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Abstrakt: Navrženy a implementovány byly t i r zné metody pro watermarking videoř ů

sekvencí, které jsou komprimovány podle standardu H.264. Dv  z t chto metodě ě

reprezentují metody, které watermark vkládají ve frekven ní oblasti, zatímco t etíč ř

pat í  mezi  metody,  které  watermark  vkládají  do  obrazové  oblasti.  Vkládáníř

watermarku ve frekven ní oblasti probíhá zm nou transforma ních koeficient ,č ě č ů

které jsou získány p ímo z komprimovaného proudu dat. Watermark, který mář

být  vložen  v  obrazové  oblasti,  je  p ed  vložením do  t chto  koeficient  nejprveř ě ů

transformován do frekven ní oblasti.č

Dále  byl  navržen  a  implementován  obecný  watermarkovací  systém,  který

poskytuje  jednoduché  rozhraní  usnad ující  implementaci  konkrétních  metod.ň

Odolnost  navržených  metod  v i  r zným  útok m byla  prov ena  a  vzájemnůč ů ů ěř ě

porovnána sadou n kolika test .  Testy simulují  následující  útoky:  rekompresi,ě ů

zm nu  m ítka,  o ezání,  zbavení  šumu,  zašum ní,  rozmazání,  zaost ení,ě ěř ř ě ř

mnohonásobné vkládání watermarku a tzv. konspira ní útok.č

S ohledem na robustnost  a  viditelnost watermarku v obraze je  metoda,  která

watermark vkládá do obrazové oblasti, preferována p ed ostatními metodami.ř

Klí ová  slova:  č watermarking,  komprimované  video,  H.264,  frekven ní  oblast,č
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Abstract:  Three  different  watermarking  methods  for  video  sequences  compressed

according  to  the  H.264  video  coding  standard  have  been  designed  and

implemented. Two of them represent frequency domain methods while the third

belongs to spatial domain methods. Embedding in frequency domain is applied to

transform coefficients obtained directly from the compressed video stream. The

spatial domain watermark is transformed to frequency domain before embedding.

Further, a generic watermarking framework has been designed and implemented

in  order  to  provide  a  simple  interface  for  easy  implementation  of  particular

watermarking methods.

The proposed methods have undergone several simulation tests in order to check

up and compare their robustness against various attacks. The test set comprises

recompression,  scaling,  cropping,  denoising,  noising,  blurring,  sharpening,

multiple watermark embedding and collusion attack.

The  spatial  domain  watermarking  method  is  preferred  to  frequency  domain

methods with respect to robustness and perceptibility.

Keywords:  watermarking,  compressed  video,  H.264,  frequency  domain,  spatial

domain
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Chapter 1

Introduction

Nowadays,  digital  multimedia content (audio or video) can be copied and

stored easily and without loss in fidelity. Therefore, it is important to use some

kind of property rights protection system.

The majority of content providers follow wishes of production companies and

use copy protection system called Digital Rights Management (DRM). A DRM

protected  content  is  encrypted  during  the  transmission  and  the  storage  at

recipient's side and thus protected from copying. But during playing it is fully

decrypted. Besides recipients must have a player capable to play DRM encrypted

content, the main disadvantage of DRM is that once the content is decrypted, it

can be easily copied using widely available utilities.

Disadvantages  of  DRM  can  be  eliminated  by  using  another  protection

system,  watermarking.  Watermarking  can  be  considered  to  be  a  part  of

information  hiding  science  called  steganography.  Steganographic  systems

permanently  embed hidden information into  a  cover  content  so  that  it  is  not

noticeable. Thus, when anybody copies such content, hidden information is copied

as well.

Three  aspects  of  information  hiding  systems  contend  with  each  other:

capacity, security and robustness. Capacity refers to amount of information that

can be hidden, security to ability of anybody to detect hidden information, and

robustness to the resistance to modifications of the cover content before hidden

information  is  destroyed.  Watermarking  prefers  robustness,  i.e.  it  should  be

impossible to remove the watermark without severe quality degradation of the

cover  content,  while  steganography  demands  high  security  and  capacity,  i.e.

hidden  information  is  usually  fragile  and  can  be  destroyed  by  even  trivial

modifications.

Watermarks  used  in  fingerprinting  applications  typically  contain
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information about copyright owner and authorized recipient of the distributed

multimedia content. Hereby, it allows tracking back illegally produced copies of

the content, as shown in Figure 1.

Figure 1: Principle of fingerprinting watermarks

This thesis focuses on fingerprinting watermarks being embedded into video

sequences.  Several  watermarking  methods  are  designed,  implemented  and

compared with each other in terms of their perceptibility and robustness.

Some of the methods are inspired by existing ones, some are completely new.

Making the method implementations perfect or improving existing methods are

not the tasks, the thesis aims to comparing the methods as they are. One of the

methods is chosen as the best and left for future improvements.
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Chapter 2

Watermark Theory

A watermark is a digital code permanently embedded into a cover content,

in case of this thesis, into a video sequence.

A watermark can carry any information you can imagine but the amount of

the information is not unlimited. The more information a watermark carries the

more vulnerable that information is. Anyway, the amount is absolutely limited by

the  size  of  particular  video  sequence.  Watermarking  prefers  robustness  to

capacity,  thus  a  watermark  typically  carries  tens  to  thousands  of  hidden

information bits per one video frame.

In order to be effective, the watermark should, according to [1], be:

Unobtrusive

The watermark should be perceptually invisible.

Robust

The  watermark  should  be  impossible  to  remove  even  if  the  algorithmic

principle of the watermarking method is public. Of course, any watermark can

be  removed  with  sufficient  knowledge  of  particular  embedding  process.

Therefore, it is enough if any attempts to remove or damage the watermark

result  in  severe  quality  degradation  of  the  video  sequence  before  the

watermark is lost.

In particular, the watermark should be robust to:

Common signal processing – the watermark should be retrievable even if

common  signal  processing  operations  (such  as  digital-to-analog  and

analog-to-digital  conversion,  resampling,  recompression  and  common

signal enhancements to image contrast and color) are applied to the video

sequence.
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Common geometric distortions – the watermark should be immune from

geometric image operations (such as rotation, cropping and scaling).

Subterfuge attacks: Collusion and Forgery – the watermark should be

robust to collusion by multiple individuals who each possesses a differently

watermarked copy of the same content combining their copies to destroy

the watermark. Moreover, it should be impossible to combine the copies to

create a new valid watermark.

Unambiguous

The retrieved watermark should uniquely identify the copyright owner of the

content, or in case of fingerprinting applications, the authorized recipient of

the content.

In  order  for  a  watermark  to  be  robust,  it  must  be  embedded  into

perceptually  significant  regions  of  video  frames  despite  the  risk  of  eventual

fidelity distortion. The reason is quite simple: if the watermark were embedded

in perceptually insignificant regions, it would be possible to remove it without

severe quality degradation of the cover content.

Further, perceptually significant regions should be chosen with respect to

sensitivity of human visual system which is tuned to certain spatial frequencies

and to particular spatial characteristics such as edge features.

2.1 Watermark Classification

There are several criteria how watermarks for images or video sequences

can be classified.

Watermarking techniques can be classified into spatial or frequency domain

by place of application. Spatial domain watermarking is performed by modifying

values of pixel color samples of a video frame (such as in [2]) whereas watermarks

of frequency domain techniques are applied to coefficients obtained as the result

of a frequency transform of either a whole frame or single block-shaped regions of

a  frame.  Discrete  Fourier  Transform  (watermarking  using  this  transform  is

presented in  [3]) and Discrete Wavelet Transform (in  [4] or  [5]) belong among

whole-frame  frequency  transforms.  The  representative  of  the  block  frequency

transform is Discrete Cosine Transform (in [6]). Classification into these groups

is according to the way how the transforms are usually used in practice.

Video  sequences  compressed  by  modern techniques  offer  another  type  of

domain, motion vectors. Watermarking in this domain slightly alters length and

direction of motion vectors (as in [7]). More information about motion vectors is

provided in Chapter 3.

Further, watermarks for video sequences can be classified by the range of

application – e.g. hidden information carried by a watermark can be spread over

all frames of the video sequence, then the whole sequence is necessary to retrieve
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that information, or each frame contains watermark with the same information,

then only a single frame should be enough.

In one frame, one single element of the watermark can be embedded into

one pixel, into a block of pixels or even into the whole frame.

2.2 Embedding and Detection

At first, general embedding and detection processes in raw uncompressed

images  are  described,  then  they  are  extended  to  compressed  images.

Watermarking of a video sequence can be considered watermarking of a set of

single  images  but  (especially  in  compressed  video  sequences)  there  are  some

obstacles, as will be mentioned in Chapter 4.

Raw uncompressed images provide spatial domain by nature because values

of  pixel  color  samples  are  directly  accessible  for  modifications.  For  simplicity,

grey-scaled images are considered only.

Let us denote a picture to be watermarked by P and values of its pixel color

samples by  Pi, a watermarked version of picture  P by  P* and values of its pixel

color samples by P*
i. Let us have as many elements of watermark W with values

Wi as  number  of  pixels  in  picture  P.  Watermark  W hereby  covers  the  whole

picture  P.  Further,  it  is  possible  to  increase  the  watermark  strength  by

multiplying  watermark  element  values  by  weight  factor  a.  Then  the  natural

formula for embedding watermark W into picture P is:

(1)

That means that values of the watermark elements are simply added to values of

pixel  color  samples.  But  in  practice,  minimum  and  maximum  values  of  the

samples have to be considered so the watermark can be impaired already during

the embedding process by clipping the results to the allowed range.

The detection process of  the watermark is possible by computing inverse

function to (1) to derive possibly impaired watermark W*, therefore the original

picture P is needed.

In fingerprinting applications,  watermark  W* is  then compared with the

original watermark W for statistical significance because it is more important to

check  the  presence  of  the  watermark  rather  than  fully  retrieve  hidden

information.

The  requirement  of  the  original  picture  for  successful  detection  of  the

watermark can be eliminated by using correlation (mentioned in Chapter 4), by

coding watermark element values into mutual relations among more pixels, or by

using different watermarking method.

For  example,  the  following  method  could  be  used.  Let  us  have  a  binary
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watermark, i.e. values of the watermark elements are either 0 or 1. When 0 is to

be embedded into a pixel, the value of the pixel color sample is altered to the

nearest even value. Similarly, when 1 is to be embedded into a pixel, the value of

the pixel color sample is altered to the nearest odd value.

The detection process then consists in reading even pixel color sample values

as 0 and odd values as 1.

This  method  is  not  robust  very  much  because  the  watermark  can  be

completely destroyed by altering all the sample values to become either odd or

even.  These  modifications  definitely  do  not  severely  degrade  quality  of  the

picture;  the  method  is  mentioned  only  to  give  more  comprehension  what

watermarking is about.

Watermarking of uncompressed images in frequency domain requires doing

the particular frequency transform of the image before the embedding and the

inverse transform after the embedding.

The result of the transform is frequency spectrum of the image. Value of

each coefficient  Ci represents amplitude of the corresponding frequency. In this

case,  the  following  embedding  formula  is  better  than  formula  (1)  because

especially small amplitudes would be altered too much using formula (1), which

would lead to perceptible distortion in the picture:

(2)

It  must  be  mentioned  that  this  formula  is  invertible  only  if  Ci is  not  zero,

therefore implementations must count on this.

The  classical  approach  to  watermarking  of  a  compressed  image  is  to

decompress the image, embed the watermark using spatial or frequency domain

technique  and  recompress  the  image  again.  Full  decompression  and

recompression  of  the  image  can  be  computationally  expensive,  especially

concerning a video sequence.

The majority of compression algorithms used in image and video formats are

based on a frequency transform, thus watermarking in frequency domain can be

applied directly to coefficients of that transform. In practice, it means that the

compressed  image  is  partially  decoded  to  obtain  those  transform coefficients,

watermarked and encoded back again.

With  certain  knowledge  of  the  particular  transform,  spatial  domain

watermarking is possible in a such way as described in the previous paragraph.

For  example,  2D-DCT  of  a  block  of  size  8×8  can  be  implemented  as

multiplication of  the block by a transform matrix from left  and the same but

transposed  matrix  from  right.  Forward  (matrix  Tf)  and  inverse  (matrix  Ti)

transforms are then expressed by the following formulas (P is a 8×8 matrix of
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pixel color samples, C is a 8×8 matrix of transform coefficients of those samples):

(3)

and the  embedding  formula  is  the  following (W is  a  8×8  block of  watermark

elements):

(4)

The interpretation of this result is to transform a block of the watermark via the

forward transform and add the result to corresponding transform coefficients of

the original compressed image.

2.3 Watermark Attacks

This section gives a survey of possible attacks on watermarks. Only attacks

that do not severely degrade quality of the cover content are considered.

Watermark attacks can be, according to [8], classified into four main groups:

Simple attacks are  conceptually  simple  attacks  that  attempt to  damage the

embedded watermark by modifications of the whole image without any effort

to  identify  and  isolate  the  watermark.  Examples  include  frequency  based

compression, addition of noise, cropping and correction.

Detection-disabling  attacks attempt  to  break  correlation  and  to  make

detection  of  the  watermark  impossible.  Mostly,  they  make  some geometric

distortion like zooming, shift in spatial or (in case of video) temporal direction,

rotation, cropping or pixel permutation, removal or insertion. The watermark

in  fact  remains  in  the  cover  content  and  can be  recovered  with  increased

intelligence of the watermark detector.

Ambiguity  attacks attempt  to  confuse  the  detector  by  producing  fake

watermarked data to discredit the authority of the watermark by embedding

several additional watermarks so that it is not obvious which was the first,

authoritative watermark.

Removal  attacks attempt  to  analyse  or  estimate  (from  more  differently

watermarked  copies)  the  watermark,  separate  it  out  and  discard  only  the

watermark. Examples are collusion attack, denoising or exploiting conceptual

cryptographic weakness of the watermark scheme (e.g. knowledge of positions

of single watermark elements).

It should be noted that some attacks do not clearly belong to one group.
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Chapter 3

The H.264 Standard

The H.264 standard  represents  an evolution of  the existing video coding

standards.  It  has  been jointly  developed  by  the  ITU-T Video  Coding  Experts

Group  and  the  ISO/IEC  Moving  Picture  Experts  Group  in  response  to  the

growing need for higher compression of moving pictures.

The  standard  has  been  published  by  the  International  Organization  for

Standardization (ISO) and the International Electrotechnical Commission (IEC)

as ISO/IEC 14496-10, also known as MPEG-4 Part 10 or AVC (Advanced Video

Coding),  and  by  the  Telecommunication  Standardization  Sector  of  the

International Telecommunication Union (ITU) as ITU-T Recommendation H.264

[9].

This standard has been chosen because it is the latest video compression

standard  and  offers  significant  efficiency  improvement  over  the  previous

standards (i.e. better bit-rate to distortion ratio).

3.1 The H.264 Structure

3.1.1 NAL Units and Pictures

A H.264 video stream consists of so called Network Abstraction Layer (NAL)

units.  A  NAL  unit  stands  for  a  top  most  placed  peace  in  the  hierarchy  of

syntactical structures.

A NAL unit contains either a set of parameters, describing properties of the

stream, or video data in slices (see Section 3.1.2).

There are  two parameter  sets:  the Sequence Parameter Set  (SPS)  which

typically contains information about resolution and color coding, and the Picture

Parameter  Set  (PPS)  containing  information  about  picture  coding,  picture
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partitioning into slices (see Section  3.1.2) and entropy coding (see Section  3.2).

Usually, there is only one SPS and one PPS in the stream at the beginning.

A set of NAL units compounding exactly one picture of the video sequence is

called access unit, as depicted in Figure 2. A picture is either the whole frame of

the video sequence or one of two frame fields. One field contains odd rows of the

frame while the other contains even ones.

Figure 2: NAL units sequence

3.1.2 Slices

One picture can be partitioned into several slices, each coded in separate

NAL  unit.  The  shape  of  slices  is  basically  arbitrary,  slices  can  even  blend

together, but usually they form almost the same horizontal strips, as in Figure 3.

Figure 3: Partitioning of a picture into slices
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There are three types of slices: I, P and B. I slices are completely intra coded

(no reference pictures are used for  prediction)  while  P and B slices use inter

coding, i.e. previous pictures in display order (and in case of B slices, following

pictures as well) are used for prediction.

Intra coding may provide access points to the video sequence where decoding

can begin and continue correctly, but typically gains only moderate compression

efficiency in comparison with inter coding.

The  intra  prediction  process  consist  in  exploiting  of  spatial  statistical

dependencies  in  a  single  picture  while  the  inter  prediction process  exploits

temporal  statistical  dependencies  between  different  pictures.  The  prediction

processes are thoroughly described in Section 3.2.

Only the pictures that go in the stream before the current slice can be used

for prediction. Thus, even following pictures in display order used for prediction

should go before  the current slice.  The reason is  simple:  decoders need those

pictures to be able to decode predicted slices on-the-fly. Let us assume that each

picture consists of a single slice, then the difference between display and stream

order  is  illustrated  in  Figure  4 and  Figure  5 (prediction  dependencies  are

indicated by arrows).

Figure 4: Display order of pictures

Figure 5: Stream order of pictures

3.1.3 Macroblocks

A slice is a sequence of macroblocks, as depicted in Figure 3. A macroblock,

consisting of  a  16×16 block of  luma samples  and two corresponding blocks  of

chroma samples, is used as the basic processing unit. Luma samples represent

luminance of pixels while chroma samples represent chromatic components.
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A 16×16 block of luma samples consists of 16 4×4 or 4 8×8 luma sub-blocks,

depending on selected frequency transform. This partitioning is also used in a

special type of intra prediction process.

Blocks of chroma samples are compounded similarly.

A macroblock can be further partitioned (subsequently halved or quartered)

for inter prediction into blocks up to size of 4×4 luma samples.

3.2 Encoding

This section describes a scheme of the H.264 encoding process of a video

sequence.  The description is  restricted to  grey-scaled  sequences  only  to  avoid

talking about chroma blocks which are coded in the completely same way as luma

blocks.

Considering one picture of the sequence, encoders may select between intra

and inter coding for blocks of  the picture.  Intra coding is usually selected for

pictures just after a scene cut while inter coding for fluently following pictures.

Scene-cut pictures typically miss any statistical dependence on previous pictures,

thus there is no reason to use inter coding. Fluently following pictures can be

imagined  as  e.g.  a  static  scene  without  any  camera  movement,  thus  such

following pictures are very similar and inter coding is the best choice.

In practice,  encoders  try  both ways and choose the one  that  have  better

bit-rate to distortion ratio.

Regardless which coding is selected, the encoding process is the same. The

process is depicted in Figure 6.

A  picture  is  partitioned  into  16×16  blocks  of  pixel  color  samples  called

macroblocks  (MB).  Then,  the  prediction  process  is  invoked.  Intra  coded

macroblocks can use intra prediction only while inter coded ones can use both

intra  and inter  prediction.  The  subtraction  of  original  samples  and predicted

samples is called prediction residual.

The intra prediction process predicts macroblock samples from edge samples

of  neighbouring  macroblocks  within  the  same  picture.  A  special  type  of  the

process  can  be,  in  the  same  way,  invoked  on  4×4  or  8×8  sub-blocks  of  the

macroblock. The mode of prediction, i.e. which and how neighbouring blocks are

used, is encoded into a single number.

The inter prediction process may partition macroblocks into 2 16×8 or 8×16

or 4 8×8 blocks and 8×8 blocks can be further partitioned into 2 8×4 or 4×8 or 4

4×4 sub-blocks. For each block, the most similar block of the same size and shape

is found in the reference pictures and its samples are used as predicted samples.

The identifier of the reference picture and the relative position of corresponding

blocks are encoded into so called motion vector.

The residual is partitioned into 16 4×4 or 4 8×8 blocks, depending on chosen
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frequency transform. The choice is made per macroblock. Further, these blocks

are transformed to remove spatial correlation inside the blocks.

Basically, the H.264 standard provides 4×4 block transform only but it has

been extended to 8×8 blocks. The transform is a very close integer approximation

to 2D-DCT transform with pretty much the same features and qualities.

Then,  the  transform  coefficients  are  quantized  (Q),  i.e.  divided  by

quantization factors and rounded. This irreversible process typically discards less

important  visual  information  while  remaining  a  close  approximation  to  the

original samples. After the quantization, many of the transform coefficients are

zero or have low amplitude, thus can be encoded with a small amount of data.

Figure 6: Encoding process scheme

The quantized coefficients are dequantized, inverse transformed and added

to the predicted samples to form a block of potentially reference picture.

Finally, the intra prediction modes or the motion vectors are combined with

the  quantized  transform  coefficients  and  encoded  using  entropy  coding  (EC).

Entropy coding consists in representing more likely values by less amount of data

and vice versa.

The standard offers two entropy coding methods:  Context-based Adaptive

Variable Length Coding (CAVLC) and Context-based Adaptive Binary Arithmetic

Coding  (CABAC).  CABAC  is  by  5-15%  more  effective  [10] but  much  more

computationally expensive than CAVLC.

Entropy encoded data are enveloped together with header information as a

slice into a NAL unit.
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3.3 Decoding

The  decoding  process  is  reversal  process  to  encoding  resulting  in  visual

video data, as depicted in Figure 7.

Incoming  slices  are  decoded,  using  the  same  entropy  coding  as  in  the

encoding process, up to intra prediction modes or motion vectors and quantized

transform coefficients.

Macroblock  by  macroblock,  block  by  block,  the  quantized  transform

coefficients  are  scaled  to  the  former  range,  i.e.  multiplied  by  dequantization

factors, and transformed by inverse frequency transform. Hereby, the prediction

residual is obtained.

Figure 7: Decoding process scheme

The prediction process is invoked using the intra prediction mode in case of

intra  prediction,  or  the  motion  vector  in  case  of  inter  prediction.  Predicted

samples are added to the residual.

Such decoded blocks and macroblocks are joined together to form the visible

picture that is stored in the buffer of reference pictures for the inter prediction

process in next pictures.

In both encoding and decoding processes, deblocking filter process is invoked

over  decoded  pictures  to  increase  final  visual  quality.  The process  eliminates

blocking  artefacts  on  block  borders,  as  may  be  seen  in  video  sequences

compressed  according  to  many  of  previous  video  coding  standards  at  lower

bit-rates.
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Chapter 4

Implementation Details

This chapter deals with implementation details of the software framework

for watermark embedding and detection.

A partial decoder / encoder (codec), as mentioned in Section  2.2, of H.264

video streams has been implemented in order to obtain transform coefficients for

direct  watermark  embedding  in  frequency  domain  and  further  processing  for

embedding in spatial domain.

Further, a generic framework for watermarking of H.264 streams in both

spatial  and  frequency  domains  has  been  designed  and  implemented.  In  this

framework,  three  different  watermarking  methods  have  been  written.  The

practical comparison of these methods is presented in Chapter 5.

4.1 The H.264 Codec

The partially decoding part of the codec is implemented according to the

H.264 standard [9]. Of course, there are free implementations of the standard but

writing an own helps to deeply understand the standard and video compression

at all.  Moreover,  the transform coefficients are needed only,  not fully decoded

visible pictures.

The  decoder  produces  all  syntactical  elements  of  a  stream  which  are

relevant for watermarking. In particular, it decodes and parses SPSs, PPSs, slices

and  macroblocks  up  to  transform  coefficients.  During  the  process,  it  checks

whether the decoded elements and the whole stream are correct. When an error

occurs, it is reported by a message of particular severity level (critical error, error,

warning etc.) and decoding of the current NAL unit ends immediately.

The encoding part of the codec is written as an inverse process to decoding

because the standard contains only fragment information about the process. The
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encoder is able to handle slices and macroblocks only; neither SPSs nor PPSs are

supported  because  the  stream  properties  are  not  changed  during  watermark

embedding.

The codec is tested on various H.264 video sequences and even on official

tests contained in [11]. But there are still limitations which are listed in Section

4.1.2.

The codec is written in programming language C as a library. Because the

names of functions and variables follow labels from the standard and algorithms

are rewritten from the standard and only slightly optimized, the source code is

commented briefly.

Although the codec has a very limited application, the source code has over

11 000 lines.

4.1.1 Supported Features

The codec is able to decode the following features:

� SPS and PPS,

� both CAVLC and CABAC entropy coding,

� partitioning of pictures into slices,

� both frame and field slices,

� all slice types: I, P and B,

� all syntactical elements of slices: all macroblock types (i.e. partitioning), both

4×4 and 8×8 transform coefficients, intra prediction modes, motion vectors etc.

4.1.2 Known Bugs and Limitations

No bugs  are  known at  the  moment  but  the  codec  does  not  support  the

following features:

� only syntactical elements and several derived values are decoded – no visual

data is provided,

� macroblock-adaptive  frame-field  coded slices,  i.e.  slices  which  contain  both

frame and field macroblocks together, are not supported,

� memory management control  is  not  considered – no reference pictures are

buffered,

� reference picture list reordering is not fully decoded and applied,

� unsupported NAL units:

� Auxiliary  Coded  Picture  (a  supplement  picture  mixed  to  the  primary

picture by alpha blending),

� Sequence  Parameter  Set  Extension  (alpha  blending  parameters  for
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auxiliary coded pictures),

� Supplemental  Enhancement  Information  (necessary  information  for

correct  video  playback  and  other  data  –  timing  information,  buffer

management hints,  user  data,  scene information,  pan-scan information,

spare picture information, still frames etc.),

� Slice Data Partitions, i.e. partitions of too big slices.

4.2 The Watermarking Framework

The framework is designed for easiness when implementing any particular

watermarking  method  in  either  spatial  or  frequency  domain  of  H.264  video

streams.  Then,  implementation  of  a  method  consists  in  writing  only  two

functions, one for watermark embedding and the other for watermark detection.

4.2.1 GStreamer Multimedia Framework

In practice, a H.264 video stream is usually enveloped (multiplexed / muxed)

together with an audio stream into a multimedia container format such as Audio

Video Interleave (AVI) or Matroska (MKV). In order to avoid implementing of

unpacking (demultiplexing / demuxing) various container formats and separating

out the video stream, the watermarking framework is implemented as a plugin in

the open source multimedia framework called GStreamer [12].

GStreamer  is  a  library  that  allows  the  construction  of  graphs  of

media-handling  components,  ranging  from  simple  audio  playback  to  complex

audio and video processing.

A graph, also called a pipeline, of a  generic audio-video player is illustrated

in Figure 8.

Figure 8: Generic audio-video player pipeline

The  file  source  reads  the  input  file  of  particular  container  format  and

forwards  its  data  to  the  demuxer.  The  demuxer  demultiplexes  the  container

format resulting in audio and video data blocks. The video decoder decodes video

data and forms pictures of the video sequence. Then, pictures are displayed by

the video sink on the screen with the correct timing to be a fluently moving video.

Audio data are decoded by the audio decoder and reproduced by the audio sink on
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loud speakers.

The watermark plugin stands for an element in a suchlike pipeline.  The

plugin can be divided into two parts: the GStreamer part and the main part, and

works  in  either  embedding (see  Section  4.2.2)  or  detection (see  Section  4.2.3)

mode.

The  GStreamer  part  implements  the  GStreamer  interface  which  is

thoroughly documented on the project's website [12], thus the source code is only

briefly commented.

This  part  parses  incoming  data  blocks  of  H.264  stream into  NAL units

which are further decoded using the codec, mentioned in Section 4.1. As soon as a

slice  is  decoded,  it  is  forwarded  to  the  main  part  of  the  plugin.  Then,  in

embedding mode, the watermarked slice is encoded again and sent to the output,

or in detection mode, detection statistics are given.

The main part does watermark embedding or detection, depending on the

mode.

The  plugin  is  written  as  a  library  in  programming language  C and the

source code counts about 3 500 lines.  The usage of  the plugin is  described in

Appendix B and the documentation is provided in Appendix C.

4.2.2 Embedding

In the embedding mode, the plugin accepts a H.264 stream as the input,

invokes the embedding process and outputs the same but possibly watermarked

H.264 stream. The embedding pipeline is illustrated in Figure 9.

Figure 9: Watermark pipeline in embedding mode

Non-watermarked slices and other NAL units are passed through without

any changes.

In  the  current  implementation  of  the  plugin,  only  intra  coded  slices  are

watermarked. This is because inter prediction is quite complicated and is not

necessary for objectiveness of the thesis results.

Inputs to the embedding process are:
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� an intra coded slice,

� content ID – the identifier of the cover content,

� copy ID – the identifier of particular cover content copy,

� weight – the weight factor specifying the watermark strength.

Output of this process is the watermarked slice.

At  the  beginning  of  the  entire  embedding  process,  the  watermark  is

generated. The watermark is a pseudo-random noise signal covering one whole

picture of the video sequence. The signal sample (i.e. watermark element) values

are each either 1 or -1.

The watermark is partitioned into blocks, as the picture is partitioned into

macroblocks, thus one block of the watermark is embedded into one macroblock of

the  picture.  Dimension  of  the  blocks  depends  on  particular  watermarking

method.

The watermark is generated so that the sum of values of the watermark

block elements is zero. The reason is to equal number of 1 and -1 in blocks to

balance  probability  of  changes  caused  by  an  attack.  The  pseudo-random

generator is initialized by the identifier of the cover content copy – copy ID.

Let us denote such generated watermark as pure watermark.

One block of the watermark carries one bit of hidden information. Hidden

information in this implementation is the identifier of the cover content – content

ID. Content ID is typically represented by much less bits than the number of

watermark elements, thus bits of the ID are pseudo-randomly spread over all

watermark elements where the usual binary values {0, 1} are replaced by {-1, 1}.

The pseudo-random generator is initialized by the ID itself. Another reason why

the ID is spread is that the robustness is increased hereby and the spreading

stands for a simple self error-correcting code due to redundancy.

Bits of hidden information (spread content ID) modulate the signal. When -1

is  to  be  encoded,  values  of  the  block  elements  are  inverted,  i.e.  from each  1

becomes -1  and vice  versa,  and when 1 is  to  be  encoded,  values  of  the block

elements remain unchanged. This can be expressed like this:

(5)

Here,  WM is modulated watermark,  WP is pure watermark,  Wij is j-th element

value in i-th watermark block and Ii is i-th bit value of hidden information.

The robustness can be improved by multiplying watermark element values

by the weight factor  a (the weight factor can be locally adjustable to track local

spatial  characteristics,  thus  to  dynamically  balance  robustness  and

perceptibility):

(6)
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But the description is restricted to the former values in order to be less confusing;

proposed algorithms, processes and calculations do not change.

Figure  10 illustrates  content  ID  spreading,  watermark  generation  and

embedding which is described below.

Figure 10: Illustration of watermark generation and embedding

Once the watermark is generated and hidden information is encoded, the

embedding process can take place.

Blocks of each macroblock could be watermarked using formula (2) in case of

frequency domain watermarks (the transform coefficients of a block are altered to

encode  one  watermark  element)  or  formula  (4)  in  case  of  spatial  domain

watermark  (corresponding  sub-block  of  watermark  block  elements  is  forward

transformed and added to the coefficients).

However, it not as simple as it seems. The essence of the problem consists in

intra  prediction.  If  watermarked blocks  are  used for  intra  prediction of  other

blocks, distortion caused by watermark embedding spreads into the other blocks.

If there is a sequence of predictively dependent blocks, the distortion propagates

and accumulates up into the last block of the sequence which probably causes

severe,  obviously  not  unobtrusive,  fidelity  distortion.  Therefore,  the  intra

prediction error compensation is implemented to undo the distortion.

In one block of a macroblock, the embedding process proceeds as follows (the

scheme  is  depicted  in  Figure  11).  The  residual  is  obtained  using  inverse

frequency transform on dequantized transform coefficients. Then, the predicted

samples of both the original and the watermarked pictures are computed. Thus,

both  pictures  are  constructed  during  the  process.  The  residual  is  added  to

predicted samples of the original picture, clipped to allowed range and stored as a

block of the original picture. The prediction error as the difference between the

watermarked  picture  predicted  samples  and  the  original  picture  predicted
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samples is subtracted from the residual.

Such compensated residual is now ready for direct watermark embedding in

the spatial domain. It depends on particular watermarking method whether the

embedding process is controlled by the residual only or by the predicted samples

as well.

Then,  the  residual  is  forward transformed and quantized.  Note  that  the

spatial domain watermark can be impaired by the quantization.

The quantized transform coefficients may be directly watermarked in the

frequency domain.

The  coefficients,  watermarked  either  in  the  spatial  domain  or  in  the

frequency domain, are dequantized and inverse transformed again. Such obtained

residual  is  added  (and  clipped)  to  predicted  samples  from  the  watermarked

picture to form a block of the watermarked picture.

Figure 11: Watermark element embedding scheme with intra prediction

error compensation

If the samples were not clipped, the reconstruction of the pictures would not

be necessary. The error compensation would be possible by subtracting samples

that are intra predicted from the difference in the residual caused by watermark
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embedding.

Anyway,  the  pictures  are  used  for  measuring  distortion  caused  by

watermark  embedding.  Distortion  in  one  picture  is  measured  by  peak

signal-to-noise ratio (PSNR) which is the most commonly measure of quality of

reconstruction in image compression:

(7)

where  MAXI is  the  maximum  pixel  color  sample  value  (usually  255)  of  any

picture, P is the original picture, Pi is a sample value of the original picture and

P*
i is a sample value of the watermarked picture.

At  the  end  of  the  entire  embedding  process,  average  PSNR  over  all

watermarked pictures is estimated and printed.

Distortion expressed by PSNR relates to perceptibility of  the watermark.

The practical results are presented in Chapter 5.

4.2.3 Detection

In the detection mode, the plugin accepts a H.264 stream as well, invokes

the detection process and outputs detection results as textual data. The pipeline

is illustrated in Figure 12.

Figure 12: Watermark pipeline in detection mode

Again, only intra coded slices are taken into the detection process. 

Inputs for the process are:

� a potentially watermarked intra coded slice,

� content ID,

� copy ID.

Only  when  whole  picture  is  processed,  output  of  this  process  is  the

probability that the cover content copy contains the identifier with value of copy

ID.
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At the beginning of the entire process, the same pure watermark as in the

embedding  process  is  generated.  The  pure  watermark  is  further  used  for

correlation with the detected watermark to retrieve hidden information.

In each macroblock, watermark block element values carrying one hidden

information bit are obtained using particular watermarking method (the scheme

is depicted in Figure 13). In case of frequency domain, the transform coefficients

are  directly  accessible.  In  case  of  spatial  domain,  the  coefficients  have  to  be

dequantized and inverse transformed in order to obtain the residual. It is further

added  to  predicted  samples  and  clipped  giving  picture  samples  suitable  for

detection. In this case, the residual is not enough because it depends on selected

intra prediction mode which could change after an attack.

Figure 13: Watermark element detection scheme

Obtained  watermark  block  element  values  are  compared  with  the

corresponding  element  values  of  the  pure  watermark.  When  the  two

corresponding values match, 1 has been encoded, while when they differ, -1 has

been encoded. Remember the modulation of pure watermark by bits of hidden

information in the embedding process: when -1 was to be encoded, values of the

watermark block elements are inverted, i.e.  each 1 becomes -1 and vice versa

(thus differ), and when 1 was to be encoded, values of the block elements remain

unchanged (thus match).

But in practice, especially after an attack, the corresponding values in one

block need not 100% match or differ. Therefore, some correlation mechanism has

to be proceeded. The correlation sum for i-th watermark block is computed:

(8)

where  WP
ij is  j-th element value of  the pure watermark block and  W*

ij is  j-th

element value of the detected watermark block.

When the block encodes 1 (corresponding values match – they are either (1,
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1) or (-1, -1)), the sum can get the maximum positive value, while when the block

encodes -1 (corresponding values differ – the are either (1, -1) or (-1, 1)), the sum

can  get  the  minimum  negative  value.  The  middle  value  between  these  two

extremes is 0. Thus, when the sum is greater than 0, 1 is returned, when the sum

is lower then 0,  -1 is returned, and when the sum is  0,  the value can not be

determined and does not participate in the following process.

Once  all  macroblocks  are  processed  and  hidden  information  bits  are

retrieved, it is time to merge the bits to form the detected content ID. The merge

is done in the reverse way to content ID spreading in the embedding process. One

content  ID  bit  value  is  derived  from the  hidden  information  bits  from those

macroblocks that contain the bit. The spreading determines which macroblocks

are taken. The value of the bit is the sign of the sum of the hidden information

bits. When the sum is greater than 0, the value is 1, when the sum is lower than

0, the value is -1, and when the sum is 0, the value can not be determined and

does not participate in the following probability estimation. 

Figure 14 illustrates watermark detection and content ID merging.

Figure 14: Illustration of watermark detection

The  probability  of  the  detection  success  is  expressed  by  the  correlation

between the detected content ID and the input content ID. The correlation is

computed  using  formula  (8)  where  watermark  values  are  substituted  by  ID

values.  The  result  is  scaled  to  amplitude  with  value  of  1.  Then,  when  the

correlation coefficient is 1, the IDs 100% match and the detection is absolutely

successful, when it is -1, the IDs 100% differs, i.e. the detected ID is inverse to

input  ID,  thus  the  detection is  considered  successful  as  well.  The correlation

coefficient equal to 0 means that the IDs are independent and the detection is

considered unsuccessful. The closer the coefficient is to 0 the more independent

the IDs are.

Per-picture correlation coefficients are continuously written to the output
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file in order to provide detailed results for deeper analysis.

At the end of the entire detection process, average probability as average

value of absolute correlation coefficient values over all  intra coded pictures is

estimated and printed. The probability expresses the detection success rate.

4.2.4 Notes

The generation of the watermark is based on spread spectrum technique

presented by Hartung  [2]. Spread-spectrum watermarks are described in detail

in Section 4.3.1.

The watermark is embedded into luma samples only because human visual

system is more sensitive to changes in luminance than to chromatic components,

thus the watermark is harder to remove without severe quality degradation of

the cover content. Moreover, the chromatic channels of the video stream may be

completely removed and the video remains in former quality; the only difference

is that the video lacks colors.

To  increase  the  watermark robustness,  a  different  pseudo-random signal

can  be  generated  for  each  picture  in  the  embedding  process.  But  then,  a

synchronization mechanism must be implemented in the detection process to be

able to detect the watermark even if the order of the pictures is changed (or some

are missing or extra) by an attack. This is not trivial and is not implemented in

the plugin.

The generation of the pseudo-random signal is initialized by copy ID and

hidden information is created from content ID intentionally. If a cover content

copy  contains  more  watermarks,  they  are  represented  by  independent

pseudo-random signals,  thus it  is  possible to detect  each of  them. If  the pure

watermark were generated from content ID and hidden information from copy

ID, the advantage would be that the detection result would be just the copy ID

but copy IDs in multiple embedded watermarks would overwrite each other.

There  is  a  weakness  in  the implementation because all  macroblocks  are

watermarked. Especially uniform areas in a picture are encoded by almost none

residual. Then, if such area is watermarked, the residual contains the watermark

alone, thus the watermark may be completely removed. The solution could be to

watermark only non-zero coefficients of residual with prejudice to robustness.

Another problem relates to watermarking of every macroblock. Because of

many coefficients that have been zero are altered to non-zero value, the bit-rate is

pretty much increased. We will see in Chapter 5 how high the increase is.

With respect to human visual system which is very sensitive to changes in

uniform areas, watermarking could be further improved to embed the watermark

only into edge features or textured areas. But the goal of the thesis is to compare

watermarking  methods  as  they  are,  therefore  no  such  extensions  are

implemented.
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4.3 Watermarking Methods

Three different watermarking methods have been implemented. One stands

for  a  spatial  domain  watermarking  technique  and  the  other  two  represent

frequency domain techniques.

Each method is implemented in only two functions; one is for embedding

into  macroblock  blocks  and  the  other  is  for  detection.  The  rest  of  necessary

actions does the watermarking framework.

4.3.1 Pseudo-random Noise Watermark

Pseudo-random  noise  watermark  is  inspired  by  spread-spectrum

communication schemes which transmit a narrow-band signal (the watermark)

via  a  wide-band  channel  (the  video  sequence)  by  frequency  spreading.  This

technique was presented by Hartung for uncompressed and MPEG-2 compressed

video [2]. In this thesis, it has been implemented for H.264 video streams.

This method belongs to spatial domain techniques, thus the watermark can

be impaired during the embedding process by quantization. This is compensated

by the technique itself because spread spectrum provides the reliable detection

even if the embedded watermark is impaired because of the interference from the

video sequence itself and noise arising from subsequent processing or attacks.

Nevertheless,  a  spread  spectrum  watermark  is  vulnerable  to

synchronization error which occurs when the watermarked sequence undergoes

geometric manipulations such as scaling, cropping and rotation.

Furthermore,  Stone [13] shows  that  advanced  collusion  attacks  against

spread-spectrum  watermarks  can  be  successful  with  only  one  to  two  dozen

differently watermarked copies of the same content.

When  using  this  method,  the  watermark  plugin  generates  the  pure

watermark blocks with dimension of 16. Macroblocks have the same dimension,

thus one watermark element is to be embedded into one pixel of the picture.

The  embedding  function  is  called  for  each  block  of  each  macroblock;

dimension of the blocks depends on selected frequency transform. The modulated

watermark is embedded as it is by simple addition to the residual, thus up to

picture samples:

(9)

The detection function is called for each block of each macroblock as well.

The detection process is based on the fact that the pseudo-random signal and the

picture  are  statistically  independent  while  the  signal  is  autocorrelated.  This

method does not provide detected watermark element values to the framework

but uses the correlation sum calculation (see formula (8) above) in the framework
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as a part of the whole process. Then substituting detected watermark element

values by picture sample values, the evolution of the correlation sum is:

(10)

where A and B stand for contributions to the sum from the picture and from the

watermark.  Let  us  assume  that  A is  zero  because  of  independence  of  the

pseudo-random signal and the picture, then:

(11)

In practice,  A is not exactly zero, thus an error is included. The decision

process in the framework is invoked – when Ci is greater than 0, the value of the

detected hidden information bit is 1, and when Ci is lower than 0, the value is -1.

Ii is either -1 or 1 and a is greater than 0, therefore the sign of Ii sets the sign of

Ci and the detected hidden information bit is determined correctly. The greater

the weight factor a is the greater the tolerance to the error of A is provided.

The  probability  of  detection  success  may  be  increased  by  applying  a

high-pass filter to the sequence before the detection process in order to filter out

the host signal and keep the watermark signal alone.

4.3.2 Block Watermark

Block watermarking method belongs to frequency domain techniques. The

method consists in coding one watermark element into one block of a macroblock

residual.

Only 4×4 blocks are supported because of the following. The partitioning of

macroblock residuals into blocks may change when the video sequence undergoes

any video signal  processing operation.  The simplest  example  is  recompression

with different parameters.

The problem occurs when the watermark element has been embedded into a

macroblock partitioned into 16 4×4 blocks and the partitioning has changed to 4

8×8  blocks,  or  vice  versa.  Changes  made  by  watermark  embedding  in  one

partitioning  are  basically  undetectable  in  the  other  partitioning  because  the

transforms are not equivalent in terms of transform coefficient values. It would

be possible to convert the blocks to the former partitioning before detection but it

is not obvious which partitioning is the former one.

Therefore, the conversion to one type of partitioning has to be applied before

embedding. After embedding, the partitioning is converted back to the former

type in order to  preserve macroblock properties.  In the detection process,  the

conversion  to  the  same  type  as  in  the  embedding  process  is  applied  before

31

C i=A�B
a �
j=1

16�16

�W ij

P�2�I i=a�16�16�I i

C i=�
j=1

16�16

W ij

P�Pij
*
=�

j=1

16�16

W ij

P��P ij�aW ij

P�I i�=�
j=1

16�16

W ij

P�Pij�
A

�a �
j=1

16�16

�W ij

P�2�I i�
B



detection.

Conversion into 8×8 blocks is out of the question because of intra prediction.

The intra prediction process for a 4×4 sub-block within one 8×8 block uses the

other 4×4 sub-blocks within that 8×8 block.  Therefore,  when the 8×8 block is

watermarked, the error caused by watermark embedding should be compensated

in the 4×4 sub-blocks when using the other 4×4 sub-blocks for prediction. But the

compensation may severely impair the already embedded watermark...

There is only conversion into 4×4 blocks left. In this case, intra prediction

does not give trouble. The conversion is performed by decoding (i.e. dequantizing

and inverse transforming) a 8×8 block, partitioning into 4×4 blocks and encoding

(i.e. forward transforming and quantizing) the blocks in order to obtain transform

coefficients  for  watermark  embedding.  This  works  pretty  well  but  the

quantization causes visible blocking artefacts.

With respect to the reasons above, no conversion is applied and only 4×4

blocks are taken for watermark embedding. 4×4 blocks have been chosen because

4×4 block transform is more usual than 8×8 transform. Video sequences given to

both embedding and detection can be converted to required format beforehand at

the cost of eventual quality degradation.

The pure watermark blocks are generated with dimension of 4 to cover 16

4×4 macroblock blocks.

Embedding into one block proceeds as follows. Only the half of transform

coefficients  that  represent  higher  frequencies  are  taken.  Although  higher

frequencies  are  more vulnerable  to  eventual  attacks,  human visual  system is

more  sensitive  to  distortion  in  lower  frequencies  and  modification  of  low

frequency coefficients causes obtrusive blocking artefacts.

When 1 (the weight factor a in fact) is to be embedded, the coefficient with

the greatest absolute value is chosen. The coefficient modification keeps the sign

of  the  coefficient  but  eventually  increases  its  absolute  value  to  required

robustness level. If the coefficient is positive but lower than a, the coefficient is

increased to a. If the coefficient is negative but greater than -a, the coefficient is

decreased to -a. The coefficient is remained unchanged if it is greater than a in

absolute value. If the coefficient is 0, a or -a is randomly assigned. The purpose

why all this is done is to enforce a non-zero value in the half while producing to

the lowest distortion.

When -1 is to be embedded, all coefficients in the half are set to zero. This

causes loss in detail.

Detected watermark element values are obtained directly from transform

coefficients. If all transform coefficient values in the half are zero, -1 is returned,

otherwise (if there is at least one non-zero coefficient) 1 is returned.

Recompression  at  lower  bit-rate  causes  more  loss  in  detail,  thus  zero
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coefficients are hardly set to non-zero values. On the other hand, the coefficients

set to the weight factor a in absolute value can be zeroed. Therefore, a should be

set to such a high value to remain non-zero even if the video sequence undergoes

an attack.

Considering  multiple  embedding  attack,  this  method  is  quite  vulnerable

because  the  watermark  elements  are  directly  embedded  and  thus  multiple

embedded watermarks overwrite each other.

The watermark can be completely destroyed by zeroing the coefficients in

the half in all macroblocks but it results in visible blocking artefacts.

4.3.3 Coefficient Watermark

Coefficient watermarking method belongs to frequency domain techniques

as well. The method consists in coding one watermark element into one transform

coefficient of a macroblock residual block.

Again,  only 4×4 blocks are supported because of  the same reasons as in

block watermarking method and the pure watermark block has dimension of 4.

The transform coefficient where a watermark element is to be embedded

into  is  pseudo-randomly  chosen  from the  half  of  coefficients  which  represent

higher frequencies. The pseudo-random generator is initialized for each picture

by both content ID and user ID in order to increase robustness against multiple

watermark embedding and collusion attacks.

The  value  of  the  coefficient  is  altered  in  the  same  way  as  in  block

watermarking method, i.e.  when 1 is to be embedded, the value is eventually

increased to the weight factor a in absolute value, and when -1 is to be embedded,

the coefficient is set to zero.

In  the  detection  process,  the  transform  coefficient  is  pseudo-randomly

chosen in the same way as in the embedding process. If the coefficient is zero, -1

is returned, otherwise 1 is returned.

This method should have similar robustness qualities to block watermark

method but distortion caused by watermark embedding should be lower because

only one coefficient is altered in a block.
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Chapter 5

Testing

Proposed watermarking methods have been exposed to several tests in order

to check up and compare their  qualities  and robustness.  The test  results  are

summarized in this chapter.

The test environment consists of single test scripts written as Unix shell

scripts. If recompression is applied, a free H.264 encoder, x264 [14], is used; it is

released under the terms of the GPL license. Video signal processing tests use

video  filters  of  MPlayer  movie  player  [15] which  is  available  under  the  GPL

licence as well.

The  test  scripts  have  been  executed  on  several  video  sequences  with

different  characteristics.  Most  of  them  have  been  downloaded  from

high-definition video gallery  [16] on the Apple website. All the sequences have

been remuxed to Matroska [17] container format because of easiness of use (there

are both the demuxer and the muxer in the GStreamer plugin library). The list of

the sequences follows:

Elephants Dream (ED) represents an animated movie. This particular one has

been made entirely with open source graphics software, Blender. It has been

downloaded from the project's website [18].

Full Bloom (FB) is a sample of 1080p high-definition video.

Kingdom of Heaven (KH) is a trailer of the movie with the same name. The

main feature is frequent scene cuts.

Peaceful Warrior (PW) stands for a low-resolution sample.

Renaissance (R) is mostly black-and-white sequence with only a few other hues.

The Simpsons Movie (SM) is the representative of cartoon movies.

Wildlife (W) brings real images from nature with minimum camera movement.
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Table 1 outlines characteristics of the sequences.

Table 1: Characteristics of testing video sequences

Each test script embeds a watermark into each testing video sequence using

each proposed watermarking method – block, coefficient or noise – with weight

factor from 1 to 5, applies the test itself and obtains the result.

Watermarks  are  generated  with  content  ID  assigned  to  the  sequences

subsequently from 1 to 7. If not mentioned otherwise, copy ID is set to 1.

Other scripts are provided to make embedding and detection easier. These

scripts  contain  corresponding  GStreamer pipelines.  The usage  is  described in

Appendix B.

In the test result tables (see below), the results belonging to one method are

grouped into  one  column set  headed by the  method name where  one column

contains results of the test using the weight factor given in the column header.

Row sets represent results for single testing video sequences – ED, FB, KH,

PW, R, SM and W. Rows of the sets vary depending on eventual additional test

parameter.

5.1 Perceptibility

Perceptibility  expresses  amount  of  distortion  caused  by  watermark

embedding.  In  other  words,  it  indicates  how  visible  the  watermark  is.  It  is

measured by peak signal-to-noise ratio (PSNR) which is  mentioned in Section

4.2.2. The less the value of PSNR is the more perceptible the watermark is. We

can see  in  the first  row set  of  Table  2 that  the  perceptibility  grows up with

increasing weight factor. It is obvious that block method is the most perceptible

method because of the way of embedding.

The  second  row  set  of  the  table  contains  probabilities  of  watermark

detection success in non-attacked sequences as given by the detector. Note lower

probabilities  when using noise  method with low weight factors  caused by the

interference from the video sequences and quantization.
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Resolution # I Frames Description

ED 10:54 24.000 1667.29 31.34 638 animated
FB 01:41 23.976 8228.74 101.28 102 HD in full resolution
KH 02:40 23.976 2528.07 34.54 105 frequent scene cuts
PW 02:20 29.970 239.36 3.87 67 low resolution
R 01:18 23.976 1701.18 17.02 71 black-and-white

SM 02:17 23.976 2103.66 39.29 97 cartoon
W 02:20 29.970 2015.86 45.06 14 nature

Length 
[min:s]

Frame-rate 
[frames/s]

�Bit rate 
[kb/s]

Av. I Frame 
Size [kB]

720×405
1920×1080
852×360
320×136
848×480
848×352
960×540



Table 2: Perceptibility test results. Probabilities of detection success in non-attacked sequences and

bit-rate growth ratios in addition.

Block Coefficient Noise
1 2 3 4 5 1 2 3 4 5 1 2 3 4 5

P
S

N
R

 [
d
B

]

ED 41.92 38.79 36.23 34.13 32.42 44.16 39.72 36.63 34.27 32.42 49.21 39.75 36.69 34.75 33.23
FB 43.56 38.40 35.09 32.67 30.78 43.59 38.33 35.01 32.58 30.69 53.71 39.91 36.32 34.41 32.98
KH 44.54 41.46 38.80 36.65 34.89 46.53 42.08 38.93 36.56 34.72 47.43 40.04 37.12 35.11 33.51
PW 40.63 37.14 34.41 32.19 30.43 42.47 37.80 34.65 32.25 30.40 54.21 40.52 36.54 34.31 32.84
R 44.21 40.02 37.09 34.62 32.79 45.02 40.14 36.98 34.48 32.61 49.81 40.33 36.96 34.77 33.19

SM 35.63 34.15 32.59 31.10 29.74 40.98 37.34 34.46 32.19 30.37 53.35 40.37 36.49 34.39 32.90
W 40.25 36.03 32.95 30.59 28.72 41.10 36.06 32.78 30.37 28.49 61.14 40.48 36.12 33.84 32.46

P
ro

b
a
b
ili

ty

ED 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.87 1.00 1.00 1.00 1.00
FB 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.88 1.00 1.00 1.00 1.00
KH 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.92 1.00 1.00 1.00 1.00
PW 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.46 0.92 0.99 1.00 1.00
R 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.89 0.99 1.00 1.00 1.00

SM 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.80 0.99 1.00 1.00 1.00
W 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.37 1.00 1.00 1.00 1.00
ED 104% 107% 109% 111% 112% 106% 109% 111% 113% 115% 104% 116% 124% 130% 135%
FB 109% 114% 116% 119% 121% 110% 115% 117% 120% 123% 102% 118% 131% 141% 150%
KH 102% 104% 104% 105% 106% 103% 104% 105% 106% 107% 104% 110% 114% 117% 119%
PW 103% 104% 105% 106% 107% 103% 105% 106% 107% 108% 102% 107% 111% 114% 117%
R 109% 113% 115% 117% 119% 110% 115% 117% 119% 121% 109% 126% 138% 146% 152%

SM 102% 104% 105% 106% 107% 103% 105% 106% 107% 108% 101% 107% 112% 115% 118%
W 101% 101% 101% 102% 102% 101% 101% 102% 102% 102% 100% 101% 102% 103% 104%
ED 128% 148% 158% 172% 182% 138% 160% 172% 187% 198% 125% 204% 261% 303% 332%
FB 190% 237% 260% 287% 309% 196% 246% 272% 301% 325% 120% 278% 411% 509% 590%
KH 131% 150% 160% 174% 183% 139% 160% 172% 187% 198% 158% 240% 296% 334% 363%
PW 144% 170% 183% 199% 211% 155% 183% 198% 216% 230% 126% 208% 277% 329% 367%
R 221% 276% 303% 333% 358% 233% 296% 327% 360% 388% 227% 453% 605% 714% 793%

SM 122% 137% 144% 153% 160% 132% 149% 158% 168% 175% 111% 164% 207% 239% 263%
W 142% 168% 181% 199% 212% 150% 178% 194% 214% 229% 102% 157% 220% 271% 310%
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The  third  and  the  fourth  row  sets  contain  the  bit-rate  growth  ratio  in

percent to the former bit-rate over either all slices or I slices only. Block method

increases bit-rate less in comparison with coefficient method because when 0 is

embedded, a half of transform coefficients are zeroed in block method while only

one coefficient is zeroed in coefficient method. Anyway, bit-rate is increased the

most when using noise method. This is mostly obvious in Renaissance because of

many uniform areas which are represented by small amount of data in the former

compressed video stream.

Each test iteration has been executed with five different copy IDs; values in

the table are average values of corresponding five results.

Figure 15 and  Figure 16 show the difference between the original picture

and  the  watermarked  one  using  noise  method  with  weight  factor  of  20  for

demonstration.

Figure 15: Original picture Figure 16: Watermarked picture

Because of inter coded pictures may use watermarked pictures as reference

pictures  in  inter  prediction,  distortion  caused  by  watermark  embedding

propagates, as visible in Figure 17 and Figure 18. Therefore, the inter prediction

compensation is to be implemented in future work.

Figure 17: Original inter coded picture Figure 18: Distorted inter coded picture

In practice, weight factor of 2 is a good compromise between robustness and

perceptibility.
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5.2 Uniqueness

Uniqueness  of  the  watermark  means  that  the  detector  should  return

significantly higher probability in case of copy ID which has been embedded than

in case of other copy IDs.

In each iteration, the test tries 100 different copy IDs including the correct

one – it is 10 for weight factor of 1, 30 for weight factor of 2 etc.

The  results  are  illustrated  in  the  following  charts.  The  horizontal  axes

represent the 100 different copy IDs and the vertical axes stand for the detector

responses.

Although probabilities achieve lower values when using noise method with

low weight factors, this method gives the highest distance of the correct copy ID

probability from the other values and the narrowest spread of the other values.
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Using block method, we cannot consider the detection to be successful if the

detector returns value below 0.6. Using coefficient method, the threshold limit is

0.5, and it is below 0.4 in case of noise method. Note that the spread, thus the

threshold limit as well, depends on particular video sequence.
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5.3 Time Consumption

This  section  discusses  time consumption  of  both  the  embedding  and the

detection pipelines. The time has been measured by standard Unix utility called

time;  the  user-space  time has  been considered only.  Average  results  of  three

iterations  in  Table  3 show  that  all  the  methods  are  basically  equivalent  in

embedding but  noise  method is  the worst  in  detection because of  visual  data

decoding.

The test has been executed on a machine with the following configuration:

� Intel Pentium M (Centrino) processor, 1.60GHz, 3200 bogomips

� 512MB DDR PC2700 memory, 333MHz

� openSUSE 10.1 operating system

Table 3: Time consumption test results

The test has proved that the plugin is applicable in practice.

5.4 Robustness

Robustness test scripts simulate real attacks applied either intentionally or

unintentionally to watermarked video sequences. In the simulations, they have

been executed on pre-filtered watermarked sequences – the sequences have been

remuxed  in  order  to  contain  (besides  parameter  sets)  intra  coded  slices  only

because the watermark is embedded into intra coded slices only.

Most of the tests proceeds as follows.

A watermarked pre-filtered sequence is converted using MPlayer to the raw

video stream of single images, one image per frame. During the conversion, the

video signal processing filter is applied eventually.

Then, the raw stream is compressed by x264 encoder producing H.264 video

stream at  the former  bit-rate  with  intra  coded slices  only,  and muxed to  the

Matroska container format.

The recompression at the former bit-rate obviously impairs the embedded

watermark but the attacks are simulated more faithfully. The impairment rate of

recompression is measured in Section 5.4.1.

Finally, the detection process takes place in such an attacked sequence. The
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Resolution # I Frames
Embedding Time [s] Detection Time [s]

Block Coeff. Noise Block Coeff. Noise
ED 720×405 638 48.52 49.85 48.22 16.11 17.66 23.38
FB 1920×1080 102 43.77 44.45 44.08 14.83 16.43 25.44
KH 852×360 105 9.18 9.38 9.90 2.98 3.24 4.65
PW 320×136 67 2.03 2.07 2.09 0.35 0.37 0.53
R 848×480 71 6.25 6.38 6.78 2.03 2.25 3.59

SM 848×352 97 8.25 8.52 8.51 2.80 3.02 4.26
W 960×540 14 3.21 3.25 3.92 0.77 0.82 1.84



probabilities  of  watermark  detection  success  given  by  the  detector  are

summarized in tables in the following sections.

5.4.1 Recompression

This test uses MPlayer with no filter applied. Recompression is applied at

four different bit-rates – at the former bit-rate (100%) and at 75%, 50% and 25%

of the former bit-rate. The results are summarized in Table 4 where the bit-rate

ratios are listed in column named BR.

Table 4: Recompression test results

All three methods are robust at similar level.  Watermarks from all video

sequences have been successfully detected after recompression at up to 50% of the

former bit-rate;  from some sequences even after  recompression at  25% of  the

former  bit-rate.  Only  the  recompression  of  Wildlife  using  noise  method  with

weight factor of 1 can be considered to be a successful attack. The watermark is

impaired the most in Renaissance because of the greatest bit-rate growth during

watermark embedding.

Note  that  the  watermark  quite  resists  to  recompression  at  the  former

bit-rate, thus the results of the other tests using recompression are distorted only

a bit.
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Block Coefficient Noise
BR 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5

ED

100% 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.79 0.98 1.00 1.00 1.00
75% 0.99 0.99 1.00 1.00 1.00 0.98 0.99 1.00 1.00 1.00 0.67 0.97 1.00 1.00 1.00
50% 0.92 0.95 0.96 0.96 0.97 0.84 0.96 0.98 0.97 0.98 0.44 0.91 0.98 1.00 1.00
25% 0.71 0.73 0.77 0.76 0.78 0.37 0.56 0.76 0.81 0.83 0.22 0.60 0.80 0.89 0.94

FB

100% 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.75 1.00 1.00 1.00 1.00
75% 0.98 0.98 0.97 0.94 0.92 1.00 1.00 1.00 0.99 0.99 0.67 1.00 1.00 1.00 1.00
50% 0.92 0.94 0.91 0.91 0.87 1.00 0.99 0.99 0.97 0.98 0.51 1.00 1.00 1.00 1.00
25% 0.42 0.75 0.77 0.74 0.72 0.28 0.88 0.88 0.88 0.84 0.28 0.93 0.99 1.00 0.99

KH

100% 0.99 1.00 1.00 1.00 1.00 0.97 1.00 1.00 1.00 1.00 0.84 1.00 1.00 1.00 1.00
75% 0.95 0.97 0.97 0.99 1.00 0.91 0.95 0.97 0.98 1.00 0.71 0.99 1.00 1.00 1.00
50% 0.90 0.89 0.91 0.91 0.93 0.78 0.87 0.90 0.90 0.91 0.50 0.91 0.98 1.00 1.00
25% 0.70 0.70 0.71 0.71 0.72 0.38 0.50 0.62 0.68 0.72 0.30 0.67 0.79 0.87 0.91

PW

100% 0.86 0.98 0.99 1.00 1.00 0.83 0.96 0.99 0.99 1.00 0.31 0.77 0.89 0.96 0.99
75% 0.68 0.79 0.90 0.91 0.97 0.62 0.77 0.87 0.91 0.95 0.13 0.52 0.74 0.87 0.93
50% 0.50 0.59 0.67 0.68 0.70 0.33 0.55 0.66 0.68 0.71 0.09 0.26 0.49 0.61 0.72
25% 0.23 0.24 0.27 0.31 0.36 0.08 0.12 0.24 0.28 0.33 0.10 0.12 0.19 0.26 0.33

R

100% 0.80 0.79 0.81 0.82 0.85 0.75 0.76 0.80 0.78 0.79 0.46 0.88 0.96 0.98 1.00
75% 0.71 0.69 0.70 0.71 0.72 0.63 0.62 0.66 0.66 0.69 0.30 0.69 0.86 0.94 0.96
50% 0.55 0.59 0.59 0.60 0.59 0.44 0.49 0.50 0.53 0.53 0.22 0.51 0.64 0.71 0.78
25% 0.27 0.25 0.23 0.23 0.24 0.10 0.13 0.15 0.19 0.19 0.11 0.20 0.30 0.39 0.48

SM

100% 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.44 0.88 0.99 1.00 1.00
75% 1.00 1.00 1.00 1.00 1.00 0.98 0.99 1.00 1.00 1.00 0.24 0.69 0.94 0.98 1.00
50% 0.98 0.99 0.98 0.98 0.98 0.93 0.96 0.98 0.98 0.98 0.18 0.53 0.80 0.90 0.95
25% 0.93 0.92 0.93 0.94 0.93 0.63 0.65 0.73 0.76 0.81 0.15 0.29 0.49 0.63 0.72

W

100% 0.99 1.00 1.00 1.00 1.00 0.99 1.00 1.00 1.00 1.00 0.23 0.95 1.00 1.00 1.00
75% 0.85 1.00 1.00 0.99 1.00 0.86 1.00 1.00 1.00 1.00 0.15 0.87 0.99 0.98 1.00
50% 0.78 0.77 0.83 0.95 1.00 0.62 0.70 0.92 0.98 1.00 0.17 0.70 0.90 0.96 0.97
25% 0.45 0.33 0.35 0.37 0.46 0.22 0.31 0.33 0.40 0.48 0.09 0.49 0.75 0.87 0.92



5.4.2 Scaling

The  scaling  test  scales  down  the  watermarked  video  sequences  to  the

specified resolution using MPlayer bicubic “scale” filter. The resolution is given by

scaling factor (column in  Table 5 named SF) which determines how much the

images  of  the output  raw stream are scaled down – e.g.  scaling factor  of  1/4

means that the image area size is reduced 4-times, i.e. both width and height are

halved.

The raw stream is compressed at the scaling factor fragment of the former

bit-rate, i.e. for example scaling factor of 1/4 means 1/4 of the former bit-rate.

Then, the compressed stream is scaled up back to the former resolution and

recompressed  at  the  former  bit-rate  because  the  synchronization  of  the  pure

watermark with the tested video sequence in the detection process is out of scope

of this thesis. Moreover, the human operator which would convert the sequence to

the former stadium is better than any artificial intelligence automaton.

Table 5: Scaling test results

Looking at the results, we can say that noise method is more robust than the

other  two  methods,  especially  for  lower  scaling  factors.  Anyway,  the  higher

resolution the sequence has the less impaired the watermark is.
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Block Coefficient Noise
SF 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5

ED

 1/2 0.34 0.64 0.90 0.97 0.99 0.15 0.30 0.59 0.78 0.88 0.28 0.81 0.96 0.99 1.00
 1/3 0.19 0.23 0.39 0.59 0.76 0.12 0.14 0.17 0.24 0.34 0.21 0.62 0.87 0.96 0.99
 1/4 0.15 0.15 0.17 0.23 0.34 0.12 0.13 0.13 0.15 0.17 0.18 0.49 0.73 0.87 0.95
 1/5 0.14 0.14 0.14 0.16 0.17 0.12 0.13 0.14 0.13 0.13 0.16 0.42 0.62 0.78 0.88

FB

 1/2 0.44 0.98 1.00 1.00 1.00 0.27 0.80 0.97 1.00 1.00 0.33 0.98 1.00 1.00 1.00
 1/3 0.21 0.52 0.92 0.99 1.00 0.13 0.24 0.59 0.82 0.93 0.27 0.90 0.99 1.00 1.00
 1/4 0.14 0.13 0.15 0.18 0.20 0.11 0.13 0.15 0.14 0.14 0.24 0.82 0.97 1.00 1.00
 1/5 0.13 0.16 0.21 0.31 0.45 0.12 0.13 0.14 0.18 0.22 0.21 0.74 0.93 0.98 1.00

KH

 1/2 0.42 0.65 0.82 0.90 0.94 0.15 0.30 0.46 0.63 0.75 0.39 0.85 0.98 1.00 1.00
 1/3 0.22 0.35 0.49 0.59 0.70 0.12 0.16 0.18 0.26 0.31 0.32 0.71 0.88 0.96 0.99
 1/4 0.15 0.15 0.16 0.17 0.17 0.13 0.13 0.12 0.13 0.12 0.28 0.59 0.77 0.88 0.94
 1/5 0.16 0.15 0.17 0.19 0.22 0.12 0.12 0.13 0.14 0.14 0.26 0.55 0.71 0.81 0.88

PW

 1/2 0.13 0.21 0.41 0.60 0.71 0.08 0.09 0.15 0.23 0.31 0.12 0.26 0.41 0.58 0.70
 1/3 0.08 0.11 0.14 0.17 0.26 0.08 0.09 0.09 0.09 0.10 0.12 0.19 0.30 0.42 0.51
 1/4 0.11 0.10 0.09 0.09 0.11 0.08 0.10 0.08 0.09 0.09 0.12 0.15 0.23 0.31 0.34
 1/5 0.08 0.10 0.10 0.10 0.10 0.08 0.09 0.08 0.09 0.09 0.11 0.17 0.22 0.27 0.30

R

 1/2 0.20 0.41 0.51 0.65 0.69 0.11 0.23 0.33 0.43 0.50 0.29 0.56 0.70 0.79 0.86
 1/3 0.13 0.19 0.30 0.41 0.48 0.10 0.10 0.14 0.20 0.24 0.21 0.42 0.57 0.66 0.72
 1/4 0.09 0.09 0.09 0.09 0.12 0.10 0.08 0.09 0.09 0.07 0.14 0.28 0.39 0.49 0.56
 1/5 0.08 0.11 0.10 0.10 0.14 0.10 0.08 0.09 0.11 0.09 0.16 0.24 0.35 0.46 0.53

SM

 1/2 0.33 0.49 0.70 0.83 0.92 0.15 0.21 0.32 0.47 0.61 0.19 0.44 0.67 0.82 0.92
 1/3 0.19 0.24 0.31 0.42 0.52 0.12 0.13 0.17 0.19 0.21 0.17 0.36 0.55 0.69 0.80
 1/4 0.14 0.14 0.14 0.15 0.16 0.13 0.13 0.13 0.13 0.13 0.17 0.33 0.47 0.59 0.69
 1/5 0.13 0.16 0.16 0.18 0.20 0.12 0.13 0.12 0.12 0.13 0.17 0.30 0.42 0.53 0.64

W

 1/2 0.55 0.69 0.83 0.92 0.97 0.21 0.38 0.49 0.58 0.75 0.15 0.60 0.79 0.92 0.95
 1/3 0.15 0.37 0.52 0.62 0.72 0.10 0.25 0.27 0.33 0.37 0.11 0.52 0.70 0.83 0.90
 1/4 0.16 0.15 0.16 0.25 0.19 0.15 0.13 0.09 0.16 0.13 0.13 0.48 0.68 0.82 0.82
 1/5 0.19 0.17 0.21 0.20 0.26 0.12 0.13 0.16 0.12 0.19 0.10 0.46 0.59 0.69 0.80



5.4.3 Cropping

In the cropping test, the tested video sequences are cropped to the resolution

given by the cropping factor (column in Table 6 named CF) which is the same as

scaling factor in the scaling test.

The cropped raw stream is compressed at the cropping factor fragment of

the former bit-rate as well as in the scaling test.

The  compressed  stream  is  black  boxed  to  the  former  resolution  using

MPlayer “expand” filter, and recompressed at the former bit-rate. The expansion

is applied because of the same synchronization reason as in the scaling test.

High  resistance  to  this  attack  could  be  expected  because  the  hidden

information bits are duplicated and randomly spread over whole frames. Thus,

even  a  small  part  of  the  frames  should  be  enough  for  successful  detection.

Anyway,  the  redundancy  falls  down with  decreasing  resolution,  therefore  the

detection success falls down too.

Table 6: Cropping test results

The test has finished as expected. The inconsistencies in monotonicity of the

results  when  changing  the  cropping  factor  may  be  caused  by  non-uniform

spreading of the content ID bits. Noise method is the least robust one.

43

Block Coefficient Noise
CF 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5

ED

 1/2 0.88 1.00 1.00 1.00 1.00 0.77 0.98 1.00 1.00 1.00 0.18 0.34 0.47 0.45 0.43
 1/3 0.73 0.95 0.97 0.98 0.98 0.57 0.89 0.94 0.96 0.96 0.35 0.88 0.96 0.98 0.99
 1/4 0.64 0.91 0.95 0.97 0.97 0.50 0.83 0.90 0.93 0.94 0.28 0.81 0.94 0.98 0.99
 1/5 0.52 0.84 0.90 0.93 0.95 0.45 0.80 0.88 0.92 0.93 0.23 0.29 0.33 0.33 0.37

FB

 1/2 0.99 1.00 1.00 1.00 1.00 0.99 1.00 1.00 1.00 1.00 0.34 0.82 0.88 0.88 0.84
 1/3 0.98 1.00 1.00 1.00 1.00 0.98 1.00 1.00 1.00 1.00 0.40 0.98 1.00 1.00 1.00
 1/4 0.96 1.00 1.00 1.00 1.00 0.96 1.00 1.00 1.00 1.00 0.40 0.97 1.00 1.00 1.00
 1/5 0.76 0.99 1.00 1.00 1.00 0.75 1.00 1.00 1.00 1.00 0.21 0.73 0.68 0.67 0.68

KH

 1/2 0.79 0.97 1.00 1.00 1.00 0.68 0.94 0.99 1.00 1.00 0.17 0.27 0.31 0.37 0.37
 1/3 0.87 0.98 0.98 1.00 1.00 0.66 0.93 0.96 0.98 0.98 0.60 0.94 0.99 1.00 1.00
 1/4 0.39 0.83 0.92 0.94 0.96 0.36 0.81 0.90 0.93 0.95 0.21 0.35 0.42 0.41 0.43
 1/5 0.26 0.62 0.76 0.84 0.87 0.21 0.56 0.76 0.83 0.87 0.18 0.29 0.33 0.36 0.37

PW

 1/2 0.33 0.69 0.79 0.85 0.88 0.21 0.46 0.56 0.60 0.63 0.13 0.13 0.13 0.14 0.14
 1/3 0.32 0.69 0.80 0.84 0.87 0.21 0.55 0.68 0.70 0.70 0.10 0.12 0.12 0.16 0.17
 1/4 0.17 0.45 0.58 0.63 0.65 0.11 0.29 0.40 0.45 0.46 0.11 0.24 0.38 0.49 0.54
 1/5 0.14 0.32 0.42 0.48 0.49 0.12 0.26 0.31 0.35 0.35 0.19 0.31 0.44 0.51 0.57

R

 1/2 0.53 0.76 0.88 0.93 0.95 0.44 0.67 0.80 0.89 0.92 0.36 0.59 0.78 0.90 0.94
 1/3 0.36 0.62 0.72 0.86 0.91 0.32 0.59 0.70 0.81 0.87 0.12 0.17 0.19 0.24 0.23
 1/4 0.51 0.62 0.69 0.68 0.72 0.36 0.53 0.62 0.62 0.64 0.38 0.61 0.75 0.86 0.92
 1/5 0.29 0.58 0.65 0.76 0.81 0.28 0.58 0.67 0.75 0.82 0.16 0.23 0.30 0.34 0.40

SM

 1/2 0.95 0.99 1.00 1.00 1.00 0.55 0.93 1.00 1.00 1.00 0.23 0.51 0.77 0.92 0.98
 1/3 0.26 0.58 0.81 0.92 0.95 0.25 0.58 0.79 0.90 0.95 0.13 0.18 0.20 0.20 0.25
 1/4 0.70 0.93 0.99 1.00 1.00 0.36 0.81 0.93 0.95 0.94 0.18 0.40 0.62 0.76 0.88
 1/5 0.22 0.58 0.75 0.83 0.89 0.21 0.58 0.79 0.87 0.89 0.12 0.16 0.20 0.26 0.29

W

 1/2 0.48 0.92 1.00 1.00 1.00 0.41 0.89 0.96 0.99 1.00 0.10 0.27 0.36 0.38 0.44
 1/3 0.49 0.66 0.84 0.89 0.97 0.40 0.65 0.81 0.91 0.97 0.15 0.36 0.49 0.55 0.63
 1/4 0.49 0.90 0.99 1.00 1.00 0.45 0.83 0.96 0.98 0.98 0.14 0.27 0.38 0.48 0.50
 1/5 0.45 0.90 0.98 1.00 1.00 0.47 0.87 1.00 1.00 1.00 0.16 0.23 0.31 0.37 0.42



5.4.4 Denoising

Denoising is  an attack especially  against  noise  watermarking method.  It

consists  in  removing  noise  from  the  video  sequence  which  could  cause  noise

watermark removal. MPlayer high quality denoise 3D filter (“hqdn3d”) is used

with “spatial luma strength” set to 16 and other parameters set to 0.

The test results are summarized in Table 7.

Table 7: Denoising test results

Despite the expectations, all the methods have gone well.

5.4.5 Noising

Noising is  the opposite  process  to  denoising,  namely adding noise to the

video sequence. MPlayer “noise” filter is used with parameters equal to “10t:0”,

i.e.  only  luma samples  are  affected by Gaussian noise  changing in time with

amplitude of 10.

No significant influence is expected in case of noise method because another

noise does not interfere with the noise watermark. Lesser influence is expected in

case  of  coefficient  method  because  the  method  alters  only  one  coefficient  per

macroblock. The coefficient is hardly impaired by noise due to quantization. The

quantization effect is expected when using block method as well.

Table 8: Noising test results

The results in Table 8 are as expected. Moreover, the probability grows up in

case of noise method with weight factor of 2 in comparison with results of the

recompression at the former bit-rate test.
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Block Coefficient Noise
1 2 3 4 5 1 2 3 4 5 1 2 3 4 5

ED 0.84 0.91 0.92 0.92 0.97 0.91 0.96 0.97 0.98 0.99 0.26 0.85 0.98 1.00 1.00
FB 0.95 0.97 0.97 0.99 0.99 0.97 0.98 1.00 1.00 1.00 0.30 1.00 1.00 1.00 1.00
KH 0.77 0.87 0.90 0.92 0.93 0.85 0.91 0.93 0.94 0.95 0.38 0.89 0.97 0.99 1.00
PW 0.51 0.66 0.73 0.76 0.80 0.59 0.72 0.75 0.77 0.80 0.11 0.30 0.61 0.80 0.91
R 0.57 0.62 0.65 0.72 0.78 0.61 0.66 0.70 0.75 0.77 0.21 0.70 0.89 0.98 0.99

SM 0.89 0.95 0.97 0.99 1.00 0.91 0.98 0.99 1.00 1.00 0.12 0.57 0.89 0.98 1.00
W 0.93 1.00 1.00 1.00 1.00 0.98 1.00 1.00 1.00 1.00 0.17 0.76 1.00 1.00 1.00

Block Coefficient Noise
1 2 3 4 5 1 2 3 4 5 1 2 3 4 5

ED 0.97 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.73 0.99 1.00 1.00 1.00
FB 0.99 0.99 0.99 0.99 0.99 1.00 1.00 1.00 1.00 1.00 0.61 1.00 1.00 1.00 1.00
KH 0.84 0.97 0.98 0.98 0.98 0.98 1.00 1.00 1.00 1.00 0.84 1.00 1.00 1.00 1.00
PW 0.74 0.96 0.98 0.98 0.98 0.90 1.00 1.00 1.00 1.00 0.31 0.81 0.95 0.98 0.99
R 0.91 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.99 0.67 0.95 1.00 1.00 1.00

SM 0.98 0.99 0.99 0.99 0.99 1.00 1.00 1.00 1.00 1.00 0.41 0.97 1.00 1.00 1.00
W 0.95 0.96 0.97 0.97 0.96 0.98 1.00 1.00 1.00 1.00 0.16 0.97 1.00 1.00 1.00



5.4.6 Blurring

Blurring can be considered as a kind of denoise filter. MPlayer “unsharp”

filter is used affecting only luma samples. Three differently sized convolution blur

masks are applied (column in Table 9 named BM): 3×3, 5×5 and 7×7.

Because this filter is simpler than the denoise filter and blurs macroblocks

into each other, higher impairment is expected.

Table 9: Blurring test results

It is interesting that block and coefficient methods are more vulnerable than

the noise method. This is the most perceptible when using 7×7 mask.

It  is  probably  caused  by  higher  liability  of  the  transform coefficients  to

blurring into each other than of the noise pattern to smoothing. Namely, the local

extremes  in  the  noise  pattern,  which  are  important  in  the  detection  process,

remain extremes even if the pattern undergoes smoothing.
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Block Coefficient Noise
BM 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5

ED

0.75 0.99 1.00 1.00 1.00 0.74 0.99 1.00 1.00 1.00 0.67 0.96 1.00 1.00 1.00
0.30 0.51 0.81 0.95 0.99 0.20 0.54 0.86 0.97 1.00 0.61 0.94 0.99 1.00 1.00
0.18 0.20 0.29 0.45 0.64 0.13 0.17 0.31 0.52 0.74 0.56 0.91 0.98 0.99 1.00

FB

0.83 1.00 1.00 1.00 1.00 0.80 1.00 1.00 1.00 1.00 0.62 1.00 1.00 1.00 1.00
0.26 0.62 0.94 1.00 1.00 0.23 0.61 0.95 1.00 1.00 0.57 1.00 1.00 1.00 1.00
0.16 0.21 0.32 0.48 0.70 0.12 0.18 0.31 0.53 0.79 0.54 1.00 1.00 1.00 1.00

KH

0.71 0.93 0.98 1.00 1.00 0.60 0.91 0.98 1.00 1.00 0.74 0.99 1.00 1.00 1.00
0.30 0.47 0.70 0.85 0.92 0.19 0.44 0.70 0.86 0.93 0.68 0.98 1.00 1.00 1.00
0.18 0.20 0.29 0.39 0.50 0.12 0.17 0.26 0.40 0.55 0.63 0.97 0.99 1.00 1.00

PW

0.25 0.66 0.92 0.97 0.98 0.18 0.66 0.93 0.98 0.99 0.22 0.61 0.80 0.89 0.93
0.13 0.14 0.29 0.50 0.69 0.07 0.13 0.30 0.53 0.73 0.20 0.54 0.76 0.84 0.88
0.08 0.08 0.09 0.12 0.16 0.06 0.05 0.08 0.10 0.19 0.20 0.52 0.70 0.80 0.84

R

0.52 0.77 0.93 0.97 0.98 0.44 0.74 0.92 0.97 0.99 0.58 0.91 0.98 1.00 1.00
0.19 0.38 0.55 0.70 0.78 0.12 0.35 0.51 0.67 0.78 0.59 0.87 0.99 1.00 1.00
0.11 0.15 0.21 0.34 0.41 0.07 0.12 0.20 0.33 0.43 0.58 0.85 0.97 1.00 1.00

SM

0.73 0.94 1.00 1.00 1.00 0.60 0.94 1.00 1.00 1.00 0.39 0.92 1.00 1.00 1.00
0.33 0.46 0.67 0.84 0.95 0.21 0.41 0.69 0.87 0.97 0.36 0.90 0.99 1.00 1.00
0.19 0.19 0.23 0.34 0.44 0.12 0.19 0.27 0.41 0.55 0.33 0.87 0.98 1.00 1.00

W

0.85 0.97 1.00 1.00 1.00 0.67 0.94 1.00 1.00 1.00 0.21 0.88 0.99 1.00 1.00
0.31 0.52 0.72 0.90 0.97 0.23 0.49 0.65 0.79 0.97 0.13 0.85 0.97 1.00 1.00
0.20 0.27 0.33 0.47 0.57 0.13 0.16 0.33 0.40 0.55 0.14 0.81 0.97 1.00 1.00

3×3
5×5
7×7
3×3
5×5
7×7
3×3
5×5
7×7
3×3
5×5
7×7
3×3
5×5
7×7
3×3
5×5
7×7
3×3
5×5
7×7



5.4.7 Sharpening

Sharpening is a kind of high-pass filter mentioned in Section  4.3.1, thus

high probabilities are expected in case of noise method. The test uses MPlayer

“unsharp” filter with opposite coefficient than in the blurring test. Again, three

convolution sharpening masks are applied (see column in Table 10 named SM).

Table 10: Sharpening test results

The sharpening filter works pretty well not only when using noise method

but also when using both block and coefficient methods. The test results show

that it does not matter which size of the convolution mask is used.
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Block Coefficient Noise
SM 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5

ED

1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.83 0.98 1.00 1.00 1.00
1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.83 0.98 1.00 1.00 1.00
1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.83 0.98 1.00 1.00 1.00

FB

1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.82 1.00 1.00 1.00 1.00
1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.82 1.00 1.00 1.00 1.00
1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.83 1.00 1.00 1.00 1.00

KH

1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.90 1.00 1.00 1.00 1.00
1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.90 1.00 1.00 1.00 1.00
1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.90 1.00 1.00 1.00 1.00

PW

0.96 1.00 1.00 1.00 1.00 0.94 0.99 1.00 1.00 1.00 0.36 0.87 0.94 0.98 1.00
0.94 0.99 1.00 1.00 1.00 0.93 0.99 1.00 1.00 1.00 0.36 0.87 0.93 0.97 1.00
0.94 0.99 1.00 1.00 1.00 0.92 0.98 1.00 1.00 1.00 0.38 0.86 0.93 0.97 1.00

R

0.82 0.85 0.85 0.86 0.89 0.81 0.84 0.84 0.84 0.85 0.58 0.94 0.98 0.99 1.00
0.83 0.86 0.84 0.87 0.90 0.79 0.83 0.82 0.82 0.83 0.56 0.94 0.98 1.00 1.00
0.83 0.84 0.84 0.86 0.88 0.78 0.81 0.82 0.81 0.82 0.51 0.95 0.98 1.00 1.00

SM

1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.60 0.96 1.00 1.00 1.00
1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.60 0.96 1.00 1.00 1.00
1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.59 0.96 1.00 1.00 1.00

W

1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.26 0.98 1.00 1.00 1.00
1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.22 0.97 1.00 1.00 1.00
1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.26 0.98 1.00 1.00 1.00

3×3
5×5
7×7
3×3
5×5
7×7
3×3
5×5
7×7
3×3
5×5
7×7
3×3
5×5
7×7
3×3
5×5
7×7
3×3
5×5
7×7



5.4.8 Multiple Watermark Embedding

Multiple watermark embedding test measures influence of  watermarking

already  watermarked  video  sequences.  Five  watermarks  generated  from  five

different copy IDs have been subsequently embedded. Sequence numbers of the

copy IDs used in the detection process are listed in Table 11 in column named C#.

In case of block method, the test proves overwriting of previously embedded

watermarks, as supposed in Section 4.3.2.

Coefficient  method  chooses  one  of  8  coefficients  for  watermark  element

embedding. Therefore, the overwriting is expected when embedding more than 8

watermarks.  This  hypothesis  has  been  proved  by  an  additional  test  with  20

watermarks.

No impairment is expected in case of noise method because different noise

patterns are statistically independent.

Table 11: Multiple watermark embedding test results
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Block Coefficient Noise
C# 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5

ED

1    0.03 0.03 0.03 0.03 0.03 1.00 1.00 1.00 1.00 1.00 0.85 1.00 1.00 1.00 1.00
2    0.28 0.28 0.28 0.28 0.28 1.00 1.00 1.00 1.00 1.00 0.86 1.00 1.00 1.00 1.00
3    0.13 0.13 0.13 0.13 0.13 1.00 1.00 1.00 1.00 1.00 0.85 1.00 1.00 1.00 1.00
4    0.03 0.03 0.03 0.03 0.03 1.00 1.00 1.00 1.00 1.00 0.86 1.00 1.00 1.00 1.00
5    1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.87 1.00 1.00 1.00 1.00

FB

1    0.13 0.13 0.13 0.13 0.13 1.00 1.00 1.00 1.00 1.00 0.87 1.00 1.00 1.00 1.00
2    0.03 0.03 0.03 0.03 0.03 1.00 1.00 1.00 1.00 1.00 0.86 1.00 1.00 1.00 1.00
3    0.25 0.25 0.25 0.25 0.25 1.00 1.00 1.00 1.00 1.00 0.87 1.00 1.00 1.00 1.00
4    0.00 0.00 0.00 0.00 0.00 1.00 1.00 1.00 1.00 1.00 0.89 1.00 1.00 1.00 1.00
5    1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.88 1.00 1.00 1.00 1.00

KH

1    0.22 0.22 0.22 0.22 0.22 1.00 1.00 1.00 1.00 1.00 0.92 1.00 1.00 1.00 1.00
2    0.22 0.22 0.22 0.22 0.22 1.00 1.00 1.00 1.00 1.00 0.92 1.00 1.00 1.00 1.00
3    0.22 0.22 0.22 0.22 0.22 1.00 1.00 1.00 1.00 1.00 0.92 1.00 1.00 1.00 1.00
4    0.03 0.03 0.03 0.03 0.03 1.00 1.00 1.00 1.00 1.00 0.92 1.00 1.00 1.00 1.00
5    1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.92 1.00 1.00 1.00 1.00

PW

1    0.16 0.16 0.16 0.16 0.16 1.00 1.00 1.00 1.00 1.00 0.41 0.90 0.99 1.00 1.00
2    0.09 0.09 0.09 0.09 0.09 1.00 1.00 1.00 1.00 1.00 0.45 0.91 0.99 1.00 1.00
3    0.06 0.06 0.06 0.06 0.06 1.00 1.00 1.00 1.00 1.00 0.43 0.91 0.99 1.00 1.00
4    0.06 0.06 0.06 0.06 0.06 1.00 1.00 1.00 1.00 1.00 0.49 0.91 0.99 1.00 1.00
5    1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.42 0.92 0.99 1.00 1.00

R

1    0.03 0.03 0.03 0.03 0.03 1.00 1.00 1.00 1.00 1.00 0.87 0.99 1.00 1.00 1.00
2    0.22 0.22 0.22 0.22 0.22 1.00 1.00 1.00 1.00 1.00 0.88 0.99 1.00 1.00 1.00
3    0.28 0.28 0.28 0.28 0.28 1.00 1.00 1.00 1.00 1.00 0.87 0.98 1.00 1.00 1.00
4    0.03 0.03 0.03 0.03 0.03 1.00 1.00 1.00 1.00 1.00 0.88 0.99 1.00 1.00 1.00
5    1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.88 0.99 1.00 1.00 1.00

SM

1    0.00 0.00 0.00 0.00 0.00 1.00 1.00 1.00 1.00 1.00 0.76 0.99 1.00 1.00 1.00
2    0.19 0.19 0.19 0.19 0.19 1.00 1.00 1.00 1.00 1.00 0.78 0.99 1.00 1.00 1.00
3    0.06 0.06 0.06 0.06 0.06 1.00 1.00 1.00 1.00 1.00 0.77 0.99 1.00 1.00 1.00
4    0.06 0.06 0.06 0.06 0.06 1.00 1.00 1.00 1.00 1.00 0.78 0.99 1.00 1.00 1.00
5    1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.76 0.99 1.00 1.00 1.00

W

1    0.19 0.19 0.19 0.19 0.19 1.00 1.00 1.00 1.00 1.00 0.39 1.00 1.00 1.00 1.00
2    0.22 0.22 0.22 0.22 0.22 1.00 1.00 1.00 1.00 1.00 0.38 1.00 1.00 1.00 1.00
3    0.00 0.00 0.00 0.00 0.00 1.00 1.00 1.00 1.00 1.00 0.34 1.00 1.00 1.00 1.00
4    0.09 0.09 0.09 0.09 0.09 1.00 1.00 1.00 1.00 1.00 0.36 1.00 1.00 1.00 1.00
5    1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.34 1.00 1.00 1.00 1.00



5.4.9 Collusion

The collusion attack consists in combining several differently watermarked

copies to destroy the watermark.

The attack is simulated in the plugin itself during the embedding process.

There are two types of collusion attacks, thus two modes of the simulation has

been implemented:

Collusion by averaging

This mode is  based on averaging of  corresponding pixel  color samples of

participating  copies.  In  case  of  block  and  coefficient  methods,  it  may  cause

appearance  of  non-zero  coefficients  where  they  have  not  been and  vice  versa

resulting  in  invalid  detection  of  watermark  element  values.  In  case  of  noise

method, the attack causes averaging of the noise patterns. Lesser impairment is

expected in this case because the average pattern contains all the single patterns

which are statistically independent.

The simulation takes place in the embedding process. Required number of

watermarks is generated. The same number of differently watermarked versions

is  created  when  watermarking  single  macroblocks.  Then,  the  average

macroblocks are estimated.

The results  in  Table  12 are  average values  of  probabilities  given by the

detector from the corresponding number of  copies.  The numbers of  copies are

listed in column named #C.

Table 12: Collusion by averaging test results
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Block Coefficient Noise
#C 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5

ED
3 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.80 0.99 1.00 1.00 1.00
5 0.98 1.00 1.00 1.00 1.00 0.97 1.00 1.00 1.00 1.00 0.55 0.96 1.00 1.00 1.00
10 0.62 0.86 0.84 0.84 0.81 0.27 0.98 1.00 1.00 1.00 0.29 0.87 0.97 0.99 1.00

FB
3 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.82 1.00 1.00 1.00 1.00
5 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.30 1.00 1.00 1.00 1.00
10 0.77 1.00 1.00 1.00 1.00 0.85 1.00 1.00 1.00 1.00 0.17 0.96 1.00 1.00 1.00

KH
3 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.90 1.00 1.00 1.00 1.00
5 0.99 1.00 1.00 1.00 1.00 0.98 1.00 1.00 1.00 1.00 0.78 0.99 1.00 1.00 1.00
10 0.65 0.89 0.88 0.87 0.84 0.24 0.99 1.00 1.00 1.00 0.58 0.93 0.99 1.00 1.00

PW
3 0.94 0.99 1.00 1.00 1.00 0.99 1.00 1.00 1.00 1.00 0.40 0.83 0.94 0.98 0.99
5 0.60 0.83 0.82 0.76 0.76 0.67 1.00 1.00 1.00 1.00 0.31 0.68 0.89 0.95 0.97
10 0.21 0.42 0.39 0.41 0.39 0.12 0.72 0.80 0.98 0.98 0.22 0.48 0.71 0.84 0.88

R
3 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.85 0.98 1.00 1.00 1.00
5 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.70 0.96 0.99 1.00 1.00
10 0.51 0.94 0.91 0.93 0.92 0.42 1.00 1.00 1.00 1.00 0.55 0.90 0.97 0.99 1.00

SM
3 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.70 0.99 1.00 1.00 1.00
5 0.97 1.00 1.00 1.00 1.00 0.96 1.00 1.00 1.00 1.00 0.33 0.95 1.00 1.00 1.00
10 0.52 0.85 0.83 0.84 0.82 0.20 0.98 1.00 1.00 1.00 0.20 0.84 0.97 0.99 1.00

W
3 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.32 1.00 1.00 1.00 1.00
5 0.99 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.14 0.91 1.00 1.00 1.00
10 0.66 0.96 0.94 0.94 0.93 0.30 1.00 1.00 1.00 1.00 0.14 0.59 0.95 1.00 1.00



Despite the expectations, all the methods have gone pretty well.

Collusion by swapping macroblocks

Swapping  macroblocks  consists  in  picking  out  macroblocks  from

participating copies producing one video sequence with differently watermarked

macroblocks. When obtaining hidden information bit from swapped macroblocks,

the pure watermark block does not correlate with the detected watermark block

and the hidden information bit value is not determined at all (the correlation sum

is 0) in the ideal case. In practice, the bit values oscillate uniformly around zero,

thus  eliminate  each  other  in  the  correlation  sum.  Only  the  rest  of  the  right

macroblocks remains. Thereby, similar results to the cropping test (number of

copies should correspond to the cropping factor) are expected.

The  simulation  takes  place  in  the  embedding  process  as  well.  Required

number of watermarks is generated and swapped producing a single watermark.

This watermark is then embedded in an usual way.

The results are summarized in Table 13.

Table 13: Collusion by swapping macroblocks test results

Comparing  the  results  with  cropping test  results,  the cropping attack is

more successful.  Nevertheless,  the results  are quite similar including the fact

that noise method is the least robust one if lower number of the copies participate

in the attack.
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Block Coefficient Noise
#C 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5

ED
3 1.00 1.00 1.00 1.00 1.00 0.92 0.91 0.91 0.90 0.90 0.65 0.92 0.96 0.97 0.97
5 0.87 0.87 0.87 0.87 0.87 0.67 0.67 0.66 0.66 0.65 0.47 0.72 0.77 0.78 0.78
10 0.51 0.51 0.51 0.51 0.51 0.40 0.39 0.39 0.38 0.38 0.27 0.43 0.47 0.48 0.48

FB
3 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.70 1.00 1.00 1.00 1.00
5 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.99 0.99 0.99 0.59 1.00 1.00 1.00 1.00
10 0.96 0.96 0.96 0.96 0.96 0.87 0.87 0.86 0.86 0.85 0.41 0.87 0.89 0.89 0.89

KH
3 0.99 0.99 0.99 0.99 0.99 0.85 0.84 0.84 0.83 0.83 0.76 0.93 0.95 0.95 0.96
5 0.90 0.90 0.90 0.90 0.90 0.69 0.68 0.68 0.67 0.66 0.56 0.74 0.78 0.79 0.79
10 0.47 0.47 0.47 0.47 0.47 0.33 0.34 0.33 0.32 0.32 0.35 0.44 0.46 0.47 0.47

PW
3 0.72 0.72 0.72 0.72 0.72 0.51 0.51 0.51 0.51 0.51 0.24 0.43 0.50 0.52 0.51
5 0.48 0.48 0.48 0.48 0.48 0.31 0.32 0.32 0.31 0.31 0.19 0.30 0.35 0.37 0.38
10 0.30 0.30 0.30 0.30 0.30 0.17 0.18 0.18 0.18 0.18 0.16 0.20 0.23 0.23 0.23

R
3 1.00 1.00 1.00 1.00 1.00 0.97 0.97 0.97 0.96 0.96 0.77 0.93 0.96 0.97 0.98
5 0.93 0.93 0.93 0.93 0.93 0.77 0.77 0.77 0.77 0.77 0.61 0.75 0.79 0.82 0.84
10 0.62 0.62 0.62 0.62 0.62 0.44 0.44 0.44 0.44 0.44 0.38 0.46 0.49 0.50 0.49

SM
3 1.00 1.00 1.00 1.00 1.00 0.89 0.89 0.89 0.88 0.88 0.50 0.86 0.94 0.96 0.96
5 0.91 0.91 0.91 0.91 0.91 0.64 0.64 0.64 0.64 0.63 0.37 0.64 0.72 0.75 0.76
10 0.62 0.62 0.62 0.62 0.62 0.32 0.32 0.32 0.32 0.32 0.22 0.37 0.42 0.44 0.45

W
3 1.00 1.00 1.00 1.00 1.00 0.99 0.99 0.99 0.98 0.98 0.23 0.95 1.00 1.00 1.00
5 0.89 0.89 0.89 0.89 0.89 0.77 0.76 0.76 0.75 0.74 0.17 0.77 0.86 0.89 0.90
10 0.72 0.72 0.72 0.72 0.72 0.51 0.50 0.49 0.48 0.46 0.16 0.46 0.54 0.55 0.57



Chapter 6

Conclusion

Watermarking is a copy protection system that allows tracking back illegally

produced copies of the protected multimedia content. Compared with other copy

protection  systems  like  Digital  Rights  Management,  the  main  advantage   of

watermarking is that the watermark is embedded permanently in visual data of

the content but at the cost of slight loss in fidelity.

In this thesis,  three different watermarking methods have been designed

and  implemented.  Block  and  coefficient  methods  belong  to  watermarking

techniques in frequency domain while pseudo-random noise method represents

watermarking  in  spatial  domain.  Frequency  domain  techniques  modify  the

coefficients obtained by the application of  some frequency transform to visual

data of the content. Spatial domain techniques apply the watermark directly to

visual data of the content.

A generic watermarking framework has been designed and implemented as

a  plugin  for  an  existing  open  source  multimedia  streaming  library.  The

framework  provides  the  interface  for  easy  implementation  of  particular

watermarking methods in both frequency and spatial domain.

The  watermark  embedding  process  is  performed  on  a  compressed  video

stream. The H.264 video coding standard has been chosen as the particular video

compression  technique.  The standard uses  a  kind of  the  frequency  transform

mentioned above,  thus frequency domain watermarking is  implemented using

coefficients  of  the  compressed  stream.  The  spatial  domain  watermark  is

transformed to frequency domain using the transform before embedding.

The watermarking methods have been compared with each other in terms of

their perceptibility and robustness. The methods have been exposed to several

simulation tests checking up their resistance to various types of attacks.

All  the  methods  are  more  or  less  resistant  to  simple  attacks  such  as
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recompression and noising, and to some removal attacks such as denoising and

collusion by averaging.

Noise method is  the most resistant method to scaling.  The watermark is

successfully  detected even if  the video is scaled down up to 1/5 of  the former

resolution.  Using  any  of  the  frequency  domain  methods,  the  watermark  is

destroyed when scaling down the video to 1/3 of the former resolution.

On the other hand, noise method is the most vulnerable method to cropping.

The frequency domain methods withstand cropping the video up to 1/5 of the

former resolution while the watermark may be severely impaired by cropping the

video to 1/4 of the former resolution in case of noise method.

Concerning blurring, the noise method watermark is robust using any size

of  the  convolution  blur  mask.  In  case  of  both  block  and  coefficient  methods,

blurring with the 7×7 mask may destroy the watermark but the video quality is

severely degraded as well.

Sharpening even increases the watermark detection success probability in

all the methods.

When  using  the  frequency  domain  methods,  the  multiple  watermark

embedding test has shown that limited number of transform coefficients enables

overwriting  of  previously  embedded  watermarks.  Thereby,  an  attacker  may

completely destroy the former watermark.

On the other hand, the frequency domain methods are more resistant to

collusion by swapping macroblocks.  Anyway,  the watermark may be destroyed

with sufficient number of copies participating in the collusion attack.

Although noise method is more vulnerable to cropping, it is equally or more

resistant  to  the  other  attacks  than the frequency domain methods.  Moreover,

there  is  only  few  visual  data  left  in  the  video  cropped  to  1/4  of  the  former

resolution.

Further,  the  noise  method  watermark  is  the  least  perceptible  one  in

comparison with the other method watermarks.

Unfortunately, there is a trade-off between benefits and much more bit-rate

growth when using noise method. Noise method increases the video bit-rate up to

two times more than the other methods, using reasonable weight factors.  The

ratio grows up with increasing weight factor values.

With  respect  to  the  reasons  above,  noise  watermarking  method  is

recommended  despite  the  bit-rate  growth.  Further,  weight  factor  of  2  is

recommended as a good compromise between robustness and perceptibility.

For practical use, several improvements should be made.

Firstly, the embedding process should be optimized to preserve the former

bit-rate of the video sequences.
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In  order  to  increase  robustness  against  direct  removal  attack,  the

watermark should be embedded into textured areas only. Textured areas provide

more  non-zero  coefficients  in  the  residual  than  uniform  areas  do,  thus  the

watermark  may  be  hidden  more  safely.  Moreover,  less  distortion  would  be

produced.

Therefore, an adaptive embedding algorithm which would adjust the weight

factor  per  macroblock  according  to  its  complexity  and  spatial  characteristics

should be implemented.

Furthermore, the distortion in inter predicted slices caused by prediction

from watermarked intra slices should be compensated. Among others, complete

inter prediction has to be implemented in order to accomplish this task.

As soon as the inter prediction error compensation is implemented, there is

only a small step left to implementation of the embedding process into inter coded

slices as well.
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Appendix A

Enclosed CD & Installation

The source codes of the H.264 codec and of the watermarking plugin as well

as the third party software are provided on the enclosed CD. In particular, the

CD contains the following data:

detect Unix  shell  script  that  contains  the  detection  GStreamer

pipeline

doxydoc/ programming documentation in the HTML format generated by

Doxygen from the source code of the plugin

embed Unix  shell  script  that  contains  the  embedding  GStreamer

pipeline

gst-plugin source code of the watermarking plugin

h264 source code of the partial H.264 codec

installs/ source codes of GStreamer, MPlayer and x264

params additional Unix shell script used by the other scripts to parse

given command-line parameters

prepare Unix shell  script  that  remuxes a  video sequence  in  order  to

contain intra coded slices only; the script is used by test scripts

tests/ Unix shell scripts that contain the simulation tests

thesis/ sources of the thesis

thesis.pdf the thesis in Acrobat PDF format

thesis.ps the thesis in PostScript format

video/ testing video sequences where the licence permits copying

All  programs and libraries,  provided in source code,  may be installed on

Unix platforms in the following way. Copy the source code or the tarball to some

location where you have writing rights, and change the working directory to that

location. If the program is compressed as a tarball, type the following command

to obtain the source code:

tar xjvf <tarball.tar.bz2>
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All  the  programs  use  the  standard  Unix  build  system,  thus  type

subsequently in the directories containing the programs:

./autogen.sh (in case there is no configure script)

./configure

make

make install

Some of  the  programs may require  newer  versions  of  libraries  you  have

installed. The configure script should detect this and report a message. In such

a case, please update the reported library.

Nevertheless, install the programs in the following order:

� GStreamer (tarball gstreamer-0.10.11.tar.bz2)

� GStreamer Base Plugins (tarball gst-plugins-base-0.10.11.tar.bz2)

� GStreamer Good Plugins (tarball gst-plugins-good-0.10.5.tar.bz2)

� the H.264 codec

� the watermarking plugin

And if you intend to execute the test scripts, install in addition:

� MPlayer (tarball MPlayer-1.0rc1.tar.bz2)

� x264 encoder (tarball x264-645.tar.bz2)
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Appendix B

The plugin usage

The watermarking plugin can be used as an element queued in a GStreamer

pipeline. The construction of the pipelines is described in the documentation on

the project's website [12]. The name of the plugin is h264watermark.

The plugin behaviour is controlled by several parameters.  The list of the

parameters follows:

mode specifies the working mode of the plugin. Three values may be assigned:

prepare (everything except parameter set NAL units and intra coded slices is

dropped), embed (activates the embedding process) and detect (activates the

detection process).

method selects the watermarking method: block,  coeff (stands for coefficient)

and noise.

weight sets the weight factor.

content-id stands for the identifier of the video content.

copy-id is the identifier of the content copy.

It is possible to obtain the parameter list by using one of GStreamer utilities

as well – type:

gst-inspect h264watermark

There are three scripts, containing complete GStreamer pipelines, provided

on the enclosed CD –  embed,  detect and  prepare – using the plugin in the

corresponding  mode.  The  required  arguments  are  listed  if  the  scripts  are

executed without any arguments. The first two arguments stand for the input

and the output files. Only Matroska muxed video sequences are accepted. The

other arguments represent the plugin parameters.
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Appendix C

Programming Documentation

There is the programming documentation, generated from the source code of

the  plugin,  on  the  enclosed  CD  but  lacks  description  of  adding  another

watermarking method.

In  order  to  add  a  new  watermarking  method  into  the  watermarking

framework, several actions have to be taken:

� The  identifier  of  the  method  has  to  be  inserted  into  the  list  of  available

methods. The list, named WatermarkMethod, is located in file watermark.h.

� The name and the description of the method have to be inserted into the list of

possible values of the plugin's parameter  method. The list is located in file

gsth264watermark.c and its name is mode_types.

� Both embedding and detection functions have to be implemented. The file that

contains the functions should be listed in file  Makefile.am and the header

file with the function declarations should be included in file watermark.c.

The embedding and the detection functions have to be specified as the second

and the third item in the defining structure in the list of defining structures.

The list, named  methods, is located in file  watermark.c. The first item of

the structure is the type of watermarking domain that the method uses; it is

either WATERMARK_DOMAIN_FREQUENCY or WATERMARK_DOMAIN_SPATIAL.

Both the embedding and the detection functions in frequency domain have

the same arguments in the following order:

watermark is pointer to the framework context.

coefficients is pointer to the list of transform coefficients of one block. The

list contains zig-zag scan of the coefficients in case of frame macroblocks, or

field scan in case of field macroblocks.
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length is the length of the list of coefficients.

CurrMbAddr is address of the macroblock that contains the block. The address is

the index of the macroblock in macroblock raster scan.

y is row index of the top-left pixel of the block within the picture.

x is column index of the top-left pixel of the block within the picture.

The embedding function in spatial  domain has  the  same arguments  but

there are  residual and  dimension arguments instead of  coefficients and

length:

residual is 2-dimensional array of residual values of one block.

dimension is dimension of the block.

Finally, there is a  picture argument instead of  residual in case of the

detection function in spatial domain. The picture argument stands for a block of

luma samples located at the position specified by x and y.

In case the embedding function in spatial domain requires luma samples of

the  block  besides  the  residual,  the  whole  picture  is  available  in  item

picture_original in the framework context.
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