
A Gradient-Based Framework for 3D Print Appearance Optimization

THOMAS KLAUS NINDEL, Charles University, Czech Republic and Berufsakademie Sachsen, Germany
TOMÁŠ ISER, TOBIAS RITTIG, and ALEXANDER WILKIE, Charles University, Czech Republic
JAROSLAV KŘIVÁNEK, Charles University, Czech Republic and Chaos Czech a.s., Czech Republic

(a) Reference (b) dE76 CMYKW (c) dE76 +Orange (d) Combined Metric

dE76 15.0 18.8 14.4 15.8

Fig. 1. Comparing optimization metrics for target (a) on a 2.5 mm slab. (b) was optimized for CIE dE76 using CMYKW materials. (c) adds a sixth orange
material, improving color reproduction. (d) uses our combined metric with weights 𝛾1 = 1, 𝛾2 = 9, CMYKW. (e) shows the scale of all models used.

In full-color inkjet 3D printing, a key problem is determining the material
configuration for the millions of voxels that a printed object is made of. The
goal is a configuration that minimises the difference between desired target
appearance and the result of the printing process. So far, the techniques
used to find such a configuration have relied on domain-specific methods or
heuristic optimization, which allowed only a limited level of control over
the resulting appearance.

We propose to use differentiable volume rendering in a continuousmaterial-
mixture space, which leads to a framework that can be used as a general
tool for optimising inkjet 3D printouts. We demonstrate the technical feasi-
bility of this approach, and use it to attain fine control over the fabricated
appearance, and high levels of faithfulness to the specified target.
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1 INTRODUCTION
Resin-based, inkjet 3D printers create colored objects by carefully
jetting microscopic droplets of base inks (e.g., CMYKW, cyan, ma-
genta, yellow, black, and white) to form the object’s volume. Due
to the inks’ translucency, the printouts exhibit complex volumetric
light transport. On one hand, this is required for spatial color mix-
ing and curing with UV light, but also leads to edge blurring and
color-bleeding. This significantly complicates the reproduction of
a desired appearance, i.e., finding the volumetric ink arrangement
that leads to the best possible printout fidelity. Early approaches
based on naïvely placing colored inks on the surface of an object,
or using extrusion-based techniques, lead to blur, reduced contrast,
and poor color reproduction.
Recently, new approaches have been presented to tackle these

issues, and aim at closing the gap between the intended appearance
and the printed result. These approaches solve different aspects of
the problem: high color reproduction fidelity [Babaei et al. 2017;
Brunton et al. 2015; Shi et al. 2018], alpha channel translucency print-
ing [Brunton et al. 2018; Urban et al. 2019], or compensating for lat-
eral scattering to increase texture sharpness [Elek et al. 2017; Sumin
et al. 2019]. The latter techniques employ highly-accurate Monte
Carlo light transport simulation inside the printouts, in conjunction
with a heuristic-based operator to form an iterative optimization
method.
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However, all these methods are inherently local: They only con-
sider a small neighborhood on the surface at a time, and do not fully
account for the potentially global influence each voxel has on the
objects appearance.

We formulate the problem of finding a suitable material arrange-
ment as an inverse volume rendering problem. Given the appearance
of a volume under specified viewing conditions, inverse volume
rendering tries to recover its physical properties, so that a forward
rendering pass would closely match the original views. Previous
applications of inverse volume rendering have already lead to im-
pressive results. They include reconstructing a voxel model of a
smoke plume from still images [Gkioulekas et al. 2016], obtaining
volumetric models of planetary nebulae [Magnor et al. 2004], or
recovering spatially-resolved scattering and absorption properties
of living tissue [Hochuli et al. 2016].
Using this approach in the setting of inkjet 3D printing, the

entire optimization problem can be formulated under a common,
gradient-based framework. Previously discussed use-cases follow
naturally from this, lifting some of the inherent restrictions the
existing forward-only, or purely heuristic approaches inhibit. For
example, our method can reproduce translucent appearances while
also matching previous scattering-compensation work in quality.

Leveraging a modern GPU renderer, our method runs on desktop-
grade hardware with reasonable timings and can thus also be used
for meta-optimizations such as per-target ink selection from an
extended set of printer materials. Our contributions for optimizing
the appearance of full-color inkjet 3D printouts are:

First, we present a flexible and robust framework based on numer-
ical minimization. The method captures the global interdependence
between changes in the voxel configuration and their result on the
target appearance. It is general with respect to the optimization
goal, the optical properties of available inks, and can handle arbi-
trary geometries. Our model is physically based, incorporating all
parameters of volumetric light transport.

Second, we propose using a volume parameterization that implic-
itly confines the optimization to the physical limits of inks and the
model’s manufacturability, without the need for precomputed color
tables. This allows the runtime to be (almost) independent of ink
count, in turn opening up applications such as ink-set selection.
Third we design a combination of 3D error metrics that can ex-

press a range of visual stimuli to optimize for, while allowing for
intuitive control over the process.

2 BACKGROUND AND RELATED WORK

2.1 Inverse volumetric light transport
Implementations of inverse light transport commonly employ a
gradient-based optimization algorithm. The required gradients can
be computed from finite differences or obtained by differentiable
rendering, with Gkioulekas et al. [2013] being the first to suggest
Monte Carlo estimates of derivatives for inverse rendering. Li et al.
[2018] presented a differentiable renderer that allows the calculation
of derivatives with respect to arbitrary scene parameters. In Zhang
et al. [2019], a general, operator-based theory of radiative transfer
was presented, along with an unbiased estimator for calculating
derivatives with respect to arbitrary scene parameters, adding those

of volumetric light transport. Nimier-David et al. [2019] showed a
retargettable renderer that can be configured to estimate the deriva-
tives of light transport. Nimier-David et al. [2020] also recently
proposed an adjoint method for back-propagating gradients, which
greatly improves performance in settings with a large number of
differentiable parameters. Since our approach requires calculating
derivatives with respect to millions of volume parameters, this so-
called “radiative backpropagation” technique is essential for us.

In Che et al. [2020], a learning-based technique is proposed that
can be used for homogeneous inverse scattering applications; one
of their networks was trained using a differentiable renderer, Mit-
subaDR, that was constructed by auto-differentiating a physically
based renderer. Finally, Hašan et al. [2010] optimize material assign-
ments for specified subsurface scattering properties using discrete
optimization.
Khungurn et al. [2015] match the appearance of fibrous materi-

als to several photographs using an inverse volumetric rendering
pipeline. Papas et al. [2013] use a database of the scattering prop-
erties of pigment emulsions to iteratively find an optimal mixture
that most closely matches a target appearance, which directly leads
to a fabricable recipe.

2.2 Full-color fabrication
Color and beyond. While various publications tackled fabricating

spatially-varying optical properties using 3D printing, e.g., subsur-
face scattering [Dong et al. 2010; Hašan et al. 2010], the first to show
faithful full-color reproduction in inkjet 3D printing were Brunton
et al. [2015]. They propose a geometry-adaptive error diffusion ap-
proach based on existing algorithms from 2D printing. Mapping 2D
error diffusion filters onto the object’s surface, they halftone the
target layer by layer. They also discuss printer color management
and building a color profile to allow gamut mapping.

Later, Brunton et al. [2018] extended their method to also support
spatially varying translucency. Using lookup tables to map RGBA
target colors to printer tonal values, they probabilistically insert
transparent voxels into the volume. Translucency fabrication was
further formalized by Urban et al. [2019], who provide a physically
and perceptually meaningful definition of the alpha channel to
create a device-independent standard for 3D printing translucency.
Work was also done in controlling the surface reflectance of 3D-
printouts, either by directly printing microgeometry [Luongo et al.
2020; Rouiller et al. 2013], or based on a controlled application
of varnishes [Piovarči et al. 2020]. Recently, Zheng et al. [2020]
used neural networks and end-to-end optimization to create static
4D light fields that can then be fabricated with inkjet 3D printers.

Halftoning alternatives. Error diffusion halftoning is not the only
method to obtain a discretized volume for printing. Arguing that
there are inherent limitations of halftoning, Babaei et al. [2017]
propose a solution they call color contoning. In contrast to halftoning,
which works on the object’s surface, their method drives “stacks"
of inks below the object’s surface. Doing this substantially removes
halftoning artefacts.

Shi et al. [2018] take this approach even further. They use a neural-
network model for predicting color spectra of an ink stack. Their
model can also be used in reverse, so that ink stacks, composed from
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their extended material library of 10 custom inks, can be used to
achieve significantly improved color reproduction.

Full-color fabrication with Monte Carlo predictions. All the previ-
ously mentioned works are based on local color mixing, ignoring the
contribution of global light transport. Elek et al. [2017] showed that
by measuring the optical properties of basic inks, they can then use
a full Monte Carlo simulation to faithfully predict the appearance
of a 3D printout given its internal structure. These predictions are
used as feedback in an optimization loop, heuristically pushing inks
into the depth of the volume. Lateral scattering and color bleeding
are reduced, leading to higher texture sharpness.
The original approach was limited to 2.5D planar slabs, but was

later extended to full 3D geometry by Sumin et al. [2019]. They
pay special attention to thin object geometries, where the colors
of opposite faces create cross-talk. By computing a lookup table of
color pairs achievable on opposing sides of variable-thickness slabs,
they can perform content-aware gamut mapping. Their results show
significant improvements of contrast and saturation for arbitrary
object geometries.
Our method is inspired by Elek et al. [2017] and Sumin et al.

[2019]. In contrast to their heuristic optimization, we employ a
gradient-based optimization algorithm. By using end-to-end gradi-
ent estimates, our proposed method can determine to what degree
every single voxel of the volume impacts the surface appearance,
which is illustrated in Fig. 2, and improve the solution to lower the
appearance error.

2.3 Image quality metrics
Numerical optimization methods are driven by quality metrics that
compare intermediate results to a given target. We also require such
metrics to be differentiable in order to be applicable within gradient-
based optimization. Measuring the difference in appearance is a
task similar to assessing image quality. This is a well-studied, yet
challenging topic, mainly due to the non-linearity and subjectivity
of the human visual system.

Beyond trivial measures like the mean squared error (MSE), per-
ceptual quality metrics were designed to consider the human visual
system. Color fidelity can, for example, be measured as the Eu-
clidean distance in the perceptually uniform CIELAB color space
(CIE76, McLaren [1976]), which was later expanded to CIEDE2000
[Luo et al. 2001]. Discontinuities in the latter prevent its usage in
gradient optimization [Sharma et al. 2005].

Wang et al. [2004] proposed a structural similarity metric (SSIM)
that also considers contrast and structure. The metric can be effi-
ciently implemented using differentiable convolutions [Orihuela and
Ebrahimi 2019], making it a good candidate for the use in gradient
optimization and neural networks [Zhao et al. 2016a].

Due to its low sensitivity to a uniform bias, Zhao et al. proposed
to combine SSIM with a color metric for an improved color accuracy.
Chen et al. [2006] also noticed that SSIM favors blurred images
over noisy ones, and suggested a modified edge similarity (ESSIM)
metric. There are other SSIM alternatives available [Wang et al. 2003;
Xue et al. 2013; Zhang et al. 2011], further improving its behavior.
Notably, Preiss et al. [2014] propose a metric that is sensitive to
differences in lightness, color and structure.

Recent work [Zhang et al. 2018] has shown that deep neural
networks originally trained for various computer vision tasks can
also be used for image quality judgement. Their performance has
shown to be favorable over metrics such as the previously disussed
ones, when comparing to the quality assessments of the human
observer.

3 PROBLEM STATEMENT
Overview. Themethod takes a textured 3D object on its input. The

object has a certain target appearance, which is usually a diffuse color
texture that defines how the object should look like when printed.
This object is geometrically discretized into a voxel grid, where each
surface voxel (texel) has a given target color based on the original
texture. The goal is now to find a configuration of the 3D printer’s
inks that, when printed, would give a 3D printout that resembles the
input as well as possible. In order to do that, an optimization loop
is used that predicts how a candidate 3D ink arrangement would
look like, and then compares it to the target appearance. An error
is calculated using image quality metrics, and is backpropagated
through to the ink arrangement via gradients, allowing its iteratively
refinement. After convergence of the optimization, the results are
quantized into an printable volume.

Formalization. Wewill now formalize the problem using the nota-
tion detailed in Table 1 such that it is solvable by numerical, gradient-
descent optimization.
Given the geometrical discretization of a textured object as an

input, we call the voxels on the object’s surface "texels.1" The set
of all texels forms the target appearance, 𝑇 = (𝑡1, . . . , 𝑡𝐼 ). Taking a
given configuration of voxels 𝑉 , we can predict the appearance 𝐶
of the surface as

𝐶 = ℜ(𝑉 ), (1)
where ℜ represents the volume rendering function. Our goal is to
find a configuration of voxels 𝑉𝑜𝑝𝑡 that minimizes a loss function
𝑒 = 𝐸 (𝐶,𝑇 ) :

𝑉𝑜𝑝𝑡 = arg min
𝑉

𝐸 (𝐶,𝑇 ) . (2)

To find 𝑉𝑜𝑝𝑡 using gradient-descent optimization, we require the
gradient of the loss function w.r.t. the volume’s parameters 𝑉 . We
can obtain the gradient by applying the chain rule:

𝜕𝑒

𝜕𝑉
=
𝜕𝑒

𝜕𝐶

𝜕𝐶

𝜕𝑉
. (3)

As 𝐶 is a vector of the appearance of all texels 𝑐𝑖 ,

𝜕𝑒

𝜕𝐶
= 𝐸 ′(𝐶,𝑇 ) =

(
𝜕𝑒

𝜕𝑐𝑖

)𝐼
𝑖=1

(4)

represents the gradient of the loss function with respect to the
appearance 𝐶 .
Using then, for example, the sum of squared differences as the

loss function:

𝐸 (𝐶,𝑇 ) =
𝐼∑

𝑖=1
(𝑐𝑖 − 𝑡𝑖 )2 , (5)

1Mind that these are not directly connected to the fragments of the object’s texture
maps, but are volumetric elements obtained after UV mapping and resampling.
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Table 1. Mathematical Notation

Symbol Usage
𝐼 , 𝐽 , 𝑁 number of voxels at the volume’s surface / total voxels

of the volume / available printing materials
𝑖, 𝑗, 𝑛 indices for surface voxels / volume voxels / materials
𝛼 𝑗 single scattering albedo of voxel 𝑗 , 𝛼 =

𝜇𝑠
𝜇𝑡

𝜇𝑡, 𝑗 extinction coefficient of voxel 𝑗 , 𝜇𝑡 = 𝜇𝑎 + 𝜇𝑠
𝜇𝑠,𝑛 scattering coefficient of material 𝑛
𝜇𝑎,𝑛 absorption coefficient of material 𝑛
𝜙 phase function
𝜌 𝑗,𝑛 portion of the 𝑛-th material in the mixture of the 𝑗-th

voxel
𝜋 any volume parameter, e.g. 𝜇𝑡,1254 or 𝜌421,2
S space of the voxel parameters, formed by (𝜇𝑡 , 𝛼, 𝜙)
M space of the voxel parameters, formed by the material

mixture 𝜌𝑛
𝑀𝑛 parameters of printing material 𝑛,𝑀𝑛 = (𝜇𝑎,𝑛, 𝜇𝑠,𝑛, 𝜙)
𝑐𝑖 appearance of the 𝑖-th surface voxel
𝐶 appearance of the current solution, 𝐶 = (𝑐𝑖 )
𝑡𝑖 target appearance of the 𝑖-th surface voxel
𝑇 target appearance, 𝑇 = (𝑡𝑖 )
𝑉 volume parameters in space S, 𝑉 = (𝛼 𝑗 , 𝜇𝑡, 𝑗 , 𝜙 𝑗 )
𝑉 ′ volume parameters in material spaceM, 𝑉 ′ = (𝜌 𝑗,𝑛)
ℜ(𝑉 ) volume rendering function, 𝐶 = ℜ(𝑉 )
𝑧 (𝑉 ′) mixing function 𝑉 = 𝑧 (𝑉 ′)
𝑒 error value
𝐸 (𝐶,𝑇 ) loss function, 𝑒 = 𝐸 (𝐶,𝑇 )

Fig. 2. Illustrating how voxels inside an object influence the color visible
on the surface. A 2D slice through the profile of Nefertiti shows the single-
scattering albedo in RGB per voxel. The inset visualizes the magnitude of
Monte Carlo estimated 𝜕𝑐𝑖/𝜕𝛼 𝑗 in one channel for the marked surface texel,
i.e., how much each voxel influences the surface color in normal direction.

its gradient, consisting of the partial derivatives of 𝐸 with respect
to all volume parameters (here called 𝜋 ) can be obtained with:(

𝜕𝑒

𝜕𝜋

)
=

𝐼∑
𝑖=1

(
𝜕𝑒

𝜕𝑐𝑖

𝜕𝑐𝑖

𝜕𝜋

)
= 2

𝐼∑
𝑖=1

(
(𝑐𝑖 − 𝑡𝑖 )

𝜕𝑐𝑖

𝜕𝜋

)
,∀𝜋 ∈ 𝑉

(6)

Derivatives of the form 𝜕𝑐𝑖/𝜕𝜋 encapsulate how the change in the
appearance of one texel depends on the change of the parameter 𝜋 .
In other words, it is the first derivative of the rendering function
with respect to this parameter. A visualization of these derivatives
can be seen in Fig. 2.
By choosing an appropriate error function, the optimization is

general with respect to the target appearance specification. It allows
us to control whether the optimizer should emphasize, for example,
texture sharpness, or optimize for highest possible color fidelity. We
discuss this trade-off further in Sec. 4.5.

In order to embed this optimization task into the setting of inkjet
3D printing, a few extra steps are required: The discretization of the
optimization results in a printable specification, which is discussed
in Sec. 4.7, the voxelization of the objects geometry as an input to
the pipeline, which can be obtained using distance fields (domain-
specific discussions by Brunton et al. [2015]; Sumin et al. [2019]), and
the optical properties of a set of printing materials can be obtained
by various measurement setups, detailed in the state of the art report
[Frisvad et al. 2020].

4 FORMING THE OPTIMIZATION LOOP
Using the relationship between the rendering function, the loss
function and their derivatives as a starting point, we will now de-
scribe how to form a closed loop for the optimization of the volume
configuration. Fig. 3 describes this loop graphically.

4.1 Derivative estimation
In practice, partial derivatives of the form 𝜕𝑐𝑖/𝜕𝜋 can be obtained us-
ing a Monte Carlo estimator. Mathematically, it can be constructed
from the path-space integral of light transport, as shown by Khun-
gurn et al. [2015] and Zhang et al. [2019]. Implementations of these
estimators usually work in what is called forward-mode: Parallel
to computing radiance values, these algorithms also estimate the
radiance derivatives alongside. Forward-mode refers to the order
in which the graph of computations created by the radiance es-
timator is traversed for obtaining derivatives, in the context of
rendering from scene parameters to radiance estimate. Forward-
mode derivatives can be obtained automatically by a process called
auto-differentiation (AD). We kindly refer the reader to Baydin et al.
[2017] for an overview. This way of implementing derivatives re-
quires one graph traversal for each differentiable parameter. Since
we want to optimize millions of volume parameters, the associated
computational cost quickly becomes prohibitive. Our initial experi-
ments were based on such an estimator, taking tens of thousands
of core-hours to optimize a 15 mm tall volume. Additionally, the
resulting Jacobian matrix (in our case, derivatives of all texel values
with respect to all volume parameters, a 𝐼 × 2𝐽 matrix) leads to
an unfavorable space-complexity. The use of reverse-mode AD, as
implemented in Mitsuba2 [Nimier-David et al. 2019]), can ease this
space-complexity by backpropagating derivative values through
the renderer. However, reverse-mode AD requires storing computa-
tional graphs, which in case of a renderer can get very complex.
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Fig. 3. Flow of data and their derivatives through the optimization loop. The voxelization of object geometry and the quantization of the optimization results
are omitted for clarity. These are only executed once at the beginning and the end of the optimization process, respectively.

4.2 Radiative Backpropagation
We implement the volume derivatives using radiative backpropaga-
tion [Nimier-David et al. 2020]. It is a domain-specific instance of
reverse-mode AD that eliminates the need for storing and traversing
the renderers computational graph. Instead, the method propagates
"derivative radiation" through the scene using light transport al-
gorithms, an adjoint technique also seen in [Auzinger et al. 2018].
This radiation is emitted by the sensor and "consumed" by the scene
parameters, effectively propagating all derivatives in one pass. This
leads to major improvements in speed of computation and mitigates
the storage requirements of traditional reverse-mode AD.

In our setting, the input for Radiative Backpropagation is deriva-
tive values 𝜕𝑒/𝜕𝐶 . As we are interested in derivatives with respect
to the parameters of volumetric light transport, the output is 𝜕𝑒/𝜕𝑉
(see Eq. 3, the second factor).

4.3 Derivatives in material space
Assuming a fixed phase function and its parameters, one way to
implement the optimization is using the (𝜇𝑡 , 𝛼) parameterization
of voxels. However, a discretization step is then needed to turn the
optimized volume into a printable specification. Because the printer
gamut is smaller than what this voxel-parametrization can describe,
it also implies the need for gamut mapping.

Other approaches incorporate the discretization step into the opti-
mization loop (e.g., Elek et al. [2017]), guiding the optimizer through
the limited gamut of printable medium parameters. Since our ap-
proach requires end-to-end derivatives, it would require calculating
derivatives of the discretization step.

We propose an alternative solution that maintains differentiability
and adjusts the volume properties in a space that is directly trans-
formable into a material configuration. Assuming for the moment
that the printer mixes the inks prior to placing them, we can express
the optical properties of a voxel as a continuous affine combination
of these materials. We call this the material-space parameterization
of the medium:

𝑉 ′ = (𝜌 𝑗,1, 𝜌 𝑗,2, ..., 𝜌 𝑗,𝑁 )
𝑁∑
𝑛=1

𝜌 𝑗,𝑛 = 1, 𝜌 𝑗,𝑛 > 0 , (7)

Table 2. Material Parameters. Materials in bold represent the Stratasys
"Vero Opaque Rigid" Family, as measured by Elek et al. [2017]. The remain-
ing lines show hypothetical materials used for evaluation. The extinction-
coefficient 𝜇𝑡 and the single scattering albedo 𝛼 are given in the three Red,
Green and Blue color channels. All materials are using a Heney-Greenstein
phase function with 𝑔 = 0.4

𝜇𝑡 [𝑚𝑚−1 ] 𝛼

Material R G B R G B

Cyan 9.0 4.5 7.5 0.05 0.7 0.98
Cyan2 6.0 3.0 5.0 0.05 0.95 0.98
Magenta 2.5 3.0 10.0 0.98 0.1 0.9
Magenta2 1.7 2.0 6.7 0.98 0.05 0.97
Yellow 2.25 3.75 19.0 0.997 0.995 0.15
Yellow2 3.0 5.0 19.0 0.92 0.92 0.15
Orange 3.0 4.0 15.0 0.98 0.32 0.114
Black 5.0 5.5 6.5 0.35 0.35 0.35
White 6.0 9.0 24.0 0.9991 0.9997 0.999
Transparent 10−4 10−4 10−4 1.0 1.0 1.0

where 𝑁 is the number of available printing materials and 𝜌 𝑗,𝑛
their weights in the mixture for voxel 𝑗 . The materials are param-
eterized by their absorption and scattering coefficients, and their
phase function, so that𝑀𝑛 = (𝜇𝑎,𝑛, 𝜇𝑠,𝑛, 𝜙𝑛). An example instance
of printing material parameters, as they were measured by Elek et al.
[2017], is shown in Table 2. This idea of parametrizing volumetric
light transport using pre-set materials is analogous to the material
mixture method presented by Gkioulekas et al. [2013].

Gradients of the loss function with respect to this material space
parametrization can be obtained by applying the chain rule:

𝜕𝑒

𝜕𝑉 ′ =
𝜕𝑒

𝜕𝑉

𝜕𝑉

𝜕𝑉 ′ . (8)

Such a volume parametrization allows the optimizer to interpolate
within the whole range of the materials’ properties to achieve an
appearance match. As we will show in Sec. 4.7, it also allows for
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a simple discretization to ensure manufacturability. Finally, it al-
lows us to easily adapt to different printing materials, without any
precalculation and with negligible overhead in computation time.

4.4 Relation of material space and optical parameters
3D printing uses a subtractive colormixing system similar to 2D print-
ing. In addition to the cyan, magenta, yellow, and black (CMYK)
inks, a white substrate (W) and potentially a transparent material (T)
are available. Mathematically, an affine combination of these base
materials has absorption and scattering characteristics that can be
computed as a linear combination. Please note that this is only pos-
sible using the absorption- and scattering-coefficients, since their
behaviour is linear. In contrast, a weighted sum of 𝛼 and 𝜇𝑡 does
not work the same way.

Let 𝑧 describe this mapping from the (continuous) material space
(𝜌1, . . . , 𝜌𝑁 ) ∈ M to the space (𝜇𝑡 , 𝛼) ∈ S. Omitting the voxel index
𝑗 for readability, we define it as:

𝑧 : M→ S =
( 𝑁∑
𝑛=1

𝜌𝑛 (𝜇𝑠,𝑛 + 𝜇𝑎,𝑛),
∑𝑁
𝑛=1 𝜌𝑛𝜇𝑠,𝑛∑𝑁

𝑛=1 𝜌𝑛 (𝜇𝑠,𝑛 + 𝜇𝑎,𝑛)

)
. (9)

We assume all materials share the same phase function (Henyey-
Greenstein, 𝑔 = 0.4). Phase functions mix in the following way
[Gkioulekas et al. 2013]:

𝜙 (cos𝜃 ) =
∑𝑁
𝑛=1 𝜌𝑛𝜇𝑠,𝑛𝜙𝑛 (cos𝜃 )∑𝑁

𝑛=1 𝜌𝑛𝜇𝑠,𝑛
. (10)

It can be easily seen that our assumption of equal phase functions
for all materials results in the mixed phase function being the same
as well.
Material space can be perceptively ambigous in several ways.

First, and depending on the printing materials chosen, there can be
many combinations inM leading to the same optical properties in
S. As an example, consider mixing a single voxel of gray color from
CMYKW. Even if CMY were perfectly orthogonal, it can be mixed
in several ways: either by an appropriate ratio of black and white
ink, or by replacing black with an even mixture of cyan, magenta
and yellow, combining their absorption. The material densities can
differ, so possible solutions for a desired color can have different
scattering behavior, while having the same single-scattering albedo.
This creates a mixing ambiguity that is more complex than in 2D
printing.
Second, creating a specific appearance is locally ambigous even

within space S. This was formalized with similarity theory [Wyman
et al. 1989a,b; Zhao et al. 2014], which studies the equivalence classes
of the volumetric parameters in radiative transfer, where different
sets of parameters can lead to equivalent measurements of the ra-
diance field. And finally, heterogeneous media can also have non-
local ambiguities, following the observation that in such a medium,
different spatial distributions of materials can lead to similar mea-
surements [Gkioulekas et al. 2016].
Our parametrization helps the optimizer navigate these ambi-

guities. Following the example of mixing a gray color from above,
the black ink will have a larger gradient value than each of the
individual CMY inks, so the optimizer will favor the use of black
ink for the respective voxel. This can be seen, for example, in Fig. 1,

Target ∆E76 optimization Combined metric
optimization

Fig. 4. Comparison of the results optimized with different loss functions
on this 4 cm tall 3D-scanned model. We can see that only relying on a
Δ𝐸76-based loss function (Eq. 11) leads to a good overall color fidelity, but
poor contrast in details, such as in the eye region or the necklace. That
can be significantly improved with an introduction of 3D voxel-based loss
function that take the structure into account as well. Similar behavior can
be seen in our slab experiments in Figs. 1 and 19.

where the optimizer favors the use of a newly introduced orange
ink for the creation of the orange patches and the red flowers in
image Fig. 1(c). Further, assuming identical phase functions for all
materials reduces the local ambiguities described by similarity the-
ory. Empirical evidence [Gkioulekas et al. 2016, 2013; Zhao et al.
2016b] also suggests that this parametrization can be used in inverse
rendering to recover ground-truth scattering properties in spite of
the ambiguities.
Our proposed pipeline does not require computing the inverse

of 𝑧, but only partial derivatives with respect to affine weights 𝜌 . In
practice, we implement the computation of gradients of the form
𝜕𝑉 /𝜕𝑉 ′ (Eq. 8, second factor) by auto-differentiating the material
mixing function 𝑧 (𝑉 ′), Eq. 9. Together with 𝜕𝑒/𝜕𝑉 = 𝑧′(𝑉 ′), one
obtains an end-to-end derivative chain of the optimized function as
visualized in Figure 3.

4.5 Error metrics
Our framework is driven by minimizing the loss function 𝐸 (𝐶,𝑇 ).
It governs the extent with which each visual stimulus affects the
final results. Based on the exploration of existing image difference
metrics in Sec. 2.3, we want to find a loss function for our use case
with the following qualities:

• differentiable, in order to compute 𝜕𝐸/𝜕𝐶 ,
• without discontinuities affecting the optimizations conver-
gence,

• perceptual, to take the human visual system into account,
considering color fidelity, contrast, and structure, and

• geometry-aware, to preserve local features.
In Fig. 4, we illustrate how significant the difference can be between
the convergence with a simple error metric, compared to our more
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sophisticated metric combination. The remainder of this subsection
discusses how we built this single well-behaved metric by first se-
lecting suitable 2D metrics and then generalizing them to voxelized
3D surfaces.

Color fidelity. In order to steer the optimization towards maxi-
mum color fidelity, we use the mean squared error in the CIELAB
color space, inspired by Δ𝐸76 (CIE dE 76). Note that MSE-style errors
like Δ𝐸76 are computed per-pixel (per-texel) and are invariant to
the local neighborhood, hence they can be directly used in 3D:

𝐸1 (𝐶,𝑇 ) =

1
𝐼

𝐼∑
𝑖=1

( (
𝑐𝑖,𝐿∗ − 𝑡𝑖,𝐿∗

)2 + (
𝑐𝑖,𝑎∗ − 𝑡𝑖,𝑎∗

)2 + (
𝑐𝑖,𝑏∗ − 𝑡𝑖,𝑏∗

)2)
, (11)

where indices 𝐿∗, 𝑎∗, and 𝑏∗ denote L*a*b* components of the re-
spective texel.

Contrast and structure. 𝐸1 is a global color metric that is not sensi-
tive to visual stimuli such as local contrast and structure. To improve
on that, we employ a normalized structural similarity index measure
(SSIM), computed over local neighborhoods with a Gaussian sliding
window and convolutions [Orihuela and Ebrahimi 2019].

While SSIM was originally designed for 2D signals, we generalize
it to 3D as follows: Let 𝑃𝑐𝑖 and 𝑃𝑡𝑖 denote local neighborhoods of
the 𝑖-th predicted and target texels. Let 𝐺𝜎 denote a 3D Gaussian
kernel with a standard deviation 𝜎 . The mean intensities 𝑐𝑖 and 𝑡𝑖 ,
standard deviations 𝜎𝑐𝑖 and 𝜎𝑡𝑖 , and covariance 𝜎𝑐𝑖𝑡𝑖 are then given
by:

𝑐𝑖 = 𝐺𝜎 ∗ 𝑃𝑐𝑖 , 𝜎2
𝑐𝑖

= 𝐺𝜎 ∗ 𝑃2
𝑐𝑖
− 𝑐𝑖2, (12)

𝑡𝑖 = 𝐺𝜎 ∗ 𝑃𝑡𝑖 , 𝜎2
𝑡𝑖
= 𝐺𝜎 ∗ 𝑃2

𝑡𝑖
− 𝑡𝑖2, (13)

𝜎𝑐𝑖𝑡𝑖 = 𝐺𝜎 ∗
(
𝑃𝑐𝑖 · 𝑃𝑡𝑖

)
− 𝑐𝑖𝑐𝑡 , (14)

where ∗ denotes the discrete convolution operator. For the 𝑖-th texel
neighborhood, local SSIM is then computed as:

𝑆𝑆𝐼𝑀 (𝑐𝑖 , 𝑡𝑖 ) =
2𝑐𝑖𝑡𝑖 + 𝐾1

𝑐𝑖
2 + 𝑡𝑖2 + 𝐾1

·
2𝜎𝑐𝑖𝑡𝑖 + 𝐾2
𝜎2
𝑐𝑖 + 𝜎2

𝑡𝑖
+ 𝐾2

, (15)

where 𝐾1 = 0.012 and 𝐾2 = 0.032 are constants ensuring numerical
stability. The final loss function 𝐸2 (𝐶,𝑇 ) is then computed as a
mean over all local neighborhoods, considering the three L*a*b*
components separately:

𝐸2 (𝐶,𝑇 ) = 1 − 1
𝐼

𝐼∑
𝑖=1

∑
𝐿∗𝑎∗𝑏∗

𝑆𝑆𝐼𝑀 (𝑐𝑖 , 𝑡𝑖 ). (16)

For computing 𝐸2, we experimentally observed better behaviors
with the L*a*b* components being normalized to [0, 1].

Edge similarity. As Chen et al. [2006] observed, SSIM prefers
blurred data over noisy data. This poses a problem, since we use
a Monte Carlo estimator with inherent variance. They propose
to modify SSIM with the Sobel operator used for edge detection,
denoting their metric as ESSIM.

Here, we use a simpler error 𝐸3 based on MSE between the texels
with a Sobel operator applied. 𝑆𝑥 , 𝑆𝑦 , and 𝑆𝑧 denote the 3D Sobel
kernels along the 𝑥 , 𝑦, and 𝑧 axes, respectively. The convolution

between the kernels and 𝐶 or 𝑇 approximate the derivatives of the
texels’ signal along the three axes. Computing an MSE over the
results in each of the three axes separately, and doing the same with
the L*a*b* components, gives our third metric:

𝐸3 (𝐶,𝑇 ) = 100 · 1
3
∑
𝑥,𝑦,𝑧

∑
𝐿∗𝑎∗𝑏∗

1
𝐼

1
4

1
32

𝐼∑
𝑖=1

(𝑆 ∗𝐶 − 𝑆 ∗𝑇 )2 . (17)

The normalization constants are given by the number of axes (3), the
minimum and maximum values in the convolution (-32 and 32), and
the maximum value after the square ((−1 − 1)2 = 4). The additional
factor of 100 is used to ensure the typical error values are in the
similar range as those of 𝐸1 and 𝐸2, which leads to a more intuitive
weighting in the final metric. Note that similarly to 𝐸2, we are
considering the normalized L*a*b* color space.

Finalmetric. Weobtain the final loss function𝐸 (𝐶,𝑇 ) as aweighted
sum of the proposed metrics. To ensure that changing the individual
weights does not change the overall magnitude of the error value,
we define the sum such that the weights are always normalized:

𝐸 (𝐶,𝑇 ) = 𝛾1
𝛾
𝐸1 (𝐶,𝑇 ) +

𝛾2
𝛾
𝐸2 (𝐶,𝑇 ) +

𝛾3
𝛾
𝐸3 (𝐶,𝑇 ), (18)

where 𝛾1, 𝛾2, and 𝛾3 are the weights of 𝐸1, 𝐸2, and 𝐸3, respectively,
and 𝛾 = 𝛾1 + 𝛾2 + 𝛾3. In Fig. 19, we illustrate how changing the indi-
vidual weights influences the result. Experimentally, we observed
that the highest overall color accurancy and saturation are achieved
by setting 𝛾2 = 𝛾3 = 0. However, that leads to a loss of contrast
and details, which may be significant in certain situations, such as
the Nefertiti model in Fig. 4. Hence, we recommend using 𝛾1 = 1,
𝛾2 ∈ [3, 9], and𝛾3 ≤ 3, depending on the desired appearance. Higher
values may lead to an unpleasant loss of saturation, in case of 𝛾2, or
substantial color casts, in case of 𝛾3.

4.6 Optimization algorithm
We implemented the optimization using the TensorFlow frame-
work [Abadi et al. 2015]. The renderer is implemented as a func-
tion into the framework, using the custom gradient decorator. Ada-
Grad [Duchi et al. 2011] is used as the optimization algorithm, but
also experimented with a simple gradient descent with momentum
and did not notice any significant differences. We constrain the op-
timizer to positive values using the sigmoid function. A successive
per-voxel normalization of the ink mixture vector constrains the
result to the feasible set.
This is in contrast to projected gradient descent (e.g., [Duchi

et al. 2008]), where Euclidean projection onto the feasible set is
used after applying the gradient in each step. It is also possible to
use exponentiated gradient descent (Shem-Tov et al. [2020] show a
domain-specific application). Both algorithms perform favorably if
only few components of the inputs are relevant for the loss, which
is the case for bigger volumes. There, voxels far beneath the surface
have negligible influence on surface appearance. We see this as an
interesting direction for future work.

4.7 Probabilistic ink quantization
The material spaceM parametrization introduced above assumes
a printhead that physically mixes inks within the printed volume.
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In reality, however, the printer can only deposit one material per
addressable voxel and relies on spatial mixing together with lateral
light transport to blend colors. Thus, after the optimization loop,
the resulting volumes 𝑉 ′ with affine weights require discretization
to obtain a valid printer input.
Existing halftoning or contoning approaches [Babaei et al. 2017;

Brunton et al. 2015; Sumin et al. 2019] could be applied directly, but
without their color mapping as we operate directly in material space.
We propose a simple solution based on random sampling, exploiting
the fact that printers can reach significantly higher resolutions
than the 300 DPI we run our optimization in. While upsampling to
the printer resolution, we stochastically assign a single material to
each voxel based on its affine weights: For each (micro-)voxel in
the higher-resolution quantized grid, an ink is drawn at random,
using the corresponding (macro-)voxel’s material mixture as the
probability distribution. At a native resolution of 600×300×940 DPI,
this gives a ratio of about 1 : 6 between the number of voxels in the
optimized and discretized grids of the printer. Figure 5 visualizes
this procedure in a 2D example where a lower-resolution grid is
upsampled to yield a discrete printer assignment.
A downside of this simple solution is that random sampling is

known to introduce white noise. To some extent, this is mitigated
by the fact that the scattering medium acts as a low pass filter that
removes high frequency components, the cutoff frequency being a
function of the opaqueness of the materials. However, some of this
noise is still visible on the optimized objects, seen in Figs. 10 and 11
as graininess on the object’s surface. In Fig. 6 we show a side-by-
side comparison of a continuous material space and corresponding
probabilistically quantized versions: we see that the remaining noise
has a small impact on the results. In the future, implementing more
sophisticated halftoning techniques, like the ones mentioned above,
can help eliminate the noise introduced by random sampling.

4.8 Simulations vs. real printouts
Our printer model assumes perfectly disjunct, cubical voxels that
are each filled with exactly one material. In contrast, the actual
printing process is subject to a variety of imperfections. Physical
mixing of adjacent voxels can occour around their boundaries.

This is especially noticable on the printout’s surface, where sup-
port material and colored inks interact. To counter this, prints can
be done with thin wrap of transparent material, that is subsequently
removed by abrasion. This will also remove remnants of support

Continuous ink mixtures (2×4) Probabilistically quantized
ink arrangement (6×8)

Fig. 5. A diagram of a discrete grid with continuous ink mixtures (left) and
its corresponding probabilistically quantized ink arrangement (right). In
this example, the quantized grid has two times higher resolution in the
horizontal axis, and three times higher in the vertical axis, which roughly
corresponds to the XZ axes of our 600 × 300 × 940 DPI quantized grid.

Probabilistically quantized results
(different random seeds)

Continuous
ink mixture

1.
5
cm

Fig. 6. Comparing renderings of a solution with continuous material mix-
tures (left, 300 DPI) to probabilistically quantized results (right, 600 × 300 ×
940 DPI) for a 1 mm planar target. Despite different random seeds, about
70% of the quantized voxels are identical; the variance does not cause any
substantial visual difference.

material on the surface. A coat of transparent paint establishes the
smooth dielectric surface we assume in the optimization.
Inside the prinout, inks from adjacent voxels can flow into each

other before UV light is applied to harden them. The resulting
mixture of pigments creates a new material, which can be modelled
under the assumptions given in Sect. 4.4. Since the physical mixing
occours at a higher spatial frequency than we model the volume at,
the simulations effectively under-sample the physical printout. Fig. 6
helps quantify the impact of this effect: On the left is a rendering of
a continous mixture mapped into absorption/scattering space using
Eq. 9 at 300 DPI, simulating perfect physical mixing inside each
voxel. The images on the right side of the figure show renderings
with voxels of discrete materials, at a higher spatial resolution. No
aliasing artifacts are visible.
Assuming an identical phase function for all material also intro-

duces differences between simulation and real printouts, because
the phase functions of the actual materials are not identical. Differ-
ent but optically equivalent mixtures in simulation will have small
differences in their appearance when printed. Lastly, using RGB
(as opposed to spectral rendering) to handle color throughout the
pipeline limits the accuracy of the simulation of the participating
medium, introducing color reproduction artifacts. Some effects in
participating media can be simulated correctly only by a spectral
workflow. One such effect is spectral sharpening, where the repeated
application of an absorption spectrum results in a narrowing of its
peaks.

Inverse rendered solutions depend on the assumed lighting con-
ditions. This means that under different lighting than those used
during optimization, the resulting medium may actually have incor-
rect appearance. If the display conditions of the printout are known
beforehand, this lighting can be “baked" into the optimized result by
replicating it in the renderer. Otherwise, assuming hemispherical
illumination provides a good default-case.

5 EVALUATION
In the following, we show results obtained using the presented
pipeline and compare them to other solutions.

Setup. As both Elek et al. [2017] and Sumin et al. [2019] demon-
strated the faithfulness of predictive renderings in comparison to
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physical printouts, we rely on virtual simulations to evaluate our
method. We see this as a viable way, as all our figures depict quan-
tized solutions that could be directly fabricated. For the optical prop-
erties of inks, use the measurements by Elek et al. [2017] for the
Vero Rigid Opaque materials used in the Stratasys J7/J8 3D printer
family. Alongside, we designed hypothetical materials (Table 2)
to showcase our pipeline’s flexibility. For discretization we use a
distance-field based voxelization process with uniform 300 DPI res-
olution as presented in [Sumin et al. 2019]. Our renderer assumes a
uniform surface illumination with unity radiance. The sensor is in
texel-space, i.e., each fragment of the sensor corresponds to exactly
one voxel on the surface. Radiative backpropagation is used with the
𝐿𝑖 = 1 approximation. We initialize the optimization process with
a 97% white mixture for all voxels, the remainder is split equally
into the other inks to make sure their initial gradients are non-zero.
For the final quantization, the resolution is increased to a typical
printer resolution of 600 × 300 × 940 DPI. We model the surface of
all objects as a smooth dielectric with an refractive index of 1.5.

5.1 Opaque Volume Appearance
We apply our framework to recover the opaque, textured appearance
of a scattering 3D print and demonstrate our results in comparison
to previous work along this line of research.

Contrast and spatial resolution. Starting with a basic property, we
design a test pattern to evaluate edge contrast and lateral scatter-
ing compensation. The pattern features black and white stripes of
varying widths, with the smallest being one voxel (about 85 µm). As
shown in Fig. 7, a naïve placement of black and white ink results in a
well-preserved lightness match on larger patches at the cost of color-
bleeding around edges. Our solution stays color-neutral with slightly
increased lightness deviation in flat regions. Despite variance from
multiple sources, our optimization reproduces fine details accurately
and balances local contrast, spatial details, and color-bleeding. The
cutouts in Fig. 8 enlarge a single step-function from Fig. 7. Upon
closer inspection, one can notice that our optimizer decides to mix
a substantial amount of colored ink into the black regions, mainly

(a) (b)

Fig. 8. Rendering of
a discretized optimiza-
tion result for a step
function; (a) artificially
increased density to
show individual voxels,
(b) actual appearance.

magenta, and yellow ink into the white region. This counters the
slight tints of the white and black materials and ensures the re-
sult stays color neutral, unlike the naïvely extruded solution. Such
shortcuts are possible with color-table-based approaches [Babaei
et al. 2017; Brunton et al. 2015; Elek et al. 2017], but require manual
discovery, an explicit specification, and an extension of the map-
ping. Our method discovers and selectively applies these alternative
solutions without intervention, while explicit choice would have to
be incorporated in the metric.

Color and structure fidelity. Testing color reproduction, we run
the optimization on textured slabs which show a combination of
smooth color gradients, hard edges, and fine details. Fig. 9 shows
the performance of the proposed method in comparison with the
state of the art [Sumin et al. 2019].
In the top image, we observe overall higher saturation for our

method. Fine details around the table, chair and painting are slightly
more pronounced on the left side. The structure of the floor is
however more refined for the previous method.

Looking at the bottom image, they perform better at reproducing
the grainyness in the sky. When comparing the challenging case of
black-on-white details on the cottage’s wall, which have the extend
of single voxels, the methods seem to be almost on par. We note,
that the dark-orange spots along the path are difficult to reproduce,
as also visible in the cutouts in Fig. 1.

Metric weighting. In Sec. 4.5, we proposed a new combined metric
for 3D applications that balances color accuracy, local structure, and

Lightness difference (L*)
Our method

Target (2 sides)

Naïve KW extrusion

Color difference (a*) Color difference (b*)

2 cm

1
cm

1 mm

Fig. 7. Testing maximum resolution and color fidelity of a 1 mm thick planar target with a “zebra” test pattern (left). The pattern contains black and white
stripes of increasing frequency (stripe heights: 30, 15, 10, 5, 3, and 1 voxels; 1 voxel is about 85 µm at 300 DPI). Our method (top) reproduces even the tiniest
details without any moiré fringes or significant color shifts. A naïve solution (bottom) consisting of black (K) and white (W) inks extruded through the whole
slab results in slightly better contrast, but noticeable color shift towards blue and over-darkening of the right part of the slab. To verify, difference images in
the CIELAB color space are attached (right), computed as Euclidean distances in L*, a*, and b* separately.
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Our method Target State of the art
[Sumin et al. 2019]

Fig. 9. Comparison of our results (left) to the state of the art (right) [Sumin
et al. 2019] for a 2.5D planar slab, which has a different texture on each side.
The slab is 30x20 mm large and 2.5 mm thick. Top: On the first side of the
slab, our method achieves a significantly better color accuracy, saturation,
and contrast than the state of the art. Bottom: The differences on this side
are more subtle: our result overall appears “smoother” and managed to
reproduce the dark edges better.

edge sharpness. Using different weighting for the components 𝐸1,
𝐸2, and 𝐸3, one can steer the optimization trajectory. The parameter-
space exploration shown in Fig. 19 adjusts the relative weights for
the latter two, while keeping 𝐸1 (color accuracy) constant.
We observe that increasing values of 𝐸2 in the first row leads

to higher contrast around edges, as can be seen in the outlines of
the chair and bed on the left side. This also leads to desaturation of
colors for example on the blue wall.

Increasing the weight for 𝐸3 leads to even stronger contrast, but
at the cost of severe hue shifts towards the higher values (bottom
row). The combination of all three metrics towards the bottom right
inherits the properties of individual components.
Co-optimizing different visual stimuli seems to lead to them in-

fluencing one another. This is likely because maximum contrast
and best color fidelity are conflicting goals: A black to white step
function has maximum contrast, but no color.

Table 3. Summary of optimization results. We use three sets of hardware:
⊡ denotes a NVIDIA RTX 3080 (10 GB) and ∗ means using six materials
instead of five. ♮ runs on a NVIDIA TITAN RTX (24 GB). [Sumin et al. 2019]
is run on a machine with 20 cores (non-HT) †.

Model Size Volume
voxels

Surface
voxels

Total
runtime Samples Setup

Orange 35 mm 3.70 M 359 k 215 min 128 spp ⊡∗

Slab

15 mm 0.69 M 118 k 50 min 128 spp ⊡

30 mm 2.73 M 405 k
424 min 128 spp ⊡

430 min 128 spp ⊡∗
342 min 512 spp †

Cat 60 mm 8.62 M 637 k
1350 min 128 spp ♮

1429 min 512 spp †

Nefertiti 40 mm 10.50 M 576 k
1042 min 32 spp ♮

3071 min 512 spp †

General 3D geometry. Combining our previous results into a prac-
tical setting, we run our framework on several objects with general
3D geometry. Fig. 1 (right) shows them side-by-side to illustrate
their scale. The cat model shown in Fig. 11 was selected for its com-
plex curvature, thin features such as the ears and tail, and a highly
detailed face texture. A 3D scan of Nefertiti was chosen for its very
thin, but high-contrast details such as the eyebrows, eyeliner, and
necklace area. Optimization results and a comparison to the state of
the art is shown in Fig. 10.

Computational cost. All models shown were run on consumer-
grade hardware equipped with either the NVIDIA TITAN RTX
(24 GB memory) or 3080 RTX (10 GB memory) GPU. Table 3 de-
tails runtimes and setups used for individual models and shows
that the total runtimes of our pipeline and the method of Sumin
et al. [2019] seem roughly comparable, though a GPU-based imple-
mentation of their method would likely shift this intuition in their
favor. That already takes into account that we adjusted our learning
rate to achieve good convergence within about 150-350 iterations,
whereas the heuristic pipeline of Sumin et al. [2019] usually reaches
the lowest error in 10 steps.
In Fig. 18, we illustrate that our runtimes scale roughly linearly

with respect to model sizes. In Fig. 17, we show how our method
can be adjusted in a “time vs. quality” manner, where decreasing
the sample counts results in faster runtimes, but lower quality of
details.

Initialization. It can be suspected that the optimized objective
function contains many local minima, most of them having very
similar values. With gradient descent being a local optimization
method, convergence to the absolute global minimum cannot be
guaranteed, but we can show that even different initializations still
converge to an almost identical error value. Results of this initializa-
tion study can be found in Figs. 12, 13 and 14 for the 30 mm × 20 mm
slabmodel. Initializingwith results obtained from Sumin et al. [2019]
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Our method Target State of the art
[Sumin et al. 2019]

Fig. 10. A 4 cm tall reproduction of a 3D-scannedmodel of Nefertiti. Difficult
areas are the eye region, where our method shows better detail, and the
necklace, where Sumin et al. [2019] excels in contrast

Our method Target State of the art
[Sumin et al. 2019]

Fig. 11. Cat model: Its orange-brown texture seems to be especially tough
to match. Notice that our result is slightly darker, towards brown, while
Sumin et al. [2019] are slightly lighter.

50 100 150 200 250

0.3

0.35

0.4

step

loss
white

[Sumin19]
gray

random

Fig. 12. Convergence plots of different initializations using the
30 mm × 20 mm slab model.

Reference (a) white (b) [Sumin2019]

Fig. 13. Comparing different initializations of the 30 mm slab model. (a)
our default initialization with a 97% white mixture, (b) initialized with the
converged result from [Sumin et al. 2019]

greatly accelerates the convergence of the optimization. Without
this informed start, the fastest convergence is obtained when ini-
tializing with white, while a random mixture needs more iterations
to converge. Inspecting the results reveals small differences. Initial-
izing the mixture with random values seems to result in mixtures
with less black, suggesting that the optimizer chooses to favor dark-
ening by using a combination of CMY. The resulting images show
higher saturation, but lower contrast. Initializing the pipeline with
a solution from Sumin et al. [2019] shows no significant differences
to the white initialization. We investigated this further by studying
differences in L,a,b seperately, and found the biggest delta in the
sky lightness in the scene of Fig. 13.

5.2 Applications
A key feature of the proposed pipeline is the ease of tailoring it
to different use cases. By changing the behavior of its individual
components, the objective of the optimization can be adapted. In the
following, we show how two previously complex tasks that required
specialized solutions naturally follow from our parametrization.

Extended Ink-set. Introducing a new (specialized) printing mate-
rial is useful for increased color accuracy and spectral reproduc-
tion [Shi et al. 2018], controlling reflectance [Piovarči et al. 2020],
and co-optimizing mechanical and optical parameters [Morovič et al.
2019]. In our pipeline, the optical properties of new materials are
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Fig. 14. Average ink usage of the top 8 layers of the lower half of the 30𝑚𝑚

slab model (Fig. 13), different initializations
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Fig. 15. Material-selection use-case for a printer that can use 6 different
materials. Running all possible

(6
4
)
combinations of the first 6 inks from

Tab. 2, plus Black and White, reveals the combination Cyan, Magenta,
Magenta2, Yellow having the lowest loss value and thus being the inkset
best suited for reproducing the target on the printer.

simply added to the available set with material mixing (Eq. 9) and
quantization (Sec. 4.7) adjusted accordingly. An example of this
can be seen in Fig. 1, where an additional sixth, orange material is
being used to improve the color on the pathway. The associated
time penalty is negligible as shown in Table 3. This is due to the
fact that rendering and computing the light-transport derivatives
always takes place in RGB. The material mixture is handled before
the rendering, and after radiative backpropagation, so the associ-
ated memory bandwidth impact is very small. Previous methods
required expensive rebuilding or measuring of color tables whereas
our method adapts to new material combinations on the fly.
Furthermore, because of this flexibility, it becomes feasible to

tackle the long-standing ink selection problem from 2D printing. This
is analogous to hyperparameter-optimization in machine learning
where an outer loop is optimizing the meta-parameters of the inner
training loop.

The convergence graph in Fig. 15 reveals a certain optimal ink-set
for the 15 mm slab model shown in Fig. 1. For this proof-of-concept
we show a brute-force search but note that more sophisticated
strategies (e.g., Shi et al. [2018] and Ansari et al. [2020]) could be
transferred from the aforementioned fields in the future.

Translucency. A special case of an extended material set is the
addition of transparent ink. Brunton et al. [2018] perform informed,
probabilistic replacement of white ink with transparent material
to reproduce perceptual transparency cues. In a similar way, we
can constrain the optimizer to a use a fixed amount of transparent
material in order to enforce translucency in the optimization result.

(a) Opaque (b) Translucent

Fig. 16. Translucency reproduction of an orange slice. (a) shows the opti-
mization results using the opaque material set and a dE76 loss function. In
(b) the optimizer is constrained to 80% transparent ink for the pulp.

One such example can be seen in Fig. 16, where the optimizer is
constrained to 80% transparent material for the pulp of the orange,
and was allowed to choose freely in the peel. This results in a more
realistic appearance reproduction compared to the opaque version
in Fig. 16a.
Translucent appearance is a perceptively highly complex phe-

nomenon. The human visual system depends on certain visual cues
to disambiguate the appearance of different materials, such as color
saturation, edge sharpness and the appearance under side- or back-
lighting [Fleming and Bülthoff 2005; Xiao et al. 2014, 2020].

Future work can build on this and integrate spatially-varying con-
straints, or perceptive metrics that include translucency, to replicate
artist-friendly control akin to Brunton et al. [2018] or directionally-
dependent goals as discussed by Zheng et al. [2020].

6 CONCLUSION
Resin-based full-color 3D-printing is capable of creating objects
with very complex light transport properties. Voxels deep inside of
the volume can have significant influence on the surface appearance
of printouts, depending on how the surrounding volume is shaped
and configured. Modeling these interdependencies on a global scale
can give a degree of control over the results that was previously
not attainable. Combining Monte Carlo estimates of light transport
gradients from a physically based renderer with a volume parame-
terization based on the actual printer materials gives such a model.
Its application in the context of gradient-descent optimization with
a suitable loss function leads to results that come close to what is
possible given the physical limits of the printing process.

The flexibility of this approach is illustrated by the fact that prob-
lems that previously required specialized solutions turn into straight-
forward extensions of the same pipeline. The extended inkset, inkset
optimization and translucency use-cases have shown that. Our met-
rics parameters and setting the sampling rate for the MC estimates
give intuitive controls over the optimization process on a "color vs.
contrast" and "time vs. quality" basis.
The ambiguities that stem from the available materials can ac-

tively be exploited by the optimizer to attain a good match, instead
of complicating the creation of pre-computed mapping tables. It
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is intriguing to see that in this highly non-convex solution space,
there are fundamentally different solutions that still seem to equally
satisfy the complicated quality assessment of human perception, as
shown in the comparison of the herein presented method with the
previous state of the art.

Further work still remains. The way the human visual system per-
ceives different features proves to be very difficult to distill into a con-
clusive metric, as the field of image quality- and image-difference-
metrics shows. Implementing new discoveries in this field into the
pipeline will be easy, as long as they are differentiable.

Furthermore, with the optimization being gradient-based, it only
explores a limited subset of the whole solution space. One can sus-
pect that better solutions exist, such as building transparent chan-
nels inside the volume that would optically connect areas that are
geometrically far from each other. But such complex configurations
cannot be found by the optimizer without a good initialization.

ACKNOWLEDGMENTS
We thank Sketchfab users Evgeni Yanev (Orange Slice), C. Yamahata
and Thot_htp (Nefertiti) for their 3D models, and the reviewers for
their valuable feedback. This work has received funding fromGAUK
project 1164620 of Charles University, and by the Czech Science
Foundation under grant number GAČR-19-07626S. This work was
further supported by the Charles University grant SVV-260588.

REFERENCES
Martín Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen, Craig Citro,

Greg S. Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat,
Ian Goodfellow, Andrew Harp, Geoffrey Irving, Michael Isard, Yangqing Jia, Rafal
Jozefowicz, Lukasz Kaiser, Manjunath Kudlur, Josh Levenberg, Dan Mané, Rajat
Monga, Sherry Moore, Derek Murray, Chris Olah, Mike Schuster, Jonathon Shlens,
Benoit Steiner, Ilya Sutskever, Kunal Talwar, Paul Tucker, Vincent Vanhoucke, Vijay
Vasudevan, Fernanda Viégas, Oriol Vinyals, PeteWarden,MartinWattenberg,Martin
Wicke, Yuan Yu, and Xiaoqiang Zheng. 2015. TensorFlow: Large-Scale Machine
Learning on Heterogeneous Systems. http://tensorflow.org/ Software available
from tensorflow.org.

Navid Ansari, Omid Alizadeh-Mousavi, Hans-Peter Seidel, and Vahid Babaei. 2020.
Mixed integer ink selection for spectral reproduction. ACM Transactions on Graphics
(Proc. SIGGRAPH Asia) 39, 6 (Nov. 2020), 255:1–255:16. https://doi.org/10.1145/
3414685.3417761

Thomas Auzinger, Wolfgang Heidrich, and Bernd Bickel. 2018. Computational design
of nanostructural color for additive manufacturing. ACM Transactions on Graphics
(Proc. SIGGRAPH) 37, 4 (July 2018), 159:1–159:16. https://doi.org/10.1145/3197517.
3201376

Vahid Babaei, Kiril Vidimče, Michael Foshey, Alexandre Kaspar, Piotr Didyk, and
Wojciech Matusik. 2017. Color Contoning for 3D Printing. ACM Transactions on
Graphics (Proc. SIGGRAPH) 36, 4 (July 2017), 124:1–124:15. https://doi.org/10.1145/
3072959.3073605

Atılım Günes Baydin, Barak A Pearlmutter, Alexey Andreyevich Radul, and JeffreyMark
Siskind. 2017. Automatic Differentiation in Machine Learning: a Survey. Journal of
Machine Learning Research 18, 1 (2017), 5595–5637.

Alan Brunton, Can Ates Arikan, Tejas Madan Tanksale, and Philipp Urban. 2018. 3D
Printing Spatially Varying Color and Translucency. ACM Transactions on Graphics
(Proc. SIGGRAPH) 37, 4 (July 2018), 157:1–157:13. https://doi.org/10.1145/3197517.
3201349

Alan Brunton, Can Ates Arikan, and Philipp Urban. 2015. Pushing the Limits of 3D
Color Printing: Error Diffusion with Translucent Materials. ACM Transactions on
Graphics 35, 1 (Dec. 2015), 4:1–4:13. https://doi.org/10.1145/2832905

Chengqian Che, Fujun Luan, Shuang Zhao, Kavita Bala, and Ioannis Gkioulekas. 2020.
Towards Learning-based Inverse Subsurface Scattering. In 2020 IEEE International
Conference on Computational Photography, ICCP 2020, Saint Louis, MO, USA, April
24-26, 2020. IEEE, New York, NY, USA, 1–12. https://doi.org/10.1109/ICCP48838.
2020.9105209

Guan-Hao Chen, Chun-Ling Yang, Lai-Man Po, and Sheng-Li Xie. 2006. Edge-Based
Structural Similarity for Image Quality Assessment. In IEEE International Conference
on Acoustics Speech and Signal Processing Proceedings, Vol. 2. IEEE, New York, NY,
USA, 933–936.

Yue Dong, Jiaping Wang, Fabio Pellacini, Xin Tong, and Baining Guo. 2010. Fabricating
spatially-varying subsurface scattering. ACM Transactions on Graphics (Proc. SIG-
GRAPH) 29, 4 (July 2010), 62:1–62:10. https://doi.org/10.1145/1778765.1778799

John Duchi, Elad Hazan, and Yoram Singer. 2011. Adaptive Subgradient Methods for
Online Learning and Stochastic Optimization. Journal of Machine Learning Research
12, Jul (2011), 2121–2159.

John Duchi, Shai Shalev-Shwartz, Yoram Singer, and Tushar Chandra. 2008. Efficient
Projections onto the L1-Ball for Learning in High Dimensions. In 25th International
Conference on Machine Learning (Helsinki, Finland) (ICML ’08). Association for
Computing Machinery, New York, NY, USA, 272–279. https://doi.org/10.1145/
1390156.1390191

Oskar Elek, Denis Sumin, Ran Zhang, Tim Weyrich, Karol Myszkowski, Bernd Bickel,
Alexander Wilkie, and Jaroslav Křivánek. 2017. Scattering-aware Texture Reproduc-
tion for 3D Printing. ACM Transactions on Graphics (Proceedings of SIGGRAPH Asia)
36, 6 (Nov. 2017), 241:1–241:15. https://doi.org/10.1145/3130800.3130890

Roland W Fleming and Heinrich H Bülthoff. 2005. Low-level image cues in the per-
ception of translucent materials. ACM Transactions on Applied Perception (TAP) 2, 3
(2005), 346–382.

J. R. Frisvad, S. A. Jensen, J. S. Madsen, A. Correia, L. Yang, S. K. S.
Gregersen, Y. Meuret, and P.-E. Hansen. 2020. Survey of Models for
Acquiring the Optical Properties of Translucent Materials. Computer
Graphics Forum 39, 2 (2020), 729–755. https://doi.org/10.1111/cgf.14023
arXiv:https://onlinelibrary.wiley.com/doi/pdf/10.1111/cgf.14023

Ioannis Gkioulekas, Anat Levin, and Todd Zickler. 2016. An Evaluation of Com-
putational Imaging Techniques for Heterogeneous Inverse Scattering. In Euro-
pean Conference on Computer Vision. Springer, Berlin, Germany, 685–701. https:
//doi.org/10.1007/978-3-319-46487-9

Ioannis Gkioulekas, Shuang Zhao, Kavita Bala, Todd Zickler, and Anat Levin. 2013.
Inverse volume rendering with material dictionaries. ACM Transactions on Graphics
(TOG) 32, 6 (2013), 162:1–162:13. https://doi.org/10.1145/2508363.2508377

Miloš Hašan, Martin Fuchs, Wojciech Matusik, Hanspeter Pfister, and Szymon
Rusinkiewicz. 2010. Physical Reproduction of Materials with Specified Subsur-
face Scattering. ACM Trans. Graph. 29, 4, Article 61 (July 2010), 10 pages. https:
//doi.org/10.1145/1778765.1778798

Roman Hochuli, Samuel Powell, Simon Arridge, and Ben Cox. 2016. Quantitative pho-
toacoustic tomography using forward and adjoint Monte Carlo models of radiance.
Journal of biomedical optics 21, 12 (2016), 126004.

Pramook Khungurn, Daniel Schroeder, Shuang Zhao, Kavita Bala, and Steve Marschner.
2015. Matching Real Fabrics with Micro-Appearance Models. ACM Trans. Graph.
35, 1 (2015), 1–1.

Tzu-Mao Li, Miika Aittala, Frédo Durand, and Jaakko Lehtinen. 2018. Differentiable
monte carlo ray tracing through edge sampling. ACM Transactions on Graphics
(TOG) 37, 6 (July 2018), 125:1–125:12. https://doi.org/10.1145/3306346.3322954

M Ronnier Luo, Guihua Cui, and Bryan Rigg. 2001. The development of the CIE 2000
colour-difference formula: CIEDE2000. Color Research & Application: Endorsed by
Inter-Society Color Council, The Colour Group (Great Britain), Canadian Society for
Color, Color Science Association of Japan, Dutch Society for the Study of Color, The
Swedish Colour Centre Foundation, Colour Society of Australia, Centre Français de la
Couleur 26, 5 (2001), 340–350.

A. Luongo, V. Falster, M. B. Doest, M. M. Ribo, E. R. Eiriksson, D. B. Pedersen, and J. R.
Frisvad. 2020. Microstructure Control in 3D Printing with Digital Light Processing.
Computer Graphics Forum 39, 1 (2020), 347–359. https://doi.org/10.1111/cgf.13807
arXiv:https://onlinelibrary.wiley.com/doi/pdf/10.1111/cgf.13807

M. Magnor, G. Kindlmann, N. Duric, and C. Hansen. 2004. Constrained inverse volume
rendering for planetary nebulae. In IEEE Visualization 2004. IEEE, New York, NY,
USA, 83–90. https://doi.org/10.1109/VISUAL.2004.18

K McLaren. 1976. XIII - The development of the CIE 1976 (L* a* b*) uniform colour
space and colour-difference formula. Journal of the Society of Dyers and Colourists
92, 9 (1976), 338–341.

Peter Morovič, Ján Morovič, Ingeborg Tastl, Melanie Gottwals, and Gary Dispoto. 2019.
Co-optimization of color and mechanical properties by volumetric voxel control.
Struct Multidisc Optim 60, 3 (Sept. 2019), 895–908. https://doi.org/10.1007/s00158-
019-02240-8

Merlin Nimier-David, Sébastien Speierer, Benoît Ruiz, andWenzel Jakob. 2020. Radiative
Backpropagation: An Adjoint Method for Lightning-Fast Differentiable Rendering.
Transactions on Graphics (Proceedings of SIGGRAPH) 39, 4 (July 2020), 146:1–146:15.
https://doi.org/10.1145/3386569.3392406

Merlin Nimier-David, Delio Vicini, Tizian Zeltner, and Wenzel Jakob. 2019. Mitsuba 2:
A Retargetable Forward and Inverse Renderer. Transactions on Graphics (Proceedings
of SIGGRAPH Asia) 38, 6 (Dec. 2019), 203:1–203:17. https://doi.org/10.1145/3355089.
3356498

Isabel Molina Orihuela and Mehran Ebrahimi. 2019. An Efficient Algorithm for Comput-
ing the Derivative of Mean Structural Similarity Index Measure. In Image Analysis
and Recognition, Fakhri Karray, Aurélio Campilho, and Alfred Yu (Eds.). Springer
International Publishing, Cham, 55–66.

ACM Trans. Graph., Vol. 40, No. 4, Article 178. Publication date: August 2021.



178:14 • Nindel et al

Target 128 spp
1.0x

64 spp
1.9x faster

32 spp
3.9x faster

16 spp
6.8x faster

8 spp
10.9x faster

4 spp
18.2x faster

Fig. 17. Illustrating how the convergence can be adjusted in a “time vs. quality” manner. A 30 mm × 20 mm × 2.5 mm double-sided slab, identical to the one in
Fig. 9, was optimized with the same learning rate, but different sample counts per texel (spp). The Δ𝐸76-based metric was used for simplicity, so 𝛾2 = 𝛾3 = 0.
Notice that lowering spp results in proportionally faster iterations, but lose details due to the noise in the Monte Carlo estimates of the derivatives. Despite
the 32 spp optimization being almost four times faster, the differences will be almost negligible when looking at the object from further away.
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