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Vedoućı diplomové práce: RNDr. Josef Pelikán
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E-mail vedoućıho: Josef.Pelikan@mff.cuni.cz
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Chapter 1

Introduction

1.1 Real world vs. computer graphics

The vision of computer graphics scientists and artists is to be able to fully re-
produce images of real world on graphics chips. We are still very far from this
ultimate goal. Yet some artists are already capable of creating almost indistin-
guishable pictures and sceneries. Still it is important to add, that they are being
rendered within minutes or even hours. Realtime algorithms do not allow this
level of realism so far.

Figure 1.1: Comparison of real and cg scene (courtesy of Crytek)

1
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Creating a real world physical realism in the realtime application (the most
common example would be a computer game) is overwhelmingly complex. Light-
ing, shading, culling, rasterization... All of them are parts of a graphics pipeline.
Yet only a part of CPU/GPU time is free for these computations, program needs
to take care of physics (collision detection), AI (which is still a very weak part
of today’s games), processing of user inputs, sound, net communication... This
makes it even more important to create visually perfect results in the shortest
time possible.

Thus in realtime rendering it is always a struggle between visual complexity
and performance. Thanks to the fast development of GPU segment in the last
decade, we are able to produce better results in shorter time. Yet it is still very
far from the quality of raytraced1 images.

1.2 Computer graphics renaissance

In the last few years we have witnessed a great increase in the speed of graphics
hardware development. It is the result of competition between industry lead-
ing companies, nVIDIA and ATI. Innovations and number of new features have
overcome even the evolution of CPUs. Fixed function pipeline has been replaced
by programmable shaders, greatly expanding the flexibility of realtime computer
graphics programming.

With GPU programmability many time-consuming computations can be done
directly on GPU, saving precious CPU time for other important evaluations. A
programmer has a greater degree of freedom in what effects he wants to achieve.
There are multiple high level shader programming languages today: HLSL (for
Microsoft’s Direct3D), GLSL (OpenGL) or cross platform Cg (nVIDIA). For more
experienced developers assembler shaders are also possible (better optimization,
than in the code created by high level language compilers, can be achieved).

Code 1.1: Vertex shader example

fpDataMap shadowMapVertex(

uniform float4x4 ModelViewProj,

uniform float4x4 TexTransform,

uniform float4 LightPos,

uniform float vis_dist,

vpData IN)

{

fpDataMap OUT;

//get texture coords + position

OUT.TexCoord0 = mul(TexTransform, IN.Position);

1raytracing is a popular method of non-realtime rendering
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OUT.Hposition = mul(ModelViewProj, IN.Position);

return OUT;

}

Shaders can be divided2 into vertex shaders (code run for every vertex of
geometry) and fragment shaders (code run for every fragment after rasterization).
The major drawback of first versions of shaders (mainly fragment profiles like
vp10, fp10, etc.) was an absence of loops, if statements and severe limitations
of code length. This is almost removed now, yet still not every aspect of C++
is possible (for example pointers). Debugging is yet another problem. It is not
possible directly, thus increasing the time needed to successfully develop an effect.

Code 1.2: Fragment shader example

float4 shadowMapFragment(

fpDataMap IN,

uniform sampler2D ShadowMap,

uniform float4 shadow) : COLOR

{

//get depth value

float depth = tex2Dproj(ShadowMap, IN.TexCoord0).r;

return shadow*depth;

}

For more comfort, while working with shaders, the CgFx file format was
developed. It encapsulates shaders, texture settings, etc. in one file. CgFx also
enables creation of techniques, each defining some effect (with multiple passes).
Different techniques for different generations of graphics HW are possible (the
right code is chosen in runtime). Thus we can store effect shaders for PS3, X360,
low-end GPUs and high-end GPUs in a single file.

Code 1.3: Technique example

//shadow map texture

sampler2D shadowMap = sampler_state {

minFilter = Linear;

magFilter = Linear;

WrapS = ClampToBorder;

WrapT = ClampToBorder;

CompareMode = CompareRToTexture;

2new generation of nVIDIA cards brings unified shader architecture
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CompareFunc = GEqual;

BorderColor = float4(1.0,1.0,1.0,1.0);

};

technique hardShadowMap < int type = 9; > {

pass mapShadow {

PolygonOffsetFillEnable = true;

PolygonOffset = float2(-2.0,-10.0);

DepthMask = false;

DepthTestEnable = true;

//cull back faces

CullFaceEnable = true;

CullFace = Back;

BlendEnable = true;

BlendFunc = int2(SrcAlpha,OneMinusSrcAlpha);

VertexProgram = compile vp40 shadowMapVertex(

mvp, shadowM,LightPosition,visibleDistance);

FragmentProgram = compile fp40 shadowMapFragment(

shadowMap,hardShadow);

}

}

1.3 Shadows

The basic concept (no indirect lighting or multiple, area light sources are taken
into account) of a shadow is simple. There are two possible situations. Either a
point is in shadow or not. This model is considering light source, that is illumi-
nating the scene, to be a point light(infinitely small emmiter of light, the closest
example from the real world is the sun). Emmited light is cast in all directions
uniformly. Surfaces hit by the light are lit and are considered to be occluders for
other objects lying further away from the light source in that particular direction.
These objects are in shadow and are called receivers.

Shadows are one of the most important factors in computer graphics (along
with a color information). They allow us to perceive information about surface
complexity:

� position and size of an occluder

� geometry of an occluder
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� geometry of a receiver

Figure 1.2: Shadow explanation

Shadows are also important for a human observer because our real world is
full of them. Thus the human vision system is greatly used to their presence and
absence of shadows has an essential influence on realism.

(a) Without shadows (b) With shadows

Figure 1.3: Importance of shadows

To go even further, we can distinguish two types of shadows:

� self-shadows occur when the shadow of an occluder is projected on itself
(the occluder and receiver are the same)

� cast shadows occur when the shadow is projected on other object.

This distinction is very important because some algorithms (as shown further)
cannot display self-shadows.
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Figure 1.4: Soft shadow explanation

1.4 Soft shadows

Real world is full of shadows. Yet they are qualitatively much different from what
we are used to see in realtime applications. They are much softer. It is caused
mainly by physics in the world around us. Real light emitters are not point lights.
Their dimensions, area, as well as the distance from shading object and distance
from shaded surface are all factors resulting in more complex shadows. They
have two parts:

� umbra: regions of full shadow (no part of the light is visible)

� penumbra: regions of partial shadow (not whole light is hidden)

(a) Hard shadow (b) Soft shadow

Figure 1.5: Hard vs. soft shadow

The main goal of shadow rendering development over the past few years is to
devise an algorithm capable of computing realistically looking soft shadows with
interactive frame rates. Almost every widely used algorithm for hard shadows is
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fast enough (on modern hardware). But for photo realistic rendering their quality
is just insufficient.

To produce soft shadows (visually appealing) we need enormous number of
light samples (up to 1024, some kind of the stochastic sampling is mainly used)
and blending of shadows rendered with each of these samples. This degrades the
performance linearly with their quantity.

Second group of techniques is not meant to create physically correct shadows
but rather visually nice and believable ones. They are called fake soft shadow
algorithms and are using only one light sample combined with sophisticated ways
of sampling the precomputed shadow texture. This way we get much faster
methods without loosing a high level of realism.

As a consequence, realtime computer graphics (and also the shadow compu-
tation) requires unpopular steps improving performance at the expense of quality
of the resulting picture. A good survey of realtime soft shadow methods can be
found in [HJF03].

1.5 Future

Figure 1.6: Future of realtime rendering?

What will the future bring us? According to today’s trends, huge pace of
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graphics hardware development is not going to decrease in the next few years.
This means that many algorithms, that are too expensive and time consuming
to be used in realtime application today, will become usable.

Of course not only the hardware is evolving. Some new shadow rendering
techniques can also be expected. As the applications for common consumers are
becoming more and more demanding, the usage of soft shadows is beginning to
be an essential part of them. This brings an impulse (also financial) for a massive
research in this field of expertise.

With all this in mind, also the mainly non-realtime technique of raytracing
is undergoing an enormous evolution pointing towards an interactive rendering
performance. Slussalek3 et al. is developing a dedicated hardware for realtime
raytracing. The OpenRT project4 is very vital and who knows, maybe one day
the GPU architecture as we know it today will be forgotten...

3Universität des Saarlandes, Germany
4The OpenRT Real-Time Ray-Tracing Project, http://www.openrt.de/



Chapter 2

Main shadow algorithms

2.1 Introduction

In this section we would introduce a few of the most frequently used algorithms
for shadow computation. They have evolved through the years and are used
in almost every contemporary game/application where some level of realism is
desired. Three major categories have emerged:

� Projective shadows

� Shadow maps

� Shadow volumes

� precomputed shadow textures (light maps, global illumination, etc.) → not
the scope of this work

Each algorithm introduces various levels of computational complexity and
accordingly also differing visual quality. They can be used for soft shadows com-
putation as well (brute force, fake soft shadows).

2.2 Projective shadows (planar)

2.2.1 Method

This method is still among the most used. It is fast and relatively visually
appealing. Shadows are created by projection of the geometry into receiver’s
plane [Bli88]. This is really straightforward but brings also many drawbacks.
Receiver has to be planar (this is the reason it is widely used in games for shad-
owing of floor tiles), each plane requires different transformation matrix (for

9
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example shadows on walls require running the algorithm for each wall separately,
the same is true for multiple light sources, etc.). Other drawback is the absence
of self-shadows (clear from the nature of the algorithm).

Figure 2.1: Projective shadow

2.2.2 Algorithm

Let us explain it a bit further. The crucial part is getting the shadow projection
matrix (based on the light position and receiver’s plane equation).

For this we need to know receiver’s plane equation. Plane can be defined by
its point p and normal vector ~n. Then a point r lies in the plane iff

~n · (p− r) = 0

This can be rewritten as
ax + by + cz + d = 0 (2.1)

where

~n =

 a

b

c


and

~n · p = −d (2.2)

With this knowledge, for a plane defined by three points p1, p2, p3 we can
compute desired coefficients a, b, c by applying a cross-product

~n = (p2 − p1)× (p3 − p1)

and coefficient d by substituting point pi into the equation (2.2).
The second step towards projective shadow is the projection matrix. All we

need are the plane equation coefficients ~p (2.1) and light position homogeneous
coordinates ~l. With the help of the dot product of these vectors

dot = ~p ·~l = p0 ∗ l0 + p1 ∗ l1 + p2 ∗ l2 + p3 ∗ l3
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the resulting matrix can be computed as follows:
dot− l0 ∗ p0 −l1 ∗ p0 −l2 ∗ p0 −l3 ∗ p0

−l0 ∗ p1 dot− l1 ∗ p1 −l2 ∗ p1 −l3 ∗ p1

−l0 ∗ p2 −l1 ∗ p2 dot− l2 ∗ p2 −l3 ∗ p2

−l0 ∗ p3 −l1 ∗ p3 −l2 ∗ p3 dot− l3 ∗ p3

 (2.3)

After computing shadow projection matrix Mp, all that is left to do is to
multiply current modelview transformation matrix Mmv with it and draw the
occluder geometry. It will be projected into the receiver’s plane.

P ′ = Mmv ∗Mp ∗ P (2.4)

Remark: it is useful to avoid drawing the shadow outside receiver’s geometry
by setting accordingly the stencil buffer.

2.2.3 Pseudo Code

Short recapitulation of the algorithm in a pseudo code follows:

Code 2.1: Projective shadows

//draw all shadow casters

drawScene();

//foreach shadow receiver plane

foreach(receiver) {

//compute matrix transformation

computeTransformMatrix(receiver,matrix);

//update default modelview matrix

multMatrix(matrix);

//draw all shadow casters

//with shadow color and blend

drawScene(shadow);

}

2.2.4 Usage

Method is widely used in complex, realtime environments with a lot of outdoor
spaces in daylight (so the projection of shadows is necessary only against floor
plane and the only light source is the sun). Lack of self shadowing can be disguised
with good textures. Common observer is satisfied with the presence of shadow
phenomena, physical correctness is not that important.
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2.2.5 Examples

This approach can be seen in the game Half-life 2 by Valve Software. Each
character casts shadow on the ground, no self shadowing is present. Shadows are
computed only against the sun position (even inside buildings). This can be seen
on the ingame screenshot.

Figure 2.2: Half-Life 2 screenshot (courtesy of Valve)

2.2.6 Conclusion

Pros Cons
+ easy computation - no self shadows
+ visual quality - planar receiver only

Table 2.1: Projective shadows technique review

2.3 Shadow maps

2.3.1 Method

Method produces shadows using depth value textures [L.78]. Scene is rendered
from a light point of view into the depth texture. When rendering resulting
image, distance of current pixel to the light source is compared with the depth
stored in the texture. If it is larger, pixel is in shadow (some occluder geometry
is closer to the light source). This approach is very popular because of an easy
implementation.
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Figure 2.3: Shadow map illustration

Problems are with an appropriate resolution of the shadow map (resolution
too low creates big ”jaggies” (aliasing) at the edges of drawn shadow, this is
even amplified by perspective projection). Bigger maps are, on the other hand,
very memory consuming. More ways how to deal with these problems have
been proposed: perspective shadow maps [MS02], PCF (percentage closer filter-
ing) [RWR87]... Each is good in some contexts and problematic otherwise.

(a) Visualisation (b) Resulting shadows

Figure 2.4: Shadow mapping

2.3.2 Algorithm

This method has two important (independent) stages:
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1. depth map acquisition – needs recomputation only for dynamic scenes

2. depth comparison – can be automated (in OpenGL using texture mode
GL_COMPARE_R_TO_TEXTURE with an additional HW interpolation) or done
in a shader

Acquisition of depth map can be done in advance (to save precious computa-
tion time). When the only moving object in a scene is camera, we do not need
to update shadow maps.

During this part of the algorithm, the scene is rendered from a light point
of view (has to be done for each light source separately). Only depth buffer
information is important. It is stored in a texture (each pixel of the texture will
have value from 0 to 1 according to the previous setting of the view frustrum).

It is important to save matrix for transformation of the world coordinates
into the light space coordinates along with depth texture generation. We can
use modelview matrix M and projection matrix P from the light point of view
settings. Multiplication by these matrices will convert point coordinates into
the light space coordinates (values from -1 to 1). Yet we need texture space
coordinates (they are usually from 0 to 1). Thus one more matrix multiplication
is needed. We need to scale values by 0.5 and translate them by +0.5. Desired
bias matrix is therefore

ST =


0.5 0 0 0.5
0 0.5 0 0.5
0 0 0.5 0.5
0 0 0 1

 (2.5)

Complete transformation matrix is then a result of matrix multiplication:

T = ST ∗ P ∗M (2.6)

The second part is all about depth comparisons. After drawing the scene in
normal colors we need one extra pass to draw a shadow over shaded parts of the
scene.

Remark: It can be naturally done also vice versa, by drawing the whole scene
in a shadow color and then adding not shaded parts of screen in normal colors.

For each pixel its depth value dobj is computed (z coordinate after transforma-
tion by T matrix (2.5))). This is compared with a stored value from the texture
dmap. There are two possibilities:

1. dobj < dmap ⇒ pixel is not in shadow

2. dobj >= dmap ⇒ pixel is in shadow
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Remark: There are several problems connected with the use of shadow maps.
Because of numerical errors during transformations and limited precision of the
depth buffer self shadow alias artifacts arise. They can be limited by computing
the shadow maps only from back-facing geometry triangles and by ε translation
of the geometry closer to the light source (by enabling GL_POLYGON_OFFSET_FILL

in OpenGL). Another important thing is the previously mentioned alias on the

shadow edges, caused by low depth texture resolution and the need to magnify
texture after projection. Partial solution is to increase resolution of shadow map
or to use some kind of PCF. It does not remove alias completely, but makes it
less apparent.

2.3.3 Pseudo Code

Short recapitulation of the algorithm in a pseudo code follows:

Code 2.2: Shadow maps

//draw scene from the light point of view

//capture depth values into shadow map texture

//and save transformation matrix

map = generateShadowMap(lightPosition, &shadowMatrix);

//draw default scene, use pregenerated texture

foreach (pixel P in scene) {

//transform P into light space

P’ = transform(P,lightPosition);

//compare P’s depth value with stored depth value

if (P’.z > map(P’.x,P’.y))

//pixel is shaded

PixelColor(shadow);

else

//pixel is not shaded

PixelColor(P->object);

}

Remark: It is important to generate shadow maps with sufficient resolution.
This is usually higher than current screen resolution (up to 4096x4096 on modern
GPUs). Thus it is impossible to get such texture with classic OpenGL color buffers
and various extensions have to be used (for example EXT_framebuffer_object).
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2.3.4 Usage

Method is very popular in games, because it is easy to compute (or precompute
if the scene is static) and apply. A crucial part is to choose the resolution for
the shadow maps wisely. They have to be updated only for dynamic parts of the
scene, static parts can use precomputed shadow maps (then their application is
reduced to a simple texture lookup).

2.3.5 Examples

Technique is widely used in Neverwinter Nights 2, etc.

Figure 2.5: Neverwinter Nights 2 screenshot (courtesy of Obsidian Entertainment)

2.3.6 Conclusion

Pros Cons
+ easy computation - visual quality
+ self shadowing - memory requirements

Table 2.2: Shadow map technique review

2.4 Shadow volumes

2.4.1 Method

This method computes shadows by creating a shadow geometry [C.77]. This is
done by extending the silhouette edges (edges which separate front-facing faces
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from back-facing faces) along the light-to-vertex direction away from the light.
Each object is thus transformed into a shadow volume. The shadow volume
delimits the part of space where the light source is not visible (it is shaded by the
given object). Algorithm is robust with a pleasing quality of results. Yet without
any optimization it can be really slow.

(a) Visualization (b) Resulting shadows

Figure 2.6: Shadow volumes

Optimizations are mainly trying to do shadow volume computations only
against silhouette edges. Their finding and maintenance (in case of a dynamic
scene) is rather complex and slow (done on CPU). Some methods were proposed
for finding candidates for silhouette edges [Len02].

Usual implementation works with manipulation of the stencil buffer. Actual
computation of whether the pixel is in shadow or not can be done by three
different approaches: depth-pass, depth-fail and exclusive-or (they differ in
number of passes they require and also in the way of altering stencil buffer values).

2.4.2 Algorithm

The process of this method is composed of three parts. First, we draw normal
scene. Then the shadow volumes are created (with the chosen method). An
important optimization is to precompute silhouette edges candidates on CPU
and use only them for shadow volumes, otherwise the performance is low. The
last thing that needs to be done is to draw the scene geometry again (this time
in a shadow color), now only over the parts set by stencil buffer.

Over the time many extensions have been proposed for HW developers, which
can speed shadow volume algorithms up a bit (for example GL_NV_depth_clamp,
GL_EXT_stencil_two_side1, GL_EXT_stencil_wrap, etc.). They, however, re-
quire modern graphics cards.

1enables two different stencil operations according to the face orientation, this saves one
pass
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Figure 2.7: Shadow volume illustration

2.4.3 Depth-pass

This is the first proposed method to use stencil buffer during the shadow volume
generation [Hei91]. It requires two passes, where front-facing and back-facing
faces of the shadow geometry are counted in the stencil buffer. It is based on
a fact that object’s surface point, which is in the shadow will have more front-
facing faces than back-facing faces between itself and the eye. Therefore it can
be written like this:

1. use back-face culling

2. set the stencil operation to increment on depth pass

3. render shadow geometry

4. use front-face culling

5. set the stencil operation to decrement on depth pass

6. render shadow geometry

After this render shadow only where stencil buffer is 6= 0.
Remark: The scene settings where eye is situated inside the shadow volume

are problematic. Then we get reverted and incorrect results.
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(a) Problem (b) Correct, soft version

Figure 2.8: Depth pass method

2.4.4 Depth-fail

Around year 2000, several people discovered2 a way how to avoid problems with
the previous method [BB99, Car00]. All that is necessary is to reverse the depth.
Instead of counting volumes in front of the object, the same can be done for the
volumes behind the object. This solves the problem of eye being in shadow, yet it
needs back caps of shadow volumes (otherwise the shadow will be missing where
shadow volume points to infinity). Therefore the depth-fail version of algorithm
can be written like this:

1. use front-face culling

2. set the stencil operation to increment on depth fail

3. render shadow geometry

4. use back-face culling

5. set the stencil operation to decrement on depth fail

6. render shadow geometry

After this render shadow only where stencil buffer is 6= 0.
Remark: This method is slower than depth-pass and therefore should be used

only when necessary.

2.4.5 Exclusive-or

This method requires only one pass, yet it is correct only for special situations
and does not deal properly with overlapping shadow volumes. It can be written
like this:

2one of them is John Carmack of ID software, method is also known as Carmack’s Reverse
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(a) Correct (b) Correct, soft version

Figure 2.9: Depth fail method

1. disable culling

2. set the stencil operation to XOR on depth pass

3. render shadow geometry

After this render shadow only where stencil buffer is 6= 0.

(a) Problem (b) Correct, soft version

Figure 2.10: Exclusive-or method

2.4.6 Pseudo Code

Short recapitulation of the algorithm in a pseudo code (using the most common
depth fail settings) follows:

Code 2.3: Shadow volumes

//1.shadow computation phase

//using extended "shadow" geometry construct a mask

//in the buffer, with non zero values where shadow is

//prepare geometry, set stencil
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setCulling(front);

setStencil(incr,depth_fail);

//render geometry

drawScene();

//prepare geometry, set stencil

setCulling(back);

setStencil(decr,depth_fail);

//render geometry

drawScene();

//2.rendering phase

//draw the default scene (completely lit)

drawScene();

//draw the scene with shadow color

//according to the prepared mask

drawScene(mask, shadowColor);

2.4.7 Usage

This is a popular choice for scenes with complex lighting conditions (multiple,
dynamic, moving light sources...), where artifacts from the use of shadow maps
would be unbearable. Usage of shadow volumes brings great visual experience
with self shadowing and visually stunning shadows.

Figure 2.11: Doom3 screenshot (courtesy of id Software)
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2.4.8 Examples

Approach appeared in Doom3 by ID software. Improvements to the algorithm
were introduced during the game development (depth-fail version of algorithm).

2.4.9 Conclusion

Pros Cons
+ visual quality - slow, complex computation
+ self shadowing

Table 2.3: Shadow volume technique review



Chapter 3

Soft shadow algorithms

3.1 Introduction

As mentioned before, shadows are a crucial part of understanding scene complex-
ity, mutual positions, closeness of the objects, etc. Generation of hard shadows is
well mapped and easily implementable on today’s GPUs. Yet they are unnatural
and not suitable for realistic image rendering.

Future unprecedentedly requires soft shadows. Not even they feel realistic
(even when computed by fake methods), they are also addictive and if you have
seen a realtime application with soft shadows, every hard shadow would seem
like a step back into the prehistory...

(a) Hard shadow (b) Soft shadow

Figure 3.1: Visual difference between hard and soft shadow

To achieve realistic, physically correct shadow an area light has to be densely
sampled (number of samples depends on the dimensions of light and its distance
from occluders, etc.). Then the shadow is computed as a superset of shadows
generated for each light sample. This is very slow as it requires many rendering
passes with the scene geometry.

23
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Thus in interactive applications mainly fake shadow methods are used. Shad-
ows are not entirely physically correct, yet for human observer that is not such a
problem as this fact is not as disturbing as hard shadow edges (for which there is
no real world equivalent and our eyes are very sensitive to this kind of the edges).

Main disadvantage of all methods is the computational complexity to achieve
good results. For some of the more advanced methods (shadow volume penumbra
wedges [TAM02a]), the main bottleneck remains the necessity to do a lot of work
on CPU (in every cycle for a dynamic scene) as some more complex precompu-
tation steps (as silhouette edges lookup) are not achievable1 on GPUs with their
streaming architecture.

The most GPU-friendly algorithms (with all the desired features, like self-
shadowing and dynamic penumbra size) are based on shadow mapping technique.
GPUs capabilities of handling texture lookups is getting faster and more complex
with each new generation of graphics chips.

Over the years many methods were proposed, some of them usable for inter-
active applications and some not. The most interesting ones are listed below and
they will be explained further.

� PCF – Percentage Closer Filtering, basic method for softening of hard and
aliased edges of shadow maps, average quality

� Blurred PCF – blurring the PCF shadow map with Gaussian filtering,
very fast, very good quality, yet some visible artifacts are present

� Jittered PCF – stratified supersampling of shadow map, very good qual-
ity, slower

� PCSS – Percentage Closer Soft Shadowing, very good quality, slower

Of course also their combination and modifications are possible. These al-
gorithms can be used globally. For specific scenes (static, light source very far,
small number of shadow receivers, etc.) also other specific purpose methods exist.

3.2 Percentage closer filtering (PCF)

This soft shadow mapping method was proposed by Reeves et al. in 1987 [RWR87].
It is based on filtering of shadow transparency by calculating how many percent
of neighborhood texels are closer to the light than the point being illuminated.

Algorithm is based on texture lookups, on modern GPUs there is also a HW
support for PCF2x2 prefiltering (with bilinear interpolation). With this support
enabled even hard shadow mapping is blurred a bit at the edges.

1with the new generation of GPUs based on G80 chip from nVIDIA with the capability
of unified shaders it is a little bit less painful. Even the raytracer with acceleration structures
(kD-trees) have been successfully implemented on this HW.
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Figure 3.2: PCF3x3 filtering

Another way of automating this process is to set the texture comparison
mode (in OpenGL) to GL_COMPARE_R_TO_TEXTURE. Not the exact depth value is
returned after a texture lookup but rather a boolean (depending on comparison
function settings) result of texture value comparison with fragment depth.

(a) Hard shadow (b) PCF3x3

(c) PCF5x5 (d) PCF7x7

Figure 3.3: PCF with different sizes

Resulting softness of the drawn shadow is affected by the size of sampled
neighborhood. For a good result we usually need at least 7x7 neighborhood
averaging, yet with growing size the algorithm also gets slower as this filtering
takes place in each fragment processed. Fragment shaders are very sensitive to
the number of queried operations.

Remark: This method is a fake shadow map method, as the size of the penum-
bra depends only on the size of neighborhood and not on the physical properties
of the scene.
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3.2.1 Code example

Fragment shader involved can be written as follows:

Code 3.1: PCF method

float4 fakeShadowMapFragment(fpDataMap2 IN,

uniform sampler2D ShadowMap,

uniform float offset,

uniform float4 shadow) : COLOR

{

float shadowHardness = 0.0;

//PCF 7x7

for (int i=-3;i<=3;i++)

for (int j=-3;j<=3;j++)

shadowHardness += tex2Dproj(ShadowMap,

IN.TexCoord0 + offset*float2(i, j));

//get average value

shadowHardness = shadowHardness / 49;

//output color

return shadow*shadowHardness;

}

3.2.2 Conclusion

Pros Cons
+ soft shadows - visual quality
+ HW support - constant penumbra size

Table 3.1: PCF technique review

3.3 Blurred PCF

This method is an extension to the widely used PCF. It was published in the year
2005 [Sha05]. Its big advantage is fast computation and thus good performance
even in complex scenes.

It is based on shadow map generation. Instead of actually using it to draw
shadow in the scene, shadow map is drawn into the texture with the help of PCF.
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This texture is then blurred with Gaussian filter, which is separable. Therefore
it can be used for blurring in horizontal and afterwards vertical direction doing
only 2N texture lookups (which is the main reason of speedup) instead of N2.
Blurred result is then projected back into the screen space and blended with the
basic scene.

Here are the steps involved:

1. generate shadow map

2. render shadowed parts of the scene into the texture

3. blur this texture in horizontal direction and store

4. blur resulting texture in vertical direction and store

5. project the blurred texture into the scene

(a) PCF blur (b) Soft shadow

Figure 3.4: PCF blur halo problem

Main problem of this approach is the lost depth information. Blurring the
resulting shadow texture causes spreading of not shadowed parts into original
umbra. Thus objects touching (in screen space) some occluder (area without
shadow in original shadow texture) have clearly visible, not shadowed halo along
the occluder’s edge.

Remark: Still it works perfectly for scenes without overlaps (in screen space)
between occluders and receivers, etc.

3.3.1 Code example

Code consists of the basic fragment shader for PCF (simple 3x3 version) and a
fragment shader for blurring stored texture with Gaussian:

Code 3.2: PCF blur method
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float4 shadowMapBlur(

float2 texCoord : TEXCOORD0,

uniform sampler2D blurTexture,

uniform float gaussWeight[],

uniform float2 gaussOffset[]) : COLOR

{

//accumulated color

float4 vAccum = float4( 0.0f, 0.0f, 0.0f, 0.0f );

//sample the taps (gaussOffset holds the texel offsets

//and gaussWeight holds the texel weights)

for(int i = 0; i < gaussOffset.length; i++ )

{

vAccum += tex2D( blurTexture, texCoord + gaussOffset[i] )

* gaussWeight[i];

}

return vAccum;

}

3.3.2 Conclusion

Pros Cons
+ soft shadows - halo effect artifacts
+ very fast - constant penumbra size
+ visual quality

Table 3.2: Blurred PCF technique review

3.4 Jittered PCF

The main problem of PCF shadow maps is a high number of texture lookups
needed to achieve good looking results. To increase this number means only to
move the banding artifacts into higher frequencies. Yet human visual system is
very sensitive to the strong edges (high frequency information).

This method was proposed with the aim on removing the banding arti-
facts [Ura05]. It is very well known that the human visual system is much less
sensitive to a noise than the edges, therefore it is possible to do this PCF filtering
not with regular grid samples but instead using jittered grid samples (where each
sample is inside its grid cell pushed by a random vector).
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(a) 32 samples (b) 64 sample

Figure 3.5: PCF jitter comparison

Furthermore, jittered grid is warped to form a disk. This brings less distortion
artifacts, when compared to a square grid. While generating the square grid is
pretty straightforward, warping it into disk (with area preserving square-disk
transformation) is trickier. It can be done by formulas:

x =
√

v × cos 2πu (3.1)

y =
√

v × sin 2πu (3.2)

where u, v ∈ [0..1] represent jittered sample location within square domain and
x, y are their counterparts in the disk domain.

t tt t Jitter
−→ t tt t

Warp
−→ &%

'$
����t tt t

Figure 3.6: Regular grid jittering and warping

We can precompute jittered samples and store them in a texture. Authors
recommend 3D texture (x, y dimensions are small and represent a small block
where each texel has different set of samples stored in the z dimension). This way
we avoid situation when two neighboring fragments will sample shadow texture
in the same positions. So the key point is that the sequence of shadow map
sample locations is each time different, thus the approximation error is different
at different fragments. This effectively replaces banding with high frequency
noise. Error is still there but it is much less visible.

Last thing worth of notice is the branching in fragment shader. Here we can
use the fact, that in umbra regions it is useless to use all samples (author uses
64 samples per pixel) because all of them will result in full shadow. Thus we
can first test pixel only on lower number of samples. Only if the result is not
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clear (not 0 or 1), which means a high probability of penumbra pixel, we do the
remaining texture lookups.

3.4.1 Code example

Fragment shader involved can be written as follows:

Code 3.3: PCF jitter method

float4 jitterPCF(fpDataMap IN,

uniform sampler2D ShadowMap,

uniform sampler3D jitterTex,

uniform float2 offset) : COLOR

{

float shadowHardness = 0.0;

float2 offsetScale = offset;

//coordinates for lookup jitter texture

float3 coord = float3(IN.TexCoord0.x,IN.TexCoord0.y,0);

//cheap test samples (8)

for( int i=0; i<4;i++) {

//sample lookup texture

float4 off = tex3D(jitterTex, coord)*offsetScale.xyxy;

coord.z += jitterInvSamples;

//is in shadow? 2 offsets are stored in 1 value from jitterTex

shadowHardness += tex2Dproj(shadowMap,IN.TexCoord0 + off.xy);

shadowHardness += tex2Dproj(shadowMap,IN.TexCoord0 + off.zw);

}

//do we need to continue sampling (is penumbra hit highly probable)?

if ((shadowHardness - 8) * shadowHardness != 0) {

for (int i=0; i < jitterSamplesDiv2 - 4; i++) {

//sample lookup texture

float4 off = tex3D(jitterTex, coord)*offsetScale.xyxy;

coord.z += jitterInvSamples;

//is in shadow? 2 offsets are stored in 1 value from jitterTex

shadowHardness += tex2Dproj(shadowMap,IN.TexCoord0 + off.xy);

shadowHardness += tex2Dproj(shadowMap,IN.TexCoord0 + off.zw);

}

//average value

shadowHardness *= 0.5 * jitterInvSamples;
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}

//return computed shadow

return float4(0,0,0,shadowHardness);

}

3.4.2 Conclusion

Pros Cons
+ soft shadows - only average speed
+ visual quality - constant penumbra size

Table 3.3: Jittered PCF technique review

3.5 Percentage closer soft shadows (PCSS)

Each of the previously mentioned methods has one drawback in common: inabil-
ity to create penumbra regions with varying sizes depending on distances between
the light source, occluder and receiver.

In the year 2005 a new method was published [Ran05], based on PCF but
allowing this essential feature of generated soft shadow believability. Its basic
assumption is the notion, that increasing PCF kernel creates softer shadows,
therefore challenge is to vary filter size intelligently to achieve accurate degree of
softness (based on relative location of objects in the scene).

(a) PCF (b) PCSS

Figure 3.7: PCSS visual dominance over PCF

This is done in three steps:
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1. Blocker search – Shadow map is searched in small neighborhood. Size
depends on the light size and the distance between receiver and the light
source. Retrieved depths (only that are closer to the light source than to
the receiver) are averaged to get the distance light-occluder. Neighborhood
search and averaging is essential to get the correct values also for outer
penumbra, where no depth value is stored in shadow map.

2. Penumbra estimation – Penumbra width is estimated based on the light
size, blocker and receiver distances from the light (with the assumption,
that the blocker, receiver and light source are parallel):

wpenumbra = (dreceiver − dblocker) · wlight/dblocker (3.3)

3. Filtering – Typical PCF filtering with kernel size proportional to the
penumbra size estimation.

Figure 3.8: Penumbra size estimation

Remark: Resulting shadows are visually appealing and dynamically react to
the changes in the scene geometry distances. Yet this method still doesn’t take
into account other than perfectly circular area light source and is relatively slow
to achieve good results.

3.5.1 Code example

Fragment shader involved can be written as follows (inspired by an implementa-
tion in [Mik07]):

Code 3.4: PCSS method

float4 fragmentShadowMapPCSS(

fpDataMap IN,
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uniform sampler2D shadowMap,

uniform sampler2D shadowMap2,

uniform float4 shadow,

uniform float2 offset): COLOR

{

//compute radius of neighborhood for occluder scanning

float receiver = IN.TexCoord0.z/IN.TexCoord0.w;;

float2 radius = offset*(flatSize/receiver);

float occluder = 0.;

float occluderCount = 0.;

//scan the neighbourhood for occluders

for (int i=-1; i<=1; i++)

for (int j=-1; j<=1; j++) {

//get the depth value from shadow map

float depthVal = tex2Dproj(shadowMap2,IN.TexCoord0

+ float2(i*radius.x, j*radius.y)).r;

float isBlocker = step(depthVal, receiver);

//update occluder count and stored depth

occluder += depthVal*isBlocker;

occluderCount += isBlocker;

}

//compute average of occluding depths

occluder /= occluderCount;

//estimation of penumbra size

float penumbra = flatSize*(receiver-occluder)/occluder;

radius = 2*offset*penumbra;

float shadowHardness = 0.;

//perform ordinary PCF with diameter of penumbra size

for (int i=-3; i<=3; i++)

for (int j=-3; j<=3; j++)

shadowHardness += tex2Dproj(shadowMap,IN.TexCoord0

+ float2(i*radius.x, j*radius.y));

shadowHardness /= 49.;

//return fragment color

return float4(0,0,0,shadowHardness);

}
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3.5.2 Conclusion

Pros Cons
+ soft shadows - only average speed
+ visual quality
+ varying penumbra size

Table 3.4: PCSS technique review



Chapter 4

Implementation

4.1 Introduction

The purpose of this thesis was to implement various methods of soft shadow
computation. Especially techniques involving a large amount of work done on
modern GPUs were desired. The goal was to compare (quality, performance on
various types of scene settings, etc.) the results of implemented techniques and
discuss their advantages and disadvantages.

Therefore I have decided to implement all of the chosen methods into a uni-
versal framework to allow comparison of their achievements interactively, with
freedom to switch between the techniques. To do this the OpenGL API, .cgfx
file format (ideal for having many different effect techniques (based on shaders)
stored in one file) and Cg runtime were chosen. As a result of this, the framework
is cross-platform. Price paid for this presentational level of the implementation
of so many principally different methods is slightly lower performance (as too
many bindings and variables have to be computed, not all of them important for
current method, etc.). Higher emphasis was put on a universal platform for all
the methods. Yet, it serves comparison purposes quite well.

4.2 Inspiration

I have chosen this topic for the thesis, as it was promising a lot of gained knowl-
edge from the shadowing methods field of computer graphics. I am particularly
interested in 3D computer graphics and so this sounded challenging, allowing me
to study a lot of papers and to learn the most up-to-date programming techniques
using GPU programmability.

As this is a highly dynamic field of CG, there are still huge opportunities for
scientific work and also for future job positions. Computer graphics effects are

35
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used more and more extensively in movie industry, computer games development,
CAD systems. Knowledge of various algorithms can only be an advantage in
further professional life.

A huge challenge was to learn how to read papers and extract only the useful
information from them. Over the time many algorithms for shadow computation
were proposed. Many claims for interactive, realtime frame rates have been told.
Yet almost every time there is some hidden disadvantage (interactive rates only
on cluster of processors, works only for a very special scene case, only static
scene, etc.). I was looking for algorithms as universal as possible, to be usable
over the most scene settings and still have good performance (≥20 fps). It is
true that the increasing brute power of graphics chips makes all the methods
faster over time. Still it is good to look for the compromise between quality and
performance. Another problem connected with some published papers is the lack
of the real implementation. All we see is an idea that looks good on the paper but
encounters many problems connected with today’s APIs (or the implementation
requires specially designed, dedicated HW to run fast enough).

4.3 Problems encountered

Graphics application development is quite painful. It is mainly due to the in-
ability of direct access into the buffers. Furthermore, everything depends on a
complicated state automaton, where every switch, change can easily ruin code
functionality elsewhere (you can always set everything in every function, but state
changes are a bit time consuming (at least in OpenGL) to be used freely and too
frequently). Therefore debugging is sometimes really complicated.

Shader development makes it even harder and brings quite a lot of addi-
tional drawbacks. The major one is the almost absolute absence of debugging
possibilities. You do not have direct access to variables and parameters of the
shaders. The only way how to evaluate partial results is to return them as a color
information and manually try to understand the error, problem occurring.

A huge diversity of underlying graphics hardware is also important to mention.
This means that for a commercial application many different shaders need to be
written, as some profiles (with their improvements, as for example branching
in fragment shader) are supported only on newer cards. And of course every
manufacturer has its own profiles tailored precisely for slight differences in HW
implementation.

In addition to this, my choice of Cg as a shader language was not the best
one. It is still not fully mature and documentation is in some cases really poor
or missing completely (or at least containing errors). Also the compiler error
messages are a bit confusing. In some cases (technique state settings) they are
missing completely.
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During the writing of the code another unpleasant problem occurred. Per-
formance of written shaders dropped drastically (in some cases up to 8 times)
upon switching from Cg Toolkit 1.41 to Cg Toolkit 1.5! After some debugging
the problem was identified as connected with many calls of cgSetPassState()
and cgResetPassState() methods. Precompiled dynamic libraries included in
this new version of the package slowed the execution of this code, probably due to
some bug. Lately a new Cg Toolkit was released (1.5 February 2007 release) and
solved these issues almost completely. It is a question, whether the development
of Cg language will continue. If yes, I assume that all of the problems mentioned
can be eradicated...

4.4 Improvements

During the actual coding and study of papers some minor flaws occurred to me.
Therefore I have tried to implement some additional functionality to improve the
performance of methods and visual quality of the results.

4.4.1 Variable area light

Almost every method for fake soft shadows is satisfied with just some blurring
of the shadow edges. Yet it is absolutely not conforming to physics. Some more
sophisticated methods (as PCSS method) take into account the area of light. This
is much more precise, giving softness actually depending on the light geometry.
Still, assumption is of a circular light. But what about more complicated shapes
(some rectangular shape for example)? Here the ratio of side lengths has also to
be taken into account (shadow is softer on the edges in the direction of longer
light edge).

As shadow maps are built from the light position, offsets used for texture
lookups cannot be purely

offy = ratio ∗ offx (4.1)

to cover successfully the desired variable softness according to the light elongation.
We need function that will modify these offsets in such a way, that they will
oscillate between values 1 and ratio. This can be achieved by simply using the
sine and cosine functions. All we need is an angle between the light position
(projected into the floor plane) and a vector

~v = (0, 1, 1)− (0, 0, 1)

pointing into the direction of axis y. The angle is then computed by applying dot
product law.
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Figure 4.1: Offset angle computation

This way we get an approximation of elongation dependent variable softness.
Resulting offset variables are finally computed as follows:

offy = 1 + sin(angle) ∗ (ratio− 1) (4.2)

offx = 1 + cos(angle) ∗ (ratio− 1) (4.3)

4.4.2 Midpoint shadow maps

The basic shadow maps (created by a pure copy of depth values from the depth
buffer into a texture) suffer from a strong self shadowing alias (it can be attenu-
ated by using GL_POLYGON_OFFSET_FILL but the settings are very empirical and
scene settings dependent). Therefore another method for shadow map creation
was proposed [Woo92].

It is based on the notion that the self shadowing artifacts occur because of
the numerical errors cohering with depth values comparison (shadow maps from
front facing polygons have artifacts on lightened surfaces and vice versa for back
faces shadow maps). To avoid the closeness of the compared values, all we need
to do is an averaging of two depths from the front and back face shadow maps.

Most methods are working with the classic shadow maps. Yet as the usage
of midpoint shadow maps is equally fast, better results are achieved with them.
Methods in the framework can use midpoint shadow maps as well as the classic
ones. The only problem is a longer time needed to construct midpoint shadow
map. Therefore they are more suitable for static scenes settings.

Remark: The main flaw of midpoint shadow maps is an error when using
objects with holes (not fully closed surfaces). Then the average depth value is
wrong of course and artifacts can appear on resulting shadow. Yet it is not an
issue for well defined objects.
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Figure 4.2: Midpoint shadow map explanation

4.4.3 Combined shadow map method

As I was experimenting with different soft shadow techniques, it occurred to
me as useful to combine good characteristics of some methods and create their
hybrid, giving better resulting quality with the comparable performance.

(a) Jittered PCF

+

(b) PCSS

⇓

(c) Combined method

Figure 4.3: Combined fake shadow map method
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Two methods were ideal for a combination. Jittered shadow mapping with
its great visual quality (swapping banding artifacts with noise, which is less irri-
tating for a human perception) and PCSS with its physical dominance (variable
penumbra size depending on the light-occluder-receiver geometry). In addition
some experimenting with elongated rectangular light source improved resulting
impression even more.

Whole method is therefore comprised from these steps:

1. Blocker search – shadow map is searched in a small neighborhood, re-
trieved depths are averaged to get the distance light-occluder

2. Penumbra estimation – penumbra width is estimated based on the light
size, blocker and receiver distances from the light:

wpenumbra = (dreceiver − dblocker) · wlight/dblocker

3. Jittered filtering (use the computed penumbra size with combination of
precomputed offsets to sample shadow map)

a) Cheap sampling – test only a small number of samples, if all are
lying in the umbra or penumbra, no further testing is needed

b) Additional sampling – if previous sampling is ambiguous, add other
samples up to the full number

As can be visible by performance measurements, this method is as fast as
PCSS with slightly better visual quality. Fragment shader involved can be written
as follows:

Code 4.1: Combined shadow map method

float4 fragmentShadowMapCOMBINED(

fpDataMap IN,

uniform sampler2D shadowMap,

uniform sampler2D shadowMap2,

uniform sampler3D jitterTex,

uniform float4 shadow,

uniform float2 offset): COLOR

{

//compute radius of neighbourhood for occluder scaning

float receiver = IN.TexCoord0.z/IN.TexCoord0.w;;

float2 radius = 4*offset*(flatSize/receiver);

float occluder = 0.;

float occluderCount = 0.;

// PHASE I: compute radius (depends on scene geometry, distances)
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//coordinates for lookup jitter texture (prime to give better results)

float3 coord = float3(IN.TexCoord0.x*17,IN.TexCoord0.y*13,0);

float depthVal, isBlocker;

//translate into last 16 samples

coord.z = (jitterSamplesDiv2 - 8)*jitterInvSamples;

//scan the circular neighbourhood for occluders

for( int i=0; i<8;i++) {

//sample lookup texture

float4 off = tex3D(jitterTex, coord)*radius.xyxy;

coord.z += jitterInvSamples;

//2 offsets are stored in 1 value from jitterTex

//A)

depthVal = texPCF(shadowMap2,IN.TexCoord0,off.xy,true);

isBlocker = step(depthVal, receiver);

//update occluder count and stored depth

occluder += depthVal*isBlocker;

occluderCount += isBlocker;

//B)

depthVal = texPCF(shadowMap2,IN.TexCoord0,off.zw,true);

isBlocker = step(depthVal, receiver);

//update occluder count and stored depth

occluder += depthVal*isBlocker;

occluderCount += isBlocker;

}

//compute average of occluding depths

occluder /= occluderCount;

//estimation of penumbra size

float penumbra = flatSize*(receiver-occluder)/occluder;

radius = 5*offset*penumbra;

//reverse changes to coordinates for lookup jitter texture

coord.z = 0;

float shadowHardness = 0.;
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// PHASE II : compute shadow color (jitter lookup)

//cheap test samples (8)

for( int i=0; i<4;i++) {

//sample lookup texture

float4 off = tex3D(jitterTex, coord)*radius.xyxy;

coord.z += jitterInvSamples;

//is in shadow? 2 offsets are stored in 1 value from jitterTex

shadowHardness += texPCF(shadowMap,IN.TexCoord0,off.xy);

shadowHardness += texPCF(shadowMap,IN.TexCoord0,off.zw);

}

//do we need to continue sampling (is penumbra hit highly probable)?

if ((shadowHardness - 8) * shadowHardness != 0) {

for (int i=0; i < jitterSamplesDiv2 - 4; i++) {

//sample lookup texture

float4 off = tex3D(jitterTex, coord)*radius.xyxy;

coord.z += jitterInvSamples;

//is in shadow? 2 offsets are stored in 1 value from jitterTex

shadowHardness += texPCF(shadowMap,IN.TexCoord0,off.xy);

shadowHardness += texPCF(shadowMap,IN.TexCoord0,off.zw);

}

//average value

shadowHardness *= 0.5 * jitterInvSamples;

}

//return fragment color

return float4(0,0,0,shadowHardness);

}

4.5 Further work

There is still much to do in the field of shadow volume algorithms. With the
new generation of graphics chips and incoming unified shaders the programma-
bility has been taken into a higher level again. Now it is possible to implement
and use many acceleration structures on graphics chips directly, thus freeing the
CPU from this workload (which is quite significant when using shadow volumes
because of silhouette edges lookup, maintenance of shadow volume structures,
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etc.). This means that many of the algorithms used today can be transferred
fully into GPU, therefore increasing their performance by a large amount (re-
lieving both the CPU and the bus workflow). That will allow usage of shadow
volumes for soft shadow computations in realtime applications. Maybe the most
used contemporary methods (based on shadow maps) will be completely forgotten
in the future...

With this in mind the shadow framework accompanying this thesis can be
expanded to cover more volume based methods. New type of shaders is a thing too
tempting to let go without testing its capabilities. Still, so far the development for
this new generation of graphics cards is hindered by driver incompatibilities, low
optimization and other system-driver-hardware based issues. Yet, in my opinion,
it needs only some more time to become a mainstream in the development of
shader based effects.



Chapter 5

Performance comparison

5.1 Introduction

To be able to compare quality and performance of all the implemented methods
two different scenes were prepared. One with moderate number of triangles and
also a huge scene (to see the performance level under extreme conditions).

Shadow methods work upon the full level of detail objects, whereas in con-
temporary applications shadows are computed mainly using the coarse models
with low number of polygons (typical game of these days has to display up to
500,000 triangles per frame, yet to compute the shadows only a fraction of them
is used, thus explaining the relevance of further measurements).

Many different scene attributes are important (static, dynamic light, moving
objects, number of light samples, complexity of models, etc.). Different tech-
niques are sensitive to different settings.

5.2 Basic scene

Following tables show some comparison of the results measured on a medium
sized scene. It is clear, which method’s performance is highly dependent on the
scene size, on the resolution, eventually on the number of light position samples.

Performance is stated in frames per second as well as in milliseconds needed
for the scene to be drawn. Differences in the scene settings and their short
explanation follow:

� resolution – 700x700 or 900x900

� faces (triangles) – total number of 17408

� samples – number of light samples, 64 or 100

44
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� dynamic light – static or dynamic light (increases computation complexity)

Brute force soft shadow methods are very sensitive to every increase in the
screen resolution, number of light samples and also number of faces in the scene.
In addition, 64 samples is the least number giving still only modest looking results.
Quality is increasing with higher numbers of samples but the performance drops
quickly.

Fake shadow methods are on the other hand sensitive mainly to the resolu-
tion (shadow map methods require more fragment shader calls) or a geometry
complexity (shadow volume, projective shadows). Quality is much better (even
though not fully physically correct) and performance remains better.

Remarks:

� shadow volume methods – no acceleration structures

� depth pass, depth fail, XOR – brute force soft shadow

� projective soft – brute force soft shadow

� projective fake – PCF7x7 on a saved projective shadow texture

� shadow map /b/ – basic shadow maps, self shadow artifacts, HW pre-
sampling

� shadow map /m/ – midpoint shadow maps, lower dynamic performance,
no HW presampling

� map soft – brute force soft shadow

� map pcf – PCF7x7

� map blur – PCF3x3, gaussian blur (15 point filter) 2x

� map jitter – PCF 64 disk samples, stratified jitter of offsets

� map pcss – 5x5 penumbra evaluation, PCF7x7 with penumbra radius

� map combined – 4x4 penumbra, PCF 32 stratified disk with penumbra
radius

Methods based on shadow maps use two different approaches. Basic shadow
map (based on depth buffer information only) is a fast way, how to create, main-
tain and use shadow mapping. However, it brings some artifacts (self shadow,
mainly because of z-fighting, inaccuracy of numerical precision). They can be
dealt with by polygon offsets but their correct setting is empirical and very de-
pendent on the current scene. Yet this is a way how to do soft shadowing in
dynamic scenes.
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On the other hand we can use midpoint shadow maps. Their creation is slower,
yet the resulting shadow lacks (almost completely) annoying shadow errors. The
principle is a combination of two shadow maps (back facing and front facing),
thus getting intermediate depth map.

5.3 Huge scene

In this case the performance was measured against a big scene (≥100,000 tri-
angles). Again, the results show comparison between methods in the static and
dynamic environment. As we can see, some methods are not suitable for a real-
time, interactive usage (games, CAD applications preview, etc.).

Remark: For this test the scene was composed from the well known Stanford
bunny models1. 7 downsampled models (16,301 faces each) were placed into the
scene with different rotation, scale and translation.

Figure 5.1: Huge scene

1freely downloadable from The Stanford 3D Scanning Repository,
http://graphics.stanford.edu/data/3Dscanrep/
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5.4 Quality differences

Implemented methods differ not only in performance (frame rates), resulting im-
ages have also various visual quality, physical correctness. Following table recapit-
ulates achievements of different methods. Resulting images are being compared
with a paragon image (physically correct shadow achieved by sampling the light
with ≥1,000 samples). Degree (percentage) of correctness is evaluated with a
pixel per pixel comparison of the images.

Remarks:

1. physically correct soft shadow generated by (oversampled) depth fail shadow

volume method was used as a paragon

2. performance is taken from the 700x700, static scene with 64 light samples

3. quality takes into account performance, physical correctness and presence
of visual artifacts
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Chapter 6

Conclusion

We have been witnessing a huge hardware development boom over the last few
years. Along with increasing brute power of graphics chips, their programma-
bility was introduced as well (thus replacing fixed rendering pipeline). Higher
performance and more flexibility in programming enabled many algorithms to
breach the borders of realtime applications. It naturally brought a better visual
quality into this important segment of the market.

Among the frequently used computer graphics algorithms a very significant
role is held by shadow computation methods. They are essential for human
perception (their lack is immediately noticed by every user, thus flawing the
overall impression). Furthermore, soft versions of shadows (the only physically
correct ones) are also very computationally expensive.

Over the years three major types of shadow computation algorithms were
proposed and are still under further development (many papers are suggesting
improvements, comprising performance boosts or quality enhancement). These
are projective shadows, shadow maps and shadow volumes. Each of them is useful
in some situations, none is the absolute winner. They differ in resulting quality
of a shadow, performance and robustness (presence of artifacts, commonness
of the scene used, etc.). Variances can be found even in the dependence on
CPU implementation (thus disabling pure GPU execution). Advantages and
disadvantages are mentioned over the course of the thesis.

However, the main goal was to study, implement and compare multiple meth-
ods of soft shadow computation under various conditions. Their mainly GPU
implementation (with the use of shaders and modern graphics hardware) and
high efficiency were desirable. To make the comparison easier, a universal frame-
work was created. The included demonstrative software enables on-the-fly famil-
iarization with the mentioned methods, interactive comparison of the efficiency
and realism. All of this can be performed under multiple scene settings (static,
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dynamic; medium sized or huge scene; etc.).
Furthermore, the thesis covers topics from explanation of basic algorithms,

through advanced soft shadowing methods, to measurements of both quality and
performance of a couple of algorithms under varying conditions. According to the
resulting data, the most universal methods appear to be from the class of shadow
mapping techniques (PCSS, jittered PCF, their combination), presenting good
overall performance and high degree of physical correctness. Moreover, they are
well suited for contemporary hardware, enabling (almost) pure GPU implemen-
tation. This cannot be stated about algorithms based on shadow volumes, where
huge precomputation (and CPU bound) steps are needed.

Figure 6.1: Soft shadows (combined method)

This work tries to cover a blind spot on the computer graphics map. There
exist plenty of papers suggesting the best methods for soft shadow computation.
They include some results, yet their comparison is problematic because of dif-
ferent HW configurations, various scene data, etc. The shadow framework is a
single platform with multiple implemented methods, allowing to compare their
performance and visual quality under uniform settings.
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Along with the usage of well or less known algorithms, some improvements,
minor updates and fixes were proposed during the development of this paper.
This includes rectangular (elongated) area light, wide usage of midpoint shadow
maps and combination of advantages of jittered and PCSS methods resulting in
a higher physical correctness with a comparable performance level.

Method Performance (fps) Quality (�)
Shadow volume (depth fail) 10.00 ����������

Shadow map 30.00 ����������

Jittered PCF 29.61 ����������

PCSS 26.45 ����������

Combined method 25.83 ����������

Table 6.1: Methods comparison excerpt (64 samples)

On the other hand, the most sophisticated soft shadow methods, using shadow
volumes, are not covered yet. Their integration into the framework is not straight-
forward as they require many non trivial steps (silhouette edges lookup, etc.) done
on the CPU. Still, with the latest development in the graphics hardware (new
generation of chips, unified shaders) it is becoming possible to execute many of
these computations on the side of the GPU. This could be the way to expand my
work in the future.

˜

All the buzz in this scientific field in the last years enabled quick intrusion
of shadows into realtime applications. People are getting used to see realistic
shadows in virtual environments. And now the time for something more has
come, for the whole new level of realism using soft shadows. Algorithms for their
computation are gaining strength and are almost ready to be used worldwide. Be
prepared!
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Appendix A

Implementation details

A.1 Used technologies

(a) nVIDIA (b) OpenGL (c) Cg

Figure A.1: Core technologies

For the core part of the framework OpenGL API with the connection of C++
(a great free IDE is Microsoft’s Visual Studio C++ Express) was chosen. It allows
the application to run cross-platform. This is an advantage over Microsoft’s
DirectX API (despite its slightly better performance on Windows).

In addition GLUT libraries were used. After some time inevitability of various
OpenGL extensions (EXT_framebuffer_object) occurred and so the extension
wrap up library GLEW needed to be added.

The part of the shaders was covered with Cg Toolkit from nVIDIA. It offers
API for connection with both OpenGL and Direct3D. All of the major shader
formats (Cg, GLSL, HLSL) are supported along with the most shader profiles. A
great addition is the CgFX files support allowing to create files with techniques
(multipass shader effects). Another nice feature is Cg Runtime, allowing the
runtime compilation (a bit slower but can profit from the future Cg compiler
versions).
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Short overview along with the hardware involved (has a great influence on
the performance results) follows:

� Hardware

– CPU AMD Athlon64 3200+

– GPU nVIDIA GeForce7600GT (ForceWare 93.71)

– 1024MB RAM

� Software

– Visual Studio Express C++

– OpenGL 2.1

– GLUT 3.7.6

– GLEW 1.3.6

– Cg Toolkit 1.5 (February 2007 revision)

A.2 Code overview

As was already mentioned before, code is C++ based using OpenGL API for
fixed graphics pipeline computations and Cg language for shaders (programmable
pipeline). Because of the use of advanced shader profiles (fp40, vp40) and mul-
tiple OpenGL extensions (for example EXT_framebuffer_object) a newer HW
(GeForce6+) is required to run correctly.

Code is divided into the framework (C++) and effects (.cgFX) part. Frame-
work brings a basic functionality, initializations, scene parsing (from external
files) and drawing pipeline handling. GPU makes use of various techniques (con-
sisting of multiple shaders) from the effects file in every drawing cycle.

Code structure:

� Framework

– common.h – I/O functions, .OBJ parser, snapshots

– constants.h – global constants, bindings for Cg

– gpuShadows.cpp – GLUT default functions

– projectiveShadow.h – functions for projective shadows computation

– scene.h – scene drawing, initialization, display lists creation

– shadowMap.h – functions for shadow maps computation

– shadowVolume.h – functions for shadow volumes computation

� Shaders
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– shadows.cgfx – techniques, samplers, shaders used by framework

Let me further explain the workflow of this application. As it is based on
GLUT, at the beginning some initialization is made (GLUT settings, Cg context
creation and .cgfx file linkage, techniques validation, frame buffer objects, context
menu, parsing of the scene, shadow maps precomputation, etc.) and afterwards
a main loop is started (it takes care of all the computations and drawing into
the buffers). And of course some memory freeing is scheduled upon exiting the
application.

Application workflow in more details:

1. Basic initialization: GLUT window creation, callbacks registration, dis-
play lists buildup (parsing of external .obj files), textures generation, frame
buffer objects initialization, context menu definition, lighting settings

2. Cg initialization: Cg context, effect creation, optimal profile options set-
ting, techniques validation, setup of bindings (parameters, samplers)

3. Static part precomputation: constants used in fake shadows computa-
tion, shadow maps, projection matrices - in case of a dynamic scene has to
be reevaluated after each light or objects movement

4. Main drawing loop:

a) timer reset, buffers cleanup

b) initial transformation settings

c) appropriate drawing pipeline call (according to the technique currently
used), takes care of basic scene drawing, shadow computation and also
shadow displaying

d) performance update, buffers swap

5. Cleaning: textures and frame buffer object deletion, Cg context, Cg effect
destruction

A.3 Framework - common.h

This header file contains mainly functions for I/0 operations. Further description
of the most important ones follows:

parseOBJ(std::vector<float> &vertices, ... char *fileName);

Scene data (shadow casting objects) are stored in the external files. File for-
mat is a basic OBJ (text format, can include information about vertices, normals,
texture coordinates, faces, materials, objects...).
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#we need only information about vertices, normals and faces
#other lines are ignored

#vertices (x,y,z)
v 4.134725 4.805875 -5.847136
v 4.616718 2.659916 -6.807846
v 2.881218 4.728204 -7.401609

...

#normals (x,y,z)
vn 0.962615 0.255867 -0.088595
vn 0.924131 0.343944 -0.166173
vn 0.936583 0.350414 0.000000

...

#faces (vertex/texture_coord/normal ...)
f 283//10 13//11 164//12
f 164//12 405//8 283//10
f 103//2 283//10 405//8

...

Figure A.2: OBJ file example

File is parsed line by line and std::vector<float> containers are built. Lines
with face info contain identifications of vertices and normals (their sequential
number), lines can be in any particular order. That is the reason why we need
to parse the whole file and build arrays of vertices, normals and faces, before we
can start building display lists (OpenGL).

Remark: Models were exported with the help of Blender1 modeling software.

takeSnapshot(int width, int height, char* fileName);

Function captures current framebuffer content into .bmp (bitmap) image (with
correct header settings). glReadPixels() has to be called with GL_BGR as an
internal format because bitmap stores color channels in swapped order. Snapshots
are needed for quality comparison.

Remark: Function uses Microsoft specific type definitions and therefore is
only applicable on computers running the Windows system.

compareResults(char* paragon,char* compare);

1freeware, http://www.blender.org
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Function compares two given pictures (in .bmp format), paragon (is supposed
to be the physically correct shadow) and image, quality of which we want to
evaluate. Bitmaps are compared pixel by pixel and differences are accumulated
(with a small difference allowed). Comparison result is printed out.

Figure A.3: Picture quality comparison

A.4 Framework - scene.h

This header file contains mainly functions covering basic drawing of objects and
display lists preparation. Further description of the most important ones follows:

drawWindowRect();

Special auxiliary function, used in some fake shadow methods, when we need
to combine textures (for example midpoint shadow maps generation). Draws
textured rectangle over the whole window.

buildSolid(int num, GLfloat color[4], bool huge = false);

Builds display list for given solid with chosen color. Solid is parsed with
parseOBJ() function. Afterwards the display list is built from resulting vertices,
normals and faces arrays. It is called in the initialization phase, as it is relatively
slow. Yet display lists enable precompilation of whole objects and therefore a
faster display of the geometry later.

drawFlatLight(GLfloat lightPosition[]);

Draws area light representation (for presentational purposes, shows stochastic
sampling of the light).

basicScene(bool light = true);

Draws scene (prepared display lists). This is done without the usage of shaders
as it does not need any intermediate computations on the vertex, fragment levels.

initLights();
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Initializes positions of area light samples. Stochastic jittered sampling is used
to avoid banding and aliasing artifacts as much as possible. These samples are
used for brute force soft shadow algorithms (still, really large number of samples is
needed for the result without artifacts, ideally ≥1024, which makes these methods
unusable in any realtime application).

Figure A.4: Stochastic sampling

recomputeOffsets();

Function recomputes offset coefficients used for texture lookups (shadow map-
ping). Area light is not strictly square. Ratio of side lengths has to be taken into
account (shadow is softer on the edges in the direction of the longer light edge).

A.5 Framework - gpuShadows.cpp

This file contains mainly functions concerning basic GLUT settings (callbacks,
main display loop) and also CgFX initialization. Further description of the most
important ones follows:

initCgFX();

Function takes care of CgFX instantiation (context creation, effect file pars-
ing), techniques validation and setting of all shader-framework bindings (param-
eters, textures) using Cg libraries.

Code A.1: initCgFX() extract

//create context and set optimal compiler options

context = cgCreateContext();

cgGLSetOptimalOptions(CG_PROFILE_VP40);

cgGLSetOptimalOptions(CG_PROFILE_FP40);

//parse effect file
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effect = cgCreateEffectFromFile(context, "shadows.cgfx", NULL);

if (!effect) {

fprintf(stderr, "Unable to create effect!\n");

exit(1);

}

//validate techniques

technique = cgGetFirstTechnique(effect);

while (technique) {

if (cgValidateTechnique(technique) == CG_FALSE)

fprintf(stderr, "Technique %s did not validate. Skipping.\n",

cgGetTechniqueName(technique));

technique = cgGetNextTechnique(technique);

}

//create bindings and set correct values

CGparameter flatsize = cgGetNamedEffectParameter(effect, "flatSize");

assert(flatsize);

cgSetParameter1i(flatsize, flatSize);

...

//initialize sampler for shadow maps

shadowMap = cgGetNamedEffectParameter(effect, "shadowMap");

cgGLSetupSampler(shadowMap, shadowMapHQ);

Display();

This is the main rendering loop function, called after each swapping of frame
buffers. It sets basic transformations, calls required rendering pipeline according
to the actual technique and takes care of performance computation and display-
ing.

Code A.2: Display() extract

//get current technique number (type)

CGannotation ann = cgGetNamedTechniqueAnnotation(technique, "type");

if (ann) {

const int *vals = cgGetIntAnnotationValues(ann, &count);

assert(count == 1);

type = *vals;

}

//call appropriate function for shadow computation

switch(type) {
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case MAP_VISUALIZATION : pipelineMapVisualization(); break;

case MAP_HARD : pipelineMap(true); break;

case MAP_FAKE : pipelineFakeMap(); break;

...

default : basicScene(); break;

}

main(int argc, char *argv[]);

Heart of the program, initialization of GLUT, GLEW, CgFX, texture cre-
ation. Registers all GLUT callbacks, creates context menu, precomputes data for
a static scene (shadow maps, projection matrices, offsets). Because of the need to
use high resolution shadow maps (1024x1024) a frame buffer object is created and
verified. Also the lighting settings are done here. At the end the main rendering
loop is entered. After its termination some memory cleanup (textures, context,
etc.) is scheduled.

A.6 Framework - projectiveShadow.h

This header file contains mainly functions concerning projective shadows (cre-
ation, drawing). Further description of the most important ones follows:

shadowMatrix(float shadow[4][4],float floor[4],float light[4]);

Calculates matrix for projection of the geometry into the floor plane. More
information can be found in the chapter 2.2.2.

cgProjective(float position[], int lightNum);

This function encapsulates all the necessary calls for shaders, sets variable
bindings and calculates shadow.

Code A.3: cgProjective() extract

//set transformation matrix for shadow projection

cgSetMatrixParameterfc(shadowP,(float*)&floorShadow[lightNum]);

//call required passes of current technique

CGpass pass = cgGetFirstPass(technique);

while (pass) {

cgSetPassState(pass);

drawSolids(true);

cgResetPassState(pass);

pass = cgGetNextPass(pass);

}



APPENDIX A. IMPLEMENTATION DETAILS 66

pipelineProjective(bool hard = false);

Pipeline for a projective shadow computation and drawing consists of the
following steps:

1. draw the scene

2. fill stencil buffer with 1, where floor is (to avoid drawing shadow away from
the floor polygon)

3. calculate + draw shadows (using shaders)

pipelineFakeProjective();

Pipeline for a fake projective soft shadow consists of the following steps:

1. project shadow into a texture

2. draw the scene

3. draw the fake soft shadow using the captured texture (with PCF7x7)

A.7 Framework - shadowVolume.h

This header file contains mainly functions for a shadow volume computation.
Further description of the most important ones follows:

cgVolume(float position[]);

Contains calls for appropriate shaders and variable bindings. Was tested also
with GL_STENCIL_TEST_TWO_SIDE_EXT extension, which enables only one pass
while setting stencil buffer (with different stencil functions for back facing and
front facing polygons). It didn’t make a big difference in performance and could
not be implemented in CgFX technique directly (state settings are defined but
they are not working correctly2).

pipelineVolume(bool hard = false);

Pipeline for a shadow volume consists of the following steps:

1. draw the scene

2. calculate + draw shadows (using shaders)

2bug will be hopefully removed in later versions of Cg
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A.8 Framework - shadowMap.h

This header file contains functions designated for a shadow maps computation
(basic implementation as well as midpoint shadow maps) and resulting shadow
computation. Further description of the most important ones follows:

createJitterLookup(int size, int u, int v);

As the random number generation is not GPU implemented yet, all noise
functions have to be precomputed on th CPU side and stored as a texture. This
function creates 3D texture with jittered sampling of a disk. We create size

different disks of u ∗ v samples (to avoid the same pattern for texture lookups in
neighboring fragments).

generateMidpointShadowMap(float light[], int sample, bool highRes);

Generation of midpoint shadow maps is slower than the basic approach but
they are more universal (self shadowing artifacts removed almost completely)
and their usage increases quality of the resulting shadows. Function creates two
shadow maps (front faces, back faces) and than averages their depth values into
the resulting midpoint shadow map.

generateShadowMap(float light[], int sample, bool highRes);

Basic shadow map computation. Scene is displayed from the light point of
view, depth buffer is stored into the texture. highRes variable toggles usage of
the frame buffer object to create textures with resolution higher as is the main
window resolution. More information can be found in the chapter 2.3.2.

cgMap(float position[], int sample, bool highRes);

This function encapsulates all the necessary calls for shaders, sets variable
bindings and calculates shadow.

pipelineMap(bool hard = false);

Pipeline for a shadow mapping consists of the following steps:

1. draw the scene

2. calculate + draw shadows (using shaders)

pipelineFakeMap();

Pipeline for a fake blurred soft shadow map consists of the following steps:

1. draw the precomputed central shadow map (+PCF)

2. copy PCF shadow into a texture
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3. blur the given texture (gaussian, separable = horizontal + vertical blur)

4. store the blurred shadow texture

5. mix the scene with the computed soft shadows texture + fill stencil buffer
with 1, where floor is (to avoid drawing shadow away from the scene)

A.9 Shaders - shadows.cgfx

This file is in CgFX format. It consists of variable declarations, function defi-
nitions (shaders) and techniques. Each technique defines multiple passes, each
comprising of OpenGL state settings and used vertex, fragment shader.

Code A.4: hardProjectiveShadow technique

//projective shadow matrix

float4x4 shadowP;

struct fpDataProj {

float4 position : POSITION;

float4 texCoord : TEXCOORD0;

float distCoef : TEXCOORD1;

float4 color : COLOR;

};

//projective convolution texture

sampler2D projTex = sampler_state {

minFilter = Linear;

magFilter = Linear;

WrapS = Clamp;

WrapT = Clamp;

};

//vertex shader for projecting scene to the floor plane

float4 projectiveShadowVertex(

uniform float4x4 modelViewProj,

uniform float4x4 shadowP,

uniform float4 shadow,

float4 P : POSITION,

out float4 Color : COLOR

) : POSITION

{

//set shadow color

Color = shadow;

return mul(modelViewProj,mul(shadowP,P));

}
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//technique

technique hardProjectiveShadow < int type = 5; > {

pass projectShadow {

//state settings

PolygonOffsetFillEnable = true;

PolygonOffset = float2(-2.0,-10.0);

DepthMask = false;

CullFaceEnable = true;

CullFace = Back;

StencilTestEnable = true;

StencilFunc = int3(Equal,1,0xffff);

StencilOp = int3(Keep,Keep,Zero);

BlendEnable = true;

BlendFunc = int2(SrcAlpha,OneMinusSrcAlpha);

//shaders

VertexProgram = compile vp40 projectiveShadowVertex(mvp,

shadowP,hardShadow);

FragmentProgram = NULL;

}

}



Appendix B

Shadow framework

B.1 Overview

The shadow framework is implemented in C++ with the use of OpenGL [RSWJ04]
and Cg Toolkit [Fer03]. Its main purpose is to show various methods of shadow
computation in an interactive environment and to be able to compare their per-
formance.

Figure B.1: Shadow framework

70
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Statistics shown on the screen:

� Technique – name of the currently used technique (it defines multiple
passes with shaders)

� Samples – number of light samples used to compute soft, blended versions
of shadows (in the brute force algorithms)

� Resolution – window resolution

� Triangles – number of faces in the scene

� Performance – actual performance of the given method in fps and ms

Other information about initialization, parsing of the scene, times taken to
recompute dynamic parts of the variables (projection matrices, shadow maps, etc.
after light movement) and average performances can be seen in the command line
output.

B.2 Controls

Useful controls:

� LMB: rotate the scene

� MMB: move the light source (height stays constant)

� RMB: open context menu

� Space: select next technique

� Return: start/stop scene rotation

� Page Up: move light source up

� Page Down: move light source down

� +: zoom in

� –: zoom out

� Esc: exit

� i,I: toggle info texts on/off

� l,L: toggle light model drawing on/off
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� s,S: take a snapshot

� c,C: camera position info

� m,M: toggle midpoint shadow maps usage on/off

B.3 Implemented methods

Type Method Note
Basic scene scene without shadows
Projective shadow Hard shadow

Soft shadow blending of the projected shadow
from each light sample

Fake shadow sampling of the texture created from
projected shadow

Shadow map Visualization simple demonstration of depth map
Hard shadow
Soft shadow blending of the shadow maps gener-

ated for each light sample
Fake shadow
(PCF)

neighborhood sampling and averag-
ing

Fake shadow
(blur)

separable Gaussian blurring of hard
depth map shadow

Fake shadow
(jitter)

PCF supersampling with precom-
puted random offset lookup texture

Fake shadow
(PCSS)

fake soft shadows based on PCF with
dynamic penumbra region computa-
tion

Fake shadow
(combined)

PCF supersampling with random
offsets with dynamic penumbra re-
gion computation

Shadow volume Visualization simple color coded displaying of
shadow volumes

Hard shadow
Soft shadow blending of the shadows generated

from each light sample

Table B.1: Implemented techniques overview

Note: all these methods are available from context menu (RMB1)

1right mouse button
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B.4 Requirements

Tested on the configuration: AMD Athlon 3200+, 1024MB RAM, nVIDIA GeForce
7600GT.

Because some newer OpenGL extensions (EXT_framebuffer_object) and
shader profiles (fp40) are used, it is essential to have a graphics card GeForce6
or newer...
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