached to the rigid body, to world space vectors. Directions of the mapped
vectors define the orientation of the body.

Convention 4 We will always use right-handed coordinate systems and measure angles in a
counter-clockwise way. If we are given a coordinate system with axes (~x, ~y, ~z), where ~x axis
points to the right, ~y axis points forward and ~z axis points up, then the ~x axis will align to the
~y axis if the ~x axis is rotated by +π/2 about the ~z axis.

Imagine that you grabbed the rotation axis in your right hand, so that the thumb would point in the direction

of the axis. Then the direction of the fingers would determine the direction the positive angles of counter-clockwise

rotations are measured along.

There are many ways to represent rotations — Euler angles, rotation matrices, quaternions
and axis & angle pairs, to name some, [1], [15]. Although some representations proved to be
extremely useful and better than another, in terms of both algebraic properties and computational
efficiency, they were often hard to understand and certainly not intuitive. We can not expect the
reader to be acquainted with the theory of quaternions, for example. On the other hand, the
theory of rotation matrices seems to be well-known widely and yet pretty intuitive. Therefore we
will use rotation matrices first with a note that we will later switch to quaternions.

Rigid body’s center of mass (at the origin of the body space) will be used as the “reference
point” whose position is tracked in the world space. As we will see, it will simplify the transfor-
mations of points and vectors from the body space to world space and allow to interpret body
space axes vectors as vectors attached to the rigid body’s center of mass and formulate the equa-
tions of motion in such a way, that the rotational part, describing the rotational effects due to
an exerted force, can be separated from the linear part, describing the translational effects.

We will conclude this discussion by the following definition.

Definition 10 The position and orientation of a rigid body in the world space is determined by
an affine transformation that maps points from the body space to points in the world space.

The transformation is defined by a world space position ~x(t) of the rigid body’s center of mass
and a rotation R(t), represented by a 3×3 rotation matrix, that maps vectors from the body space
to vectors in the world space.

If ~pb is a position of a point in the body space then the world space position ~p(t) of that point
is given by

~p(t) = R(t) · ~pb + ~x(t) (5.1)

and the position ~x(t) of the center of mass and rotation R(t) of the body space are said to represent
the position and orientation of the rigid body.

Let us note that if ~rx(t), ~ry(t), ~rz(t) are body space axes expressed in the world coordinates
then the rotation R(t), that represents the orientation of the corresponding body, can be written
by blocks as

R(t) = (~rx(t) ~ry(t) ~rz(t)) .

5.1.3 Linear and Angular Velocity

The motion of particles, from the point of kinematics, is characterized by position vectors ~r(t)
and their time derivatives — particles can undergo translation only. Contrary, the motion of rigid
bodies is characterized by position vectors ~x(t), rotation matrices R(t) and their time derivatives

38 CHAPTER 5. RIGID BODY DYNAMICS

— rigid bodies can translate and rotate. Naturally, we will be interested in how ~x(t) and R(t)
change over time.

First we define the linear velocity ~v(t) of a rigid body that characterizes the direction and
speed of the body translation. If ~x(t) is the position of the rigid body’s center of mass in the
world space, then ~̇x(t) is the velocity of an imaginary particle at the body’s center of mass and
this velocity is called the linear velocity,

~v(t) = ~̇x(t). (5.2)

Although the rigid body motion can be arbitrarily complex, it can always be seen as a motion
of the rigid body’s center of mass and a rotation about a time varying axis that passes through
the center of mass. This allows to define a concept of angular velocity.

Assume for a while that the body’s center of mass is fixed to a certain position and so the
body can rotate about an axis passing through the center of mass only. Angular velocity ~ω(t)
describes what the rotation axis and the rotation speed about the axis at the instant t is. Angular
velocity is a limiting value, like linear velocity, and as such should be treated.

Rotation R of a rigid body can be factored to three rotations Rx(θx), Ry(θy), Rz(θz), where Rx(θx) represents
the rotation about the world space axis X by an angle θx (analogously for Ry, Rz), so that R = Rz ◦ Ry ◦ Rx

(factors are composed in the X-Y-Z order). The angles θx, θy, θz are called the Euler angles about the fixed world

space axes and form a vector ~θ = (θx, θy, θz). Angular velocity ~ω(t) is then defined as

~ω(t) = ~̇θ(t) =
∂

∂t
~θ(t) = (

∂

∂t
θx(t),

∂

∂t
θy(t),

∂

∂t
θz(t)), (5.3)

according to [13].

The direction of ~ω(t) defines the instantaneous rotation axis, expressed in the world space
coordinates, and the magnitude defines the instantaneous (counter-clockwise) rotation speed,
that is ~ω(t) = −−→

axis · speed in popular terms. If the body was rotating uniformly, ~ω(t) = −−−→
const,

then ‖~ω(t)‖ = 2π · f = ϕ, where f (frequency) is the number of spins that the body would take
per second and ϕ is the angle that the body would rotate by per second. ‖~ω(t)‖ is measured in
rad · s−1.

Linear velocity ~v(t) and angular velocity ~ω(t) of a rigid body can be used to characterize the
velocity of an arbitrary point on the body. If we are given a world space position ~p(t) of such a
point then

~p(t) = ~x(t) + ~r(t)

~̇p(t) =
∂

∂t
~x(t) +

∂

∂t
~r(t) = ~v(t) + ~ω(t)× ~r(t)

= ~v(t) + ~ω(t)× (~p(t)− ~x(t)), (5.4)

where ~̇p(t) is the velocity of ~p(t), ~r(t) = ~p(t)−~x(t) is a world space vector attached to the body’s
center of mass and ~̇r(t) = ~ω(t) × ~r(t) is its time derivative1. As can be seen, it consists of two
terms, a term due to the body translation and a term due to the rotation. Clearly, if the body
was not rotating, then ~ω(t) = ~0 and the point velocity would equal the velocity of the body’s
center of mass. If it was rotating, an extra term ~ω(t)×~r(t) due to the rotation would have to be
added.

Let us focus at this term. If the linear velocity was ~0 and angular velocity was constant then trajectory
of the point ~p(t) would correspond to a circle with the center at ~x(t) + ‖~r(t)‖ · cos(α) · ~ω(t) and ‖~r(t)‖ · sin(α)
radius, where α is the angle between ~ω(t) and ~r(t). Then ‖~̇p(t)‖ would have to equal ‖~ω(t)‖ · ‖~r(t)‖ · sin(α)

1This validity of this formula is verified in the next paragraph.

5.1. CONCEPTS 39

(this is the length of the circle arc swept by ~p(t) per second, hence the velocity magnitude). The direction of
~̇p(t) would have to be perpendicular to both ~ω(t) and ~r(t) and due to the counter-clockwise convention would

have to equal ~ω(t)×~r(t)
‖~ω(t)×~r(t)‖ . Therefore, combining the two conditions on the velocity magnitude and the direction,

~̇p(t) = (‖~ω(t)‖ · ‖~r(t)‖ · sin(α)) · ~ω(t)×~r(t)
‖~ω(t)×~r(t)‖ = ~ω(t)× ~r(t). If ~v(t) 6= ~0 and angular velocity was still constant, then

the trajectory of ~p(t) would no longer correspond to a circle, but the trajectory of ~r(t) would. Hence we could write
that ~̇r(t) = ~ω(t)× ~r(t). Finally, noting that the appropriate magnitude of ~r(t) was derived from the instantaneous
~ω(t), we can conclude that this equation holds even if the angular velocity is not constant.

In the previous paragraph we have shown that ~̇r(t) = ~ω(t)× ~r(t) for vectors ~r(t) attached to
the rigid body’s center of mass. This time, we will assert that the same equation holds for vectors
~r(t) attached to arbitrary points on the rigid body. If ~r(t) is a world space vector attached to a
world space point ~p(t) of a rigid body, then ~a(t) = ~p(t) and ~b(t) = ~p(t) +~r(t) are the world space
positions of the origin and tip of ~r(t), ~r(t) = ~b(t)− ~a(t) and ~̇r(t) equals

~̇r(t) =
∂

∂t
~b(t)− ∂

∂t
~a(t) = ~ω(t)× ~r(t), (5.5)

as can be verified by evaluating equation (5.4) for points ~a(t) and ~b(t).
We will now use this equation to derive a formula for ∂

∂tR(t) = Ṙ(t). R(t) can be writ-
ten in a block fashion as R(t) = (~rx(t), ~ry(t), ~rz(t)) and so Ṙ(t) = (~̇rx(t), ~̇ry(t), ~̇rz(t)). Since
~rx(t), ~ry(t), ~rz(t) are the body space axes expressed in the world coordinates and the axes are at-
tached to the rigid body’s center of mass, we get that Ṙ(t) = (~ω(t)×~rx(t), ~ω(t)×~ry(t), ~ω(t)×~rz(t)).
If we define matrix ~a∗ as

~a∗ =

 0 −az ay

az 0 −ax

−ay ax 0

then ~a × ~b can be expressed in the form of matrix multiplication as ~a × ~b = ~a∗ · ~b, therefore
Ṙ(t) = (~ω(t)∗ · ~rx(t), ~ω(t)∗ · ~ry(t), ~ω(t)∗ · ~rz(t)), finally obtaining

Ṙ(t) = ~ω(t)∗ ·R(t). (5.6)

5.1.4 Force and Torque

When we were working with particle systems we tracked directions and magnitudes of forces
exerted on the particles (~F total

i (t) vectors), but we did not care about the points of application,
because they always coincided with the particle positions. The only effect a force exerted on
a particle could produce was a translation. However since rigid bodies have volumes and can
rotate, we need know not only what the direction and magnitude of the exerted force is, but also
the point of its application so that both body translation and rotation could be affected by the
force.

We will conceptually work with a rigid body that consists of N particles constrained to remain
at the same relative positions in the body space. Particle positions in the body space will be
fixed and characterized by vectors ~rb

i , 1 ≤ i ≤ N , their world space positions will be given by
~ri(t) = R(t) · ~rb

i + ~x(t).
To simplify further derivations we will assume that the points of force application coincide

with the positions of particles2 the rigid body is made of. This will allow to characterize the force
distribution over the volume of the body by a set of world space vectors ~F total

i (t), where ~F total
i (t)

denotes the total force exerted at the rigid body’s particle i, at the world space position ~ri(t).
2We can always think that there happens to be a particle at the given world space position so that forces could

act at arbitrary points in the world space.

40 CHAPTER 5. RIGID BODY DYNAMICS

If ~Fi(t) is a force acting on particle i, then the torque ~τi(t) on particle i due to ~Fi(t) is defined
as

~τi(t) = (~ri(t)− ~x(t))× ~Fi(t). (5.7)

Intuitively torque can be imagined as a scale of the angular velocity that the rigid body would
gain if ~Fi(t) was the only force acting on the body and the force was exerted at ~ri(t). Torque is
expressed in the world coordinates.

If ~F total
i (t) = ~F 1

i (t) + . . . + ~Fn
i (t) is the total force acting on particle i, then the total torque

~τ total
i (t) on particle i is defined as

~τ total
i (t) = ~τ1

i (t) + . . . + ~τn
i (t) = (~ri(t)− ~x(t))× ~F total

i (t), (5.8)

where ~τ j
i (t) is the torque due to ~F j

i (t).
By summing the total forces and torques acting on the particles that the rigid body is made

of, we get the total force ~Ftotal(t) and total torque ~τtotal(t) acting on the rigid body

~Ftotal(t) =
N∑

i=1

~F total
i (t)

~τtotal(t) =
N∑

i=1

~τ total
i (t). (5.9)

From the Newton’s Third Law we get that ~Ftotal(t) and ~τtotal(t) are the total external force and
the total external torque exerted on the rigid body, because ~F j

i (t) and ~τ j
i (t) terms due to internal

forces (particle interaction) cancel each other and thus do not contribute to ~Ftotal(t) and ~τtotal(t).
The total external force and the total external torque together with the body’s mass properties

determine the rigid body motion. The total external force captures the translational (linear)
effects of the exerted force, the total external torque captures the rotational (angular) effects.

5.1.5 Linear and Angular Momentum

We will define the concept of a linear and an angular momentum which describe the translational
and rotational (kinetic) state of a rigid body and allow to express the rigid body’s equations of
motion “nicely”. As the names suggest linear momentum will deal with linear (translational)
body properties, while angular momentum will deal with angular (rotational) properties. We
still work with a rigid body model that treats the body as a set of N particles fixed in the body
space.

Linear Momentum

The linear momentum of particle i is defined as ~Pi(t) = mi · ~̇ri(t), where mi is the mass of particle
i (this corresponds to (3.1)) and the linear momentum of the rigid body ~P (t) is the sum of the
linear momentums of the individual particles. Linear momentum describes the rigid body state
with respect to the translational motion of the body’s center of mass and it can be shown that

~P =
N∑

i=1

~Pi(t) = M · ~v(t), (5.10)

where M =
∑N

i=1 mi is the mass of the rigid body and ~v(t) is the velocity of its center of mass.
The time derivative of the linear momentum equals the total external force ~Ftotal(t) applied on
the body

Ṗ (t) = ~Ftotal(t). (5.11)

5.1. CONCEPTS 41

Let us follow the derivation from [13]. From the definition of the linear momentum for particles and the rigid

body we get ~P (t) =
∑N

i=1
mi · ~̇ri(t). This can be rewritten according to (5.4) as ~P (t) =

∑N

i=1
mi · (~v(t) + ~ω(t) ×

(~ri(t)− ~x(t))) =
∑N

i=1
mi · ~v(t) + ~ω(t)×

∑N

i=1
mi · (~ri(t)− ~x(t)) = (

∑N

i=1
mi) · ~v(t) + ~ω(t)×~0 = M · ~v(t) because∑N

i=1
mi · (~ri(t)− ~x(t)) =

∑N

i=1
mi ·R(t)~rb

i (t) = R(t) ·
(∑N

i=1
mi·~rb

i (t)

M

)
·M = R(t) · ~rb

cm ·M = ~0.

From the Newton’s Second Law we have ~F total
i (t) = mi · ~̈ri(t) = mi · ~ai(t) for any particle i and therefore

~Ftotal(t) =
∑N

i=1
~F total

i (t) =
∑N

i=1
mi ·~ai(t). Since ~x(t) =

∑N

i=1
mi·~ri(t)

M
, we get ~̈x(t) = ~̇v(t) =

∑N

i=1
mi·~ai(t)

M
, finally

obtaining ~Ftotal = M · ~̇v(t) = Ṗ (t).

Equations (5.10) and (5.11) describe the effect of exerted external force on the translational
motion of the rigid body and “mimic” the Newton’s Second Law for particles — this effect is the
same as if the rigid body was replaced by a single particle with mass M , which ~Ftotal(t) acted
on. Note that the external torque ~τtotal(t) has no effect on the translational motion of the body.
To describe the rotational effects we will define the concept of angular momentum.

Angular Momentum

The angular momentum of particle i is defined as ~Li(t) = (~ri(t)−~x(t))×(mi · ~̇ri(t)−mi · ~̇x(t)) and
the angular momentum of the rigid body ~L(t) as the sum of angular momentums due to individual
particles. Angular momentum describes the rigid body state with respect to the rotational motion
of the body and it can be shown that

~L =
N∑

i=1

~Li(t) = I(t) · ~ω(t), (5.12)

where I(t) is a 3 × 3 positive definite matrix called the world space inertia tensor, which char-
acterizes the distribution of mass over the body, relative to the body’s center of mass, along the
world space axes. I(t) is independent of the body position ~x(t), but it depends on the orientation
R(t). Let us define Ibody as

Ibody =

 Ixx −Ixy −Ixz

−Ixy Iyy −Iyz

−Ixz −Iyz Izz

 , (5.13)

where Ixx, Iyy, Izz, Ixy, Ixz, Iyz are the moments and products of inertia distilled from the rigid
body’s density function ρ(~rb). Ibody is called the body space inertia tensor, it is evaluated in the
body space and equals the world space inertia tensor I(t) if the current body’s orientation R(t)
is an identity matrix (Ibody characterizes the distribution of mass over the body, relative to the
body’s center of mass, along the body space axes). It can be shown that the relation between
the world space and body space tensors is given by

I(t) = R(t) · Ibody ·R(t)T

I−1(t) = R(t) · I−1
body ·R(t)T , (5.14)

which provides us with a formula for the evaluation of I(t) and I−1(t) for arbitrary body orien-
tation because Ibody is a constant matrix, [10]. Note that Ibody is a positive definite matrix and
so I−1

body, I(t) and I−1(t) are also positive definite for arbitrary orientation R(t)3.
Since the body’s angular momentum describes the body’s kinetic state with respect to its

rotational motion, we are naturally interested in what its time derivative is and what affects its

3This special property is utilized by the constraint solver to compute constraint forces more efficiently.

42 CHAPTER 5. RIGID BODY DYNAMICS

value. Erleben [13] shows that the time derivative of the angular momentum equals the total
external torque ~τtotal(t) exerted on the body,

L̇(t) = ~τtotal(t), (5.15)

which matches the relation between the linear momentum and the total external force.
Finally, let us present the following equation that is directly derived from (5.12) and might

become handy during simulation

~ω(t) = I−1(t) · ~L(t). (5.16)

Erleben [13] proceeds as follows to define the angular momentum. So far we have defined a torque with respect

to the rigid body’s center of mass. The total torque ~τ total′
i (t) on particle i with respect to the world space origin due

to force ~F total
i (t) is defined as ~τ total′

i (t) = ~ri(t)× ~F total
i (t), where ~ri(t) is the world space position of particle i. The

angular momentum ~L′
i(t) of particle i with respect to the world space origin is then defined as ~L′

i(t) = ~ri(t)× ~Pi(t).
Then

∂ ~Pi(t)

∂t
= ~F total

i (t)

∂~L′
i(t)

∂t
=

∂

∂t
~ri(t)× ~Pi(t) + ~ri(t)×

∂

∂t
~Pi(t)

= ~̇ri(t)×mi · ~̇ri(t) + ~ri(t)× ~F total
i (t)

= ~0 + ~ri(t)× ~F total
i (t) = ~τ total′

i (t),

where the first equation is the well-known Newton’s Second Law, relating the time derivative of linear momentum to
a force, and the second equation is its “rotational version” called the Euler’s Equation, relating the time derivative
of angular momentum with respect to the world space origin to a torque with respect to the origin.

By summing the individual angular momentums and torques, with respect to the origin, due to particles of the
rigid body, one would get the angular momentum of the rigid body and the total external torque with respect to the
origin. These could be used to formulate the Euler’s Equation for the rigid body in the form of ∂

∂t
~L′(t) = ~τ ′total(t).

Unfortunately, the angular momentum ~L′ of the rigid body defined in this way is hard to compute and it is
better to define it differently, with respect to the rigid body’s center of mass

~L =

N∑
i=1

~Li(t),

~Li(t) = (~ri(t)− ~x(t))× (mi · ~̇ri(t)−mi · ~̇x(t)).

Generally ∂
∂t

~Li(t) 6= ~τ total
i (t), unlike ∂

∂t
~L′

i(t) 6= ~τ total′
i (t), but the Euler’s Equation for the rigid body still holds

and ~L is easy to compute and update, [13].

Equations (5.12) and (5.15) describe the effect of exerted external torque on the rotational
motion of the rigid body. Note the correspondence to (5.10) and (5.11) and the fact that the
external force ~Ftotal(t) has no effect on the rotational motion of the body, likewise the external
torque ~τtotal(t) has no effect on the translational motion.

5.2 Equations of Motion

We will summarize the rigid body concepts from the previous sections in the form of equations
of motion for a rigid body and a set of bodies. The equations will be first order ODEs and
hence the numerical solving of the equations would correspond to the simulation of the bodies.
Two formulations will be presented — a formulation with linear and angular momentums and a
formulation with linear and angular velocities.

5.2. EQUATIONS OF MOTION 43

5.2.1 Momentum Form

The formulation with linear and angular momentums treats the momentums as a part of the
rigid body state. To complete the state, rigid body position and orientation must be added to
the linear and angular momentum. Therefore the rigid body state will be described by a state
(block) vector ~y(t),

~y(t) = (~x(t), R(t), ~P (t), ~L(t)), (5.17)

where ~x(t) is the position of the rigid body’s center of mass, R(t) is the orientation of the body,
~P (t) is its linear momentum and ~L(t) the angular momentum. The state vector describes the rigid
body state from the point of both kinematics (position and orientation) and dynamics (linear
and angular momentums).

From equations (5.2), (5.6), (5.11), (5.15), (5.14) and (5.16) we get the equation of motion
for a rigid body in the momentum form,

∂

∂t
~y(t) = (~v(t), ~ω(t)∗ ·R(t), ~Ftotal(t), ~τtotal(t)), (5.18)

where ~Ftotal(t) and ~τtotal(t) are the total external force and torque exerted on the body and
~v(t) and ~ω(t) are auxiliary quantities derived from the rigid body state ~y(t). These quantities,
alongside with the additional auxiliary quantities I(t) and I−1(t), are given by the following
equations

~v(t) =
~P (t)
M

I(t) = R(t) · Ibody ·R(t)T

I−1(t) = R(t) · I−1
body ·R(t)T

~ω(t) = I−1(t) · ~L(t).

Quantities Ibody, I
−1
body,M and M−1 characterize the rigid body mass properties and are constant

throughout the simulation. The equation is a first order ODE and is expressed in a block form.
If we are given n rigid bodies with state vectors ~y1(t), . . . , ~yn(t) concatenated into a block

vector ~y(t) = (~y1(t), . . . , ~yn(t)), then the equation of motion for the set of bodies is given by
∂
∂t~y(t) = (∂

∂t~y1(t), . . . , ∂
∂t~yn(t)).

5.2.2 Velocity Form

The equations of motion can be reformulated so that the linear and angular velocity are used
as the state variables instead of the linear and angular momentum (position and orientation is
tracked in the same way), yielding an equation that more resembles the equation of motion for a
particle. The alternative state vector ~y(t) is defined as

~y(t) = (~x(t), R(t), ~v(t), ~ω(t)), (5.19)

where ~x(t) is the position of the rigid body’s center of mass, R(t) is the orientation of the body,
~v(t) is its linear velocity and ~ω(t) angular velocity.

We will define the linear acceleration of a rigid body as the acceleration of the rigid body’s
center of mass, that is

~a(t) = ~̇v(t) = ~̈x(t) = M−1 · ~Ftotal(t). (5.20)

44 CHAPTER 5. RIGID BODY DYNAMICS

By differentiating equation (5.16) ~ω(t) = I−1(t) · L(t) with respect to time, utilizing (5.14)
and following the lengthy derivation from [10]4, we get the angular acceleration ~α(t) of the body,

~α(t) = ~̇ω(t) =
∂

∂t
I−1(t) · L(t) = . . .

= I−1(t) · (~L(t)× ~ω(t) + ~τtotal(t))
= I−1(t) · ((I(t) · ~ω(t))× ω(t) + ~τtotal(t))
= I−1(t) · (~τcoriolis(t) + ~τtotal(t)), (5.21)

where ~τcoriolis(t) = ~L(t)×~ω(t) = (I(t) ·~ω(t))×~ω(t) is a coriolis torque due to body rotation. The
coriolis torque is an inertial velocity-dependent torque that exists “by itself” and can be imagined
and treated as an implicit component of the total external torque ~τtotal(t), [12]. However, to avoid
confusion it is better to keep ~τtotal(t) and ~τcoriolis(t) separated — ~τtotal(t) is the total external
torque due to explicit external forces, while ~τcoriolis(t) is the implicit inertial torque due to the
body rotation5. This separation allows to switch between the two formulations of equations of
motion as required. The momentum-based variant is not aware of any coriolis torque and it just
happens that the coriolis torque is hidden by the concept of the angular momentum.

Having defined the linear and angular acceleration, we can define the equation of motion for
a rigid body in the velocity form as

∂

∂t
~y(t) = (~v(t), ~ω(t)∗ ·R(t),M−1 · ~Ftotal(t), I−1(t) · (~τcoriolis(t) + ~τtotal(t)), (5.22)

where ~Ftotal(t) and ~τtotal(t) are the total explicit external force and torque, ~τcoriolis(t) is the
coriolis torque defined in (5.21) and M−1 and I−1(t) are defined as in (5.18), noting that the
equation of motion for a set of n bodies is obtained by n× “cloning” the equation for a single
body.

We will use the momentum form of the equation of motion to simulate the motion of rigid
bodies and the velocity form to formulate and derive constraint forces in the next chapter.

5.2.3 Mass Matrices

In this section we will elaborate on the velocity-form of the equation of motion, define the notation
of generalized velocities and forces and the concept of mass matrices for rigid bodies, which will
allow to treat rigid bodies as a kind of particles moving in R6, thus simplifying many equations,
[9].

If we are given a rigid body with a linear velocity ~v(t) and an angular velocity ~ω(t), then the
generalized velocity ~vgen(t) of the body is a 6 × 1 block vector ~vgen(t) = (~v(t), ~ω(t)), comprising
of two 3× 1 blocks due to the linear and angular velocity.

Similarly if ~Ftotal(t) and ~τtotal(t) are the total external force and the total external torque
acting on the body, then the generalized external force ~F total

gen (t) acting on the body is a 6 × 1
block vector ~F total

gen (t) = (~Ftotal(t), ~τtotal(t)), comprising of two 3× 1 blocks due to the force and
torque.

In general, we will call any block vector consisting of a block due to a linear quantity and a
block due to the corresponding angular quantity a generalized quantity. That way, we can define
the generalized acceleration ~̇vgen(t), for example.

4Which we cowardly omit.
5It follows from this the angular acceleration ~α(t) can change even if ~τtotal(t) = ~0.

5.2. EQUATIONS OF MOTION 45

If m and I(t) are the mass6 and world space inertia tensor of the rigid body, then the mass
matrix of the rigid body M(t) is a 6× 6 block diagonal matrix defined as

M(t) =
(

m · E 0
0 I(t)

)
=

m 0 0 0 0 0
0 m 0 0 0 0
0 0 m 0 0 0
0 0 0 I11(t) I12(t) I13(t)
0 0 0 I21(t) I22(t) I23(t)
0 0 0 I31(t) I32(t) I33(t)

,

where E is a 3× 3 identity matrix. Since I(t) is positive definite and m > 0, M(t) and M−1(t)
are also positive definite. Since M(t) is a block diagonal matrix, M−1(t) is also a block diagonal
matrix whose blocks are the inverses of the corresponding blocks of M(t),

M−1(t) =
(

m−1 · E 0
0 I−1(t)

)
.

From (5.20) and (5.21) we see that

m · ~a(t) = ~Ftotal(t)
I(t) · ~α(t) = ~τtotal(t) + ~τcoriolis(t),

which can be rewritten using the generalized notation and mass matrix M as

M(t) · ~̇vgen(t) = ~F total
gen (t) + ~F coriolis

gen (t),

where ~̇vgen(t) = (~a(t), ~α(t)) is the time derivative of the generalized velocity ~vgen(t), ~F total
gen (t) is

the generalized external force and ~F coriolis
gen (t) = (~0, ~τcoriolis(t)) is the generalized coriolis force, or

equivalently,
~̇v(t) = M−1(t) · ~Ftotal(t) + M−1(t) · ~Fcoriolis(t).

We have removed the gen subscripts this time to improve readability. Further on, when it is clear
that the generalized notation is used, the subscripts will be removed implicitly and “generalized”
adjective omitted as well (~v in the generalized notation will refer to both the linear and angular
velocities).

This equation describes how the acceleration of the rigid body changes if ~Ftotal(t) is applied
to it. The acceleration M−1(t) · ~Fcoriolis(t) due to the coriolis force is independent of other forces
and can be treated as if it was a part of the acceleration due to the total external force, that is,
the coriolis force can be incorporated into ~Ftotal(t) and can be ignored elsewhere7. From now on
we will assume that the coriolis force is implicitly included into ~Ftotal(t) whenever working with
generalized forces.

This allows to write

M(t) · ~̇v(t) = ~F (t) (5.23)

for any force ~F (t) and acceleration ~̇v(t) due to ~F (t). This equation generalizes (5.20) and (5.21)
and describes the dynamics of the rigid body, [9]. As can be seen, it resembles the Newton’s

6Until now we used M to denote the rigid body’s mass. This would clash with our generalized notation and so
the mass would be denoted m.

7This is generally true for any inertial force.

46 CHAPTER 5. RIGID BODY DYNAMICS

Second Law for particles and rigid bodies can thus be imagined as special particles with time-
varying masses M(t) that move in R6.

The formulation of rigid body dynamics with mass matrices will become very useful when
the equations for constrained rigid body dynamics are developed because we will be able to reuse
derivations from constrained particle dynamics that were formulated in terms of mass matrices
for particles.

5.2.4 Numerical Issues

If we actually tried to simulate a rigid body, say according to (5.18), we would experience a
numerical drift which would mostly affect the representation of the body orientation R(t). The
problem is that rigid bodies have 3 rotational degrees of freedom but rotation matrices R(t) have
3× 3 DOFs and the extra DOFs have to be neutralized by 6 additional conditions on the matrix
rows, known as the orthogonality conditions. While updating R(t), orthogonality conditions
are violated and the matrix must be “orthogonalized” in order to represent a rotation again.
Whenever the normalization takes place, rigid body state is changed directly, which makes it a
new initial state and the ODE solver must be restarted.

There is, however, a better way to represent body orientations — by the use of unit quater-
nions, represented as [scalar = s,

−−−−→
vector = (v1, v2, v3)] pairs. Quaternions, unlike rotation ma-

trices, have 4 DOFs and the extra DOF is neutralized by a condition that requests that the
quaternion must have a unit length. Since there is only one constrained DOF, orientations repre-
sented by unit quaternions experience much less numerical drift than rotation matrices and the
stabilization of the corresponding ODE is much simpler (corresponds to the normalization of the
quaternion). We will assume that the reader is acquainted with quaternions and the representa-
tion of rotations by unit quaternions and present a modified equation of motion for a single rigid
body straight off (one might read [1] to get introductory level information on quaternions). A
variant of (5.18) with a different block row due to orientation representation by a quaternion is
shown

∂

∂t
~y(t) =

∂

∂t
(~x(t), q(t), ~P (t), ~L(t))

= (~v(t),
1
2
· [0, ~ω(t)] · q(t), ~Ftotal(t), ~τtotal(t)),

where q(t) = [cos(α/2), sin(α/2) · ~v] is a unit quaternion that represents the body orientation by
a rotation about axis ~v by angle α. To utilize previous equations expressed in terms of R(t),
one might consider R(t) as an additional auxiliary quantity, computed from the quaternion q(t).
Derivations can be found in [10].

5.3 Abstraction

In this section we will cover the abstraction and representation of rigid bodies and external
forces that may act upon them. The abstractions generalize and built on top of the previous
abstractions of particles and force objects described in the particle dynamics chapter.

We already know that the simulation of rigid bodies and particles corresponds to the numerical
solving of the corresponding equations of motion, which are coupled ODEs. Since we have got
multiple forms of equations of motion to choose from, we have to decide what variant of the
equation of motion is to be used to drive the simulation and then implement the functions required
by the ODE solver (see page 13) accordingly. The simulation of rigid bodies conceptually follows

5.3. ABSTRACTION 47

the same scheme like the simulation of particles and the only thing which makes it harder are
the extra dimensions due to body orientations.

We will use the momentum-based formulation of the equation of motion (5.18) to simulate
the bodies. This decision dictates what the layout of the body state vector ~y(t) is and what
properties are recorded in the body state (equation (5.17)). Obviously, vector ~y(t) will be a part
of our rigid body representation. The right-hand side of (5.18) tells us what quantities have to be
processed when the body state derivative is requested to be evaluated by the ODE solver. Since
the quantities are defined in terms of auxiliary quantities ~v(t), ~ω(t), ~I(t) and ~I−1(t), derived from
the rigid body state, constant quantities Ibody, I

−1
body,M and M−1, characterizing the rigid body

mass properties, and computed quantities ~Ftotal(t), ~τtotal(t), storing the total external force and
torque acting on the body at time t, all these quantities should be represented as well.

Let us focus at ~Ftotal(t) and ~τtotal(t) quantities. When these quantities were defined (equations
(5.7), (5.9)), we were conceptually working with a rigid body made of particles, correlated the
positions where the forces were exerted with the positions of particles and defined a torque
according to the position of the particle. Since we can imagine that there happens to be a
particle at any world space position we are interested in, we can interpret ~τi(t) from (5.7) as a
torque due to an external force ~Fi(t) exerted on the body at the world space position ~ri(t) and
hence can write

~Ftotal(t) =
n∑

i=1

~Fi(t) ~τtotal(t) =
n∑

i=1

~τi(t) =
n∑

i=1

(~ri(t)− ~x(t))× ~Fi(t),

where ~Fi(t) is an external force exerted at point ~ri(t) on the body.
This allows to implement ~Ftotal(t) and ~τtotal(t) as a force and torque accumulators and handle

the contributions to the accumulators in terms of apply force(~r, ~F) function that adds the
exerted force ~F to the body’s ~Ftotal(t) accumulator and the corresponding torque (~r − ~x(t))× ~F
due to ~F exerted at ~r to the ~τtotal(t) accumulator. The contributions are represented by force
objects that provide functions to exert the represented forces and torques in terms of apply force
function called on affected bodies.

48 CHAPTER 5. RIGID BODY DYNAMICS

Chapter 6

Constrained Rigid Body Dynamics

In this chapter we will generalize the Lagrange multiplier method for enforcing constraints on
particles in particle systems to constraints imposed on rigid bodies and introduce some improve-
ments, such as handling of inequality constraints and bounded equality constraints, which are
needed for enforcing non-penetration and friction constraints generally called the contact con-
straints. We are in luck because the most of the theory was explained already. The remaining
chapters will be devoted to the abstraction (and partial implementation) of the concepts presented
in this chapter and the use of rigid body dynamics to animate human-like figures.

We will describe the (complete) constraint theory first and then show how it can be used to
enforce certain types of constraints, such as contact constraints. We will not tackle the problem
of contact constraints until the end of the chapter, unlike many other authors, because these are
the most complex constraints we will ever handle and they are relatively hard to implement if
they are to be handled correctly. If one is really inclined to cope with non-penetration constraints
first, it is suggested to read [10], [13], [7], where non-penetration constraints are not abstracted
and are formulated directly in the form of LCP (LCP problems will be presented in section (6.2.4)
and non-penetration constraints with friction in sections (6.5.2) and (6.5.3)).

Throughout this chapter we will express vectors and matrices mostly in the block form and
work with the generalized notation of forces, velocities and accelerations introduced on page
44. Its main advantage is that the equations we will develop will mimic the equations from the
constrained particle dynamics chapter quite closely and allow us to proceed analogously to [9].

6.1 Beyond Particles

The purpose of this section is to transfer concepts from constrained particle dynamics to rigid
bodies, establish a notation we will use throughout the chapter and make us ready for improve-
ments in the further sections.

When we were working with particles, constraints were formulated in terms of position-level
implicit functions ~Cp = ~0, velocity-level implicit functions ~Cv = ~0 or acceleration-level implicit
functions ~Ca = ~0 — constraints were defined by equalities. These equalities parametrized the sets
of valid particle positions, valid particle velocities or valid particle accelerations. The goal was to
ensure that particle positions, velocities or accelerations remained valid. As we shown, position-
level and velocity-level equality constraints could be implemented by corresponding acceleration-
level constraints obtained by differentiating the original constraints once or twice with respect to
time and shown how acceleration-level equality constraints could be maintained by introducing
a constraint force.

49

50 CHAPTER 6. CONSTRAINED RIGID BODY DYNAMICS

We will more or less follow this road map and generalize the concepts for rigid bodies. We will
however not define or derive the concepts once again from the ground up but utilize the fact that
rigid bodies can be treated as a special kind of particles moving in R6, implicitly transferring the
definitions, concepts and also results to rigid bodies.

6.1.1 Notation

We will use the following notation:

• generalized position ~r of a body

A block vector ~r consisting of two blocks storing the position ~x ∈ R3 of the rigid body’s
center of mass and orientation ~θ ∈ R3 by Euler angles, ~r = (~x, ~θ) ∈ R6. Generalized
position serves the same purpose like the vector ~r of particles and corresponds to our view
of rigid bodies as particles in R6.

The representation of orientation by Euler angles ~θ stresses that rigid bodies have 3 rota-
tional degrees of freedom and allows to define the generalized velocity as a time derivative
of the generalized position (since angular velocity ~ω is formally defined as ~̇θ, see (5.3)).

Note that this is a formalism only. We still maintain the orientation of rigid bodies by
rotation matrices R or quaternions q and Euler angles ~θ can always be extracted from
R or q. Euler angles ~θ are used to define the generalized position ~r which is in turn
used to define position-level constraints for rigid bodies. Since it is often hard to express
rotational constraints in terms of ~θ on the position level, unlike of ~ω on the velocity level,
and constraints will finally be enforced on the acceleration level anyway, one might forget
about ~θ and formulate rotational constraints directly on the velocity or acceleration level,
in terms of ~ω or ~α. This is the reason why we do not study ~θ further.

• generalized velocity ~v of a body

A block vector ~v consisting of two blocks storing the rigid body’s linear velocity ~̇x ∈ R3 and
angular velocity ~ω ∈ R3, ~v = (~̇x, ~ω) ∈ R6. Generalized velocity serves the same purpose
like vector ~̇r of particles and in fact ~v = ~̇r.

To prevent clash with the generalized velocity ~v we will denote the linear velocity by ~̇x.

• generalized acceleration ~a of a body

A block vector ~a consisting of two blocks storing the rigid body’s linear acceleration ~̈x ∈ R3

and angular acceleration ~α ∈ R3, ~a = (~̈x, ~α) ∈ R6. Generalized acceleration serves the
same purpose like vector ~̈r of particles and in fact ~a = ~̈r.

To prevent clash with the generalized acceleration ~a we will denote the linear acceleration
by ~̈x.

• generalized force ~F exerted on a body

A block vector ~F consisting of two blocks storing the force ~f ∈ R3 (imagined as if acting
at the body’s center of mass) and torque ~τ ∈ R3 due to ~f , ~F = (~f, ~τ) ∈ R6. Generalized
force serves the same purpose like force ~F exerted on a particle and in fact ~F = M ·~a for a
generalized acceleration ~a due to ~F , where M is the rigid body’s mass matrix (see (5.23)).

If ~F refers to the generalized total force exerted on the body, coriolis force is assumed to
be included into ~F .

6.1. BEYOND PARTICLES 51

We will restrict ourselves to constraints that constrain exactly two bodies, assuming that
more complex constraints can be created by combining other constraints. This will make the
implementation of efficient constraint solver possible.

6.1.2 Equality Constraints

In order to transfer definitions and equations regarding equality constraints from particle systems
to rigid bodies we can simply copy the old material and adjust for the (minor) differences due to
different vector lengths and the restriction that each constraint affects exactly two bodies — the
generalized notation is of help here. To save space we will present the results straight off.

Constraint Formulation

For the purposes of constraint formulation in this section we will assume that the first body to
be constrained has index A, the second body has index B and that ~r, ~v and ~a are block vectors
consisting of the generalized positions, velocities and accelerations of the two constrained bodies,
so that

~r = (~rA, ~rB) = ((~xA, ~θA), (~xB , ~θB))
~v = (~vA, ~vB) = ((~̇xA, ~ωA), (~̇xB , ~ωB))
~a = (~aA,~aB) = ((~̈xA, ~αA), (~̈xB , ~αB)),

where ~r,~v,~a are 12 × 1 block vectors consisting of four 3 × 1 blocks organized in such a way so
that odd blocks store linear quantities and even blocks store angular quantities.

Let ~Cp be a vector function of ~r = (~rA, ~rB), then the equation of the form

~Cp(~r) = ~0 ∈ Rm (6.1)

defines a position-level equality constraint on bodies A and B due to ~Cp, vectors ~r that satisfy
the equation are the valid generalized positions of the constrained bodies (invalid positions must
be avoided) and m is the dimensionality of the constraint or the number of DOFs removed from
the bodies. Individual scalar Ci

p(~r) = 0 equations correspond to the removed DOFs.
By differentiating the position-level constraint with respect to time and generalizing for an

arbitrary constant right-hand side vector ~k, we get the velocity-level equality constraint ~Cv(~r,~v) =
~0 due to ~̇Cp and ~k of dimension m in the form of ~Cv(~r,~v) = J(~r) · ~v − ~k = ~0, or equivalently as

J(~r) · ~v = ~k, (6.2)

where J(~r) = ∂ ~Cp

∂~r is the Jacobian matrix of ~Cp with dimensions m×12 and ~k is a constant vector
of length m. The velocity-level equality constraint parameterizes the set of valid generalized
velocities of the constrained bodies with respect to their generalized positions. As before, invalid
velocities must be avoided.

By differentiating the velocity-level constraint with respect to time and introducing ~c(~r,~v) =

−J̇ · ~v, we get the acceleration-level equality constraint ~Ca(~r,~v,~a) = ~0 due to ~̇Cv of dimension m
in the form of ~Ca(~r,~v,~a) = J(~r) · ~a− ~c(~r,~v) = ~0, or equivalently as

J(~r) · ~a = ~c(~r,~v), (6.3)

52 CHAPTER 6. CONSTRAINED RIGID BODY DYNAMICS

where

J(~r) =
∂ ~Cv

∂~v
=

∂ ~Cp

∂~r
=

(
∂ ~Cv

∂ ˙~xA

∂ ~Cv

∂~ωA

∂ ~Cv

∂ ˙~xB

∂ ~Cv

∂~ωB

)
=

(
∂ ~Cp

∂~xA

∂ ~Cp

∂~θA

∂ ~Cp

∂~xB

∂ ~Cp

∂~θB

)
=

(
J linear
A Jangular

A J linear
B Jangular

B

)
= (JA JB)

is the Jacobian matrix of function ~Cv or ~Cp with dimensions m × 12, consisting of four m × 3
Jacobian blocks J linear

A , Jangular
A , J linear

B , Jangular
B due to linear and angular properties of bodies

A and B or two m × 6 Jacobian blocks JA =
(
J linear
A Jangular

A

)
, JB =

(
J linear
B Jangular

B

)
due

to bodies A and B , J̇ is the time derivative of J and equals ∂ ~Cv
∂~r and ~c(~r,~v) = −J̇ · ~v. The

acceleration-level equality constraint parameterizes the set of valid generalized accelerations of
the constrained bodies with respect to their generalized positions and velocities. The goal is to
compute an appropriate constraint force so that invalid accelerations would be avoided.

Analogously to particles, position-level equality constraints can be maintained incrementally,
by starting from states that are consistent with the position-level and velocity-level formula-
tions of the constraints and enforcing the corresponding acceleration-level constraints instead.
Velocity-level equality constraints with constant right-hand side vectors can be maintained by
starting from states that are consistent with the original velocity-level constraint and enforcing
the corresponding acceleration-level constraints instead.

From now on we will work with multiple constraints and bodies. If there are a total number of
n bodies, then vectors ~r = (~r1, . . . , ~rn), ~v = (~v1, . . . , ~vn) and ~a = (~a1, . . . ,~an) will be block-vectors
consisting of the generalized positions, velocities and accelerations of the individual bodies. Ja-
cobian matrices J = ∂ ~Cp

∂~r = ∂ ~Cv
∂~v of the individual constraints will be treated as block-matrices

consisting of n blocks and the non-zero blocks due to constrained bodies A and B will be indexed
A and B . These blocks will correspond to JA and JB matrices defined above.

Since there will be more constraints i in effect at the same time, Jacobian matrices will have to
be subscripted by constraint indices, so that Ji will refer to the Jacobian matrix due to constraint
i and Ji,Ai will refer to its block due to the constrained body Ai. This is not anything new, we
did this already in section (4.2.1).

Constraint Force Basis

Now assume that we have n bodies and c acceleration-level constraints defined according to
(6.3), so that the i-th constraint constrains bodies Ai and Bi, mi is the dimensionality of the
constraint, Ji,Ai and Ji,Bi are the Jacobian blocks due to the constraint and the constrained
bodies of dimensions mi × 6 and ~ci is the right-hand side vector of the constraint equation of
length mi. We thus have

Ji,Ai · ~aAi + Ji,Bi · ~aBi = ~ci (6.4)

for 1 ≤ i ≤ c, where ~aj , 1 ≤ j ≤ n is the generalized acceleration of body j, or equivalently

J · ~a =

 J11 . . . J1n
...

. . .
...

Jc1 . . . Jcn

 ·
~a1

...
~an

 =

~c1
...
~cc

 , (6.5)

where J is a block Jacobian matrix whose non-zero blocks are given by Ji,Ai and Ji,Bi and ~a, ~c
are block vectors made up of vectors ~aj , ~ci.

6.1. BEYOND PARTICLES 53

Let ~Fj be a generalized force exerted on body j, ~aj the generalized acceleration of the body
due to ~Fj and Mj its mass matrix. From (5.23) we get that Mj ·~aj = ~Fj and so if M is a square
block diagonal matrix with individual mass matrices Mj on the diagonal, ~F = (~F1, . . . , ~Fn) and
~a = (~a1, . . . ,~an) then the dynamics of the rigid body system can be described by

M · ~a = ~F , (6.6)

where

M =

M1 0 . . . 0
0 M2 . . . 0
...

...
. . .

...
0 0 . . . Mn

is the mass matrix of the rigid body system. For simplicity ~F is called the force exerted on the
system and ~a the acceleration of the system due to ~F or the response of the system to ~F .

Since rigid bodies can be seen as particles in R6, it follows from (4.5) and (4.7) that the
generalized constraint forces (~F i

c)Ai and (~F i
c)Bi exerted on body Ai and Bi due to constraint i

have the form

(~F i
c)Ai = JT

i,Ai
· ~λi

(~F i
c)Bi = JT

i,Bi
· ~λi, (6.7)

where ~λi is a mi×1 vector of Lagrange multipliers due to constraint i. If Ji denotes the i-th block
row of the Jacobian matrix J , the Jacobian matrix due to constraint i, then the constraint force ~F i

c

exerted on the system due to the constraint equals ~F i
c = JT

i ·~λi, where (~F i
c)Ai and (~F i

c)Bi are the
only non-zero blocks. By concatenating multiplier vectors ~λi to a block vector ~λ = (~λ1, . . . , ~λc),
we can express the total constraint force ~Fc due to all constraints as ~Fc =

∑c
i=1

~F i
c = JT · ~λ.

Dense Formulation

To compute the constraint force we have to compute the multipliers ~λ. Luckily our formulation
of constraints (6.5) matches the formulation of particle constraints (4.7) and the dynamics of the
rigid body system (6.6) matches the particle systems dynamics. Therefore (4.6) is applicable and
we can express ~λ as a solution to the linear system

A · ~λ +~b = ~0, (6.8)

where A = J · M−1 · JT is a m × m matrix, m is the total number of DOFs removed by
the constraints, m =

∑c
i=1 mi, ~b = J · M−1 · ~Ftotal − ~c is a m × 1 vector, ~c = (~c1, . . . ,~cc) and

~Ftotal = (~F total
1 , . . . , ~F total

n) is the total external force exerted on the system (including the coriolis
forces).

Matrix A can be treated as a c × c block matrix, whose block rows and block columns
correspond to the individual constraints and the value of the (i1, i2)-th block (mi1 ×mi2) is given
by Ai1,i2 =

∑n
j=1 Ji1,j ·M−1

j · (Ji2,j)
T .

Since mass matrices Mj are non-zero, Ai1,i2 is non-zero iff there exists a common body j
that the both constraints i1 and i2 affect (that is Ji1,j 6= 0 and Ji2,j 6= 0). Although J is dense
(there are two non-zero blocks per a block row) this shows that A can be arbitrarily dense1.
However, unless there are too many constraints, ~λ can be computed simply in terms of A. Mj

1Imagine a branching structure with a common body and n other bodies attached to the common body.

54 CHAPTER 6. CONSTRAINED RIGID BODY DYNAMICS

and M−1
j are positive definite, hence M and M−1 are positive definite and since J is assumed to

be non-singular, A is also positive definite and can be factored using Cholesky factorization to
solve for ~λ, [9].

Equation (6.8) can be interpreted as a block equation consisting of c block-rows, where the
i-th block row Ai · ~λ +~bi = ~0 imposes a condition on the blocks of ~λ due to the i-th constraint.
The i-th block row of A and ~b tells us what the value of the i-th acceleration-level constraint
function Ji · ~a− ~ci would be if the constraint force JT · ~λ was exerted on the system, J · ~a− ~c =
J · (M−1 · (JT · ~λ + ~Ftotal))− ~c = A · ~λ +~b, Ji · ~a− ~ci = Ai · ~λ +~bi.

Sparse Formulation

Conditions on multipliers ~λ can be reformulated in terms of an always sparse matrix H,

H =
(

M −JT

−J 0

)
H ·

(
~y
~λ

)
+
(~0
−~b

)
= ~0, (6.9)

where ~b = J · M−1 · ~Ftotal − ~c and ~y is a helper vector, [9]. Indeed, the first block row yields
M · ~y − JT · ~λ = ~0, hence ~y = M−1 · JT · ~λ (~y equals the system response to the constraint force
JT · ~λ), and the second block row produces −J · ~y −~b = ~0, hence J ·M−1 · JT · ~λ +~b = ~0. Since
the blocks of H consist of sparse matrices M,−J,−JT , the matrix H is also sparse and sparse
matrix methods can be used to solve for ~λ.

6.2 Acceleration-Level Constraints

In this section we will generalize the acceleration-level formulation of equality constraints defined
by (6.4) so that we would be able to handle inequalities and other types of constraints.

For the purposes of this chapter we will use the dense formulation (6.8) to base our conditions
on ~λ on. As it will turn out, the other constraint types (inequalities, bounded equalities) will
manifest themselves by other conditions on ~λ but they will still be expressed in terms of matrix
A and vector ~b.

The material presented in this section needs be seen in the context of the total number of c
constraints and n bodies. Vector ~r = (~r1, . . . , ~rn) will denote a block vector of generalized body
positions, ~v = ~̇r a block vector of generalized body velocities, ~a = ~̈r a block vector of generalized
body accelerations. We will say that ~r is a vector from the position space and ~̇r a vector from
the velocity space. Ji will denote the i-th block-row of the Jacobian matrix J (6.5), computed
as if all constraints 1 ≤ i ≤ c were equality constraints (6.4). We will call Ji the Jacobian matrix
due to constraint i and its non-zero blocks Ji,Ai , Ji,Bi the Jacobian blocks due to constraint i
and constrained bodies Ai and Bi.

6.2.1 Equality Constraints

In the previous section we formulated acceleration-level equality constraints (6.4) in the form of

Ji,Ai · ~aAi + Ji,Bi · ~aBi = ~ci,

where i was the index of the constraint, and derived a condition on ~λ multipliers due to the
equality constraint i

Ai · ~λ +~bi = ~0. (6.10)

We will now derive similar equations for other types of constraints. Note that the equations have
to be formulated in the context of all other active constraints, hence we have to index quantities
specific to a given constraint by an appropriate index.

6.2. ACCELERATION-LEVEL CONSTRAINTS 55

6.2.2 Inequality Constraints

For an illustration and motivation let us assume that we have an 1-DOF inequality position-level
constraint i defined as Cp(~r(t)) ≥ 0. We did not define inequality position-level constraints yet,
but we can think of Cp as if it measured a “separation distance” between two objects, Ċp as if it
measured an “approaching velocity” and C̈p a “relative acceleration”. For example, Cp(~r(t)) ≥ 0
might be interpreted as a non-penetration constraint between a ball and a brick-wall, saying that
“the ball should be in front of the wall”. Let us assume that Cp(~r(t)) = 0 and Ċp(~r(t)) = 0 at
the current time t. That is, the ball is in contact with the wall (Cp(~r(t)) = 0), but it did not
strike on the wall (did not approach the wall with a non-zero velocity, Ċp(~r(t)) = 0) — more
formally, ~r(t) is resting at the boundary of the valid set of body positions in the position product
space. We would like to maintain the original position-level constraint.

Since Cp(~r(t)) = 0 we can ensure that the original constraint is not violated at the next time
step by enforcing Ċp(~r(t)) ≥ 0. Since Ċp(~r(t)) = 0 (the corresponding velocity-level constraint
holds already) we achieve this by requiring C̈p(~r(t)) ≥ 0, which is an acceleration-level greater-
or-equal constraint. According to our interpretation of Cp, C̈p(~r(t)) ≥ 0 merely says that the ball
must not accelerate against the wall, which conforms to our physical intuition.

Greater-or-Equal Constraints

Acceleration-level greater-or-equal constraint i affecting bodies Ai and Bi is defined as

Ji,Ai · ~aAi + Ji,Bi · ~aBi ≥ ~ci, (6.11)

where Ji,Ai and Ji,Bi are mi × 6 Jacobian blocks due to the constraint i and the constrained
bodies, mi is the dimensionality of the constraint and ~ci is the right-hand side vector of length
mi. The definition pretty much matches the definition of equality constraints (6.4), but = is
replaced by ≥.

We will now present some conditions on the constraint force ~F i
c due to the constraint i. Recall

that the goal of ~F i
c is to cancel the components of ~Ftotal that would make the constrained bod-

ies accelerate towards an invalid state in the velocity space. In the case of equality constraints
(see page 25), the bodies were restricted to remain on the intersection of the hypersurfaces due
to constraint DOFs in the velocity space and ~F i

c cancelled any acceleration in the directions of
the hypersurface normals. In the case of greater-or-equal constraints, however, the bodies can
accelerate from the hypersurfaces in the directions of their normals but not in the opposite direc-
tions. The positive accelerations along the positive directions of the normals are unconstrained
and therefore ~λi ≥ ~0. If the bodies are already accelerating to the front of the hypersurface j,
(Ji,Ai ·~aAi +Ji,Bi ·~aBi −~ci)j > 0, then the constraint force due to that hypersurface must vanish,
that is (~λi)j = 0.

To clarify, let us write these results in a more formalized way. For these purposes we will
rewrite the constraint (6.11) as ~Ci ≥ ~0, where ~Ci = Ji · ~a − ~ci. Then the constraint i including
the conditions on ~λi can be expressed as

~Ci ≥ ~0
~λi ≥ ~0

~Ci · ~λi = 0,

where ~Ci · ~λi =
∑mi

j=1(~Ci)j · (~λi)j = 0 in fact means that (~Ci)j · (~λi)j = 0 for 1 ≤ j ≤ mi,
because both the factors are required to be positive. Since ~Ci = Ji · ~a − ~ci = (J · ~a − ~c)i =

56 CHAPTER 6. CONSTRAINED RIGID BODY DYNAMICS

(J · (M−1 ·JT ·~λ+M−1 · ~Ftotal)−~c)i = (A ·~λ+~b)i = Ai ·~λ+~bi, the conditions can be reformulated
in terms of the i-th block row of matrix A and the i-th block of vector ~b

Ai · ~λ +~bi ≥ ~0 (6.12)
~λi ≥ ~0

(Ai · ~λ +~bi) · ~λi = 0,

where A and ~b are from (6.10) and Ai refers to the block row of A due to constraint i. The
last condition in (6.12) says that the components of ~λi are complementary2 to the components
of Ai · ~λ +~bi = ~Ci = Ji · ~a − ~ci and together with the other two conditions forms the ultimate
conditions on ~λ due to the greater-or-equal constraint i. Equation (6.12) serves the same purpose
like (6.10) for equality constraints.

Less-or-Equal Constraints

Acceleration-level less-or-equal constraint i affecting bodies Ai and Bi is defined as

Ji,Ai · ~aAi + Ji,Bi · ~aBi ≤ ~ci, (6.13)

where Ji,Ai and Ji,Bi are mi × 6 Jacobian blocks due to the constraint i and the constrained
bodies, mi is the dimensionality of the constraint and ~ci is the right-hand side vector of length
mi. The definition pretty much matches the definition of greater-or-equal constraint (6.11), but
≥ is replaced by ≤.

Using the notation and following the derivation scheme of greater-or-equal constraints, bodies
in the velocity space can accelerate from the hypersurfaces in the directions opposite to the
hypersurface normals only. That said, it is required that ~λi ≤ ~0. Also if the bodies are already
accelerating to the back of the hypersurface j, (~Ci)j < 0, then the constraint force due to that
hypersurface must vanish, that is (~λi)j = 0. That way we obtain the conditions on ~λ due to the
less-or-equal constraint i, expressed as

Ai · ~λ +~bi ≤ ~0 (6.14)
~λi ≤ ~0

(Ai · ~λ +~bi) · ~λi = 0,

where Ai and ~bi are from (6.12). Again, the components of ~λi are complementary to the compo-
nents of Ai · ~λ +~bi = ~Ci = Ji · ~a− ~ci.

6.2.3 Bounded-Equality Constraints

We would like to define a constraint that would behave like an equality constraint whose constraint
force magnitude was tracked and when it grew beyond a specified limit the constraint would
automatically turn into a corresponding greater-or-equal or less-or-equal constraint. Such a
constraint could be used to implement various kinds of motors with limited motor forces so that
the constraint would break if the maximum motor force magnitude was exceeded3. We will

2That is (~λi)j 6= 0 ⇒ (Ai · ~λ +~bi)j = 0 and (Ai · ~λ +~bi)j 6= 0 ⇒ (~λi)j = 0.
3Note that such a behavior can not be simulated by treating the constraint as an (unbounded) equality con-

straint, computing the constraint force and finally clamping the components of ~λi to specified ranges because other
constraints influenced by this constraint would break (constraint forces due to the other constraints were computed

with respect to the unclamped ~λ).

6.2. ACCELERATION-LEVEL CONSTRAINTS 57

define this constraint (as usually) in terms of a constraint force ~F i
c = JT

i · ~λi and conditions on
~λi multipliers.

If the dimensionality of the constraint was one, mi = 1, then the magnitude of the constraint
force ‖~F i

c‖ would be ‖JT
i ‖ · |(~λi)1| and instead of limiting the force magnitude we could limit (the

only component of) ~λi. In the general case we will also limit the (multiple) components of ~λi, but
independently on each other, because the equations would not be linear otherwise. Henceforward
we will assume that we are provided with mi-vectors ~λlo

i ≤ ~0 and ~λhi
i ≥ ~0 so that the limits are

specified as
(~λlo

i)j ≤ (~λi)j ≤ (~λhi
i)j ,

where 1 ≤ j ≤ mi.
According to the notation we already used while deriving conditions for greater-or-equal

constraints, bodies in the velocity space will be constrained not to accelerate along the directions
of the hypersurface normals due to the corresponding unbounded equality constraint. If the
bodies began to accelerate off the hypersurface j due to the j-th constraint DOF in the direction
of its normal, a negative (~λi)j would be required to cancel the acceleration. However if (~λi)j

dropped below its lower limit (~λlo
i)j , (~λi)j would be clamped and the magnitude of the clamped

value would not be big enough to cancel the prohibited acceleration, hence (~Ci)j > 0. Similarly,
if the bodies began to accelerate off the hypersurface in the opposite direction, a positive (~λi)j

would be required to cancel the acceleration and if (~λi)j exceeded the upper limit (~λhi
i)j , (~λi)j

would be clamped and hence (~Ci)j < 0. Since ~Ci = Ai ·~λ+~bi, these conditions can be written as

(~λlo
i)j ≤ 0

(~λhi
i)j ≥ 0

(~λlo
i)j ≤ (~λi)j ≤ (~λhi

i)j

(~λi)j = (~λlo
i)j ⇒ (Ai · ~λ +~bi)j ≥ 0

(~λi)j = (~λhi
i)j ⇒ (Ai · ~λ +~bi)j ≤ 0

(~λlo
i)j < (~λi)j < (~λhi

i)j ⇒ (Ai · ~λ +~bi)j = 0, (6.15)

where Ai and ~bi are from (6.10). We can now define the constraint properly.
Acceleration-level bounded-equality constraint i affecting bodies Ai and Bi with ~λi limits ~λlo

i ≤
~0 and ~λhi

i ≥ ~0 is defined as an equality constraint

Ji,Ai · ~aAi + Ji,Bi · ~aBi = ~ci, (6.16)

where Ji,Ai and Ji,Bi are mi × 6 Jacobian blocks due to the constraint i and the constrained
bodies, mi is the dimensionality of the constraint, ~ci is the right-hand side vector of length mi

and ~λlo
i and ~λhi

i are mi-vectors that specify the lower and upper limits of the components of ~λi

due to the constraint.
From (6.15) we get

(Ai · ~λ +~bi)j > 0 ⇒ (~λi)j = (~λlo
i)j

(Ai · ~λ +~bi)j < 0 ⇒ (~λi)j = (~λhi
i)j ,

therefore if we set ~λlo
i = ~0 and ~λhi

i = −−→+∞ then the bounded equality constraint turns into a
greater-or-equal constraint (6.12). Similarly, by setting ~λlo

i = −−→−∞ and ~λhi
i = ~0 we get a less-

or-equal constraint (6.14). Finally, by setting ~λlo
i = −−→−∞ and ~λhi

i = −−→+∞ we get an unbounded

58 CHAPTER 6. CONSTRAINED RIGID BODY DYNAMICS

equality constraint (6.10). This shows that all previous constraints can be abstracted by bounded-
equality constraints and if we have a procedure that is able to solve bounded-equality constraints
we can also solve unbounded equality and inequality constraints.

Definition 11 Acceleration-level constraint i is described by its dimensionality mi, mi × 6 Ja-
cobian blocks Ji,Ai , Ji,Bi due to the constraint and the constrained bodies Ai,Bi, right-hand side
mi-vector ~ci and ~λi limits ~λlo

i ≤ ~0 and ~λhi
i ≥ ~0, where

Ji,Ai · ~aAi + Ji,Bi · ~aBi = ~ci (6.17)

is the corresponding unbounded equality constraint and ~F i
c = JT

i · ~λi, ~λ
lo
i ≤ ~λi ≤ ~λhi

i is the
constraint force due to the constraint.

On the other side, although it is not practical, it can be shown that all previous constraints can
be converted to a set of greater-or-equal constraints. This is obvious for less-or-equal constraints
~Ci ≤ ~0, that can be converted by negating the constraint Jacobians and the right-hand side
vector ~ci, obtaining −~Ci ≥ ~0, and unbounded equality constraints ~Ci = ~0, that can be converted
to two greater-or-equal constraints ~Ci ≥ ~0 and −~Ci ≥ ~0.

6.2.4 Reduction to LCP

In the previous sections we have developed conditions on ~λ due to a given constraint i. These con-
ditions were different for different types of constraints. Equality constraints contributed (6.10),
inequality constraints contributed (6.12) and (6.14) and bounded equality constraints contributed
(6.15). Obviously, our concern is to compute the ultimate constraint force ~Fc to be exerted on the
system and to do so, we have to solve for ~λ, obeying the conditions due to individual constraints.

Conditions (6.12) are well-known and algorithms that can solve for ~λ constrained in this way
exists. The general name for this problem is the linear complementarity problem (LCP). Since
our constraints can be converted to a set of greater-or-equal constraints expressed in terms of
(6.12), we could use those algorithms to compute ~λ. We will, however, present an outline of an
algorithm that can solve (6.15) directly, which is more practical.

From now on we will conceptually treat all constraint DOFs as c separate 1-DOF constraints
that are ordered in such a way that unbounded equalities come first and are followed by greater-
or-equal constraints or bounded-equality constraints4. Hence ~λ = (λ1, . . . , λc), ~b = (b1, . . . , bc),
~λlo = (λlo

1 , . . . , λlo
c) and ~λhi = (λhi

1 , . . . , λhi
c) (λi, bi, λ

lo
i , λhi

i will be scalars and so will not be
accented with ~).

LCP problems

Let us look more closely at the ultimate conditions on ~λ, combined from the conditions due to
individual constraints. If all constraints are unbounded equalities (6.10), we get

A · ~λ +~b = ~0,

which is a linear system consisting of c conditions and can be solved by standard factorization
techniques. If all constraints are greater-or-equal constraints (6.12), we get a linear complemen-
tarity problem (LCP, pure LCP) of the form

A · ~λ +~b ≥ ~0
~λ ≥ ~0

~λ · (A · ~λ +~b) = 0,

4The special treatment of unbounded equalities will improve the solver performance.

6.2. ACCELERATION-LEVEL CONSTRAINTS 59

which can be solved by a LCP solver, [12], [13], [7]. If there are k unbounded equalities and c−k
greater-or-equal constraints, we get a mixed linear complementarity problem (mixed LCP)

Aeq · ~λ +~beq = 0

Aineq · ~λ +~bineq ≥ ~0
~λineq ≥ ~0

~λineq · (Aineq · ~λ +~bineq) = 0,

where Xeq denotes the rows of X due to equality constraints i (1 ≤ i ≤ k) and Xineq denotes
the rows of X due to greater-or-equal constraints i (k + 1 ≤ i ≤ c), which can be solved by a
mixed LCP solver, [7]. Finally, if there are k unbounded equalities and c − k bounded-equality
constraints (this includes inequalities with appropriately set ~λi limits), we get a lo-hi linear
complementarity problem (lo-hi LCP, [22]),

Aeq · ~λ +~beq = ~0
λlo

i ≤ λi ≤ λhi
i

λi = λlo
i ⇒ Ai · ~λ + bi ≥ 0

λi = λhi
i ⇒ Ai · ~λ + bi ≤ 0

λlo
i < λi < λhi

i ⇒ Ai · ~λ + bi = 0,

where i, k + 1 ≤ i ≤ c is an index of a bounded equality constraint.

6.2.5 Dantzig LCP Solver

In this section we will present an outline of the Dantzig algorithm for solving mixed LCP problems
generalized for solving lo-hi LCP problems. The algorithm is analytical, operates in terms of the
dense matrix A and its implementation is based on the approach pursued by [7] and simplified
according to the implementation from [22].

We will use the following notation. If I and J are (ordered) index sets, I = {i1, . . . , in}, J =
{j1, . . . , jm} and ~x is a vector of length > n and A is a matrix, whose number of rows > n and
number of columns c > m, then ~xI denotes a slice of ~x due to I (a n × 1 vector), AI denotes a
row-slice of A due to I (a n×c matrix) and AIJ denotes a slice of A due to I, J (a n×m matrix),
so that

~xI = (~xi1 , . . . , ~xin) AI =

Ai1
...

Ain

 AIJ =

Ai1,j1 . . . Ai1,jm

...
. . .

...
Ain,j1 . . . Ain,jm

 .

To improve readability, it is often written Ai instead of A{i}, etc.

Overview

We can reformulate the lo-hi LCP problem as follows. Given a matrix A (c× c) and c× 1 vectors
~b, ~λlo ≤ ~0 and ~λhi ≥ ~0 we have to find a vector ~λ (c× 1) so that exactly one condition from the
following set would hold for a given i (complementarity conditions)

λi = λlo
i ∧ ai ≥ 0 λi = λhi

i ∧ ai ≤ 0 λlo
i < λi < λhi

i ∧ ai = 0, (6.18)

where for simplicity we refer to A · ~λ +~b as to a vector ~a (note that ~a is a linear function of ~λ).

60 CHAPTER 6. CONSTRAINED RIGID BODY DYNAMICS

Figure 6.1: Illustration of index sets, complementarity conditions and pivoting. Thick lines
correspond to index sets — constraint i belongs to an index set if point (λi, ai) lies on the thick
line associated with the set. Circles indicate “singular points”.

- λi

6

ai

λlo
i 0 λhi

i

0

6

-

i ∈ NH

i ∈ NL

i ∈ C��� ���

The algorithm starts with letting ~λ = ~0 (hence ~a = ~b) and then takes c iterations to update
~λ. At the i-th iteration it computes λi so that (6.18) would hold for constraint i and in doing so
it adjusts λj , 1 ≤ j < i so that the conditions for constraints j, that were processed at previous
iterations, would remain obeyed (constraints j, j > i are ignored at the i-th iteration). When all
c constraints are processed, all conditions are obeyed and ~λ contains the value we were solving
for.

Index Sets

Index sets NH, NL,C are defined as a mutually disjoint subsets of constrained indices {1, . . . , i},
where i is the number of the current iteration, that characterize what conditions of (6.18) are
currently obeyed by constraints j ≤ i. We will say that the constraint (index) j is

• clamped and belongs to a set C if λlo
j < λj < λhi

j ∧ aj = 0.

• non-clamped hi and belongs to a set NH if λj = λlo
j ∧ aj > 0.

• non-clamped lo and belongs to a set NL if λj = λhi
j ∧ aj < 0.

• non-clamped and belongs to a set NC = NH ∪NL if either j ∈ NH or j ∈ NL.

Whenever updating λi, ~a changes as well and it must be ensured that each j, j < i remains in
one of the index sets so that (6.18) would not be violated for j < i — j either remains in its
current index set or transfers from an index set to another “adjacent” set (this is called pivoting).

Cases where λj = λlo
j ∧ aj = 0 or λj = λhi

j ∧ aj = 0 are “singular” and indicate that j
should be transferred to a neighboring index set (see (6.1)). For example if j ∈ C and λj reaches
λlo

j , j is transferred to NH5. Constraint j can not be in NH (NL) if ~λlo
j = −∞ (~λhi

j = +∞).
Constraint j can not be in C if λlo

j = λhi
j = 0, such a constraint can be ignored.

Index sets and the pivoting process is illustrated by diagram (6.1) specific to a constraint i.
Point (λi, ai) in the diagram is restricted to lie on one of the three disjoint lines that correspond
to index sets NH, C,NL and the pivoting corresponds to transfers of (λi, ai) from one line to the
other neighboring line when a “singular point” is reached.

5Due to the definition of NH, ai must also be tweaked so that ai > 0.

6.2. ACCELERATION-LEVEL CONSTRAINTS 61

Iteration

The algorithm loops over i, at iteration i it computes λi and ai while maintaining the comple-
mentarity conditions on λj and aj for j < i. Indices j > i are ignored at the i-th iteration. Let
us look at the i-th iteration more closely.

When the i-th iteration is started, λi = 0 and ai = Ai,C∪NC · ~λC∪NC + bi. If (λi, ai) already
lies on a line of the complementarity diagram due to constraint i then (6.18) already holds for
i, index i is assigned to the corresponding index set and the algorithm can proceed to the next
iteration. Let us assume that (λi, ai) is not on a line.

Our goal is to “drive” i to NH, C or NL. We will do so in multiple steps. At each step we
compute a vector ∆~λ, the adjustments to ~λ, that will make (λi, ai) “move towards” a line in the
diagram. This will be looped until (λi, ai) ends up on a line. Index i will be then assigned to the
corresponding index set and the iteration will finish.

To ensure that conditions for constraints j < i are not violated while taking a step during
iteration i, we will require that clamped indices remain clamped and non-clamped indices remain
non-clamped or a “singular point” is reached. If (λj , aj) reaches a “singular point”, j is transferred
to the neighboring index set. We will now derive what ∆~λ should look like.

• Since we are not interested in constraints j > i at the i-th iteration, ∆~λj>i = ~0.

• If ai > 0 we would like to decrease λi so that i would eventually reach NH, hence ∆λi

should be a negative non-zero value. If ai < 0 we would like to increase λi so that i would
eventually reach NL, hence ∆λi should be a positive non-zero value.

However we do not know what the exact value of ∆λi should be. To tackle this problem
we will write λdir = ∆λi = ∓1 (a λ “direction”) with a note that we will actually add
∆~λ · scale to ~λ and scale > 0 (a scaling factor) will be determined later.

• If ∆~λ · scale was added to ~λ, ~a = A · ~λ +~b would change by ∆~a · scale = A · ∆~λ · scale.
From the requirement that clamped indices remain clamped or reach “singular points” and
are transferred to NH or NL we get a condition ∆~aC = ~0 and from the requirement that
non-clamped indices remain non-clamped or reach “singular points” and are transferred
to C we get ∆~λNC = ~0. Putting these two requirements together we get that ∆~λC =
−A−1

CC ·AC,i ·∆λi.

This is easy to show. Since we work with matrix slices we can assume (without loss of
generality) that C = {1, . . . , k} and NC = {k +1, . . . , i− 1}. Constraints j > i are ignored
at this iteration and to simplify writing we can assume that this is the last iteration. Then,
utilizing the requirement ∆~λNC = ~0, ∆λi = λdir and letting ∆λC = ~x,

A =

 ACC AC,NC AC,i

ANC,C ANC,NC ANC,i

Ai,C Ai,NC Aii

 ∆~λ =

 ~x
~0

λdir

∆~a = A ·∆~λ =

 ACC · ~x + AC,i · λdir

ANC,C · ~x + ANC,i · λdir

Ai,C · ~x + Aii · λdir

and since it is required that ∆~aC = ~0 we get that ~x = ∆λC = −A−1

CC ·AC,i · λdir.

We thus have

∆~λC = −A−1
CC ·AC,i · λdir, ∆~λNC = ~0, ∆~λi = λdir, ∆~λj>i = 0 (6.19)

62 CHAPTER 6. CONSTRAINED RIGID BODY DYNAMICS

and

∆~aC = ~0, ∆~aNC = ANC,C ·∆~λC + ANC,i · λdir, ∆~ai = Ai,C ·∆~λC + Aii · λdir (6.20)

and ∆~aj>i can be treated as ~0 because ~aj>i will be computed at the beginning of the j-th iteration
from ~λ and it will not be queried until then.

To take a step we have to determine an appropriate scale and then update ~λ and ~a by
∆~λ · scale and ∆~a · scale. The goal is to ensure that i either ends up on an index set and
the iteration can thus finish or j < i reaches an end of the line in the diagram and needs be
transferred to the neighboring line. We will now derive some conditions on scale. Note that
∆~aC · scale = ~0 and ∆~λNC · scale = ~0 regardless of scale and thus we need be interested in
∆~λC · scale,∆~aNC · scale,∆λi · scale and ∆ai · scale only.

• If λdir = −1 (ai > 0) our desire is to push (λi, ai) towards NH or C. Hence we have
conditions λi + ∆λi · scale ≥ λlo

i and ai + ∆ai · scale ≥ 0. If the first condition “wins”6

then (λi + ∆λi · scale = λlo
i , ai + ∆ai · scale > 0) and i should be assigned to NH. If the

second condition “wins” then (λi + ∆λi · scale > λlo
i , ai + ∆ai · scale = 0) and i should be

assigned to C because ∆λi = λdir = −1 and so also λi < λhi
i . Therefore

scale ≤ λi − λlo
i ∆ai < 0 ⇒ scale ≤ ai

∆ai
.

• If λdir = 1 (ai < 0) our desire is to push (λi, ai) towards NL or C. Hence we have
conditions λi + ∆λi · scale ≤ λhi

i and ai + ∆ai · scale ≤ 0. If the first condition “wins” then
(λi + ∆λi · scale = λhi

i , ai + ∆ai · scale < 0) and i should be assigned to NL. If the second
condition “wins” then (λi +∆λi · scale < λhi

i , ai +∆ai · scale = 0) and i should be assigned
to C because ∆λi = λdir = 1 and so also λi > λlo

i . Therefore

scale ≤ λhi
i − λi ∆ai > 0 ⇒ scale ≤ −ai

∆ai
.

• If j ∈ C then our desire is to keep j clamped or transfer it to NH or NL if a “singular
point” is reached. Hence we have conditions λj +∆λj ·scale ≥ λlo

j and λj +∆λj ·scale ≤ λhi
j

(aj remains zero regardless of scale). If the first condition “wins” then (λj + ∆λj · scale =
λlo

j , aj = 0) and j is transferred to NH (aj is adjusted so that aj > 0). If the second
condition “wins” then (λj + ∆λj · scale = λhi

j , aj = 0) and j is transferred to NL (aj is
adjusted so that aj < 0). Therefore

∆λj < 0 ⇒ scale ≤
λlo

j − λj

∆λj
∆λj > 0 ⇒ scale ≤

λhi
j − λj

∆λj
.

• If j ∈ NH then our desire is to keep j in NH or transfer it to C if a “singular point” is
reached. Hence we have a condition aj +∆aj · scale ≥ 0 (λj remains equal to λlo

j regardless
of scale). If the condition “wins” then (λj = λlo

j , aj + ∆aj · scale = 0) and j is transferred
to C (λj is adjusted so that λj > λlo

j). Therefore

∆aj < 0 ⇒ scale ≤ −aj

∆aj
.

6It is the condition on scale that limits it the most.

6.2. ACCELERATION-LEVEL CONSTRAINTS 63

• If j ∈ NL then our desire is to keep j in NL or transfer it to C if a “singular point” is
reached. Hence we have a condition aj +∆aj ·scale ≤ 0 (λj remains equal to λhi

j regardless
of scale). If the condition “wins” then (λj = λhi

j , aj + ∆aj · scale = 0) and j is transferred
to C (λj is adjusted so that λj < λhi

j). Therefore

∆aj > 0 ⇒ scale ≤ −aj

∆aj
.

Any scale > 0, that satisfies the above conditions, ensures that complementarity conditions
will remain valid for constraints j < i. Naturally, we would like to choose scale as big as possible
so that i would reach an index set within one step and the iteration could thus finish — a
condition on scale due to i would have to “win”. This is not however always possible because the
other conditions on scale may limit the required scale and another condition might “win”. In
that case there would exist an index j that would have to be transferred from one set to another
set and we would have to take other step(s) to push i to an index set. We will call the maximum
valid scale the maximum step max step and the procedure that updates ~λ, ~a and the index sets
the iteration step.

Let us assume that we have procedures

• compute delta lambda and compute delta a, which compute ∆~λ and ∆~a according
to (6.19) and (6.20) with respect to the current index sets C,NH,NL,

• compute max step, which computes the maximum step max step, an index j that limited
max step the most (according to conditions on scale), an indicator of the index set Sold

that the index j currently belongs to and an indicator Snew that the index j should be
transferred or assigned to.

The work performed by the i-the iteration can then be summarized by the following pseudo-code.

iteration(i)
{
ai=Ai,C∪NC · ~λC∪NC + bi;
if ((λi, ai) on NL) {NL=NL ∪ {i}; return; }
if ((λi, ai) on NH) {NH=NH ∪ {i}; return; }
if ((λi, ai) on C) {C=C ∪ {i}; return; }
while(true)

{
compute delta lambda(∆~λ);
compute delta a(∆~a);
compute max step(max step, j, Sold, Snew);
~λ=~λ + ∆~λ · max step;
~a=~a + ∆~a · max step;
if (j == i) {Snew=Snew ∪ {i}; return; }
Sold=Sold \ {j};
Snew=Snew ∪ {j};
}

}

Numerical Issues

Until now we have assumed that max step > 0. It can be shown that if all constraints are
inequalities (λlo

j = 0 ∧ λhi
j = +∞) and the constraints are feasible and not redundant, then

max step > 0 and the algorithm always terminates, [7]. But we can not tell in advance whether
all constraints can be satisfied or whether they are redundant. As a result, the algorithm can

64 CHAPTER 6. CONSTRAINED RIGID BODY DYNAMICS

either fail to compute a valid max step (either max step ≤ ε or max step = +∞ — no conditions
on scale could be applied at the given context) or it might get stuck in an infinite loop transferring
a certain index j between two index sets and not making any further progress. To correct this,
extra checks that validate max step and index transfers must be incorporated into the algorithm.

Finally, precision correction should be implemented. The purpose of the correction is to
clamp (λj , aj) so that if j should belong to an index set S then the point (λj , aj) will really lie on
the corresponding line in the diagram, avoiding the “singular points”. For example if j transfers
from C to NH it must be ensured that aj > 0 after the transfer and aj thus needs be tweaked
so that aj ≥ ε, where ε is a small positive constant.

The algorithm can be easily adapted to handle k unbounded equalities and c−k bounded equalities, exploiting
the special properties of the unbounded equalities. If constraints are indexed so that the first k constraints
correspond to the unbounded equalities, we can let C = {1, . . . , k}, ~aC = ~0, ~λC = −A−1

CC ·~bC and start off with
the (k + 1)-th iteration directly.

Also note that we have to compute ∆~λC at each iteration step, which involves the evaluation of A−1
CC (say, by

a factorization of ACC). At the end of the step either i is assigned to NH, C, NL or an index j < i transfers from

an index set to another set (NH → C, C → NH, C → NL, NL → C) — j is either added to or removed from C.

Incorporating clever factorization techniques, the factorization of ACC at the current iteration step can actually

be computed from the factorization of AC′C′ from the previous step (C′ is the index set C from the previous step),

thus improving the solver performance, [22].

6.3 Velocity-Level Constraints

In this section we will introduce a concept of impulses that allow to handle velocity-level con-
straints directly, including constraints with non-constant right-hand sides, without the need for
going to the acceleration-level. We will use the notation from previous sections and base our
discussion upon the work of [10] and [13].

6.3.1 Impulses

Let us return to the motivational example from section (6.2.2). We had an 1-DOF inequality
position-level constraint i defined as Cp(~r(t)) ≥ 0. We assumed that Cp(~r(t)) = 0 and Ċp(~r(t)) =
0 at the current time t and could enforce the original position-level constraint by maintaining the
corresponding C̈p(~r(t)) ≥ 0 acceleration-level constraint.

Now let us assume that Ċp(~r(t)) < 0. In this case the rigid bodies no longer rest at the
boundary of the valid set of body positions in the position product space, but the boundary is
approached with a non-zero relative velocity. Corresponding Ċp(~r(t)) ≥ 0 velocity-level constraint
is violated at the current time t and the original (position-level) constraint can not be implemented
on the acceleration level by maintaining C̈p(~r(t)) ≥ 0 (no matter how strong the constraint force
is, it will require a non-zero time amount to bring Ċp(~r(t)) (and later on also Cp(~r(t))) to a
positive value) — unless the body velocities are changed directly, the original constraint will be
violated at the next time step.

For example if we (again) interpreted the position-level constraint as a non-penetration con-
straint between a ball and a brick wall then Cp(~r(t)) = 0 and Ċp(~r(t)) < 0 would indicate that
the ball had struck the wall and the ball velocity would have to be changed abruptly at time
t in order to prevent penetration at the next time step. In reality, however, the time duration
of the collision is not zero, bodies involved in the collision deform and restoration forces with

6.3. VELOCITY-LEVEL CONSTRAINTS 65

large magnitudes exerted during the period of the collision change the body velocity7. Since
this would be hard to simulate (the corresponding ODE would have to be integrated with an
extremely small time step) we will postulate a concept of impulsive force and torque (impulses)
that will allow to change body velocities instantly without producing stiff ODEs. The collision
in our example could then be treated as if its time duration was zero.

Impulsive Force and Torque

Let us assume that we have a rigid body with the center of mass at the world-space position
~x(t) and ~P (t) and ~L(t) are the body linear and angular momentum. Impulsive force (impulse)
~JF is postulated as a force with “units of momentum”. When ~JF is applied to the body at the
world-space position ~r, then the linear momentum ~P (t) and the angular momentum ~L(t) change
by ∆~P (t) and ∆~L(t), where

∆~P (t) = ~JF ∆~L(t) = ~Jτ
~Jτ = (~r − ~x(t))× ~JF (6.21)

and ~Jτ is the impulsive torque due to impulsive force ~JF exerted on the rigid body at the world-
space position ~r. More precisely if ~P−(t) and ~L−(t) is the linear and angular momentum before
the application of the impulse, then the linear and angular momentum ~P+(t), ~L+(t) after the
application of the impulse equals ~P+(t) = ~P−(t) + ~JF and ~L+(t) = ~L−(t) + (~r − ~x(t)) × ~JF .
Similarly to forces, ~JF can be imagined as if it acted at the rigid body’s center of mass (~JF

affects the linear momentum only) and ~Jτ as capturing the rotational effects due to ~JF actually
exerted at ~r (~Jτ affects the angular momentum only).

Impulsive forces and torques can be seen as “ordinary” forces and torques that change the
body’s linear and angular momentums directly, instead of affecting their time derivatives. Re-
member that if ~Ftotal(t) and ~τtotal(t) are the total external force and torque exerted on the body,
then ∂

∂t
~P (t) = ~Ftotal(t) and ∂

∂t
~L(t) = ~τtotal(t). In the case of impulses, however, the impulsive force

~JF and impulsive torque ~Jτ change the linear and angular momentums directly, ∆~P (t) = ~JF and
∆~L(t) = ~Jτ . Note the correspondence of the impulsive torque ~Jτ = (~r−~x(t))× ~JF due to the im-
pulsive force ~JF exerted on the body at the world-space position ~r to the torque ~τ = (~r−~x(t))× ~F
due to the force ~F exerted on the body at the world-space position ~r.

Notation

We will extend our notation of generalized quantities by

• generalized momentum ~F total
imp of a body

A block vector ~F total
imp consisting of two blocks storing the rigid body’s linear momentum

~P ∈ R3 and angular momentum ~L ∈ R3, ~F total
imp = (~P , ~L) ∈ R6. Generalized momentum

serves the same purpose like the linear momentum ~P of particles.

The reason for naming the generalized momentum in this way will become clear soon.

• generalized impulsive force (impulse) ~Fimp exerted on a body

A block vector ~Fimp consisting of two blocks storing the impulsive force ~JF ∈ R3 (imagined
as acting at the body’s center of mass) and impulsive torque ~Jτ ∈ R3 due to ~JF , ~Fimp =
(~JF , ~Jτ) ∈ R6.

7The restoration forces can be imagined as constraint forces due to C̈p(~r(t)) ≥ 0 constraints with position
stabilization terms like in (4.8).

66 CHAPTER 6. CONSTRAINED RIGID BODY DYNAMICS

Impulsive Dynamics

If M is the mass matrix of the body and ~v is the rigid body’s generalized velocity then, according
to (5.10) and (5.12), we get that

M · ~v = ~F total
imp . (6.22)

According to (6.21), if ~Fimp is applied to the body then the body’s generalized momentum ~F total
imp

changes by ∆~F total
imp = ~Fimp and this change equals ∆~F total

imp = ∆(M ·~v) = M ·∆~v, because impulses
do not change M directly. We thus get that the change ∆~v of the body’s velocity ~v due to ~Fimp

equals
∆~v = M−1 · ~Fimp. (6.23)

Equations (6.22) and (6.23) can be generalized by a single equation

M · ~v = ~Fimp, (6.24)

which describes the relation between an impulse ~Fimp and the change of velocity ~v due to the
application of the impulse. Since the equation holds also for ~Fimp = ~F total

imp (thus capturing the
relation between the momentum ~F total

imp and the generalized body velocity ~v like in (6.22)), ~F total
imp

can be seen as a generalized total external impulse that consists of the only term — the inertial
term (~P , ~L). Equation (6.24) is the “impulsive variant” of (5.23).

Finally if we have a set of n rigid bodies then their impulsive dynamics is described by the
following velocity-level analog of (6.6)

M · ~v = ~Fimp, (6.25)

where M is the mass matrix of the rigid body system, ~Fimp = (~F imp
1 , . . . , ~F imp

n), ~v = (~v1, . . . , ~vn)
and ~vj is the velocity of the j-th body due to impulse ~F imp

j exerted on that body. For simplicity
~Fimp is called the impulsive force (impulse) exerted on the system and ~v the velocity of the system
due to ~Fimp or the response of the system to ~Fimp.

6.3.2 Constraints

We will now transfer acceleration-level formulations and results to the velocity level and present
impulsive constraint forces. There is no need to derive the equations once more because the
acceleration-level formulation of rigid body dynamics (5.23) exactly corresponds to the velocity-
level formulation of the impulsive dynamics (6.24) and the derivations would be the same. This
implies that (nearly) the same algorithms can be used to implement velocity-level constraints.
The only differences are due to the fact that we will work with velocities ~v, impulsive constraint
forces ~F c

imp and momentums ~F total
imp instead of accelerations ~a, constraint forces ~Fc and total

external forces ~Ftotal.
Generalizing (6.2) for arbitrary (non-constant) vector ~k and taking the same approach as

we did to generalize (6.3), we can formulate velocity-level unbounded equality, greater-or-equal,
less-or-equal and bounded equality constraints.

Velocity-level constraint i affecting bodies Ai and Bi is described by its dimensionality mi,
mi× 6 Jacobian blocks Ji,Ai , Ji,Bi due to the constraint and the constrained bodies Ai,Bi, right-
hand side mi-vector ~ki and one of the following equations

Ji,Ai · ~vAi + Ji,Bi · ~vBi = ~ki (6.26)

Ji,Ai · ~vAi + Ji,Bi · ~vBi ≥ ~ki (6.27)

Ji,Ai · ~vAi + Ji,Bi · ~vBi ≤ ~ki, (6.28)

6.3. VELOCITY-LEVEL CONSTRAINTS 67

where (6.26) describes the velocity-level unbounded equality constraint i, (6.27) the velocity-level
greater-or-equal constraint and (6.28) the velocity-level less-or-equal constraint. Moreover if ~λi

limits ~λlo
i ≤ ~0 and ~λhi

i ≥ ~0 are provided, then (6.26) describes the velocity-level bounded equality
constraint i, where (~F i

c)imp = JT
i · ~λi, ~λlo

i ≤ ~λi ≤ ~λhi
i is the bounded constraint impulse due

to the constraint. Similarly to acceleration-level constraints, all velocity-level constraints of the
above types can be abstracted by velocity-level bounded equality constraints.

We have spoken of (~F i
c)imp = JT

i · ~λi as of the constraint impulse due to constraint i. This
deserves a little explanation. When we were deriving equations for acceleration-level equality
constraints we were given a velocity-level equality constraint ~Cv(~r,~v) = ~0, assumed that the
constrained bodies lied on the intersection of the hypersurfaces due to the velocity-level constraint
DOFs in the velocity product space (the velocity-level constraint was maintained at the current
time) and constrained the body accelerations ~̈r along the hypersurface normals so that the bodies
remained on the hypersurfaces (the velocity-level constraint was thus maintained at the next time
step). The hypersurface normals corresponded to the (scaled) rows of Ji = ∂ ~Cv

∂~v and hence the
constraint force we were to compute due to the constraint i was of the form ~F i

c = JT
i · ~λi, where

~λi was a vector of unknown multipliers due to the constrained DOFs.

In the case of velocity-level equality constraints, we are given a position-level equality con-
straint ~Cp(~r) = ~0, assume that the constrained bodies lie on the intersection of the hypersurfaces
due to the position-level constraint DOFs in the position product space (the position-level con-
straint is maintained at the current time) and constrain the body velocities ~̇r along the hyper-
surface normals so that the bodies remain on the hypersurfaces (the position-level constraint will
thus be maintained at the next time step). The hypersurface normals correspond to the (scaled)
rows of Ji = ∂Cp

∂~r and hence the constraint impulse we are to compute due to the constraint i is
of the form (~F i

c)imp = JT
i ·~λi, where ~λi is a vector of unknown multipliers due to the constrained

DOFs.

Now if we have c velocity-level equality constraints we would like to compute the ultimate
constraint impulse ~F c

imp = JT · ~λ, where ~λ = (~λ1, . . . , ~λc) is a block vector of the unknown
Lagrange multipliers due to individual constraints. To do so, we would like to formulate certain
conditions on ~λ, solve for ~λ and yield ~F c

imp. Starting with (6.25), following the derivation of (4.6)
and utilizing the constraint formulation (6.26) we come up with the following conditions on ~λ,

A · ~λ +~b = ~0, (6.29)

where A = J · M−1 · JT is a m × m matrix, m is the total number of DOFs removed by the
constraints, m =

∑c
i=1 mi, ~b = J · M−1 · ~F total

imp − ~k is a m × 1 vector, ~k = (~k1, . . . ,~kc) and
~F total

imp = ((~F total
imp)1, . . . , (~F total

imp)n) is the total external impulse exerted on the system (a vector of
generalized momentums).

Note that conditions (6.29) match (6.8), only ~F total
imp is used instead of ~Ftotal while forming the

vector ~b. Vector ~λ can be thus computed analogously to the acceleration-level case. Inequalities
and bounded equalities impose different conditions on ~λ and are formulated directly in terms of
matrix A and vector ~b and so do not depend on whether they are derived with respect to the
hypersurfaces in the velocity product space (acceleration-level constraints) or position product
space (velocity-level constraints), hence (6.10), (6.12), (6.14) and (6.15) apply to corresponding
velocity-level constraints and the problem of computing ~λ for the constraint impulse to be exerted
on the system is also a LCP.

68 CHAPTER 6. CONSTRAINED RIGID BODY DYNAMICS

6.3.3 Handling Constraints

One might wonder why we ever tackle the problem of acceleration-level constraints if we can
control the body velocity directly. The answer is simple. Impulses applied to a rigid body change
the body state directly and whenever such a change occurs, the ODE solver must be stopped
and restarted from the new changed state, which might be a costly operation. More formally if
~y(t) = (~y1(t), . . . , ~yn(t)) is the system state of n bodies, where ~yi(t) is the state of body i given by
(5.17), and an impulse is applied to body j, then the body state ~yj(t) = (~x(t), R(t), ~P (t), ~L(t))
turns to ~y+

j (t) = (~x(t), R(t), ~P+(t), ~L+(t)) and hence ~y(t) is discontinuously changed to ~y+(t),
which must be treated as a new initial state.

The other problem with impulses relates to the way how ODE solvers work. Given a current
state ~y(t) and a history of k states from the last k steps, the solver predicts ~y(t+∆t) by utilizing
the state history and evaluating the system state derivative at one or more points ~y. Equation
(5.18) shows that ∂

∂t~y(t) = (˙~x(t), ~ω(t)∗ · R(t), ~Ftotal(t), ~τtotal(t)), hence in order to capture the
effects of constraints while estimating ~y(t + ∆t) (sampling the vector field), the constraints must
be formulated on the acceleration level.

Modifications To ODE Solver Interface

In order to handle constraints on the velocity level, modifications to evaluate derivative func-
tion from the ODE interface have to be made. The purpose of the function is to compute the
system state derivative for the current system state, following (5.18). If the system state is go-
ing to be changed directly by the code in the function, then the derivative should be computed
with respect to the changed state and the ODE solver asked to restart from the modified state.
This can be abstracted as follows. The function will take another argument that will indicate
whether the current state is intermediate (see below) and will return another indicator that will
tell whether the current state was changed and the derivative computed with respect to the new
state,

• If the current state ~y(t) is intermediate, that is, evaluate derivative is invoked just for
the purposes of the evaluation of ~f(t, ~y(t)), in order to estimate ~y(t+∆t), there is no point
in applying impulses to bodies, because the state is intermediate and its change will be
ignored. Hence velocity-level constraints have no effect at intermediate states and can be
ignored at those states.

• If the current state is regular (as opposed to an intermediate state), system state change
could be accepted by the ODE solver and if the state is actually changed, the solver must
be notified so that it could restart self from the new state.

In this case, velocity-level constraints are enforced first. This changes the system state and
the derivative of the changed state is computed and returned to the ODE solver then.

Velocity-Level or Acceleration-Level

Acceleration-level constraints might implement position-level or velocity-level constraints under
an assumption that the current state is consistent with the velocity-level and position-level for-
mulation of the constraint (constraints hold at the current time). If an impulse is applied to a
body, this assumption might be violated8. To overcome this, all position-level and velocity-level

8For example if we have a position-level constraint ~Cp = ~0, the constraint can be maintained on the acceleration

level as ~̈Cp = ~0 if ~Cp = ~0 and ~̇Cp = ~0 at the current time. If an impulse is applied to a constrained body then the

6.4. POSITION-LEVEL CONSTRAINTS 69

constraints must also be enforced on the velocity level when an impulse is going to be applied
and/or constraint stabilization (4.8) or (4.9) must be incorporated.

Note that if we use a first order integration method (Euler solver) we can forget about
acceleration-level constraints because all states are regular and there is actually no philosophical
difference between a force and an impulse (impulses are forces times time step here, that is, know-
ing the step size, the effects of impulses can be simulated by appropriately scaled forces). However
if using a higher order solver, we have to compute constraint forces at least at intermediate states
so that constraints are considered when estimating ~y(t + ∆t).

To conclude, acceleration-level constraints are preferred to velocity-level constraints, where
appropriate, because velocity-level constraints change system state directly by the application of
constraint impulses, independently on the used integration method (ODE solver) and do not play
well with higher order methods (velocity-level constraints have no effect when enforced at interme-
diate states). Moreover, velocity-level constraints can violate the assumptions of acceleration-level
constraints and thus break position-level and velocity-level constraints that are implemented on
the acceleration level. On the other side, as we saw in the motivational example (a ball striking
the wall), certain constraints can not be enforced on the acceleration-level reliably and must be
implemented on the velocity level. This happens mostly in those cases when constraints to be en-
forced are not permanent and the system state is not currently consistent with the corresponding
acceleration-level formulation of the constraint when the constraint becomes effective.

6.4 Position-Level Constraints

In this section we will summarize our knowledge of position-level equality constraints from section
(6.1.2), define position-level equality constraints in the context of other types of constraints, so
that it will be more consistent with the material from the previous sections, and tackle the
problem of position-level inequality constraints. We will still work with c constraints and n
bodies.

6.4.1 Constraint Formulation

Position-level constraint i affecting bodies Ai and Bi is described by its dimensionality mi and
one of the following mi-vector equations

~Ci
p(~r) = ~0 ∈ Rmi (6.30)

~Ci
p(~r) ≥ ~0 ∈ Rmi (6.31)

~Ci
p(~r) ≤ ~0 ∈ Rmi , (6.32)

where ~r = (~r1, . . . , ~rn) is a block-vector of generalized body positions and ~Ci
p is a function of

~rAi and ~rBi , formally a function of ~r. Vectors ~rAi , ~rBi that satisfy the constraint equation are
the valid generalized positions of the constrained bodies due to the constraint. Equation (6.30)
describes the position-level equality constraint, (6.31) describes the position-level greater-or-equal
constraint and (6.32) the position-level less-or-equal constraint.

To simplify further discussion we will assume that mi = 1 if the constraint represents a
greater-or-equal or a less-or-equal constraint and will simply write Ci

p instead of ~Ci
p in these

cases.

assumption ~̇Cp = ~0 no longer holds and the velocity-level constraint ~̇Cp = ~0 should be imposed.

70 CHAPTER 6. CONSTRAINED RIGID BODY DYNAMICS

Unlike acceleration-level or velocity-level constraints we are not be able to maintain position-
level constraints directly on the position level and have to resort to corresponding velocity-level
or acceleration-level formulations. This implies that whenever a velocity-level or an acceleration-
level constraint is imposed, the current system state must be consistent with the original position-
level constraint.

We will provide the velocity-level and acceleration-level formulations of the constraints with
additional notes indicating when the particular formulation can be applied. Since acceleration-
level formulations will be applicable only if the corresponding velocity-level formulation, expressed
in terms of Ċi

p, already holds and the value of Ċi
p is a function of impulses exerted on the system,

we can not tell in advance what constraints can be implemented on the acceleration level reliably,
without risking the violation of the assumptions and hence the violation of the constraint, if there
are velocity level constraints in effect9. Therefore, as a general rule, we will either

• implicitly enforce all constraints also on the velocity level if there is at least one constraint
i that must be implemented on the velocity level or

• choose between the acceleration-level or velocity-level formulation according to the value
of Ċi

p before impulses are applied, make up with the fact that the constraint can break if
it is implemented on the acceleration level and there is at least one constraint that must
be implemented on the velocity level, and rely on the constraint stabilization. See notes on
page 68.

6.4.2 Equality Constraints

Position-level equality constraint i can be implemented either

• on the acceleration level, by requiring ~̈Ci
p = ~0 and starting from a state where ~Ci

p = ~̇Ci
p = ~0.

Body states will be changed indirectly by constraint forces.

• on the velocity level, by requiring ~̇Ci
p = ~0 and starting from a state where ~Ci

p = ~0. Body
states will be changed directly by constraint impulses which might break other position-level
or velocity-level constraints implemented on the acceleration level.

Following the standard derivation procedure and incorporating position and velocity stabi-
lization terms from section (4.3) we get the formulations of constraint i on the velocity and
acceleration levels

Ji · ~v = Ji,Ai · ~vAi + Ji,Bi · ~vBi = −~Ci
p · α

Ji · ~a = Ji,Ai · ~aAi + Ji,Bi · ~aBi = −~Ci
p · α− Ji · ~v · β − J̇i · ~v, (6.33)

where α > 0 and β > 0 are constants due to the Baumgarte stabilization terms from (4.8)
and Ji is the Jacobian matrix due to the constraint, computed either from the position-level

constraint ~Ci
p = ~0 as Ji = ∂ ~Ci

p

∂~r or the velocity-level constraint ~̇Ci
p = ~0 as Ji = ∂ ~̇Ci

p

∂~v . Note that
the acceleration-level and velocity-level formulations use the same Jacobian matrices Ji and only
differ in their right-hand side vectors, where the acceleration-level formulation contains the extra
J̇i · ~v and ~̇Ci

p stabilization terms.

9There is a sort of cyclic dependency. Ċi
p determines whether constraint i must be implemented on the velocity

level while simultaneously Ċi
p is a function of the set of constraints to be implemented on the velocity level.

6.4. POSITION-LEVEL CONSTRAINTS 71

6.4.3 Inequality Constraints

Inequality (greater-or-equal or less-or-equal) constraints are different from equality constraints
because no constraints are actually imposed until the constrained bodies reach the boundary of
the valid set of body positions in the position product space. That is, unless Ci

p = 0 at the
current time step, no constraints are in effect.

Let us suppose that we are going to handle greater-or-equal constraint10 (6.31) which can be
(for clarification) interpreted as a constraint between a ball and a wall, like in the motivational
examples in sections (6.2.2) and (6.3.1). Vectors ~r satisfying Ci

p(~r) ≥ 0 are the valid positions of
bodies and parametrize the set of valid positions in the position product space. Vectors ~r, where
Ci

p(~r) = 0, lie on the boundary of the valid set of body positions in the position product space
and vectors ~r, where Ci

p(~r) < 0, are the invalid positions that must be avoided.
We will now discuss three cases, depending on whether Ci

p(~r(t)) > 0, Ci
p(~r(t)) = 0 or

Ci
p(~r(t)) < 0 at the current time t.

In Interior

If Ci
p(~r(t)) > 0 at the current time t, bodies did not reach the boundary of the set of valid positions

in the position product space yet and no constraint will be imposed. In the motivational example,
this corresponds to the case when the ball is in front of the wall.

On Boundary

Ci
p(~r(t)) = 0 at the current time t, bodies are at the boundary of the set of valid positions in the

position product space and the velocity-level constraint Ċi
p(~r(t)) ≥ 0 must be imposed in order to

ensure that the original position-level constraint Ci
p ≥ 0 will remain obeyed. Depending on the

fact whether the velocity-level constraint already holds or not, the constraint can be implemented
either

• on the acceleration level, if Ċi
p(~r(t)) = 0, in the form of C̈i

p ≥ 0, or

• on the acceleration level, if Ċi
p(~r(t)) > 0, by ignoring the constraint, because the velocity-

level constraint will hold regardless of the value of C̈i
p if a sufficiently small step size is

taken, or

• on the velocity level in the form of Ċi
p ≥ 0, with the risk of breaking other position-level

or velocity-level constraints implemented on the acceleration level. The constraint must be
enforced on the velocity level if Ċi

p(~r(t)) < 0.

The first case corresponds to the example in section (6.2.2), the second case describes a
situation when the ball retreats from the wall and the third case corresponds to the motivational
example in section (6.3.1). In all the three cases, the ball is in contact with the wall.

In the practice, due to integration error and the evaluation of Ci
p(~r(t)) at discrete time steps,

we might never reach a state where Ci
p(~r(t)) = 0 holds exactly and the above test needs be

evaluated with respect to a certain ε > 0 precision (the same can be said about the Ċi
p < 0 test).

For example if |Ci
p(~r(t))| < ε then the bodies are considered to lie on the boundary of the valid

set of body positions in the position product space and if ε > Ċi
p(~r(t)) ≥ −ε then the acceleration

10If we were going to handle less-or-equal constraint (6.32) we could proceed analogously.

72 CHAPTER 6. CONSTRAINED RIGID BODY DYNAMICS

level constraint might still be imposed. Since constraint assumptions are not strictly obeyed, the
constraint needs be stabilized.

This can be concluded by the following equation, which shows what constraint type should
be imposed at the time t and what the formulation of the constraint is (stabilization terms are
included),

Ċi
p < −ε ⇒

Ji · ~v = Ji,Ai · ~vAi + Ji,Bi · ~vBi ≥ −Ci
p · α

ε > Ċi
p ≥ −ε ⇒

Ji · ~a = Ji,Ai · ~aAi + Ji,Bi · ~aBi ≥ −Ci
p · α− Ji · ~v · β − J̇i · ~v, (6.34)

where α > 0 and β > 0 are the Baumgarte stabilization constants.

In Exterior

Ci
p(~r(t)) < 0 at the current time t, body positions are already invalid and no velocity-level

constraint would be able to ensure that the original position-level constraint would be maintained
at the next time step. In our motivational example, this corresponds to the case when the ball
penetrates the wall.

This is a similar problem to the acceleration-level problem of preventing the ball from pene-
trating the wall when it struck the wall (motivational example from section (6.3.1)), which was
solved by going to the velocity level from the acceleration level, but this time we are already on
the velocity level. We would like to go from the velocity level to the position level and directly
adjust the body positions so that the position-level constraint will be obeyed. Since this is hard
to implement reliably we instead

• do not accept the invalid state and ask the ODE solver to stop, instruct it to rollback to
the previous state which is considered still valid and take an alternative approach to locate
time tc, so that Ci

p(~r(tc)) = 0, and transfer the problem to the previous case.

This approach ensures that if the solver is always started from a valid state then invalid
states are avoided. Obviously, such a behavior is essential when maintaining “important”
constraints, such as non-penetration constraints when penetration must be strictly avoided.

According to our motivational interpretation of Ci
p, this approach makes the ODE solver

rollback to a state when the ball does not penetrate the wall yet and then locate time tc
when the ball is in contact with the wall.

• accept the invalid state, behave as if |Ci
p(~r(t))| < ε was true and rely on the constraint

stabilization to bring the body positions back to the set of valid body positions in the
position product space.

Clearly, this behavior is suitable for “unimportant” constraints only whose violation does
not matter. Despite of this, low-end simulators often implement position-level constraints
in this way and are not able to avoid invalid states at all.

We will now pursue the first approach, that avoids invalid states, and look at the estimation
of time tc. If tprev is the time of the previous regular state then Ci

p(~r(tprev)) ≥ 0 because the
state would not be accepted otherwise. Since the current state at time tcurrent > tprev is invalid,
we have Ci

p(~r(tcurrent)) < 0 and the state can not be accepted. By inspecting the current system
state, the previous system state and ~Cp we would like to compute time tc, tprev < tc < tcurrent so

6.4. POSITION-LEVEL CONSTRAINTS 73

that all states from tprev to tc are still valid and ~Cp(~r(tc)) = 0. If we knew tc, we could rollback to
tprev, instruct the simulator to advance to tc, handle the position-level constraint on the velocity
or acceleration level according to (6.34) and simulate forward from tc.

Since computing tc exactly might be difficult, we can employ a bisection algorithm that
solves for tc with the above properties numerically, in terms of queries whether the ODE solver
can advance to a desired state without encountering an invalid state, [10], [13]. We will denote
ta < tb the lower and upper bound estimates of tc, initially set to ta = tprev, tb = tcurrent. The
algorithm will incrementally restrict the lower and upper bounds until |ta − tb| < δ and tc is
estimated with a sufficient precision δ > 0. If Ci

p(~r(ta)) ≥ 0 and Ci
p(~r(tb)) < 0 we can ask the

ODE solver to rollback to ta and advance to tm = (ta + tb)/2 or any other ta < tm < tb, where tm
is the estimate of tc. If the solver reaches tm without getting into an invalid state, we can assume
that Ci

p(~r(t)) ≥ 0 for ta ≤ t ≤ tm and hence can update the lower bound so that ta = tm. If the
solver gets to an invalid state while advancing from ta to tm, we can update the upper bound so
that tb = tm. Bounds ta and tb are repeatedly updated until |ta − tb| < δ. When the bisection
algorithm finishes, |Ci

p(~r(ta))| < ε, we can let tc = ta, rollback to tc, utilize (6.34) and simulate
forward from tc in the usual way.

This approach assumes that we are always able to enforce constraints at time tc so that the bodies are not
driven to an invalid state at time tc + ε. However, due to a limited integration and numerical precision, we might
not always be able to do that. When the ODE solver detects that it can not advance from the current (still valid)
state to the next state even when the smallest possible step of size ε is considered, the solver must rollback to tc

and notify the simulator to stop bodies involved in the constraint (reset their momentums to zero vectors) so that
the simulation could advance further.

The value of tc can be estimated from the time derivatives of Ci
p. This can, however, be problematic for a

certain type of constraints. For example non-penetration constraints are formulated in terms of greater-or-equal

position-level constraints that measure relative body distance at geometry contacts, but it is hard to define (or

compute) what the contacts (formulations of Ci
p) should be when the bodies are already penetrating. Yet, according

to results from collision detection routines, we can usually tell pretty easily whether the current state is valid or

not.

Modifications to ODE Solver

In order to avoid invalid states and support and incorporate the bisection algorithm to the ODE
solver, both the ODE solver interface and the implementation of the solver must be updated

• function evaluate derivative must be extended to return the indicator whether the cur-
rent state is valid or not. This can be done by evaluating Ci

p for all position-level inequality
constraints. For example if i is the index of a position-level greater-or-equal constraint and
Ci

p < 0 then the constraint is violated and if i is an “important” constraint then the current
state should be considered invalid. This fact should be indicated to the ODE solver so that
it could rollback to the previous (valid) state and take smaller steps to locate the latest
valid state (bisection algorithm).

• the implementation of the ODE solver’s advance function must be updated to run the
bisection algorithm when evaluate derivative, invoked by the ODE solver, indicates that
the current state is invalid. The bisection algorithm can be implemented in terms of eval-
uate derivative, get state and set state, using the logic of the old advance.

74 CHAPTER 6. CONSTRAINED RIGID BODY DYNAMICS

6.5 Contact

In this section we will tackle the problem of non-penetration constraints and contact with friction.
The problem of non-penetration constraints is to ensure that rigid body shapes (geometries) do
not penetrate while the bodies are simulated, yet properly respond to forces and impulses. Non-
penetration is enforced by introducing non-penetration constraints into the system, formulated as
position-level greater-or-equal constraints and maintained incrementally just like other inequality
constraints — assuming that the geometries do not penetrate at the initial state, non-penetration
constraints ensure that the penetration will not occur at the next time step. The problem
of contacts is to enforce non-penetration while modelling real-world body interaction, such as
realistically-looking impacts (collisions) or friction, by imposing additional contact constraints.

The problem of non-penetration constraints with friction is inherently hard because it involves
inequality constraints. This is well demonstrated by the efforts of David Baraff, who tackled the
problem of non-penetration constraints for many years, [3], [6], [5], [7], [8].

Rigid body shapes will be represented by collision geometries that abstract the shapes for
the purposes of the simulation. Since rigid bodies can not deform, body shapes can be defined
in body spaces. Collision geometries are fixed in body spaces and rotate and translate with the
bodies they are attached to as the bodies move in the world space.

6.5.1 Collision Detection

The purpose of the collision detection is to support non-penetration and contact constraints in
the simulator. Given a system state ~y(t), collision detection must be able to determine whether
there are any penetrating bodies (penetration indicates an invalid state and the simulation state
must be rolled back) and, if no penetration is detected, find out what body geometries contact
and at which points (contacts). Optionally, if body geometries are penetrating, collision detection
might predict the time of collision to improve the performance of the bisection algorithm, [4],
[13]. For more complex information on collision detection one might refer to [13] or [6].

Contacts can be imagined (and in fact it is desirable to treat or define them in this way) as
the coinciding points of the first and second geometry where the contact force/impulse should act
in order to prevent penetration. For example if a ball rests on a planar floor, then the set of
geometry contacts between the ball and the floor equals the single point where the ball touches
the floor.

More precisely, if we define contact regions as the set of collision geometry surface patches
on the first and second geometry so that points on the first patch coincide with points on the
second patch and vice versa, [13], then contacts lie on the contact regions. If the contact region
is polygonal (or can be split to polygonal regions) then the contacts correspond to the vertices
of the region (the effects of contact forces distributed over the contact region can be replaced by
the effects of contact forces exerted at the vertices of the contact region only) — for example if a
cube rests on the floor then the set of geometry contacts between the cube and the floor consists
of the four vertices of the cube’s bottom face. On the other hand, to illustrate the complexity of
the problem and justify the reason why we did not present any formal definitions, let us consider
a cylinder whose principal axis points upwards and the cylinder is resting on a horizontal desk.
In that case the contact region between the cylinder and the floor equals a (portion of a) disc
and it might not be trivial to define/compute contacts in this scenario.

6.5. CONTACT 75

Higher-Level and Lower-Level Collision Detection

Collision detection is supposed to determine whether there are any penetrating geometries and, if
there are no penetrations, compute all contacts. To reduce the work that needs be done, collision
detection is usually performed on two levels. Higher-level collision detection (broad phase) keeps
track of collision geometry pairs whose geometry hulls (bounding boxes, etc.) overlap while
lower-level collision detection (narrow phase) processes information from the higher-level collision
detection and actually computes contacts and tests for penetration, [13].

Higher-level collision detection serves as a filter that rejects collision geometry pairs that cer-
tainly do not contact and prevents such pairs from being processed by the lower-level collision
detection, thus decreasing the computational cost. Note that traditional algorithms from compu-
tational geometry, such as various space-partitioning trees (oct-trees, k-d trees, BSP trees, etc.),
are not suitable for the implementation of higher-level collision detection — such algorithms can
be used to query what geometry hulls occupy a specified volume or what geometry hulls overlap
a given geometry hull. Instead, we need to determine quickly what geometry hulls overlap each
other, which is a different problem, and special algorithms have to be used, such as sort and
sweep11, [10], [13], [8], [6], [2].

Lower-level collision detection processes overlapping geometry hulls and invokes geometry
type pair specific algorithms to actually perform the collision detection between the two geome-
tries. Collision geometry types handled by the lower-level collision detection should be general
enough so that complex shapes can be modelled while at the same time they should be simple so
that the determination of contacts and the testing for geometry penetration can be implemented
efficiently. Since each geometry type pair requires a special handling (algorithms) the number of
supported geometry types should be as small as possible. Obviously, volume-based representa-
tions of collision geometries are preferred over boundary representations, triangle meshes & co.
because volume-based representations usually allow to test for penetration quickly and/or are
able to measure penetration depth, which can be used to stabilize non-penetration constraints or
estimate the time of collision. Traditional algorithms from computational geometry can be used
to implement lower-level collision detection. Collision detection libraries often support convex
polyhedra as the geometry primitives, because contacts can be computed efficiently and spatial
and temporal coherence can be utilized, [10], [13], [2], [6].

Collision detection affects both the stability and performance of the whole simulator. Collision
detection (and constraint solver) is usually the bottleneck of the simulator and so it must be
efficient. At minimum, the used algorithms should utilize the coherence of the collision detection
results over successive time steps (results from the previous time step are nearly correct for the
current time step). Also, the stability of the simulation highly depends on the precision and
correctness of the collision detection results and so it must be reliable.

Contact Representation

If i is the index of the i-th contact then Ai will denote the first body in the contact, Bi the second
body, ~pi the world-space position of the coinciding points ~pAi and ~pBi on the first and second
body (~pi = ~pAi = ~pBi) and ~ni the surface normal (with a unit length) at the contact pointing
towards body Bi. Vector ~̇ni will denote the time derivative of ~ni and if ~ni is attached to the first
body, then ~̇ni can be computed according to (5.5).

If tcur is the current time and ~rAi = ~pi − ~xAi(tcur)12 and ~rBi = ~pi − ~xBi(tcur) are world-space

11Which is implemented in our simulator.
12For the purposes of this section ~r will not denote generalized position(s). This is different from previous

76 CHAPTER 6. CONSTRAINED RIGID BODY DYNAMICS

vectors attached to the first and second body and ~rb
Ai

and ~rb
Bi

the corresponding body space
vectors then, according to (5.1), ~pAi(t) = ~xAi(t) + RAi(t) ·~rb

Ai
and ~pBi = ~xBi(t) + RBi(t) ·~rb

Bi
and

~pAi(t) and ~pBi(t) can be treated as functions of time t.
This allows to define the separation distance di(t) at contact i as a function of time, di(t) =

~ni(t) · (~pBi(t) − ~pAi(t)). Separation distance is a measure of the relative displacement of the
two coinciding points along ~ni(t) (“distance” of the two bodies at contact i) so that positive
values of di(t) indicate separation at i while the negative values indicate penetration at i. Ideally,
di(tcur) = 0 (separation distance is zero when the contact is detected). However since the
simulation advances in discrete time steps, di(t) might never reach zero and hence we will assume
that the bodies are in contact if |di(tcur)| < ε.

Contacts will be represented by the values of Ai, Bi, ~pi, ~ni, ~̇ni, di which are supposed to be
evaluated by collision detection with respect to the current time tcur.

6.5.2 Non-Penetration

Non-penetration will be enforced as follows. Whenever ODE solver invokes evaluate derivative,
collision geometry state is updated (geometries positioned and oriented) according to the system
state ~y(t) and collision detection ran to test for penetration. If a penetration is detected, ODE
solver is notified that the current state is invalid (non-penetration constraints are violated) so
that it could run the bisection algorithm to locate the latest valid state. If there is no penetration,
contacts are computed, position-level non-penetration constraints formulated and solved on the
velocity or acceleration level. Note that non-penetration is enforced by exerting constraint forces
and impulses only, positions and orientations of the affected bodies are not modified directly.

Formulation

Each contact i yields a position-level greater-or-equal constraint Ci
p ≥ 0 affecting bodies Ai and

Bi, defined in terms of the separation distance di at contact i,

Ci
p(t) = di(t) = ~ni(t) · (~pBi(t)− ~pAi(t)) ≥ 0. (6.35)

Since |Ci
p(tcur)| < ε at the current time tcur, the constraint can be implemented either on the

velocity or acceleration level according to (6.34).

Computing Jacobians and Equation Right-Hand Side

We will now compute the derivatives required by (6.34),

Ci
p = ~ni · (~pBi − ~pAi)

Ċi
p = ~̇ni · (~pBi − ~pAi) + ~ni · (~̇pBi

− ~̇pAi
)

C̈i
p = ~̈ni · (~pBi − ~pAi) + ~̇ni · (~̇pBi

− ~̇pAi
) +

~̇ni · (~̇pBi
− ~̇pAi

) + ~ni · (~̈pBi
− ~̈pAi

)

= ~̈ni · (~pBi − ~pAi) + 2 · ~̇ni · (~̇pBi
− ~̇pAi

) + ~ni · (~̈pBi
− ~̈pAi

).

We can express ~pAi and ~pBi in terms of ~xAi , ~rAi and ~xBi , ~rBi , where ~xAi and ~xBi are the
centers of masses of the first and second body and ~rAi and ~rBi are world space vectors attached

sections and we will have to write Ci
p(t) instead of Ci

p(~r(t)) to prevent the clash when formulating position-level
constraints.

6.5. CONTACT 77

to the two bodies, so that

~pAi = ~xAi + ~rAi

~pBi = ~xBi + ~rBi .

Their time derivatives can be computed according to (5.5) as13

~̇pAi
= ~̇xAi + ~ωAi × ~rAi

~̇pBi
= ~̇xBi + ~ωBi × ~rBi

~̈pAi
= ~̈xAi + ~αAi × ~rAi + ~ωAi × (~ωAi × ~rAi)

~̈pBi
= ~̈xBi + ~αBi × ~rBi + ~ωBi × (~ωBi × ~rBi),

where ~ωAi and ~ωBi denote the angular velocity of the first and second body and ~αAi and ~αBi the
angular acceleration.

Assuming that Ci
p(tcur) is exactly zero, ~pAi(tcur) = ~pBi(tcur) = pi(tcur) we obtain

Ċi
p(tcur) = ~ni · (~̇pBi

− ~̇pAi
) = ~ni · (~̇xBi + ~ωBi × ~rBi − ~̇xAi − ~ωAi × ~rAi)

= ~ni · ~̇xBi + ~ni · (~ωBi × ~rBi)− ~ni · ~̇xAi − ~ni · (~ωAi × ~rAi)
= ~ni · ~̇xBi + (~rBi × ~ni) · ~ωBi − ~ni · ~̇xAi − (~rAi × ~ni) · ~ωAi

= Ji,Bi · ~vBi + Ji,Ai · ~vAi = Ji · ~v
C̈i

p(tcur) = 2 · ~̇ni · (~̇pBi
− ~̇pAi

) + ~ni · (~̈pBi
− ~̈pAi

)

= 2 · ~̇ni · (~̇pBi
− ~̇pAi

) +

~ni · (~̈xBi + ~αBi × ~rBi + ~ωBi × (~ωBi × ~rBi))−
~ni · (~̈xAi + ~αAi × ~rAi + ~ωAi × (~ωAi × ~rAi))

= ~ni · ~̈xBi + (~rBi × ~ni) · ~αBi − ~ni · ~̈xAi − (~rAi × ~ni) · ~αAi +
2 · ~̇ni · (~̇pBi

− ~̇pAi
) + ~ni · (~ωBi × (~ωBi × ~rBi))−

~ni · (~ωAi × (~ωAi × ~rAi))
= Ji,Bi · ~aBi + Ji,Ai · ~aAi + J̇i · ~v = Ji · ~a− ci,

which can be distilled to the form that can be directly substituted into (6.34) and yield the
formulation of the non-penetration constraint due to contact i on the velocity and acceleration
level with stabilization,

Ji,Ai = (J linear
i,Ai

Jangular
i,Ai

) = (−~nT
i −(~rAi × ~ni)T)

Ji,Bi = (J linear
i,Bi

Jangular
i,Bi

) = (~nT
i (~rBi × ~ni)T)

J̇i · ~v = 2 · ~̇ni · (~̇xBi + ~ωBi × ~rBi − ~̇xAi − ~ωAi × ~rAi) +
~ni · (~ωBi × (~ωBi × ~rBi)− ~ωAi × (~ωAi × ~rAi))

Ci
p = di. (6.36)

Constraint Interpretation

Ci
p measures the relative body displacement along the contact normal at the contact, Ċi

p measures
the relative body velocity along the normal at the contact and C̈i

p the relative acceleration. The

13 ∂
∂t

(~a×~b) =
(

∂
∂t

~a
)
×~b + ~a×

(
∂
∂t

~b
)
.

78 CHAPTER 6. CONSTRAINED RIGID BODY DYNAMICS

Figure 6.2: Illustration of an acceleration-level non-penetration constraint C̈i
p ≥ 0 for a contact

i. Constraint force −λi · ~ni acts on Ai at ~pi, λi · ~ni acts on Bi at the same point. λi ≥ 0 is
interpreted as the normal force magnitude at the contact and is complementary to the relative
body acceleration C̈i

p ≥ 0 at ~pi along ~ni called the normal acceleration.

�
�

�
��

�
�

�
��s

~pi

66
~ni

6

λi · ~ni

?
−λi · ~ni

Bi

Ai

formulation of the constraint on the velocity or acceleration level says that the relative body
velocity or acceleration at the contact along the contact normal should not drop below zero,
which is something we would intuitively expect.

If λi is the Lagrange multiplier due to the acceleration-level constraint then, following (6.7),
(J linear

i,Ai
)T · λi and (Jangular

i,Ai
)T · λi are the constraint force and torque exerted on the first body

due to the constraint and (J linear
i,Bi

)T · λi and (Jangular
i,Bi

)T · λi are the constraint force and torque
exerted on the second body. By inspecting the Jacobians, we see that the effects of the constraint
force correspond to a force −~ni · λi and ~ni · λi exerted on the first and second body at ~pi and
hence λi can be interpreted as the normal force magnitude at contact i. Constraint C̈i

p ≥ 0 is a
1-DOF constraint (6.11) and therefore equation (6.12) holds, λi ≥ 0 and λi is complementary to
C̈i

p = Ji · ~a − ci, interpreted as the normal acceleration at the contact. See figure (6.2) for the
illustration. The same can be said about impulsive forces and torques and normal velocity for
the velocity-level constraint Ċi

p ≥ 0.

Computational Issues

Although the non-penetration approach we have just presented should theoretically avoid pene-
tration and ensure that bodies do not get stuck, ODE solver might get to a state when it can not
advance any further (see notes on page 73). The problems relate to the fact that non-penetration
constraints are not permanent and are enforced at contacts only, reported by collision detection
if bodies do not penetrate. The ODE solver might fail to advance

• if collision detection is not reliable (buggy) and misses contacts.

For example if collision detection only reports whether bodies are penetrating or not and
never computes any contacts, ODE solver’s bisection algorithm will locate the latest valid
state but the solver will not be able to advance further from that state.

If collision detection misses a contact that should have been reported at a previous step, it
might be too late to handle non-penetration at the current step.

• if the separation distance at contact i drops below a critical value, but does not exceed a
preset limit to signalize penetration, and constraint solver fails to establish Ċi

p ≥ 0.

In that case Ci
p (separation distance) will decrease while taking a step and the penetration

depth thus increase with the risk of exceeding the limit. Further penetration will not be

6.5. CONTACT 79

avoided at contact i and if the current state is the latest valid state, ODE solver will not
be able to advance.

We will call contacts i with penetration depths near the limit the critical contacts. If Ċi
p < 0

after the constraint solver ran and constraint i is critical, bodies involved in the contact
must be stopped in order to prevent further penetration.

• if collision detection reports redundant or “bogus” contacts.

For example when two equal boxes are stacked upon each other so that they are nearly
aligned but penetrate a little, collision detection might report contacts involving the top
and bottom faces of the two boxes, but also contacts involving the penetrating edges and
the top or bottom faces due to various tolerances. As a result, there might be multiple
contacts whose constraints “fight” against each other and the constraint solver would fail
to compute a viable constraint force that could satisfy all constraints.

The problem of infeasible or redundant constraints can be handled by not insisting on
maintaining all constraints exactly but making the constraints soft instead, see section
(6.6).

Since collision detection and simulation are performed in discrete time steps, it might happen
that certain collisions remain unspotted. For example a bullet might teleport behind a thin wall
without encountering a collision if the bullet moves sufficiently fast and the time step size is big
enough. This suggests that there must be an upper bound ∆tmax(t) imposed on the time step
size at time t, depending on the system state ~y(t), to ensure that no collision (penetration) is
missed if simulation step is taken from time t to t + ∆tmax(t), [13].

In the most simplistic way, ∆tmax(t) can be computed from the upper bounds of body velocity
magnitudes vmax

i (t). If ~pi(t) is a point on the surface of a rigid body i, then its velocity is given
by (5.4) and ~pi(t) sweeps a trajectory of an approximate length ∆t · ‖~̇pi(t)‖ from time t to
t + ∆t. If ε is the maximum penetration depth we can tolerate, we can conservatively require
that ∆tmax(t) · ‖~̇pi(t)‖ ≤ ε. If ri is the radius of a sphere that bounds the rigid body’s collision
geometry, centered at the rigid body’s center of mass, then ‖~̇pi(t)‖ = ‖~xi(t) + ~ωi(t) × (~pi(t) −
~xi(t))‖ ≤ ‖~xi(t)‖+‖~ωi(t)‖ ·‖~pi(t)−~xi(t)‖ = ‖~xi(t)‖+‖~ωi(t)‖ ·ri = vmax

i (t) and hence obtain that
∆tmax(t) ≤ ε/vmax

i (t) for body i. Considering all bodies altogether, we realize that ∆tmax(t) ≤
ε/ max{vmax

i (t)}. It is desirable to limit (damp) body velocities so that ∆tmax(t) is kept at a
reasonable value. Naturally, ∆tmax(t) computed in this way is often too strict (conservative) and
more involved methods exploiting spatial properties of rigid bodies and operating in terms of
potentially colliding rigid body pairs should be used in the practice.

6.5.3 Contact Forces

We will augment the formulation of acceleration-level non-penetration constraints from the pre-
vious section in order to model friction at contacts. Unlike acceleration-level non-penetration
constraints, that only constrain relative body acceleration along the surface normals at contacts,
contact constrains will also restrict the acceleration in the directions perpendicular to the surface
normals. Note that we will be interested in contacts i where Ċi

p = 0 only. Such contacts are
called the resting contacts.

Coulomb Friction Law

In the previous section we have interpreted C̈i
p and λi due to the non-penetration constraint

C̈i
p ≥ 0 as the normal acceleration and the normal force magnitude, which we will now denote

80 CHAPTER 6. CONSTRAINED RIGID BODY DYNAMICS

ani and fni , hence ani = C̈i
p and fni = λi, and pointed out that ani ≥ 0, fni ≥ 0 and that ani was

complementary to fni (ani · fni = 0)14. Coulomb friction law extends these conditions to model
friction, [23], [13]. We have to define some additional quantities specific to the contact i and the
current time tcur first,

• ~txi , the first tangential (friction) direction, a unit vector perpendicular to ~ni,

• ~tyi , the second tangential (friction) direction, a unit vector perpendicular to ~ni and ~txi ,

• ~vni = vni · ~ni = ∂
∂t(~ni · (~pBi − ~pAi)) · ~ni, the relative body velocity along the surface normal,

• ~vtxi
= vtxi

· ~txi = ∂
∂t(~t

x
i · (~pBi − ~pAi)) · ~txi , the relative body velocity along the first tangential

direction,

• ~vtyi
= vtyi

·~tyi = ∂
∂t(~t

y
i · (~pBi − ~pAi)) ·~t

y
i , the relative body velocity along the second tangential

direction,

• ~vti = ~vtxi
+ ~vtyi

, the relative tangential velocity

• ~ani = ani · ~ni = ∂2

∂t2
(~ni · (~pBi − ~pAi)) · ~ni, the relative body acceleration along the surface

normal,

• ~atxi
= atxi

·~txi = ∂2

∂t2
(~txi ·(~pBi−~pAi))·~txi , the relative body acceleration along the first tangential

direction,

• ~atyi
= atyi

· ~tyi = ∂2

∂t2
(~tyi · (~pBi − ~pAi)) · ~t

y
i , the relative body acceleration along the second

tangential direction,

• ~ati = ~atxi
+ ~atyi

, the relative tangential acceleration,

• ~fni = fni · ~ni, the normal force,

• ~ftxi
= ftxi

· ~txi , the tangential force along the first tangential direction,

• ~ftyi
= ftyi

· ~tyi , the tangential force along the second tangential direction,

• ~fti = ~ftxi
+ ~ftyi

, the tangential (friction) force, perpendicular to ~ni,

• ~fci = ~fni + ~fti , the contact force to be exerted on Bi at ~pi, −~fci exerted on Ai at ~pi,

• µi, the friction coefficient, a positive scalar value.

Coulomb friction law postulates that if i is a resting contact (vni = 0) then

fni ≥ 0 ani ≥ 0 fni · ani = 0 (6.37)

and

• if ~vti 6= ~0 then the dynamic (sliding) friction is in effect at contact i and15

~fti = −µi · fni · ~vti/‖~vti‖. (6.38)

14These conditions are the well-known conditions (6.12), where mi = 1, Ai · ~λ + bi = ani .
15Note that ‖~fti‖ = µi · fni for a contact i with dynamic friction.

6.5. CONTACT 81

Figure 6.3: Illustration of Coulomb friction for a contact i. Magnitude of the tangential force ~fti

is restricted so that ‖~fti‖ ≤ µi · fni and hence the tip of the contact force ~fci = ~fni + ~fti exerted
on Bi at ~pi is restricted to lie inside or on the boundary of the friction cone. Force −~fci exerted
on Ai at ~pi and bodies Ai and Bi are not drawn. If µi = 0 then ~fti = ~0 and the problem reduces
to non-penetration illustrated at figure (6.2).

@
@

@
@@

�
�

�
��

6

~fni

66
~ni

s
~pi

--

~txi

�
�
�7

�
�
�7 ~tyi

PPPPP

µi · fni
�

���
~fti

�
�
�
�
�
�
�
�
���

~fci

• if ~vti = ~0 and ~ati = ~0 then the stable static (dry, rolling, sticking) friction is in effect at
contact i and

‖~fti‖ ≤ µi · fni . (6.39)

• if ~vti = ~0 and ~ati 6= ~0 then the instable static (dry, rolling, sticking) friction is in effect at
contact i and

‖~fti‖ = µi · fni
~fti · ~ati ≤ 0. (6.40)

We would like to express the conditions stipulated by the Coulomb law in the form of
acceleration-level constraints (6.17). Unfortunately this is not possible because ‖~fti‖ is a non-
linear function and so Coulomb law has to be approximated.

Contact force ~fci can be imagined as if its end-tip was restricted to lie inside an infinite cone
centered at the position of the contact, the axis was pointing in the direction of the surface normal
and the “width” was determined by µi. Coulomb law says that the contact force tip should lie
inside or on the boundary of the cone in the case of stable static friction, that the tip should lie
on the boundary of the cone and the direction of the contact force should oppose the direction
of the tangential acceleration in the case of instable static friction, and that the tip should lie
on the boundary of the cone and the contact force should act in the direction opposite to the
direction of the tangential velocity in the case of dynamic friction. By setting µi to zero, the
Coulomb friction law reduces to the known acceleration-level non-penetration constraint C̈i

p ≥ 0.
See figure (6.3) for illustration.

Note that stable and instable static friction must be handled altogether because ~fti affects
~ati . Therefore, given a contact i, we can tell whether there is a dynamic or static friction in effect
by inspecting ~vti = 0, but if it is static we can not tell if it is actually a stable or instable static
friction until all constraints are solved. Depending on whether static or dynamic friction is in
effect at contact i, different constraints will be effective due to i.

We will now present how dynamic friction and static friction can be approximated. The
approximation of the static friction we are going to present will replace the friction cone by a
four-sided friction pyramid whose sides are parallel to the tangential directions ~txi and ~tyi and
friction along ~txi will be handled independently on friction along ~tyi .

We will assume that the contact representation is augmented to hold µi and directions ~txi and
~tyi , henceforward called the friction approximation directions.

82 CHAPTER 6. CONSTRAINED RIGID BODY DYNAMICS

Dynamic Friction

The handling of dynamic friction according to the Coulomb law is hard, to say the least, [6]. It
is well known that there exist contact configurations where the Coulomb dynamic friction model
does not allow any valid solution (inconsistency) or allows multiple solutions with different effects
on the simulation in terms of the accelerational response (indeterminacy). It can be shown that
computing contact forces (if they exist), when dynamic friction is in effect, is NP-hard as shown
in [6], [5].

Suppose that all constraints are due to contacts i with dynamic friction and µi > 0. Then
~fci = ~fni + ~fti = fni ·~ni−µi · fni ·~vti/‖~vti‖ = fni · (~ni−µi ·~vti/‖~vti‖) = fni · ~ui and ~ui 6= ~ni is the
direction of the contact (constraint) force acting at ~pi. We could formulate the constraint due to
contact i in the form of non-penetration constraint C̈i

p ≥ 0, but this time the constraint force due
to the constraint would have to act in the direction of ~ui, not ~ni (the relative acceleration would
be measured along ~ni but the constraint force would act in the direction of ~ui). More formally,
let us define Ji(~d) as a 1 × n block matrix, where n is the number of bodies, and the non-zero
blocks are given by

Ji,Ai(~d) = (−~dT −(~rAi × ~d)T)

Ji,Bi(~d) = (~dT (~rBi × ~d)T) . (6.41)

Then, using the generalized notation, the non-penetration constraint with dynamic friction at
contact i could still be formulated as Ji(~ni) ·~a ≥ ci but, this time, the constraint force ~F i

c due to
the constraint would have to equal ~F i

c = Ji(~ui)T · λi, ~F i
c 6= Ji(~ni)T · λi (compare with (6.11) and

(6.12)). Let Jn denote a n×n block matrix whose block rows are given by Ji(~ni) and Ju denote
a n× n block matrix with block rows Ji(~ui). Then, following the derivation of acceleration-level
inequality constraints, we could again reduce the problem to a LCP, but matrix A would no
longer be symmetric. In fact, A = Jn ·M−1 · (Ju)T and specialized inefficient LCP solvers would
have to be used to compute ~λ. The trouble is that there might not be any valid solution to the
LCP and a polynomial time algorithm capable of solving this LCP can not exist unless P = NP ,
[6].

To overcome these problems, dynamic friction is often approximated either by external forces
(non-penetration constraints are imposed only) or by impulsive friction on the velocity level, [16].
We will now present the approximation by external forces, called the Lötstedt’s approximation,
[6].

The idea is very simple — instead of imposing friction constraints at the current time step,
acceleration-level non-penetration constraint C̈i

p ≥ 0 is imposed only, ~fti = −µi · fni · ~vti/‖~vti‖ is
approximated using the value of fni from the previous time step and ~fti exerted as an external
force. To simplify the matter and avoid the need for tracking contact correspondence between
time steps, we can instead let constraint solver compute fni = λi at the current time step (enforce
non-penetration without friction) and compute what ~fti should be at the next time step, using
the contact configuration and fni guess from the current time step, and apply ~fti “in advance”
(so that it would be automatically added to the force accumulators at the next time step).

Static Friction

Let us assume that we are going to model static friction at a contact i (~vti = ~0) and, for
illustration, the friction force is restricted to act along the direction of ~txi only16. We thus have

16This corresponds to the static friction model in R2.

6.5. CONTACT 83

only a single friction direction ~txi , ~fti = ~ftxi
= ftxi

·~txi , ‖~fti‖ = |ftxi
|, ~ati = ~atxi

= atxi
·~txi , ‖~ati‖ = |atxi

|,
~ati · ~fti = ftxi

·atxi
and the conditions due to the (stable and instable) static friction can be written

as

−µi · fni ≤ ftxi
≤ µi · fni

ftxi
= −µi · fni ⇒ atxi

≥ 0
ftxi

= µi · fni ⇒ atxi
≤ 0 (6.42)

−µi · fni < ftxi
< µi · fni ⇒ atxi

= 0.

We already know that ani = ∂2

∂t2
(~ni · (~pBi − ~pAi)) and fni is the Lagrange multiplier due to the

non-penetration constraint ani ≥ 0. Since atxi
= ∂2

∂t2
(~txi · (~pBi − ~pAi)) we would like to interpret

ftxi
as a multiplier due to a sort of atxi

= 0 constraint with appropriate constraint force limits. By
comparing (6.42) with equation (6.15), we see that the static friction conditions actually impose
an 1-DOF acceleration-level bounded-equality constraint atxi

= 0 with non-constant constraint
force limits given by ∓µi · fni . The conditions thus say that

• points ~pAi and ~pBi in the contact should not accelerate with respect to each other in the
direction of ~txi , that is atxi

= 0, but

• the constraint might break, if the magnitude of the tangential force required to enforce
atxi

= 0 had to exceed µi · fni .

Note that we are able to handle bounded-equality constraints with constant constraint force limits
only. However in the static friction case, the limits are a function of fni , the (unknown) magni-
tudes of the non-penetration forces. To handle static friction constraints in terms of bounded-
equality constraints (6.17), we have to guess fni so that the friction force limits could be estimated
and made constant. In the next section we will show how fni can be guessed, apart from taking
the values of fni from the previous time step. For now, we will assume that we are already
provided with the guesses of fni which we will denote f̂ni .

To clarify, if i is the index of a contact with static friction acting along ~txi only, ci(~d) = J̇i(~d)·~v,
where Ji(~d) is given by (6.41), and proceeding similarly to the derivation of (6.36), then the
contact constraints can be formulated as the following two 1-DOF constraints,

• ani = ∂2

∂t2
(~ni · (~pBi − ~pAi)) = Ji,Ai(~ni) ·~aAi + Ji,Bi(~ni) ·~aBi − ci(~ni) ≥ 0, where ~fni = fni · ~ni

is the corresponding constraint force, called the normal force, exerted positively on Bi and
negatively on Ai at ~pi and fni is the multiplier due to the normal constraint17,

• atxi
= ∂2

∂t2
(~txi · (~pBi − ~pAi)) = Ji,Ai(~t

x
i) · ~aAi + Ji,Bi(~t

x
i) · ~aBi − ci(~txi) = 0, where ~ftxi

= ftxi
· ~txi

is the corresponding constraint force, called the friction force, exerted positively on Bi and
negatively on Ai at ~pi, scalar ftxi

, −µi · f̂ni ≤ ftxi
≤ µi · f̂ni , is the multiplier due to the

friction constraint18 and f̂ni is the (constant) guess of fni .

To model friction along the tangential plane we incorporate an additional 1-DOF constraint
that restricts relative body acceleration along the second friction direction ~tyi at ~pi, modelled
exactly in the same way we modelled friction along the first friction direction ~txi , [22], [6]. Static
friction is thus approximated in the directions of ~txi and ~tyi and each direction is handled separately.

17Ji(~ni)
T · fni is the generalized constraint force exerted on the system due to the normal force constraint.

18Ji(~t
x
i)T · ftx

i
is the generalized constraint force exerted on the system due to the friction force constraint.

84 CHAPTER 6. CONSTRAINED RIGID BODY DYNAMICS

The following equation defines a 3-DOF bounded-equality constraint (6.17) due to contact i with
static friction and illustrates the technique

Ji,Ai =

 −~nT
i −(~rAi × ~ni)T

− ~txi
T −(~rAi × ~txi)T

− ~tyi
T −(~rAi × ~tyi)

T

 Ji,Bi =

 ~nT
i (~rBi × ~ni)T

~txi
T

(~rBi × ~txi)T

~tyi
T

(~rBi × ~tyi)
T

~ci = J̇i,Ai · ~vAi + J̇i,Bi · ~vBi (6.43)

~λlo
i = (0,−µi · f̂ni ,−µi · f̂ni)

~λhi
i = (+∞, µi · f̂ni , µi · f̂ni),

where f̂ni is a guess of fni = (~λi)1, ~ci can be computed like in (6.41), the first constraint DOF is
due to the non-penetration and the other two DOFs are due to the static friction along ~txi and
~tyi .

Handling Static Friction Constraints

We will treat constraint DOFs due to static friction as special, the other DOFs will be non-special,
and solve for ~λ due to all non-special DOFs first, ignoring the special DOFs. That way we obtain
the estimates of fni as the magnitudes of the normal forces valid with respect to the case when
there were no friction, which are in turn used to set and fix static friction force limits. Finally,
all non-special and special DOFs (with fixed limits) are handled and the global ~λ obtained, [22].

Luckily, this can be incorporated directly into the Dantzig LCP solver we outlined in section
(6.2.5) — all constraints will be conceptually broken down to 1-DOF constraints and ordered so
that the non-special DOFs would come before the special DOFs. If there are p non-special DOFs
and q special DOFs, we will take the first p iterations to compute ~λ valid with respect to the
non-special DOFs only, get the estimates of fni , fix the limits of the special DOFs and take the
last q iterations to compute ~λ valid with respect to both the non-special and special DOFs (with
fixed limits).

6.5.4 Contact Impulses

The purpose of contact impulses is to model collisions with impulsive friction defined in [16]. The
most of the material described in this section can be treated as a velocity-level formulation of
the material from the previous section and so we will proceed quickly.

Let us assume that we have a position-level non-penetration constraint Ci
p ≥ 0 at contact i

defined as in (6.35). If Ci
p = 0 and Ċi

p < 0, the bodies Ai and Bi hit each other and a collision
(impact) occurs. Non-penetration constraint at i merely requires that Ċi

p ≥ 0 so that penetration
would be avoided. What we would like to do is to define a different velocity-level constraint that
would make the bodies bounce off, eventually accounting for friction that would act over the
period of the collision in the real-world physics. For the purposes of further discussion we will
assume that Ċi

p < 0.

Frictionless Collisions

To model collisions without friction we use a simple empirical law, called the Newton Collision
Law, which says that the relative body velocity vni at contact i along the surface normal ~ni

should be opposed and its magnitude scaled by 0 ≤ εi ≤ 1 when the collision occurs, that is,

v+
ni

= −εi · v−ni
,

6.5. CONTACT 85

where v+
ni

is the value of vni (relative body velocity along ~ni at ~pi) after the collision is resolved,
v−ni

is the value before the collision is resolved and εi is called the coefficient of restitution. Setting
εi = 1 would model a perfectly elastic collision while εi = 0 would make the bodies not to bounce
at all, [13].

Since Ċi
p is the relative body velocity at contact i, Ċi

p = vni , the collision law can be imple-
mented by the velocity-level constraint

Ċi
p = vni = Ji,Ai(~ni) · ~vAi + Ji,Bi(~ni) · ~vBi ≥ −εi · v−ni

. (6.44)

Note that we have to use a greater-or-equal formulation of the constraint, because there might
be other impulses, say due to other collisions, acting on Bi that should not be cancelled.

Collisions With Impulsive Friction

To model collisions with friction we would like to (in addition to the collision constraint (6.44))
constrain vtxi

to zero but allow the constraint to break if the magnitude of the impulsive constraint
force due to the constraint had to exceed µi · fni , where fni was the magnitude of the impulsive
normal force due to the collision constraint, and do the same for vtyi

.

If f• and ~f• denote the impulsive quantities analogous to the force quantities f• and ~f• from
the previous section, then the velocity-level constraints we would like to model are given by

fni ≥ 0 vni ≥ −εi · v−ni
fni · vni = 0

~vti = ~0 ⇒ ‖~fti‖ ≤ µi · fni

~vti 6= ~0 ⇒ ‖~fti‖ = µi · fni ∧ ~fti · ~vti ≤ 0. (6.45)

We would like to approximate these equations analogously to the static friction case so that
the static friction’s algorithm could be reused (this time we would relate constraint impulses to
velocities instead of constraint forces to accelerations, though).

By following the derivation of (6.43) we get the formulation of the constraints we are looking
for, in the form of a 3-DOF velocity-level bounded-equality constraint (6.26),

Ji,Ai =

 −~nT
i −(~rAi × ~ni)T

− ~txi
T −(~rAi × ~txi)T

− ~tyi
T −(~rAi × ~tyi)

T

 Ji,Bi =

 ~nT
i (~rBi × ~ni)T

~txi
T

(~rBi × ~txi)T

~tyi
T

(~rBi × ~tyi)
T

~ci = (−εi · v−ni

, 0, 0) (6.46)
~λlo

i = (0,−µi · f̂ni ,−µi · f̂ni)
~λhi

i = (+∞, µi · f̂ni , µi · f̂ni),

where f̂ni is a guess of fni = (~λi)1, the first constraint DOF is due to the collision (impact) and
the other two DOFs are due to the impulsive friction along ~txi and ~tyi directions and are special.

Impulsive friction with other velocity-level constraints is handled analogously to the acceleration-
level case of static friction with other acceleration-level constraints. All constraints are again
reduced to a LCP, the constraint rows due to the non-special DOFs are solved first, the values
of f̂ni are obtained and impulsive friction limits are set. Finally, all constraint rows due to the
non-special and special DOFs are solved.

86 CHAPTER 6. CONSTRAINED RIGID BODY DYNAMICS

6.6 Soft Constraints

Constraints that we handled so far were all considered “hard” and it was not desirable to let
them break. Constraint stabilization was incorporated in order to ensure that constraint error,
introduced into the simulation mostly as a result of integration error, could be corrected. On
the other side, one might want to implement “soft” constraints designed not to be maintained
exactly. For example articulated figure’s joints can be “programmed” to follow desired angles
(kinematic animation), but it might be desirable to violate the joint angle constraints when the
figure’s arm hits an obstacle in the environment or the arm is being pulled. The other reason for
incorporating soft constraints is the need for handling singular systems, where hard constraints
might be infeasible or redundant. We will now describe how soft constraints, defined according to
[22], can be handled by the simulator. The problem will be discussed for the case of acceleration-
level equality constraints, but the exactly same approach can be used to implement soft inequality
or bounded-equality constraints on the acceleration or velocity levels.

Let us assume that we have an mi-DOF acceleration-level equality constraint i defined as in
equation (6.4), Ji · ~a = ~ci. Equation (Ji · ~a − ~ci)j measures the current constraint error at the
j-th constraint DOF (1 ≤ j ≤ mi) and if the constraint is meant to be hard, (Ji · ~a − ~ci)j must
be kept at zero, which is expressed by conditions (6.10) on ~λi multipliers due to the constraint.
The corresponding soft constraint will be defined and implemented as follows.

Each constraint DOF j will have associated a “constraint softness” constant, a positive scalar
value, that will indicate how much soft the given DOF is (zero softness will indicate that the
constraint DOF is absolutely hard). Constraint softness constants will be concatenated to mi-
vector ~si so that (~si)j will define the softness of the j-th DOF. The value of (~si)j will instruct
the constraint solver to gain an error at the j-th DOF that equals exactly (~si)j · (~λ∗i)j , where
~λ∗i is the vector of Lagrange multipliers due to the original Ji · ~a = ~ci constraint. Therefore, it
is requested that (Ji · ~a− ~ci)j = (~si)j · (~λ∗i)j , the original hard constraint is replaced by another
hard constraint Ji · ~a = ~ci + ~si · E · ~λ∗i and so the original constraint is enforced with an error
~si ·E · ~λ∗i (“proportional to the softness constant times the restoring force magnitude due to the
original constraint”, if mi was 1).

In the practice, however, the soft constraint due to (6.4) with softness vector ~si is implemented
by the following hard constraint

Ji,Ai · ~aAi + Ji,Bi · ~aBi = ~ci + ~si · E · ~λi, (6.47)

where ~λi is the vector of Lagrange multipliers due to this constraint. Vector ~λ∗i is thus approxi-
mated by ~λi.

We are now interested in how softness constants affect the matrix A and vector ~b from (6.8)
so that we could compute ~λ and obtain the constraint force to be exerted on the system. Further
on, we will use the notation from section (6.1.2).

Formulation

If we have c equality constraints with softness constants ~si, 1 ≤ i ≤ c, concatenated to a
block vector ~s, ~s = (~s1, . . . , ~sc), m =

∑c
i=1 mi is the total number of DOFs removed by the

constraints, S is an m ×m matrix with the values of the vector ~s components on the diagonal
and zeroes elsewhere, ~c = (~c1, . . . ,~cc) and ~λ = (~λ1, . . . , ~λc), then we can express the constraints
as J · ~a = ~c + ~s · E · ~λ. Following the derivation scheme of (6.8) we get

A = J ·M−1 · JT + S ~b = J ·M−1 · ~Ftotal − ~c, (6.48)

6.6. SOFT CONSTRAINTS 87

which should be considered as an equivalent of (6.8) — the only difference is that ~s is added to
the diagonal of the original matrix A. Obviously the same derivation procedure could be repeated
for bounded-equality acceleration-level or velocity-level constraints and hence all we know about
hard constraints transfers to the area of soft constraints. To implement soft constraints, we only
have to add ~s to the diagonal of the original matrix A.

Therefore, if we have a hard mi-DOF constraint i formulated as (6.4), (6.11), (6.13), (6.16)
or (6.26) and ~si is a vector of constraint DOF softness constants, then the corresponding soft
constraint is defined and implemented by the same hard constraint whose right-hand side vector
~ci or ~ki is extended to include the ~si ·E ·~λi term, which has the effect of adding ~si to the diagonal
of Ai,i due to the original hard constraint. Hard constraints i can be seen as soft constraints i
with ~si = ~0.

By rearranging (6.48), soft constraints can also be formulated in terms of an always sparse
matrix H from (6.9), in the form of

H =
(

M −JT

−J S

)
H ·

(
~y
~λ

)
+
(~0
−~b

)
= ~0, (6.49)

which should be considered as an equivalent of (6.9).

Discussion

For an illustration let us assume that we have a position-level constraint ~Cp = ~0 that constrains
points ~pAi and ~pBi on body Ai and Bi to occupy the same world-space position (~Cp = ~pAi −
~pBi = ~0) that we are going to implement on the velocity level. Velocity-level constraint softness
constants ~si = (si, si, si) together with the Baumgarte stabilization constant αi can be used
to implement springy behavior. The softness constants determine how much the velocity-level
constraint can be violated (which results in the gain of position-level error), while the stabilization
constant determines how strongly will position-level error be reduced, αi can be interpreted as a
first-order spring gain constant and 1/si as a spring damping constant, [22]. It is advantageous
to treat the stabilization and softness constants as proportional to the frame rate.

Note that soft constraints should not be confused with penalty forces. Penalty forces, pre-
sented in section (3.4), use the techniques of local optimization to attract system state towards a
state with less energy (error), the computed forces compete with other external forces and their
effects are hard to predict. Contrary, soft constraints are implemented by “modified” hard con-
straints, the results are predictable and guaranteed. Let us stress that the problem of handling
soft constraints defined in this way is not an optimization problem.

It follows from (6.48) that soft constraints can stabilize the simulation when the original
matrix A is nearly singular (or singular when the original constraints are infeasible or redundant),
because non-zero elements are added to the diagonal. This can help to factorize A (or get rid of
the singularity). Therefore, as a rule, no constraints should be absolutely hard, if only to improve
the simulation stability and avoid infeasible constraints. This is important to keep in mind when
imposing non-penetration and friction constraints due to contacts, because collision detection
might report redundant or “bogus” contacts.

88 CHAPTER 6. CONSTRAINED RIGID BODY DYNAMICS

Chapter 7

Simulator

This chapter is devoted to a brief description of concept abstractions in the simulator and an
overview of the simulator implementation — the goal is to provide the reader with a global view
of the simulator but not to pursue the implementation details. The details are nicely documented
in the Reference Guide, that comes with this thesis. We will also attempt to avoid the repetition
of various topics already discussed in the previous chapters where appropriate (such as notes on
computational/numerical issues), because the discussions can be found there, as well as in the
Reference Guide.

The simulator implementation is more or less based on the notes from the previous chapters,
but as one could expect, many concepts have to be implemented in a more sophisticated way
and smart algorithms have to be used in order to achieve an interactive performance (yet the
notes should be sufficient to implement a functional simulator). Although these aspects can be
characterized as “implementation details”, insignificant from the point of the rigid body dynam-
ics theory, this is what makes the implementation quite involved and distinguishes a practical
simulator from a toy. Certain implementation tricks were adopted from [22].

For example, conditions on ~λ multipliers due to constraints were formulated in terms of dense
matrix A from equation (6.8), but equation (6.9) needs be exploited in the practice. As another
example, all bodies were simulated in terms of a single equation of motion, but it might be
desirable to partition bodies to distinct simulation groups so that each group could be handled
separately (so that when a particular group was being advanced the other groups could remain
idle and would not have to be updated). For example, its ODE might be integrated with a
different time step, using a different integration method or precision. If all bodies in the group
are “at rest”, the simulation group could be skipped while advancing the simulation state, which
could significantly decrease the processing time when handling complex scenes, etc.

We will now present the main simulator components, outline the way the components collab-
orate and describe the improvements over the notes from previous chapters, noting that details
can be found in the Reference Guide.

7.1 Overview

The rigid body simulation is represented by Simulator class that maintains a list of registered
bodies, their separation to disjoint simulation groups simulated in terms of their own equations of
motion and a list of force objects representing explicit interactions among bodies. The idea is to
keep bodies that might influence each other in a common simulation group while bodies that can
not influence each other in distinct groups so that the groups could be simulated independently

89

90 CHAPTER 7. SIMULATOR

on each other.
As a matter of fact, simulation groups consisting of idle bodies need not be simulated at all,

and most of the simulation work can be performed locally within a simulation group, exploiting
spatial coherence, and thus decreasing the computational cost. For example when a penetration
is detected and the ODE solver has to rollback the simulation state, it can do so without affecting
bodies from other simulation groups. Also, since many algorithms do not run in the linear time
with respect to the number of bodies or constraints to be handled, the separation to simulation
groups is really advantageous (the total cost is smaller than the cost of the same work performed
straight on all bodies). On the other side, bodies that did not influence each other in the past
can begin to influence each other at a later time and the simulator must be able to detect when
this is going to happen and merge the corresponding simulation groups (ie. two cars can be
simulated independently until they crash into each other — the collision must be handled in the
context of a common simulation group). Therefore the separation to simulation groups must be
dynamic and under a condition that the simulation effects are (more or less) the same as if the
bodies were all simulated within a single simulation group.

Since the only way to influence a rigid body state is to exert a force or an impulse on the
corresponding body, the simulator keeps track of what forces (impulses) might be exerted so that
it could partition bodies to simulation groups appropriately. The contributions are represented by
ForceObject instances that are queried by the simulator to describe what rigid bodies the force
object might act or depend on and provide functions to exert the represented force (impulse)
on the affected bodies, updating their force and torque accumulators. There are global forces
(such as gravity) that can potentially act on all bodies, where the force exerted on a body does
not depend on the state of another body, and general n-ary forces, that can act or depend on
an a priori known set of bodies only. A particular n-ary force is always assigned to a certain
simulation group and the simulator ensures that all bodies the force object acts or depends on
belong to the same simulation group, which the force object is assigned to. Rigid body constraints
pursued in the previous chapter, in the simulator jargon called the joints, are a special kind of
binary forces, abstracted by Joint class. Non-penetration and contact constraints are handled
by the simulator automatically, with the help of collision detection. For performance reasons,
bodies with overlapping geometry hulls are always simulated together, regardless of whether they
already contact or not.

Rigid bodies are simulated in terms of (5.18) and are represented by RigidBody instances.
The instances store the rigid body states (5.17), their mass properties, collision geometries at-
tached to the bodies, force and torque accumulators (the force objects contribute to) and provide
various functions to be used by the simulation group’s ODE solver (get state, set state, eval-
uate derivative) and force objects (apply force). In order to support complex scenes, the
simulator distinguishes among enabled bodies, that respond to forces and impulses, disabled bod-
ies, that currently do not respond to forces nor impulses but can be enabled upon a request,
and fixed bodies, that are permanently disabled and serve the purpose of the static geometry.
In addition, bodies that have been at rest1 for a certain amount of time are classified idle (an
idle indicator is turned on) and the simulation group is no longer simulated if it consists of idle
bodies until the group is merged to another group. This is an aggressive optimization based on
the assumption that if all bodies (within the group) are idle then the forces that act upon them
must be at an equilibrium which can not break until another force begins to act2.

The actual simulation work is performed by the instances of Simulator::SimulationGroup

1Their linear and angular velocities and force and torque accumulators did not exceed a preset limit.
2This can not happen until a different simulation group is merged to this group.

7.2. CHARACTERISTICS 91

that represent and simulate individual simulation groups. Simulation groups maintain lists of
bodies and force objects belonging to the corresponding groups and have their own ODE solvers
that govern the motion of the bodies in the group. Simulator instance “merely” registers rigid
bodies, force objects and simulation groups and coordinates the simulation — partitions bodies
to simulation groups, advances individual groups, merges groups as needed, etc.

7.2 Characteristics

We have implemented an extensible general purpose constrained rigid body dynamics simulator
(the simulator library), designed according to the approach discussed by this thesis and capable of
handling very different kinds of simulations, ranging from the simulation of mere non-penetrating
bodies to the simulation of various kinds of vehicles, highly articulated structures or human-like
figures.

Apart from the simulator library we have also implemented the figure library, suitable for the
animation of articulated human-like figures, the test library, and the demonstration application.
These libraries will be described later.

We chose C++ as the implementation language due to the high availability of optimizing
compilers capable of producing tight and efficient code, yet allowing for a high-level of code
abstraction. The simulator is written literally from the ground up and does not use any third-
party library, except for the standard C++ library (the test library and the demo application,
separated from the simulator, require Microsoft Platform SDK to compile and Windows 95 or
better to run). As a development environment we chose Microsoft Visual C++, version 6.03 or
later, but port to a different compiler should be trivial.

Although similar systems exists, they are often commercial, the source code is not publicly
available and little is known of the technology used. Open source systems often suffer from the
quality of implementation or the source code is not readable, maintainable or easy to extend.
Contrary, in our implementation, an extra care is paid to the abstraction of concepts, extensibility,
readability and maintainability of the source code as well as the quality of implementation and
the source code documentation.

The simulator currently implements the following major features:

• Constrained rigid body dynamics, equations of motion expressed in terms of “maximal
coordinates” approach.

• Global constraint solver. Support for equality, inequality and bounded equality constraints.
Lagrange multiplier based analytical solvers. Baraff’s linear time dynamics method. Re-
duction to LCP.

• Generic infrastructure for solving ODEs. Support for higher order integration methods.

• Simulation groups.

• Support for multiple contacts with friction. Various friction models.

• Adaptive time stepping, rollback on body inter-penetration.

• Collision geometries defined as volumes.

• Self-tests.
3STLPort, an alternative implementation of the standard C++ library, has to be used in the case of MSVC 6.0.

92 CHAPTER 7. SIMULATOR

To run the demo application, the following minimum hardware and software requirements have
to be met. However, as seen from the present day perspective, the requirements seem to be
somewhat insignificant. The most of the demo and test scenes provided with the simulator run
moderately on the following configuration:

• A Pentium class processor, 24 Mb of main computer memory.

• An OpenGL 1.1 accelerated graphics card, 2 Mb of video memory.

• Windows 954 or Windows NT 4.0.

7.3 Components

The source code of the rigid body simulator is organized into several functional, mostly indepen-
dent, libraries. Each library performs a specific piece of work, which we are going to characterize
now.

7.3.1 Algebra

Algebra library provides classes that abstract floating point math, represent matrices, vectors,
quaternions, orientations and affine transformations, define standard operations on these struc-
tures and represent and implement other linear algebra concepts and algorithms. The used theory
is mostly based on the work of [14], [1] and [9].

One of the simulator goals is to be able to operate in various floating point math precision
modes. Algebra classes are therefore implemented as template classes, parametrized by the
floating point type to be used to represent real numbers. Template class MathLib, specialized
for the supported floating point types, implement the elementary math functions in terms of the
generic interface that is used by other classes to perform the math.

Template class Matrix implements matrices with static or dynamic dimensions and provides
classes that represent views to bound matrices (matrix slices). Matrix views allow to formulate
many algorithms in a readable way (elements of the matrix view/slice are indexed instead of the
elements of the original matrix) and provide an optimization opportunity for the compiler. The
implementation of the matrix and the corresponding view classes is specialized and optimized
for the most commonly used cases, which allows to use the same generic interface in different
contexts without risking a performance loss5.

Counter-clockwise orientations (rotations) in three dimensional space are abstracted by Ori-
entation class that internally uses rotation quaternions to represent orientations but also accepts
and provides functions to convert between the following orientation representations — Euler an-
gles in the order Z −X −Y , rotation matrix, axis & angle pair, rotation quaternion. Coordinate
axes are oriented so that the X axis points to the right, Y axis points forward, Z axis upwards.
In the case of world space axes, the X axis points to the east, Y axis points to the north, Z axis
points upwards.

Factorization classes LDLTFactorization and CholeskyFactorization are also an impor-
tant part of the Algebra library. They implement efficient algorithms for the factorization
of symmetric (LDLTFactorization) and positive-definite matrices (CholeskyFactorization)
and provide modified versions of the standard algorithms that allow to refactor only a portion

4Windows NT-compatible command line shell is required for the parsing of the demo batch files.
5When the simulator is compiled under release mode, certain classes are implemented even more aggressively

which allows for improved performance.

7.3. COMPONENTS 93

of the corresponding matrix, when a row and a column is added to or removed from the matrix.
The factorization classes are used to implement the internals of constraint and LCP solvers.

7.3.2 Geometry

Geometry library abstracts collision geometries and supports and implements collision detection
according to [10] and [22]. Collision geometries are represented by CollisionGeometry super-
class providing access to the collision geometry’s geometry hull (an axes aligned bounding box),
an infrastructure for attaching geometries to parent geometries and rigid bodies and mapping
of the local collision geometry spaces, the geometries are defined at, to the parent spaces (local
spaces of the parent geometries or the world space). This allows to create geometry hierarchies
and compose complex collision geometries from more primitive geometries. The library han-
dles the following geometry types and implements classes to perform low-level collision detection
among these types,

• Convex polyhedra

Convex polyhedra are volumes defined as the intersection of a set of half-spaces determined
by their boundary planes. Convex polyhedra are represented by the instances of Polytope
class, which store the boundary planes and other related information distilled from the
polytope definitions, such as lists of polytope faces, edges and vertices together with the
topology information, utilized by the collision detection code.

• Spheres

Spheres are defined as volumes with centers ~c and radii r that are parametrized by points
~p, where ‖~p− ~r‖ ≤ r. They are represented by the instances of Sphere class.

• Capped cylinders

Capped cylinders are volumes defined by two end points ~a and ~b and radii r, parametrized
by points ~p so that dist(~p,

−→
ab) ≤ r, where dist(~p,

−→
ab) denotes the distance of point ~p from

line −→ab. Capped cylinders are usual cylinders with radii r and their principal axes pointing
along the directions of −→ab with the addition of two sphere “caps” at their end points.
Capped cylinders can be seen as volumes swept by spheres with radii r when they are
translated from ~a to ~b along straight lines. Capped cylinders are represented by instances
of CappedCylinder class.

• Spaces

Spaces are containers for other geometry types. They represent volumes corresponding to
the unions of the (appropriately transformed) owned geometries and are implemented by
Space class.

CollisionDetection class manages collision geometries and implements higher-level and
lower-level collision detection. Higher-level collision detection operates upon geometry hulls of
collision geometries attached to rigid bodies and utilizes the sort and sweep algorithm to deter-
mine all overlapping geometry hull pairs. Geometry hulls are represented by bounding boxes
with their sides aligned with the world space axes.

Lower-level collision detection invokes geometry type pair specific algorithms, encapsulated
by the subclasses of CollisionDetection::Collider class, that test for penetration and compute
contacts if the tested geometries do not penetrate. Collider classes often rely on the fact that con-
tacts need not be computed on penetrations (in fact it would be hard to define what the contacts
should be if geometries already penetrated), which allows to use more efficient algorithms.

94 CHAPTER 7. SIMULATOR

7.3.3 Differential Equation Solver

Differential Equation Solver library implements ODE solvers according to the outline from
section (2.3) and provides some extensions required by the simulator to handle multiple simulation
groups that are governed by their own ODEs. ODE solvers are abstracted by DifferentialE-
quationSolver superclass that provides the interface towards the ODE solver user, which is the
Simulator. The ODE problems to be solved are represented by the instances of DifferentialE-
quationSolver::Problem class providing the interface towards the ODE solver.

The implementation of ODE solvers is logically separated to the solver method specific parts
that implement the logic of taking steps (make step function implemented by DifferentialE-
quationSolver subclasses) and the solver neutral parts that implement the logic of advancing
system states to desired times in terms of make step function, incorporating the bisection al-
gorithm (advance function implemented by DifferentialEquationSolver superclass). Fixed
time stepping as well as adaptive time stepping variants of Euler, Midpoint and Runge-Kutta
solvers are currently implemented.

As we said many times, the simulation loop is “hidden” by the logic of the ODE solver that
is used to solve the equations of motion. If all bodies were simulated in terms of a single ODE
(single simulation group), one would simply invoke advance and the ODE solver would attempt
to advance the state to the desired time, avoiding invalid states (penetrations) by rolling system
states back when necessary and running the bisection algorithm to locate latest valid states.

In the case of multiple simulation groups we have to proceed a little differently. Since each
group has its own equations of motion and an own ODE solver, we have to advance multiple
ODEs, updating one ODE at a time6, while ensuring that all ODEs will end up at the same
time when done. For example if we have n simulation groups denoted Gi, 1 ≤ i ≤ n, update the
groups in the order determined by their indices, starting with G1, and group Gi fails to advance
from time t to tdesired for a certain reason, then groups Gj , 1 ≤ j < i, already advanced to tdesired

and groups Gj , i < j, have not advanced yet and reside at time t, then we have to roll groups
Gj , 1 ≤ j ≤ i back to t so that all groups will end up at the same time t. This shows that the
advancing of individual simulation groups must be coordinated.

To support the handling of multiple ODEs, DifferentialEquationSolver allows to advance
the ODE state within the context of a transaction (function transacted advance). The trans-
action aborts and the system state rolls back to the state prior the issuing of the transaction if
the ODE solver fails to advance to the desired time or the transaction is aborted explicitly. If the
solver advances to the desired time, the ODE solver asks the problem instance for a permission
to commit, which can be either granted or dismissed. The transaction then either commits or
aborts. This mechanism can be used to implement the processing of chained transactions, where
the previous transaction waits for the completion of the next transaction in order to commit. We
will show in the next section how transactions are used to advance the whole simulation state.

There is nothing special about the implementation of ODE solvers except for the management
of system states and their derivatives which is optimized to minimize system state transfers be-
tween the ODE solver and the problem instance and the evaluations of state derivatives (functions
get state, set state, evaluate derivative).

6An attempt to update all simulation groups altogether, synchronizing the time step, would compromise all
benefits of multiple simulation groups.

7.3. COMPONENTS 95

7.3.4 Simulation

Simulation library abstracts rigid bodies, mass properties of rigid bodies, forces, joints, simu-
lation groups and uses other components to implement the “simulator”. Section (7.1) presents
the most important classes and the simulator implementation overview. We already know that
simulation groups have their own ODE solvers that simulate the particular groups and that the
individual solvers must be coordinated in order to produce correct results. We will now focus at
the description of this coordination.

Simulator must ensure that bodies that might be influenced by a force or an impulse depending
on the state of another body belong to the simulation group of that body. Since forces and
impulses are abstracted by force objects, simulator can query these objects to correctly separate
bodies to simulation groups. Whenever a new force object is registered or the set of bodies the
force object acts or depends on changes, the simulator is notified so that its simulation groups
can be merged as required. Global forces, affecting bodies independently on each other, are
stored in an auxiliary simulation group of global forces while n-ary forces acting or depending on
(affecting) an a priori known set of bodies are assigned to the simulation groups of the affected
bodies, called the force object targets.

Advancing Simulator

Simulator’s advance function is responsible for advancing the whole simulation state to a desired
time, advancing and coordinating the individual ODE solvers due to simulation groups. Its work
consists of the following steps, which we will describe momentarily,

• Distribute rigid bodies to simulation groups, restart the simulation group’s ODE solvers.

– Ensure that collision geometries are up-to-date with respect to the current rigid body
states, update collision geometries where needed and update collision detection struc-
tures to reflect the current geometry state.
The simulator requires rigid bodies with overlapping geometry hulls to be simulated
within a common simulation group and so the geometries must be updated before sim-
ulation groups are advanced in order to obey this requirement. If collision geometries
are actually updated at this step, new overlaps might be detected, producing requests
to merge simulation groups.
Unless there are simulation groups whose ODE solvers must be restarted, collision
geometries are up-to-date already and no work has to be done.

– Merge simulation groups due to group membership constraints.
These constraints already hold and simulation groups need not be merged unless there
are pending requests to merge groups due to geometry hull overlaps detected at the
previous step or due to the change of force object targets.

– Restart individual ODE solvers where requested.
A simulation group’s ODE solver must be restarted (function restart called) whenever
the group’s ODE state changes explicitly (which happens when a new body is added
to or removed from the group or a body’s state is modified, for example) so that the
solver can start from the new initial state.

• Advance individual simulation groups.

96 CHAPTER 7. SIMULATOR

Simulation groups are advanced in contexts of chained transactions, where each transaction
advances a corresponding simulation group to a desired time. If we have n simulation
groups denoted G1, . . . , Gn then there are n chained transactions, where the i-th transaction
advances Gi, the first transaction is triggered by the simulator and the j-th transaction
(j ≥ 2) by the (j − 1)-th transaction.

The chaining of transactions works as follows. The simulator triggers the first transaction
to advance G1 (while advancing G1 the other simulation groups are not updated). If G1

reaches the desired time, then the second transaction is triggered to advance G2 and the
first transaction waits for the second transaction to complete. If the second transaction
commits then the first transaction must commit too and if the second transaction aborts
then the first transaction must abort. The same rule applies to the i-th and the (i + 1)-th
transactions (the (i+1)-th transaction is triggered by the i-th transaction when Gi reaches
the desired time, the i-th transaction commits or aborts depending on the completion status
of the (i + 1)-th transaction). As a result, either all transactions 1, . . . , n commit if all Gi

reach the desired time or transactions 1 ≤ j ≤ i abort if Gi fails to advance.

The transactional processing is required in order to ensure consistency and do proper individ-
ual rollbacks when certain ODE solver (due to Gi) can not advance to the desired time. It remains
to show why transaction i can ever fail (besides the obvious reasons, such as numerical problems
when penetration can not be avoided, for example). The reason is the need for simulation group
merging. Although force object targets can not change while advancing the simulation, new
geometry hull overlaps (and contacts) might emerge which requires the simulator to simulate the
corresponding bodies within a common group in order to produce consistent results.

To illustrate the problem, let us assume that we have two bodies A and B , so that the first
body belongs to G1 and the second body to G2 and the corresponding geometry hulls do not
overlap at time t. Now let us advance the simulation state. G1 is advanced first and while
advancing G1, it can happen that the geometry hull of A will overlap the hull of B . The trouble
is that when the overlap is detected, at time tcur 6= t, the geometry hull of A is valid with respect
to time tcur but the geometry hull of B is valid with respect to t, because G2 was not updated
yet. Even if we could merge the corresponding simulation groups straight in the middle of the
transaction so that we could handle the overlap (which we can not), potential contacts would
be inconsistent because they would be computed with respect to geometry states at different
times — hence the inconsistency. The (chained) transaction is thus aborted, the simulation state
restored to the state at time t, bodies merged to a common simulation group and the transaction
rerun.

Advancing Simulation Group

Simulation groups maintain lists of rigid bodies and force objects assigned to them so that
they could build the ODE that determines the evolution of the group in time and compute the
equation right-hand side (evaluate ODE state derivative) upon the request of the ODE solver
that is specific to the simulation group. A particular simulation group is then advanced in terms
of its ODE. We will now outline the steps taken by evaluate derivative,

• Collision detection is performed

Higher-level collision detection runs and the list of overlapping geometry hulls is updated.
New geometry hull overlaps among bodies from different simulation groups indicate that
the transaction should abort and bodies involved in the overlaps merged to common groups
(the evaluation of the ODE state derivative ends with a request to abort the transaction).

7.3. COMPONENTS 97

Lower-level collision detection involving bodies in the simulation group is performed. Pen-
etrations indicate that the current state is invalid and the ODE solver should rollback
and locate the latest valid state (the evaluation of the ODE state derivative ends with
an indication that the current state is invalid). Otherwise, contacts among bodies in the
simulation group are computed and temporary contact joints, represented by the instances
of classContactJoint, created to handle contact.

• External forces and torques are computed

Force and torque accumulators of the bodies in the group are cleared, the list of force objects
assigned to the simulation group and the list of global forces traversed to accumulate the
force and torque contributions.

If we are in the middle of an ODE step (the derivative is evaluated for an intermediate
state), impulses are ignored.

• Constraints are processed

Dynamics constraints represented by the instances of Joint class assigned to this simulation
group (including the implicit joints due to contacts) are traversed to determine what con-
straints are to be maintained on the velocity and acceleration levels and constraint impulses
and forces are computed and applied.

Non-penetration is enforced by stopping bodies at critical contacts. Contact joints are
finally removed.

• The equation right-hand side is returned

Force and torque accumulators and the rigid body states are used to fill the right-hand
sides of (5.18) due to individual bodies in the group.

If impulses were applied at this invocation of the function, the ODE solver is notified that
the ODE state has changed.

7.3.5 Constraint Solver

Constraints on the acceleration and velocity levels are represented by a special kind of binary
forces called joints (instances of Joint class). Joints provide functions to describe the constraints
in the form of (6.17) and (6.26) and their corresponding soft variants. Constraint solver traverses
the list of joints and invokes these functions to retrieve the velocity level or acceleration level
formulations of the constraints, described in terms of the instances of Joint::BasicInformation
(providing the information on the constraint DOFs, the dimensionality mi of the constraint) and
Joint::ExtendedInformation (providing the values of the Jacobian blocks Ji,Ai and Ji,Bi ,
constraint right-hand side vector ~ci or ~ki, Lagrange multiplier limits ~λlo

i and ~λhi
i and softness

constants ~si). The formulations are in turn used to develop conditions on the multipliers ~λ,
the multipliers are computed and constraint force (impulse) exerted on the bodies in the group.
Velocity level constraints are solved first, yielding a change of the ODE state. Acceleration level
constraints are then computed with respect to the new ODE state. We will now describe this
process more thoroughly.

There are some differences from the outline we have just presented. First, bodies in the
simulation group are further partitioned to so called islands defined as the groups of bodies
(subsets of the bodies in the simulation group) that are currently connected by a joint, [22]. If
we have two islands A and B , then the constraint force due to constraints in the island A can not

98 CHAPTER 7. SIMULATOR

depend on the constraints in the island B , because the islands are not connected by a joint. Hence
constraints can be processed by islands, handling each island independently on each other (this
reduces the computational cost). Each simulation group maintains a body-joint graph (bodies
are the vertices and joints are the edges connecting the bodies affected by the particular joint)
whose components correspond to the islands. Second, the instances of Joint::BasicInformation
provide information on the types of Lagrange multiplier limits, which allows to determine in
advance whether all constraint rows are unbounded equalities, for example.

Constraints in the simulation group are handled as follows. Body-joint graph is traversed,
its components (islands) identified and bodies and constraints indexed, yielding the indices of
bodies and constraints in the corresponding islands (these indices determine the layout of matrix
J due to the bodies and constraints in the island, the layout of ~Ftotal, etc). Whenever an island is
found, velocity-level constraint solver is invoked to solve velocity-level constraints in the island (if
the current state is not intermediate), followed by the invocation of acceleration-level constraint
solver to solve acceleration-level constraints.

Currently, we implement two analytical constraint solvers — LagrangeMultiplierSolver
and FastLagrangeMultiplierSolver. Since the implementation of acceleration-level and velocity-
level constraint solvers is similar (ie. forces vs. impulses and total external forces vs. momen-
tums), we abstract the differences by appropriate traits classes and implement the relevant code
as templates.

LagrangeMultiplierSolver solves constraints in terms of dense matrix A from (6.8) and its
implementation strictly follows the notes from chapter 6 to reduce the problem to LCP. Dantzig
LCP solver outlined in section (6.2.5) is used to solve the LCP, sparsity of matrix J is exploited
to build A and ~b efficiently. The algorithm requires O(n2) time to formulate the LCP for n
constraints and an extra time to solve the LCP.

FastLagrangeMultiplierSolver is the implementation of the algorithm from [9]. The solver
distinguishes between two kinds of constraints. Primary constraints are those pure equality
constraints7 that do not cause cycles in the body-joint graph. Auxiliary constraints are the
remaining constraints (equality constraints, that yield a cycle in the graph, bounded equality
constraints and inequality constraints). The goal is to solve primary constraints in the linear
time and combine the results with auxiliary constraints. Auxiliary constraints are solved by a
reduction to LCP that “anticipates” the response of the primary constraints to constraint force
due to auxiliary constraints (auxiliary constraint force is computed so that when it is combined
with the constraint force due to primary constraints, both primary and also auxiliary constraints
will hold). The algorithm is described in the Reference Guide and consumes O(n) time to handle
n primary constraints, O(n · k) time to formulate the LCP for k auxiliary constraints (typically
k � n) and an extra time to solve the LCP. LCP matrix A is no longer positive definite, but it
is still symmetric and so LDLTFactorization is employed by the LCP solver.

The algorithm is based on the fact that matrix H from (6.9) for primary constraints is a (n+ c)× (n+ c) block
matrix whose block-rows and block-columns can be associated with constrained bodies and primary constraints.
The goal is to reorder the block columns/rows so that the permuted H, denoted H ′, can be factored in the linear
time. Each permutation of matrix H corresponds to a certain ordering of bodies and primary joints. The coveted
permutation is retrieved by traversing the body-joint graph using a depth-first-search algorithm and ordering the
blocks of H ′ according to the postorder order in which the bodies and primary joints are visited, [9].

If J is the Jacobian matrix due to primary joints and ~F is a generalized force acting on the system then the
system’s accelerational response in reaction to ~F , considering the primary constraints and ignoring the auxiliary
constraints, equals ~a = M−1 · (~F + JT · ~λ~F), where JT · ~λ~F is the constraint force due to primary constraints

exerted in reaction to ~F . Since we can factor H ′ and solve for ~λF in the linear time, we can compute also ~a in the
linear time. We will write that the acceleration ~a of the system in response to ~F , accounting for the effects of the

7All constraint rows are unbounded equalities.

7.4. JOINTS 99

primary constraints, equals
~a = M̂−1 · ~F = M−1 · (~F + JT · ~λ~F), (7.1)

which can be seen as a modified version of the equation of motion (5.23) that directly incorporates the effects of
the primary constraints.

If we have a set of auxiliary constraints formulated in the matrix form as Jaux · ~a = ~caux, where ~a is the total
acceleration of the system after all forces are applied, then the constraint force to maintain the auxiliary constraints
will again equal JT

aux · ~µ, where ~µ is the vector of Lagrange multipliers due to these constraints. By utilizing (7.1),
we realize that it is required that

Jaux · (M̂−1 · (~Ftotal + JT
aux · ~µ)) = ~caux, (7.2)

which says that auxiliary constraints and primary constraints must hold (the conditions on the primary constraints
are “hidden” in M̂−1). This can be rewritten as Jaux · M̂−1 ·JT

aux · ~µ = ~caux−Jaux · M̂−1 · ~Ftotal. Considering that

auxiliary constraints might impose limits on ~µ, we obtain a LCP in the form of A · ~µ +~b = ~0 with ~µlo ≤ ~µhi limits,
where A = Jaux · M̂−1 · JT

aux and ~b = Jaux · M̂−1 · ~Ftotal − ~caux. If we had access to M̂−1 we could build A and ~b
exactly in the same way like we did it at (6.8). The good news is that matrix M̂−1 need not actually be computed

at all and the coefficients of A and ~b can be computed in terms of ~F , M−1 and JT · ~λ~F from (7.1). Indeed, the

i-th column of matrix A, denoted Ai, can be computed as Ai = (Jaux · M̂−1 · JT
aux)i = Jaux · (M̂−1 · JT

aux)i =

Jaux · (M̂−1 · (JT
aux)i) = Jaux · (M−1 · ((JT

aux)i + JT ·~λ(JT
aux)i

)) and ~b = Jaux · (M−1 · (~Ftotal + JT ·~λ~Ftotal
))−~caux.

The solver identifies the primary and auxiliary constraints, orders the block columns (rows) of matrix H ′, builds

and solves the LCP to obtain the auxiliary constraint force JT
aux · ~µ (that anticipates the response of the primary

constraints to ~Ftotal + JT
aux · ~µ) and exerts it on the system, yielding the new total external force ~Ftotal + JT

aux · ~µ.

Primary constraint force JT ·~λ~Ftotal+JT
aux·~µ

is then computed with respect to ~Ftotal +JT
aux ·~µ and exerted. Primary

constraints will obviously hold then and auxiliary constraints will hold as well, because the effects of the primary

constraint force were anticipated when ~µ was computed, see (7.2).

7.3.6 LCP Solver

Linear Complementarity Problem Solver library abstracts LCP problems and implements
LCP solvers. Class BasicLCP abstracts pure and mixed LCP problems, class LoHiLCP lo-hi
LCP problems. There are several solver implementations — DebugBasicLCPSolver solves
basic LCP problems and proceeds directly as described by Baraff in [7], BasicLCPSolver is
the optimized version of the basic LCP solver and LoHiLCPSolver is the generalized basic
solver outlined in section (6.2.5) capable of solving lo-hi LCP problems. BasicLCPSolver and
LoHiLCPSolver solvers are implemented as template classes parametrized by traits classes that
hide the manipulation with the slices of matrix A and vectors ~b, ~λ, ~λlo, ~λhi. That way, we are
able to provide optimized and unoptimized variants of the solvers, where the optimized versions
permute rows and columns of A (and the rows of vectors ~b, ~λ, ~λlo, ~λhi) during the course of
solving the LCP in order to minimize memory transfers while updating ACC and allow to access
ACC slices efficiently. These optimization tricks were adopted from [22].

7.4 Joints

Simulator library provides the implementation of certain joint classes that can be used to connect
bodies by virtual hinges or nails, restrict and control rotations about specified axes, implement
various motors, etc. Joints allow to build articulated structures and simulate other types of
objects than mere rigid bodies.

Built-in joint support can be separated to two categories, the category of anchors, used to
anchor bodies, and the category of motors, allowing to control joint angles, displacements along
axes, rotation speeds, etc. Since joints are (basically) formulated in terms of their Jacobian blocks,
right-hand side vectors and softness parameters, one can implement new joint types by providing

100 CHAPTER 7. SIMULATOR

functions to evaluate these quantities upon the simulator’s request, that is, by inheriting from
Joint class and implementing functions returning the basic and extended joint informations, as
prescribed by the Joint interface.

We will now present the two joint type categories and note that the list of all joint types, their
properties and formulations (including the derivations) can be found in the Reference Guide.

7.4.1 Anchors

Anchors are formally defined as position-level equality constraints (yet implemented either on
the velocity or acceleration levels) that restrict relative body positions and orientations. They
implement virtual nails, pins, hinges and are used to anchor bodies together. Anchor joints are
often combined with motor joints to allow the control of the other DOFs, otherwise unconstrained
by the joint.

PointToPoint is a base class for anchor joints providing an infrastructure for defining the
positions of anchors (points) in the body spaces of the constrained bodies and functions to
formulate the “point-to-point” constraint that requires the anchors to occupy the same world
space position. Subclasses can augment the constraint formulation to impose a more “strict”
constraint such as that bodies can not rotate with respect to each other along a specified axis,
etc.

For an illustration, we will show how the constraint formulation for PointToPoint class can
be derived, utilizing the equations and notation from chapters 5 and 6. If i is the index of the
constraint, Ai and Bi are the indices of the constrained bodies and ~rb

Ai
and ~rb

Bi
are the positions

of the two anchors on the first and second body, expressed in the corresponding body spaces,
then ~pAi = ~xAi + RAi · ~rb

Ai
and ~pBi = ~xBi + RBi · ~rb

Bi
are the world space positions of the anchors

and the goal is to ensure that ~pAi = ~pBi . Let us denote ~rAi = ~pAi − ~xAi and ~rBi = ~pBi − ~xBi .
These vectors are attached to the first and second body (so ~̇rAi = ~ωAi ×~rAi and ~̇rBi = ~ωBi ×~rBi ,
(5.5)) and the constraint can be then formulated as

~Ci
p = ~pBi − ~pAi = ~xBi + ~rBi − ~xAi − ~rAi = ~0

~̇Ci
p = ~̇xBi + ~ωBi × ~rBi − ~̇xAi − ~ωAi × ~rAi = ~0

~̈Ci
p = ~̈xBi + ~αBi × ~rBi + ~ωBi × (~ωBi × ~rBi)

−~̈xAi − ~αAi × ~rAi − ~ωAi × (~ωAi × ~rAi)
= E · ~̈xBi − ~r∗Bi

· ~αBi + ~ωBi × (~ωBi × ~rBi)

−E · ~̈xAi + ~r∗Ai
· ~αAi − ~ωAi × (~ωAi × ~rAi) = ~0, (7.3)

obtaining

Ji,Ai = (J linear
i,Ai

Jangular
i,Ai

) = (−E ~r∗Ai
)

Ji,Bi = (J linear
i,Bi

Jangular
i,Bi

) = (E −~r∗Bi
)

J̇i · ~v = ~ωBi × (~ωBi × ~rBi)− ~ωAi × (~ωAi × ~rAi)
~Ci

p = ~pBi − ~pAi

mi = 3, (7.4)

which can be directly substituted into (6.33) to yield the final acceleration-level and velocity-level
formulations with the stabilization terms.

7.4. JOINTS 101

7.4.2 Motors

Motors are usually defined as equality or inequality constraints formulated directly on the velocity
level8 that restrict relative body angular or linear velocity along specified axes. They implement
joint angle or displacement limits and motors at joints. Although the constraints are formulated
directly on the velocity level and finally implemented either on the velocity or acceleration level,
they often represent position-level constraints (such as joint angle/displacement limits) and so
the notes from section (6.4) are considered.

PoweredAxis provides basic support for the implementation of angular (rotational) or linear
(translational) joint limits and motors. Given an angular axis ~ai attached to the first body and
expressed in the world coordinates and an angle αi the second body is rotated about ~ai (with
respect to the initial relative orientation), the class imposes an 1 DOF constraint on the relative
angular velocity so that specified angle limits αlo

i ≤ αhi
i will not be exceeded9 or a certain angle

or an angular velocity will be attained. If there are joint angle limits associated with the axis,
we say that the axis is limited. If a certain joint angle or angular velocity should be followed, we
say that the axis is powered.

We will now present the formulation of an 1-DOF velocity-level constraint (with a Baumgarte
stabilization term due to constant α > 0) that ensures that angle limits are obeyed10 and a desired
angle or angular velocity followed if the angle is not at a limit,

• if the angle is at the lower limit αlo
i then equation (6.34) is in effect and Ċi

p = ~ai · (~ωBi −
~ωAi) − ki ≥ 0 constraint imposed, where ki is chosen to stabilize the position-level error
αlo

i − αi, ki = (αlo
i − αi) · α,

• if the angle is at the upper limit αhi
i then equation (6.34) is in effect and Ċi

p = ~ai · (~ωBi −
~ωAi) − ki ≤ 0 constraint imposed, where ki is chosen to stabilize the position-level error
αhi

i − αi, ki = (αhi
i − αi) · α,

• if the angle is not at a limit and a desired angle αdesired
i should be followed then equation

(6.33) is in effect and Ċi
p = ~ai · (~ωBi − ~ωAi)− ki = 0 constraint imposed, where ki is chosen

to stabilize the position-level error αdesired
i − αi, ki = (αdesired

i − αi) · α,

• if the angle is not at a limit and a desired velocity α̇desired
i should be followed then Ċi

p =
~ai · (~ωBi − ~ωAi)− α̇desired

i = 0 constraint is imposed, see equation (6.26).

If the angle is at a limit and the axis is powered, we impose a constraint due to the angle limit
only and approximate the axis motor by an external force.

Obeying the rules from section (6.4), we can implement the constraint on the acceleration
level. In that case we will work with C̈i

p = ~ai · (~̇ωBi − ~̇ωAi)+ (~ωAi ×~ai) · (~ωBi − ~ωAi) and will have
to stabilize both the position-level and velocity-level errors. We obtain

Ji,Ai = (J linear
i,Ai

Jangular
i,Ai

) = (0 −~ai)
Ji,Bi = (J linear

i,Bi
Jangular

i,Bi
) = (0 ~ai)

J̇i · ~v = (~ωAi × ~ai) · (~ωBi − ~ωAi)
mi = 1. (7.5)

8To avoid problems associated with the constraint parametrization in terms of Euler angles ~θ.
9With respect to a certain precision.

10It is relied upon the constraint stabilization. States where angle limits are violated are not flagged as invalid.

102 CHAPTER 7. SIMULATOR

Analogously is proceeded in the case of linear axis, displacements along the axis and linear
velocities when the axis is attached to the center of mass of the first body and the displacement
of the second body’s center of mass from the first body’s center of mass along the axis direction
(relative to the initial displacement) is measured. The only difference is that linear velocities are
constrained instead of angular velocities and displacement errors are measured instead of angle
errors. We obtain

Ji,Ai = (J linear
i,Ai

Jangular
i,Ai

) = (−~ai 0)
Ji,Bi = (J linear

i,Bi
Jangular

i,Bi
) = (~ai 0)

J̇i · ~v = (~ωAi × ~ai) · (~̇xBi − ~̇xAi)
mi = 1. (7.6)

MotorJoint, based on the concepts of PoweredAxis, allows to directly control desired
relative linear and angular velocities, displacements and orientations of the constrained bodies —
the kinematic properties of the rigid bodies — and hence allows to control bodies kinematically in
terms of dynamics. Constraint solver computes appropriate forces to obey the requested behavior
and constrained bodies still properly respond to impacts and other forces. Moreover, imposed
constraints can be made soft (by setting appropriate softness constants) and the resulting motion
thus affected by other bodies and forces, which is often desirable and produces interesting results.

Chapter 8

Figure Library

The implementation of a figure library that would allow to animate human-like figures in terms
of constrained rigid body dynamics and demonstrate the capabilities of the simulator was our
another goal. The library is implemented as an extension to the simulator library, built on top of
the simulator. It allows to create human-like articulated figures from their skeletal descriptions
and control them on the level of both dynamics and kinematics, where constraint forces are
computed to attain the desired kinematic behavior.

The dynamics approach allows to adapt the figure motion to external influences and easily
solve many problems that are hard to deal with on the kinematics level. Experiments described
in the next chapter present how kinematics-based animation (such as the animation taken from
motion capture) can be replayed, edited, modified and retargetted to other figures with different
body proportions and mass properties using the dynamics-based model.

Since the library supports the animation of loop-free articulated figures only, there are no
cycles in the body-joint graph (except for contact joints) and FastLagrangeMultiplierSolver
computes the dynamics of articulated figures in the linear time1 (with an extra time to handle
contact and joint angle limits). There are alternative methods to simulate articulated figures with
the same asymptotic computational cost. These methods are based on the reduced coordinates
paradigm, where constraints abstracting the figure joints (corresponding to our primary joints) are
incorporated directly to the figure’s equations of motion, formulated in terms of the unconstrained
figure DOFs and solved in the linear time, such as in [17]. Extra constraints (corresponding to
our auxiliary joints) due to contact and joint angle limits are handled in terms of maximal
coordinates, analogously to the method pursued by FastLagrangeMultiplierSolver.

In this chapter we will informally describe the features of the figure library and outline its
implementation. The library exploits services of our simulator, but could be easily ported to other
rigid body simulators that offer a similar set of features. As usually, a more detailed description
of the library can be found in the Reference Guide.

8.1 Overview

The library’s concern is to animate articulated human-like figures in terms of constrained rigid
body dynamics. For the purposes of these notes we will assume that articulated figures consist
of several segments, represented by rigid bodies (and their collision geometries), connected to
each other by joints in such a way so that segment loops are avoided — the figure structure and
segment branchings are represented by joint & bone hierarchy trees, called the figure skeletons.

1With respect to the number of figure segments.

103

104 CHAPTER 8. FIGURE LIBRARY

Skeletons consist of vertices called the joints (corresponding to simulator joints) and edges called
the bones (corresponding to figure segments). The library models the motion of figure segments
(“skeletal motion”, animation of skeletons), considering the associated collision geometries, their
mass properties and forces acting upon them. Traditionally, the animation of figure skin (“skeletal
animation”, the visualization of figures according to postures of their skeletons) is separated from
the animation of skeletons and is not of our concern2.

Since we are not primarily interested in the simulation of articulated figures whose behavior
depends on the external influences only (passive motion), articulated figures are often controlled
to express a certain kind of active motion. The difference is much like the difference between
a real-world passive rag-doll and a puppet whose limbs are attached to springs controlled by an
actor. The idea of puppets is abstracted by the concept of figure controllers that are attached to
figures to control their joint angles, joint trajectories, etc.

The library can be characterized by the following set of basic features:

• Articulated figures are defined by skeletons. Skeleton bones correspond to (parts of) figure
segments and have volumes and collision geometries associated with them. Skeleton joints
attach (anchor) figure segments together and determine the types of anchors used to connect
them.

• Figure segments are handled as general rigid bodies responding to contact (impacts, friction)
and other constraints. Other bodies can attach to figure segments3.

• Figure motion is controlled by a hierarchy of controllers. Lower level controllers are as-
sociated with figure segments and control the limits, angles and angular velocities about
axes attached to joints or the trajectories of “markers” attached to segments. Higher level
controllers control figures globally, using lower level controllers to perform the specific task.

8.2 Skeletons

The branching structures, initial postures, collision geometries and mass properties of the seg-
ments of articulated figures are abstracted by the instances of Skeleton class, called the skeletons.
Skeletons describe joint & bone hierarchy trees, whose vertices are called the joints, oriented edges
the bones and the root vertices the root joints, and an associated supplementary information —
anchor types used to attach figure segments, collision geometries (and their mass properties)
attached to bones or figure segments and bone orientations and lengths determining initial pos-
tures. Actual instantiated figures managed by the figure library are represented by the instances
of ArticulatedFigure class.

Each joint (except for joints with no outgoing bones) defines a rigid body segment associated
with that joint and all bones outgoing from that joint — the bones and the joint are rigidly
attached to the associated segment. End points of the outgoing bones and the position of the
joint itself are called the sites, which define the places where other segments can connect to this
segment, through corresponding joints. If there is no segment attached to a site at an outgoing
bone then it is called the end site or zero DOF joint. Root joint is attached to a built-in “world”
body (with no collision geometry), which allows to translate and rotate the whole figure by
controlling the root joint. The position and orientation of the root segment (given by the root

2The demo application simply draws corresponding collision geometries to visualize figures.
3Such as an umbrella or a basket attached to the figure’s hand in the demo.

8.3. CONTROLLERS 105

joint) is called the position and orientation of the corresponding articulated figure4.
To make things more clear, let us suppose that we have a skeleton whose joints are denoted

by UPPER LETTERS, HIPS is the root joint and A → B denotes bones outgoing from A
and ingoing to B, eg.

HIPS → SPINE → CLAV ICLE → . . .

HIPS → LEFT UPPER LEG → . . .

HIPS → RIGHT UPPER LEG → . . .

This portion of the skeleton defines two figure segments A and B consisting of the following bones,
A = { HIPS → SPINE, HIPS → LEFT UPPER LEG, HIPS → RIGHT UPPER LEG}
and B = { SPINE → CLAV ICLE}, where A is associated with the HIPS joint and defines
HIPS, SPINE, LEFT UPPER LEG, RIGHT UPPER LEG sites and B is associated with
the SPINE joint and defines SPINE, CLAV ICLE sites.

Collision geometries of figure segments are defined either as unions of collision geometries
associated with the individual bones, outgoing from the corresponding joints the segments cor-
responds to, or explicitly by attaching explicit collision geometries (with their mass properties)
to joints. Segments at initial postures are by default oriented so that body space “up” vectors
point in the directions of the incoming bones.

Joints impose various constraints on the attached segments and thus remove their DOFs.
While the root joint (implemented by MotorJoint) removes from 0 to 6 DOFs, regular joints
(implemented by the subclasses of PointToPoint) always remove at least 3 DOFs and end sites
remove exactly 0 DOFs and have no direct representation in the simulator.

The instances of Skeleton class represent joint & bone hierarchies, whose joint structures
(Skeleton::Joint) store the information related to the skeleton joints and the associated seg-
ments, their anchoring to parent segments and the definitions of the incoming bones. The in-
stances of ArticulatedFigure class represent articulated figures created from their skeletons.

8.3 Controllers

One of the design goals of the figure library is to allow to control the motion of articulated
figures hierarchically so that lower level controllers would implement “muscles” and directly
control figure joints or associated segments while higher level controllers would implement the
“brain” and control the figure motion globally, using lower level controllers to attain the desired
motion expression. There should be an option to control each joint by a different type of lower
level controller or do not control a particular joint at all and let the corresponding segment react
to external influences only. These ideas are abstracted by RawController and TaskController
base classes.

TaskController is a base class for a special kind of n-ary force object that actuates segments
of an attached articulated figure. Given a particular task (figure behavior, desired motion), the
figure’s degrees of freedom are affected by the controller to fulfill the motion requirements. This
is done by applying appropriate external forces and/or imposing various constraints on the figure
segments. Task controllers usually do not control the figure segments directly but delegate the
burden upon lower level controllers attached to figure joints (segments). This approach supports
modularity of the library and allows to replace lower level controllers without the need for affecting
the task controllers.

4According to this interpretation of the root joint and the root segment, it is advantageous to build skeletons
in such a way so that root segments represent figure “hips”.

106 CHAPTER 8. FIGURE LIBRARY

The instances of TaskController are registered into simulation as force objects acting or
depending on the segments of the linked articulated figures, provide the infrastructure for binding
(attaching) lower level controllers to figure joints and implement support for controller serializa-
tion. We say that the figure joint (segment) is actuated if there is a lower level controller attached
to it.

The concept of lower level (raw) controllers is abstracted by RawController base class.
Lower level controllers affect individual joints or segments and implement various joint “motors”
or “springs” pulling figure segments to requested positions and orientations and provide other
means to control the figure at the lower level. Lower level controllers are used, managed and
owned by task controllers linked to the corresponding figures. There are several kinds of lower
level controllers providing different ways to control figure joints and segments,

• Controllers that track angles about axes attached to actuated joints.

AngleTrackingController is a base class for angle tracking (angular) controllers that
control angular velocities, angles and their limits about axes of actuated joints. Given a
desired angular velocity or an angle about a joint’s axis, the controller generates a motor
torque to reach the velocity or angle.

• Controllers that control figure positions and orientations.

RootJointController is a base class for root joint controllers that allow to control both
linear and angular velocities, position and orientation of the root joint’s segment or dis-
placements and angles (together with the corresponding limits) along/about the joint axes.
Given a desired linear velocity or displacement of the root segment’s center of mass along a
specified axis, the controller generates a motor force to reach the velocity or displacement.
Similarly, given a desired angular velocity or an angle at the root joint about its axis, the
controller generates a motor torque to reach the velocity or angle.

• Controllers that control trajectories of selected points on actuated segments.

TrajectoryController is a base class for a special kind of controllers that control desired
trajectories (world space positions) of specified sites (called the markers) attached to rigid
body segments associated with actuated joints. Markers attached to a rigid body segment
together with their desired positions in the world space (called the virtual markers) define
the desired segment transformation (= position and orientation).

Each segment can have at most 3 markers (more markers would be redundant). The desired
marker’s trajectories should be defined so that they yield a general rigid transformation in
the case of the root segment and a rotation in the case of other segments.

Trajectory controllers can be used to control figures by raw (translational) optical motion
capture data and to transform the data to skeletal motion data (to be replayed by An-
gleTrackingController and RootJointController) by controlling the figure by the raw
data and sampling its posture over time (“motion capture data to skeletal motion map-
ping”). An approach based on penalty forces is pursued by [25] to map the raw data to
skeletal motion.

ConstraintBasedAngleController implements an angle tracking controller by imposing
constraints on the actuated segments and their parents, utilizing the joint angle limit & mo-
tor support built into the simulator (PoweredAxis). Similarly, ConstraintBasedRootCon-
troller implements a root joint controller in terms of MotorJoint. ConstraintBasedTrajec-
toryController implements a trajectory controller by imposing PointToPoint constraints to

8.4. EXTERNAL INFLUENCES 107

align the positions of markers on the rigid body segments to the positions of virtual markers.
Obviously these constraints must be made soft, because the desired trajectories might suffer from
noise and hard constraints would likely be unfeasible.

RagDollController is a task controller that attempts to keep angular velocities or angles
at zeroes at actuated joints to simulate joint stiffness or attraction to an initial (comfortable)
posture. The actual work is performed by attached angle tracking controllers, programmed by
the task controller. AnimationController is an interpolation-driven task controller that sets
desired joint angles, positions of the root joint site or segment markers according to rotational and
translational data that is read and interpolated from associated animation sequence(s). There
can be multiple animations bound to the controller. The controller blends the ending and starting
portions of the animations that come after each other so that the transitions would be smooth.
The actual work is performed by attached angle, root or trajectory controllers. When the control
error is exceeded (for example when a walking figure is shot and the impact causes the figure to
deviate from the desired posture), joint segments can be unpowered and controller stopped.

The controlling strategies taken by all implemented lower level controllers are based on rigid
body constraints. This means that the controllers impose additional (soft) constraints to control
the figure joints and segments. Such an approach has a great advantage over penalty-based
methods (which are nevertheless widely used in the practice, such as in [18], [24], [25]) because
the controller results are predictable, guaranteed, the parameter tuning is trivial (one can get
along with the same set of parameters for very different types of scenes and figure interactions5)
and yet external influences can affect the controller results (again, in a predictable way). On
the other side, constraint based approach requires a greater computational power, because the
constraints are handled globally and constraint force obeying the constraints must be computed
at each time step. Moreover, all figure DOFs might actually be constrained (for example when
the figure is told to follow a kinematic animation) and the problems to be solved to compute
the motor forces might be really large6. Luckily, FastLagrangeMultiplierSolver is at service
and, assuming that all constraints are equalities, its running time is still linear and the extra
computational cost required to control the figure by constraints negligible (we would still need
at least a linear time to simulate the same figure with no controls). Kokkevis [17] controls the
motion of articulated figures also by constraints (with the same asymptotic computational cost)
but the figures are simulated in terms of reduced coordinates (the equations of motion incorporate
the effects of joints due to segment branching).

8.4 External Influences

Probably the most important reason for animating articulated figures on the dynamics level is
the need for adapting the figure motion to external influences (incorporate the influences) or to
simplify the animator’s work by providing approximate inputs to the figure controllers and let
the dynamics system control the subtleties of the resulting animation, considering joint stiffness
or attraction to comfortable postures. For example, one might want to animate human arms
explicitly and let the dynamics system generate the animation of loose hands automatically. When
human-like figures are animated, the animator usually follows a “top-to-bottom” paradigm, so
that those parts of the body, that are important for the overall impression of the resulting motion
and that characterize the motion globally, are animated first (such as the torso) and the animation

5See sections (3.4) and (6.6) for more information on the comparison of penalty forces and soft constraints.
6The simulator’s test scenes exercise an articulated structure consisting of 127 segments whose all DOFs are

constrained.

108 CHAPTER 8. FIGURE LIBRARY

subtleties are considered the last (such as the animation of the hands and head). Systems working
on the dynamics level allow to automatically handle most bottom level animation tasks, that are
laborious to handle on the kinematics level, such as fixing the head to prevent it from tilting and
leaning or make the hands swing naturally in accordance to the animation of arms, prevent feet
from sliding, etc. All these tasks can be handled by imposing soft unbounded or soft bounded
equality constraints, abstracted by lower level controllers or the simulator library7.

While unbounded equality constraints do not limit the magnitudes of the restoring constraint
forces due to the constraints, bounded equality constraints impose limits on the constraint DOF
multipliers (limiting the constraint force magnitude) and instruct the constraint solver to “work
as hard as possible to enforce the constraint, but allow the constraint to be violated when it can
not be satisfied”. This is a key distinction. For example if we position an articulated figure to the
front of a wall and tell it to walk against the wall, following a kinematic animation by imposing
unbounded equality constraints and actuating the figure’s root site against the wall, then the
non-penetration constraints due to the wall and the contacting figure segments will “fight” with
the animation constraints and there will be no feasible solution — no constraint force will be
computed and all constraints will break (non-penetration will not be enforced, figure limbs will
be torn off the torso, etc).

The remedy is to impose bounded equality constraints with finite ~λlo and ~λhi limits instead
of unbounded constraints where appropriate. In the case of motion control, where lower level
controllers formulate constraints to affect the figure motion, our controllers provide an option
to impose bounded equality constraints instead of unbounded equality constraints, allowing the
constraint solver to limit the constraint force (motor force) magnitude. Recalling the example
with a walking figure, if the root joint’s motor force was limited, the non-penetration constraints
due to the wall would “win” and so the solution would exist8. However there is one thing that
must be kept in mind — bounded equality constraints can not be primary and so are expensive
to handle.

7These constraints are described in sections (6.6), (7.4.2) and (6.5.3).
8The mechanism of dragging rigid bodies by the mouse cursor in the demo application is implemented by

imposing bounded equality constraints as well. This ensures that constraints are feasible even when the body is
dragged against a fixed body.

Chapter 9

Results

In this chapter we will present results of the thesis, capabilities of the implemented libraries and
their application to animation of human-like figures.

One of the goals of this thesis was to get the reader acquainted with the parts of the con-
strained rigid body dynamics theory necessary to implement a functional dynamics simulator.
Although there are many worthwhile materials and papers devoted to certain parts of the theory
publicly available, it is relatively hard to find a complete, yet deep enough, material that would
cover all that is needed to implement a practical dynamics simulator incorporating the usual set
of features demanded in the practice. As a result, one either comes upon introductory, simplified
and incomplete materials or has to break through many different (often involved) papers that
use mutually inconsistent notations and pursue certain aspects of the theory too thoroughly for
one’s specific needs. To address this issue, we have put the available materials together, with the
effort to allow readers, who are totally unaware of the topic, to understand the theory without
the need for studying other materials. No prior knowledge of the topic is required to read this
thesis, however basic knowledge of calculus and linear algebra are needed.

Our effort was mostly concentrated at the implementation of an efficient constrained rigid
body simulator that would utilize the most recent algorithms published by authorities in this
area of computer graphics, allowing it to simulate highly constrained rigid body systems at in-
teractive rates and making it competitive with other challenging systems at the market. We
have focused at the design, modularity, extensibility, the level of concept abstraction and the
quality of implementation of the simulator. The simulator implementation and concept abstrac-
tion are mostly based on the notes presented in the previous chapters, but certain concepts had
to be implemented differently and more sophisticated algorithms used to achieve an interactive
performance. Despite of these facts, which can be classified as implementation details, these
notes should be sufficient to comprehend the theory and implement a functional simulator. The
implementation details and simulator internals are described in the Reference Guide and should
be easy to understand after having finished reading these notes.

An extra attention was paid to the abstraction of equations of motion formulated as ODEs.
The simulator provides a generic infrastructure for solving ODEs and implements various ODE
solvers that are used to solve (“integrate”) the equations of motions. Besides the fact that the
integration method is not hard-coded into the simulator and can be replaced without the need for
affecting the rest of the system, the ODE infrastructure allows to incorporate various adaptive
time-stepping strategies to control the integration precision or avoid invalid states (enforce body
non-penetration, rollback on body penetration) for free. This approach was pursued even further.
The simulator separates rigid bodies to multiple simulation groups so that each group would have
its own equations of motion, handled independently on the other simulation groups, which results

109

110 CHAPTER 9. RESULTS

in the reduction of the total computational cost. Each simulation group’s equations of motion are
integrated using an own ODE solver with a different time step, adapted to the states of bodies
in the simulation group. The simulator ensures that simulation groups are merged whenever
required, ensuring the simulation consistency (bodies that might interact are always simulated
in terms of a common simulation group, individual ODE solvers due to simulation groups are
advanced in a controlled way, making sure that all simulation groups end up at the same time and
allowing to rollback the whole simulation state when a certain ODE solver can not advance to a
desired time or a request to merge simulation groups is detected while advancing the simulation).
As far as we know, this is a unique feature, not implemented in other publicly available (free)
simulators, yet very useful as it allows to “skip” simulation groups consisting of “idle” bodies
when advancing the simulation state.

The other simulator component we value the most is the global constraint solver. Simulator
library user specifies various constraints on rigid bodies that have to be met (geometric con-
straints that implement virtual joints, hinges, pins, joint angle limits, velocity constraints, etc)
and the constraint solver computes appropriate constraint forces or impulses ensuring that the
constrained bodies will obey both the constraints and the Newton laws. Apart from explicit
(usually permanent) constraints, the simulator imposes implicit short-lived constraints to en-
force body non-penetration and implement friction at contacts. Constraints are formulated as
position-level, velocity-level or acceleration-level equations, either as equalities or inequalities,
and implemented on the velocity or acceleration levels. The implementation of a Lagrange multi-
plier based solver capable of handling highly constrained articulated structures, whose equations
of motion are solved in the linear time, is provided, offering an efficient alternative to reduced
coordinates approaches used to simulate loop-free articulated structures.

Various test scenes exercising certain simulator features and testing the performance capabil-
ities, precision and robustness of the simulator and its components are implemented. Moreover,
library self-tests are provided to assure that the library works as expected and does not break
during its development. The tests can be run by the user to see how well the simulator performs,
which we find more valuable than presenting the results of stark measurements.

To manifest the performance capabilities and the fitness of the simulator to handle “serious”
problems, the demo application presenting the features of the figure library and serving as a
“front end” to the test library is implemented. Demonstration scenes show how figure motion,
driven by translational or rotational motion capture data, can be adapted to external influences,
edited or retargetted to different characters in terms of rigid body dynamics and how easily
certain classes of problems, that are hard to deal with on the kinematics level, can be solved
using a physical model.

9.1 Tests

The purpose of the test library is to provide appealing demonstration scenes that exhibit certain
simulator features, realize various performance, stability or simulation/integration precision ex-
periments or simply test the integrity of the simulator components. Depending on the type of the
functionality to be tested and whether the tests are batch or interactive, the tests are separated
to several test categories.

Self-tests (“regression tests”, “unit tests”) are batch tests that invoke simulator services and
verify that the service responses match the expected results. Due to the nature of these tests,
self-tests mostly test various numerical algorithms or those services where the verification of the
response was easy to implement. The most important self-tests (that proved to be extremely

9.1. TESTS 111

useful during the development of the simulator library) are the tests that exercise linear algebra
components, collision geometry detection and LCP solvers.

Interactive tests examine the simulator features by providing test scenes that are visualized
by the scene visualizer. The simulation state is presented to the user by drawing the collision
geometries of the rigid bodies, the scene is made of, and it is relied upon the user’s perception
to validate the test. Interactive tests and demonstration scenes from the demo application are
visualized by a generic scene visualizer, implemented by the Drawing library1, that allows to
observe the scene from various positions and angles, inspect rigid body states and affect the bodies
in the scene, either by dragging/rotating existing bodies by mouse or firing/dropping new bodies
from the “cannon” attached to the observer. Although this way of specifying external influences
is very simple, it is extremely powerful and capable of providing interesting results, demonstrating
the features of the simulator and the figure library quite nicely. Some tests actually “do nothing”
by themselves and rely on the user input to exercise the features to be tested. We will now
describe the implemented tests2.

9.1.1 Contact Tests

These tests exercise the simulator behavior with respect to body separation to simulation groups,
the contact and friction model and the enforcement of non-penetration,

• TestGroupMerging

The test verifies that simulation groups are merged properly when bodies from different sim-
ulation groups approach each other and that the simulation transaction is aborted correctly
when the request to merge simulation groups is submitted.

• TestSimultaneousImpacts

This is the most elementary non-penetration test involving multiple contacts that verifies
that aligned cubes will not begin to spin when they strike each other (ie. when a cube is
dropped flat on a table, the impact should not produce any torque).

• TestContactStabilization

The purpose of this test is to demonstrate how non-penetration constraints are stabilized.
A stack of boxes is created and the boxes are positioned so that they penetrate a little at
the initial state but the state is still valid. Constraint forces exerted at the contacts will
repulse the bodies and increase local separation distances at the contacts, thus preventing
further penetration and eventually separating the bodies. Note that non-penetration is
enforced by exerting constraint forces and impulses only that are computed globally with
respect to all contacts and other constraints. This guarantees that the separation distance
at contacts will actually increase if requested. Positions and orientations of the affected
bodies are never modified directly.

• TestCriticalContacts

Contacts whose separation distance drops below a preset limit are called the critical con-
tacts. In order to ensure that penetration will be avoided, constraint solver stops bodies
involved in critical contacts if it fails to establish non-penetration constraints at those con-
tacts. This feature is exercised by this test, where a cube is being crushed by two fixed

1OpenGL library is used to do the rendering.
2The tests are integrated by the Euler solver unless stated otherwise.

112 CHAPTER 9. RESULTS

desks and non-penetration constraints due to the contacts between the cube and the desks
can not be satisfied.

• TestFriction

Static, dynamic and impulsive friction approximation at contacts is evaluated by this test.
The scene consists of a table, desk and a stack of boxes. The boxes are stacked on the
desk that lies on the table and there is no friction between the desk and the table. A ball
strikes the desk and the impulsive friction between the ball and the desk makes the desk
(as well as the stacked boxes) move. The whole desk can be dragged by just pushing onto
the top-most box.

9.1.2 Joint Tests

Simulator library implements various geometric joints that can be used to attach bodies to-
gether and provides a way to control angles or velocities about joint axes, impose joint angle
limits, control displacements along joint axes, etc. This functionality is presented by TestHinge-
Joint, TestUniversalJoint, TestBallAndSocketJoint, TestSliderJoint, TestMotorJoint
and TestLimitedSpringJoint tests that evaluate the corresponding joint classes. It is assumed
here that the user provides appropriate external influences by dragging the attached bodies to
validate the functionality of the joints and their motors.

9.1.3 Performance and Robustness Tests

To test the performance of the constraint solver and its fitness to handle highly constrained
articulated structures whose segments can collide, the following two tests exercising certain types
of articulated structures were implemented.

• TestChain

A chain consisting of 32 segments connected by various joint types, where each joint removes
at least 3 DOFs, corresponding to a linear articulated structure is presented by this test.

• TestArticulatedStructure

This test implements and evaluates a non-linear highly articulated structure consisting
of 127 segments whose all DOFs are constrained and presents the use of soft constraints
to attract articulated structures to initial states — soft constraints are used to constrain
joint angles to zeroes. Unless the structure’s segments contact, the constraint forces are
computed in the linear time.

TestJointCycles test verifies that articulated structures with loops (rigid body systems
with cycles in the body-joint graph and other auxiliary constraints) are handled correctly by the
linear time constraint solver and that the LCP solver can solve problems whose matrices A are
not positive-definite. The test also demonstrates the handling of redundant constraints, because
more constraints are imposed than is actually needed to achieve the effect.

9.1.4 Integration Precision Tests

These tests simulate the same test scene by integrating the equations of motion using a set of
distinct ODE solvers so that the simulation effects (integration precision of the individual solvers)
could be compared. An articulated structure consisting of a rotating carousel with four chains

9.1. TESTS 113

Figure 9.1: The illustration of the average constraint error at the carousel links. Different ODE
solvers were used to integrate the equations of motion, the values of ‖~Ci

p‖ due to PointToPoint
constraints at the links measured each 0.1 seconds (= the time axis unit) and the average values
plotted.

attached to its construction is chosen to demonstrate the effects, constraint errors at the chain
links measure the integration precision (the precision can be compared visually quite easily —
the chain links either hold or the chain is broken). To stress the precision differences attained by
the solvers, all position-level constraints ~Cp = ~0 are implemented on the acceleration level only3,

an integration error creeps into both ~̇Cp and ~Cp and it is nice to see how well the particular ODE

solver performs to keep ~Cp and ~̇Cp at zero vectors.
The tests are implemented by TestIntegrationPrecisionEuler, TestIntegrationPreci-

sionMidpoint and TestIntegrationPrecisionRungeKutta that use the corresponding ODE
solvers (Euler, Midpoint, Runge-Kutta) to integrate the equations of motion. As can be seen by
running the tests or looking at figure (9.1), Euler solver fails miserably. However when the con-
straints are implemented directly on the velocity level (contrary to the other tests), the method
performs quite well — yet it is no wonder, because velocity-level constraints affect the states of
constrained bodies directly, independently on the used integration method. In that case the only
external force integrated by the Euler solver is the force due to gravity and so there is nothing
to mess up. This is demonstrated by TestIntegrationPrecisionEulerVelocityLevel.

Since the maximum time step sizes are currently determined by the upper velocity bounds
of the bodies in the corresponding simulation groups (see page 79), the step sizes are often too
limited, higher-order integration methods can not manifest their potential (the ability to take
relatively large time steps with relatively small integration error) and the extra computational
cost required to take a step is not balanced by the step size. That said, Euler solver is currently

3By default, these constraints would be maintained on the velocity level at regular states (to stabilize the
velocity level errors) and on the acceleration level otherwise.

114 CHAPTER 9. RESULTS

Figure 9.2: For an illustration, the time spent in various simulator components or performing spe-
cific tasks was measured. The results provide an overview of the overall simulator performance,
but the measured data that should be interpreted from a relaxed detached view, because the run-
ning times mostly depend on what is actually happing in the scene, whether the user interacts
with the bodies, etc. The “Contact / Constraints” column measures the time spent perform-
ing collision detection relative to the time spent solving constraints and “Restarts / Advances”
(restart overhead) shows how much time relative to the total time spent advancing the simula-
tion was required to restart ODE solvers during the course of simulation. Obviously, the restart
overhead is greater at those tests where simulation groups merge and dissolve quite “often”, as
opposed to other tests, where the body separation to simulation groups is nearly static.

Test Contact / Constraints Restarts / Advances
TestChain 23.3506 % 0.937988 %
TestFallingObjects 102.511 % 3.04259 %
TestFriction 23.1678 % 0.747662 %
TestVehicle 20.3607 % 0.587703 %

the fastest but the least accurate integration method implemented in the simulator. Despite of
its inaccuracy, it is used as the default method.

9.1.5 Global Tests

To test the simulator features globally, exercise the cooperation of the simulator components,
rigid body interaction, collision detection reliability and the validity of the friction model more
thoroughly, several tests were implemented and the running times summarized in the figure 9.2.

• TestFallingObjects

A bunch of objects of various shapes is dropped to a pool and the collision detection
reliability and constraint solver precision are tested.

• TestVehicle

This tests presents a model of a simple terrain vehicle that can be controlled by the user.
The vehicle consists of a chassis, body and wheels attached to the chassis by constraints
implementing the wheel suspension. Motor constraints are imposed to implement steering
and actuate the vehicle. A carriage is attached to the vehicle, to make the test more
interesting. The test focuses at the evaluation of the friction model, collision detection and
the constraint solver performance.

9.1.6 Figure Library Tests

These tests briefly validate the functionality of the figure library — skeletons, lower level con-
trollers (TestAngleTrackingController, TestTrajectoryController), higher level controllers
(TestAnimationController, TestRagDollController) and various helper/auxiliary classes
(TestBVHLoader). To support the demo application, articulated figures and controllers are
serializeable and can be externalized. This is tested by TestExternalizedFigure.

9.2. DEMO APPLICATION 115

To avoid the creation of a ton of specialized hard-coded tests, whose parameters can not be
tuned without recompiling the relevant tests, the demo application was created. The application
implements a powerful scene loader that allows to create “scenes” (consisting of static geometry,
rigid bodies, force objects, articulated figures and figure controllers) from their textual descrip-
tions stored in files. The demo scenes, presented in the next section, test and demonstrate the
features of the figure library more thoroughly.

9.2 Demo Application

The demo application is the simulator and the figure library “front end”. It allows to run
tests implemented by the test library (described in the previous section), load and visualize
demonstration scenes stored in external files and run the figure tool.

The purpose of the figure tool is to help the animator set up figures by allowing to “import”
skeletons and animations from popular file formats used by common animation tools and output
files that can be read by the figure library. These files are actually the serializations of the
corresponding figure library objects and their editing corresponds to setting the figures up. The
figure tool was used to extract the skeletons and animations from motion capture data stored in
standard BVH files4 and preset figure controllers in the demonstration scenes.

Since the parsers used by the demo and the figure library suggest the lists of valid tokens
whenever an invalid token is encountered while reading a file and the figure library files “mirror”
the structures of the library objects (documented in the Reference Guide), we will not bother
describing the file structures. In case the demonstration files had to be modified in a non-trivial
way, a deeper understanding of the figure library would have been required anyway.

Demonstration scenes present the animation of articulated human-like figures. The same
visualizer, used by the test library, is used to visualize these scenes. This is good because users
can interact with the figures (generate external influences) and observe how the figure motion
adapts to the influence. For example one might pull or rotate figure segments by mouse, strike
figures by firing new bodies from the attached “cannon”, create obstacles that prevent figures
from moving in desired directions, affect other bodies attached to figures (such as a basket or
an umbrella), etc. We will now describe the individual scenes and point out the features of the
simulator and the figure library that the particular scenes rely upon.

9.2.1 Kinematic Animation

Scene scenes/animation.txt presents a figure that is controlled pure kinematically, by a data
from motion capture. The figure consists of 18 segments, where legs are represented by 2 × 4
segments, arms by 2 × 3 segments, the torso by 3 segments and the head by 1 segment. The
branching structure of the figure, collision geometries associated with the figure segments and
their mass properties are stored in the relevant skeleton file.

Animation controller attached to the figure, and whose state is stored in the corresponding
controller file, controls the figure joint DOFs according to angles and displacements stored in the
associated animation sequence, read from an associated animation sequence file. Angle tracking
and root controllers are used to drive the figure joints by the data from the animation sequence
and certain joint axes are made soft (soft constraints are imposed by angle tracking controllers)
so that the figure segments can be pulled by mouse.

4The format is described in [20].

116 CHAPTER 9. RESULTS

The produced animation should resemble the original kinematic animation as much as possi-
ble, except for the animation of the torso and arms that are set up so that they can be dragged
by mouse and affected by other external influences.

The figure skeleton and controller files are stored in controllers/joint dof animation di-
rectory and the animation to be replayed read from animations/joints dofs, as requested by
the controller. To compare the actual performance with the original BVH animation stored in
animations/bvh, one might run the BVH visualizer that is a part of the demo. To replay a
different animation, controllers/joint dof animation/controller.txt must be edited ap-
propriately.

Another simulation effects can be achieved by adjusting the controller parameters, modifying
the figure’s skeleton and collision geometries or attaching other bodies to the segments. The
other examples we are going to present were mostly prepared using this technique.

9.2.2 Animation With Loose Arms

The most simplistic modification of the previous example is to make the arms loose and let the
physical system animate the arms by itself — figure DOFs due to the torso and legs are controlled
by motion capture data while DOFs due to the arms are made stiff.

This is presented in scenes/animation with loose arms.txt. The corresponding controller
controls joint DOFs according to the angles and displacements stored in the animation sequence,
but, unlike controllers/joint dof animation controller, the arms are loose and do not follow
the angles stored in the animation sequence. Angle tracking controller is set up so that shoulders
are limited and tend to get into the initial posture (soft constraints to make joint angles zero
are imposed), elbows are limited and stiff (soft constraints to prevent rotation about joint axes
are imposed) and wrists follow the initial posture. The skeleton and controller files are stored in
controllers/joint dof animation loose arms.

9.2.3 Animation With Limited Forces

Another trivial modification of the original controllers/joint dof animation controller is to
limit the magnitudes of motor forces so that the figure could interact with the scene and infeasible
constraints would be avoided. Since the motor forces are limited, joint angle limits have to be
provided to prevent limbs from dislocating.

Scene scenes/animation with limited forces.txt presents a figure whose DOFs are con-
trolled by an animation controller capable of producing limited forces (ie. arm won’t bend if
there is an obstacle). The figure switches to a simplified “rag-doll mode” when it is hit to the
chest (joints will no longer be powered but will remain limited) and the figure feet properly bend
when they are in contact with the surface.

To demonstrate more complex interactions with the obstacles in the scene, we have pre-
pared another scene scenes/animation with obstacles.txt that puts the figure into a pool of
moveable bodies. Limited motor forces ensure that the animation constraints can be maintained
reliably.

9.2.4 Editing Animation

Kinematic animation can be easily edited on the dynamics level by making certain constraints
soft and imposing additional constraints to adapt the motion as requested. For example one
might easily fix head to look towards a desired point, prevent the head from tilting, animate
hands by making the joints at the wrists loose, etc.

9.2. DEMO APPLICATION 117

Scene scenes/animation with pointing arm.txt demonstrates how the animation of a hu-
man figure can be edited so that the figure’s right arm would point in the specified direction. This
is implemented by attaching a MotorJoint to the figure’s hand and imposing a bounded equality
constraint that constrains the hand to occupy the specified world space position corresponding
to the point the hand should point at.

Another example, implemented by scenes/animation with basket.txt, attaches a basket
to the figure’s right hand and lets the animation system adapt the motion. The basket is rep-
resented by a general rigid body with mass properties and is attached to the figure’s hand by
a joint that simulates the friction between the basket and the hand. The figure’s controller is
adjusted so that the right arm is made more stiff (animation constraints are less soft).

Finally, scenes/animation with umbrella.txt demonstrates how the animation can be
mapped to a figure that holds an umbrella in its right hand. Please notice that the umbrella
is always held upright, regardless of the figure posture (ie. even when the figure bows, for ex-
ample), that the umbrella is held in front of the head and the hand is always correctly oriented
with respect to the umbrella handle. This is implemented by three additional constraints. An
umbrella is created as a rigid body attached to the figure’s hand by an appropriate anchor joint
that enforces the proper umbrella versus hand orientation. Another constraint pulls the figure’s
hand in front of its head and the third constraint demands that the umbrella is held upright.

9.2.5 Retargetting and Combining Animations

The problem of transferring animations that fit a certain figure to another figure (motion re-
targetting) and the problem of combining motion segments (so that the transition between the
segments would be smooth and realistic) are often hard to solve on the kinematics level. With
the help of dynamics, the problems can be handled much easily. The reason for this to work is
the fact, that the kinematic data (controller inputs) that might be inconsistent with the dynam-
ics of the animated figure are automatically “corrected” by the dynamics system, if the figure
controllers are programmed not to follow the (inconsistent) inputs exactly.

Scene scenes/fat man animation.txt retargets the animation of the default figure to a fat
figure with very different body proportions — limbs are much shorter than those of the original
figure and the torso is bigger and hunched. When we were preparing this test, we modified the
original skeleton, the collision geometries and their mass properties to represent the fat body,
but did not have to modify the animation data. The rest of the work is due to the rigid body
dynamics.

Scene scenes/combined animation.txt presents how two animation sequences can be com-
bined. The animation controller blends (interpolates) inputs from the two animation sequences
while making a transition from one animation to the other one and the dynamics system “cor-
rects” the blended animation if it is inconsistent with the dynamics of the figure. Standard linear
interpolation is used to interpolate the translational data and the spherical linear interpolation
to interpolate the rotational data.

9.2.6 Optical Motion Capture To Skeletal Motion

Motion capture is used to capture the motion of actors so that it could be replayed on the
computer. An actor, equipped with motion capture sensors, performs the desired motion that
is captured by the motion capture device. The captured data are then analysed and mapped
to skeletal motion so that it could be replayed using kinematics or dynamics based techniques,
[19]. In the case of optical motion capture, the motion capture device provides the trajectories

118 CHAPTER 9. RESULTS

of optical motion capture sensors (“markers”) that are rigidly attached to the actor’s limbs and
body. Having known the figure’s skeleton, the assignment of markers to the figure segments and
their positions on the segments, the task is to map the marker trajectories (translational data)
to skeletal motion (angles at joints and displacements of the root joint over time).

The figure posture can be characterized by the state vector ~θ which contains the position and
orientation of the figure and the angles at the figure joints concatenated in a certain order. If we
have n markers attached to the figure segments and ~θ determines the figure posture then ~pi(~θ)
will denote the world space position of the i-th marker (1 ≤ i ≤ n), which is fully determined
by ~θ. If ~qi(t) is the desired world-space position of the i-th marker at time t, determined by the
motion capture device, then the task is to find the figure posture ~θ(t) so that the mapping error∑n

i=1 ‖~pi(~θ(t))− ~qi(t)‖ is minimal.
There are many approaches to perform the mapping. One can for example employ classical

global or local optimization techniques to minimize the mapping error and obtain ~θ(t), such as
in [21]. We take a different approach instead and impose soft PointToPoint constraints that
demand ~pi to occupy the same world space position as ~qi — for each marker i we impose a
position-level constraint ~Ci

p = ~pi − ~qi = ~0 and let the constraint solver compute appropriate
constraint forces to drive the markers along the desired trajectories. Since the constraint solver
is efficient enough, the mapping of the desired trajectories to skeletal motion can be performed
online. The whole process is abstracted and implemented by the TrajectoryController and
presented by scenes/animation by markers.txt scene5. Although some authors attempt to
employ penalty forces to attract markers to their desired positions, as in [25], penalty forces are
hard to tune and do not guarantee a result, as opposed to constraints6.

The advantage of the physical based approach over optimization methods is clear — it can
be used to directly incorporate certain external influences, such as friction (which can be used to
reduce foot sliding), aid in the process of classifying markers (determine whether the given marker
is the marker i, predict the marker positions at the next motion capture frame) and continue in
the mapping process even when certain markers are currently “hidden” and their positions can
not be tracked, by leaving the markers temporarily unconstrained.

9.2.7 Rag Dolls

Figures in the previous scenes were all controlled by kinematic animations, possibly affected by
external influences. To conclude and present something more entertaining, we have prepared a
certain class of figures called the rag-dolls. Their controllers impose joint angle limits only and
make the joints stiff or follow the initial postures, but do not control the figures in any other way
and so are technically “less advanced” than the animation controllers used in the previous scenes.
Scene scenes/hanged man.txt presents a rag-doll hanging on a rope and scenes/staircase.txt
shows a rag-doll falling off the staircase.

5Since we did not have an access to raw optical motion capture data, the trajectories were generated from the
demonstration BVH files and our purposefully thought up marker set, by using the services offered by the figure
tool.

6The constrained based approach allowed us to use the same constraint parameters (= 2 constants) for all
markers without a glitch. More information on constraint-based motion control can be found in section (8.3).

Chapter 10

Conclusions

Rigid body theory necessary for the implementation of a functional constrained rigid body dy-
namics simulator has been presented. The implementation of our simulator has been outlined,
describing the concept abstraction and the implementation overview. The simulator enforces con-
straints by introducing constraint forces and is capable of solving both equality and inequality
constraints, which are used to implement non-penetration constraints with friction. An efficient
constraint solver was implemented to simulate loop-free articulated figures in the linear time.

The total computational cost required to simulate rigid body systems has been reduced by
separating bodies to multiple simulation groups whose equations of motion are abstracted by
generic ODEs and solved independently on each other. Simulation groups are merged whenever
required so that the simulation consistency is ensured.

The test library, the figure library and the demo application have been implemented to vali-
date the offered features and show that the libraries can be used to animate articulated human-
like figures. An infrastructure for constrained-based motion control has been implemented in
the simulator and abstracted by the figure library. Demonstration scenes present how kine-
matic animation can be replayed, edited, retargetted and combined using a physical model. A
constrained-based method to map raw optical motion capture data to skeletal motion in terms
of motion control has been shown.

10.1 Future Work

As it is with most programs and libraries, directions of the further development and improvements
exist. We would like to outline what features are currently missing and would be nice to have
incorporated and what could be implemented or abstracted differently or more efficiently. We
keep the following things in mind,

• New & improved collision detection

New collision detection abstraction layer should be implemented so that different collision
detection engines (external libraries) could be used by the simulator, the implementation
of collision detection should be more separated from the rest of the simulator. Built-in
collision detection should be rewritten to be more efficient, match the new interface and
respect the other new requirements described below.

Sort and sweep algorithm used by the higher-level collision detection does not integrate
well with multiple simulation groups. Hierarchical hash spaces might be more appropriate,
[13].

119

120 CHAPTER 10. CONCLUSIONS

The collision detection’s collider objects are able to determine whether two geometries
penetrate and compute contacts if there is no penetration only. This is okay when all
bodies are simulated, but it might cause problems in computer games, when certain bodies
are not simulated and need be “activated” upon a request or new bodies need be spawned
(the new bodies might penetrate other bodies at the time of activation and the simulator
would not be able to advance further). Collision detection should be able to compute
“surrogate” contacts, defined as the sites where constraint forces should act, in order to
separate already penetrating bodies.

• Aggressive body enabling & disabling

Simulation groups consisting of “idle” bodies are not simulated. It would be nice to im-
plement a more aggressive method that would allow to automatically disable and enable
bodies within a simulation group and ignore the effects of the constraints at the current
time step if they involve enabled and automatically disabled bodies. These constraints
would request the involved bodies to enable since the next time step and the handling of
the constraints would be postponed until then. This is based on the idea implemented by
[22].

In order to support this feature, ODE solver interface would have to be augmented so that it
would be able to ignore the ODE components due to the disabled bodies. Collision detection
would have to be able to compute “surrogate” contacts in order to separate penetrating
bodies, because contacts between automatically disabled bodies and enabled bodies would
be ignored until the next time step and it might be too late to avoid penetration then.

• Iterative LCP and constraint solvers

Currently, all LCP and constraint solvers are analytical. New iterative LCP or constraint
solvers should be implemented so that one could trade the simulation precision for the
improved performance.

• Estimation of the time of collision

Simulation time step is limited so that no point on the surface of a rigid body would sweep
a trajectory whose length would exceed a preset limit during the duration of the time step.
This is too limiting, higher-order integration methods can not manifest their potential. The
maximum step size should be estimated by maintaining the pairs of potentially colliding
bodies and estimating the time of collisions, such as in [13] or [4].

• More higher level motion control, muscular model

Additional task controllers should be implemented by the figure library to provide new
ways of motion control, such as the ability to generate certain types of parametrized motion
(walking, running, balancing). These controllers would be based on the algorithms used by
robotics.

Lower level controllers might want to simulate muscles and tendons so that joint angle
limits could be specified as a function of the figure posture and would not be fixed.

Bibliography

[1] Martin Baker. 3D World Simulation. http://www.euclideanspace.com/.

[2] David Baraff. Collision Detection That Really Works. Lecture notes slides.
http://www.cs.cmu.edu/~baraff/sigcourse98/cd-slides.pdf.

[3] David Baraff. Analytical Methods for Dynamic Simulation of Non-penetrating Rigid Bodies.
SIGGRAPH ’89, Boston, pages 223 – 232, July 1989.

[4] David Baraff. Curved Surfaces and Coherence for Non-penetrating Rigid Body Simulation.
SIGGRAPH ’90, Dallas, pages 19 – 28, Auguest 1990.

[5] David Baraff. Coping with Friction for Non-penetrating Rigid Body Simulation. SIGGRAPH
’91, Las Vegas, pages 31 – 40, July 1991.

[6] David Baraff. Dynamic Simulation of Non-Penetrating Rigid Bodies. PhD Dissertation,
Cornell University, Department of Computer Science, 1992.

[7] David Baraff. Fast Contact Force Computation for Nonpenetrating Rigid Bodies. SIG-
GRAPH ’94, Orlando, pages 23 – 34, July 1994.

[8] David Baraff. Interactive Simulation of Solid Rigid Bodies. IEEE Computer Graphics and
Applications, pages 63 – 75, 1995.

[9] David Baraff. Linear-Time Dynamics using Lagrange Multipliers. SIGGRAPH ’96, New
Orleans, pages 137 – 146, August 1996.

[10] David Baraff, Andrew Witkin, and Michael Kass. An Introduction to Physically-Based
Modelling. SIGGRAPH ’97, 1997. Course notes.

[11] David M. Bourg. Physics for Game Developers. O’Reilly & Associates, Inc., 2002.

[12] Michael Bradley Cline. Rigid Body Simulation with Contact and Constraints. Master’s
thesis, The University of British Columbia, 2002.

[13] Kenny Erleben. Rigid Body Simulation, 2002. Lecture notes.
http://www.diku.dk/forskning/image/teaching/Courses/e02/RigidBodySimulation/.

[14] Michael T. Heath. Scientific Computing: An Introductory Survey, 1997. Lecture Notes.
http://www.cse.uiuc.edu/heath/scicomp/notes/.

[15] Ladislav Kavan. Simulation of Fencing in Virtual Reality. Master’s thesis, Charles University,
Prague, 2003.

121

122 BIBLIOGRAPHY

[16] Katsuaki Kawachi, Hiromasa Suzuki, and Fumihiko Kimura. Simulation of Rigid Body
Motion with Impulsive Friction Force. Proceedings of IEEE International Symposium on
Assembly and Task Planning, pages 182 – 187, August 1997.

[17] Evangelos Kokkevis. Practical Physics for Articulated Characters, 2004.

[18] Evangelos Kokkevis, Dimitri Metaxas, and Norman I. Badler. User-Controlled Physics-
Based Animation for Articulated Figures. IEEE Proceedings of Computer Animation’96
(CA), 1996.

[19] Alberto Menache. Understanding Motion Capture for Computer Animation and Video
Games. Academic Press, 2000.

[20] M. Meredith and S. Maddock. Motion Capture File Formats Explained.
http://www.dcs.shef.ac.uk/~mikem/.

[21] Marius-Calin Silaghi, Ralf Plänkers, Ronan Boulic, Pascal Fua, and Daniel Thalmann. Local
and Global Skeleton Fitting Techniques for Optical Motion Capture. IFIP CapTech ’98,
November 1998.

[22] Russell Smith. Open Dynamics Engine, 2004. http://www.ode.org/.

[23] Jeff Trinkle, Jong-Shi Pang, Sandra Sudarsky, and Grace Lo. On Dynamic Multi-Rigid-
Body Contact Problems with Coulomb Friction. Zeitschrift für Angewandte Mathematik
und Mechanik, pages 267 – 279, 1997.

[24] Victor B. Zordan and Jessica K. Hodgins. Tracking and Modifying Upper-body Human
Motion Data with Dynamic Simulation. Computer Animation and Simulation, 1999.

[25] Victor B. Zordan and Nicholas C. Van Der Horst. Mapping Optical Motion Capture Data
to Skeletal Motion Using a Physical Model. The Eurographics Association, 2003.

