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1 FITTING THE IN-SCATTERED RADIANCE FUNCTION

1.1 Choice of Mathematical Approach
We first extensively experimented with techniques similar to that of
the Perez et al. [1993] model and its descendants. The approach of
these models is to assume the sky-dome radiance patterns to consist
of separable featurtes – e.g. a gradient between the zenith and the
horizon plus a radial bright patch around the Sun. In these models,
radiance is calculated as a function of ray direction (given as a pair
of angles, a “solar” and a “zenith” angle) and a small number of
configuration factors: numbers that control the strength of each
individual feature, and which are found by means of nonlinear
optimisation. This approach works as long as the number of features
is kept low: but that obviously limits the range of radiance patterns
the model can reliably reproduce.
For our purposes, we need an expression that works for a full

sphere instead of just the upper hemisphere: in particular, it has to
be able to handle the discontinuity which is present at the horizon in
most radiance configurations. It also has to have terms that approxi-
mate the features of the sky well, including two phenomena specific
to twilight skies: post sunset, the Earth casts a shadow onto the
atmosphere, which produces a wedge of darker color at the horizon.
Above it, there is a second wedge of brighter pinkish back-scattered
light (called “Belt of Venus” or “anti-twilight arch”): Fig. 9 in the
paper shows how these features develop as the sun goes beneath
the horizon.

Theoretically, a suitable mix of features could be devised by edu-
cated guess and trial and error. However, even if we managed to find
such features, the fitting process becomes slower with each new
parameter in a non-linear fashion, plus more memory consuming
and prone to getting stuck in local minima. Extensive experimenta-
tion showed the old feature-based approach is simply not suitable
for radiance fitting on the full sphere anymore: there are too many
features in fully spherical radiance patterns which cannot be cleanly
separated. This even applies to models which attempted to separate
just the polarisation patterns: [Kreuter and Blumthaler 2013] also
only managed to work with the upper hemisphere.
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This is why we opted for an entirely new approach: we obtain
the radiance pattern of the sky as a sum of outer products of single
variable functions. The functions themselves are free-form, tab-
ulated and were obtained by Canonical Polyadic Decomposition
(CPD) [Kolda and Bader 2009], a process very similar to SVD low
rank approximation. This approach can be thought of as a specialised
compression scheme, however it is also essentially a decomposition
of the radiance pattern into an optimal orthogonal set of “features”.
The methods that we describe in the next sections all rely on

tensor and matrix decompositions. An alternative choice could have
been to use neural networks, similar to [Satılmış et al. 2016][Hold-
Geoffroy et al. 2019][Zhang et al. 2019]. However, while learning
approaches do have merits, reliability of reconstruction is not one
of them. Additionally, they tend to incur a higher runtime overhead
than our model.

1.2 Input Parametrisation
It is desirable to choose a parametrisation in which the features
are as axis-aligned as possible, as that makes the input matrix easy
to decompose into separable matrices by CPD / SVD. For a given
solar elevation 𝜂, the natural parametrisation of a sky-dome model
is the view direction, represented as a unit vector −→𝑣 . For better
separability we transform it into a set of angles (see Fig. 1):
The first one is the solar angle 𝛾 . The solar angle is the angle

formed by the view direction and the direction towards the centre
of the solar disc. This makes the gradient of the solar glow roughly
parallel to the first axis – roughly because, as can be seen from
reference solutions obtained with libradtran, the solar glow does
not actually form a perfect circle around the sun, but tends to extend
further to the sides and downward.

Fig. 1. The angles used in the model.
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We also need the model to describe Earth’s shadow. So when
fitting images of post-sunset skies, we chose the shadow angle 𝜎 to
be second input angle / axis. This angle is formed by the view ray
and a shadow point – an imaginary point lying at 90◦ away from the
centre of the solar disc in the direction of the zenith. The shadow
line is perpendicular to the solar angle gradient and parallel to the
shadow angle gradient, which makes it aligned with both axes.
For regular daytime skies, no shadow is visible, and using the

shadow angle as an input parameter provides no benefit since its
axis is not parallel or perpendicular to any feature visible on the
sky. We instead use the zenith angle 𝜃 as the second parameter for
these configurations. This is the angle formed by the view direc-
tion and the direction towards the zenith. This makes the horizon
perpendicular to the axis defined by the horizon angle.

The model switches between these two modes at solar elevation
0◦, when the zenith point aligns exactly with the shadow point,
which makes the transition seamless. To present this approach in
a unified manner, we introduce an angle 𝛼 , which we for lack of a
better name call simply the zenith/shadow angle, which is equivalent
to the zenith angle for solar elevations greater than 0◦ and equivalent
to the shadow angle otherwise. Note that this makes the horizon not
aligned with any axis in post-sunset skies, which makes fitting of
the horizon tricky. The image emphasis process described later was
developed to make horizon fitting more accurate in these conditions.

1.3 High Altitude Angle Correction
Our model consists of a finite number of fitted sky-dome configu-
rations, and intermediate states have to be interpolated in a way
that generates plausible sky-dome appearance. It is a key feature of
the CPD / SVD separation that this is actually possible - at least for
some sky-dome features.

A case that works is the circumsolar glow: there, taking the fitted
data for a specific solar elevation (e.g. 𝜂 = 20◦), and using it to
generate a different elevation (e.g. 𝜂 = 30◦) yields useable results:
the −→𝑣 → (𝛾, 𝛼) re-projection process warps the image correctly,
and the solar glow gets moved to the right place.

This unfortunately does not work for the horizon, as that changes
in a manner that is too complex for simple re-projection to handle.
It only appears as a line at 𝜃 = 90◦ for altitude = 0: and as can be
seen in Fig. 8 in the paper, it moves downwards for higher observer
altitudes, and turns into a curve. If we had data for just two observer
altitudes, e.g. 100 m, and 100 km, interpolation between these states
would contain two blended horizons, instead of a single one.

We fix this issue via the way the 𝜃 and 𝜎 angles (and thereby also
𝛼) are calculated. If the view direction −→𝑣 is tangent to the Earth’s
surface, its 𝜃 will always be 90◦, regardless of altitude.

The un-corrected way of calculating the angles is as follows: the
directions towards the solar, zenith and shadow points are given as
unit vectors −→𝑠 , −→𝑧 and −→𝑢 . Assuming that the z-axis points upwards,
−→𝑧 = (0, 0, 1), the angles can be calculated as follows:

𝛾 = cos−1 (−→𝑣 · −→𝑠 )
𝜃 = cos−1 (−→𝑣 · −→𝑧 )
𝜎 = cos−1 (−→𝑣 · −→𝑢 )

(1)
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Fig. 2. Horizon correction geometry. 𝑟 - Earth radius, 𝑎𝑙𝑡 - camera altitude,
𝑐 - correction length, 𝑡 - tangent length, 𝑝𝑡 - point of tangency, 𝑝𝑜 - virtual
ray origin.

With an observer altitude above ground, the tangent from the
camera origin towards the horizon (𝑎 in Fig. 2) is not perpendicular
to the zenith direction −→𝑧 . To correct that, we project the point of
tangency 𝑝𝑡 onto the line from Earth’s centre to the observer to
obtain the virtual ray origin, 𝑝𝑜 . We denote

−→
𝑣 ′ the direction from

𝑝𝑜 to 𝑝𝑡 . The direction
−→
𝑣 ′ can be expressed in terms of the original

direction −→𝑣 , camera altitude 𝐴𝑙𝑡 and Earth radius 𝑅 as:

−→
𝑣 ′ = normalize(−→𝑣 − −−−→𝑐𝑜𝑟𝑟 ) (2)

with the correction vector −−−→𝑐𝑜𝑟𝑟 being defined as:

−−−→𝑐𝑜𝑟𝑟 = (0, 0, 𝑐
𝑡
)

𝑐 = 𝑟 + 𝑎𝑙𝑡 − 𝑟2

𝑟 + 𝑎𝑙𝑡

𝑡 =
√
(𝑟 + 𝑎𝑙𝑡)2 − 𝑟2

(3)

This correction to the view direction is applied in the model for
the purpose of calculating the zenith and shadow angles.

1.4 The Core Function
The function which evaluates the in-scattered radiance is a function
of two parameters 𝛾, 𝛼 . The function is internally represented as an
outer product of two single parameter functions:

F(𝛾, 𝛼) =
𝑛∑
𝑖=1
F
(𝑖)
𝑠𝑜𝑙𝑎𝑟

(𝛾) · F(𝑖)
𝑧𝑒𝑛𝑖𝑡ℎ/𝑠ℎ𝑎𝑑𝑜𝑤 (𝛼) (4)

The functions F𝑠𝑜𝑙𝑎𝑟 and F𝑧𝑒𝑛𝑖𝑡ℎ/𝑠ℎ𝑎𝑑𝑜𝑤 are tabulated and pro-
vided as part of the model. The tabulated functions are obtained by
re-projecting the fish-eye image into the (𝛾, 𝛼) space, essentially
producing a 2D look-up table of F(𝛾, 𝛼), and then decomposing the
look-up table into outer vector products using CPD. The process is
described in detail in Sec. 1.6.

1.5 Improved Horizon Fitting with Image Emphasis
Recall that in order to make the decomposition perform properly, the
angle 𝛼 was defined so that the horizon is a horizontal line in the re-
projected image. This only holds for daytime solar elevations: post
sunset the horizon is not axis-aligned anymore, so the composition
performs poorly in those cases. To deal with this, we remove the
sharp horizon from the images prior to transforming them into
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(𝛾, 𝛼) space, and only then perform the fitting which then works
satisfactorily on a blurred horizon that is not axis aligned. This
process, which we call pre-emphasis, is reverted when using the
model: the de-emphasis we perform then returns the sharp horizon
transition to its place. We can accurately do this, as the location of
the horizon is analytically known.

The pre-emphasis process works as follows: We denote 𝐼𝑜𝑟𝑖𝑔 the
original input image and 𝐼𝑜𝑟𝑖𝑔 (𝑥) its value at pixel position 𝑥 . The
input image 𝐼𝑜𝑟𝑖𝑔 is cut into two parts very close to the horizon
line (we chose a value of 30′ above the horizon). The top/above
horizon part is left intact. The bottom / below horizon part is deleted
and infilled using the standard regionfill algorithm of Matlab
version 2019b, which smoothly interpolates inward. This essentially
removes the sharp horizon transition and leaves the bottom part of
the image a completely featureless smooth gradient with brightness
equivalent to that of the sky-dome area just above the horizon. We
denote this newly in-filled image as 𝐼𝑖𝑛𝑓 𝑖𝑙𝑙 . We also note a single
value 𝑔 denoting the ratio of the average brightness of the original
below-horizon area relative to the brightness of the newly in-filled
area.
By linearly interpolating between 𝐼𝑜𝑟𝑖𝑔 and 𝐼𝑖𝑛𝑓 𝑖𝑙𝑙 , we create a

guide image 𝐼𝑔𝑢𝑖𝑑𝑒 . The control value for the interpolation is a
function of 𝜅 and the pixel position. When 𝜅 is high, meaning that
the below-horizon part of the image was already bright enough in
the original, we mostly leave the original intact, except for the very
bottom part near the nadir, which we always replace by the infill,
because it’s generally always noisy.

𝐼𝑔𝑢𝑖𝑑𝑒 (𝑥) = lerp
(
𝐼𝑜𝑟𝑖𝑔 (𝑥), 𝐼𝑖𝑛𝑓 𝑖𝑙𝑙 (𝑥),𝑉𝑐 (𝑥)

)
𝑉𝑐 (𝑥) = sat

(
sat

(
𝜃 (𝑥) − 𝜋/2

𝜋/2

)
+ sat

(
𝜅 − 0.5
−0.2

)) (5)

Where:

• 𝑉𝑐 is the control value of the linear interpolation.
• sat is the saturate function that clamps the value to [0, 1].
• 𝜃 (𝑥) is the zenith angle value at pixel location 𝑥 .

The control value 𝑉𝑐 consists of two terms: the first one makes
sure that the original image is always gradually replaced by the
in-filled image, starting at 𝜃 = 90◦ (at the horizon) and progressing
towards 𝜃 = 180◦ (the nadir). The second term makes sure that if the
bottom part of the original image was too dark, it is replaced com-
pletely, the effect being gradually applied depending on 𝜅, starting
at 𝜅 = 0.5 and finishing at full strength at 𝜅 = 0.3.
Having the guide image ready, we calculate a pixel-wise ratio

between the guide and the original image:

𝐼𝑟𝑎𝑡𝑖𝑜 (𝑥) =
𝐼𝑜𝑟𝑖𝑔 (𝑥)
𝐼𝑔𝑢𝑖𝑑𝑒 (𝑥)

(6)

The ratio image is then used to define the de-emphasis, a function
of zenith angle 𝜃 :

𝐸 (𝑧) = mean
𝑥 ; 𝜃 (𝑥)=𝑧

𝐼𝑟𝑎𝑡𝑖𝑜 (𝑥) (7)

The function 𝐸 (𝑧) is tabulated and becomes part of the model
data. Next, the pre-emphasized image is calculated by applying the
inverse of the de-emphasis function:

𝐼𝑝𝑟𝑒𝑒𝑚𝑝ℎ (𝑥) =
𝐼𝑜𝑟𝑖𝑔 (𝑥)
𝐸 (𝜃 (𝑥)) (8)

This pre-emphasized image is then used as an input for CPD.

1.6 The Fitting Process
We now have all the components required to perform the fitting. To
recapitulate the whole fitting process:

(1) We start with 𝐼𝑜𝑟𝑖𝑔 . This is the reference rendering of the
sky-dome produced by the path-tracer.

(2) Pre-emphasis is performed on 𝐼𝑜𝑟𝑖𝑔 , yielding a pre-empha-
sised image 𝐼𝑝𝑟𝑒𝑒𝑚𝑝ℎ , and a de-emphasis function 𝐸.

(3) 𝐼𝑝𝑟𝑒𝑒𝑚𝑝ℎ is re-projected into (𝛾, 𝛼) space, essentially produc-
ing a two-dimensional look-up table of F(𝛾, 𝛼).

(4) The re-projected image is partially in-filled and filtered. More
on that later in this section.

(5) A CPD decomposition is performed, yielding pairs of one-
dimensional tabulated functions F(𝑖)

𝑠𝑜𝑙𝑎𝑟
and F(𝑖)

𝑧𝑒𝑛𝑖𝑡ℎ/𝑠ℎ𝑎𝑑𝑜𝑤 .

The final products of the fitting are:
• The de-emphasis function 𝐸

• The tabulated functions F(𝑖)
𝑠𝑜𝑙𝑎𝑟

and F(𝑖)
𝑧𝑒𝑛𝑖𝑡ℎ/𝑠ℎ𝑎𝑑𝑜𝑤 .

These constitute all the data required to render the sky-dome
using the analytical model.

We have chosen the dimensions of the (𝛾, 𝛼) re-projected image
to be 361 × 361 (i.e. 0.5◦/pixel since the valid values of 𝛾 and 𝛼 are
0◦ - 180◦). This image is computed by transforming each pair of 𝛾 ,
𝛼 values into the reference rendering followed by bilinear filtering
to avoid artefacts. This re-projected image is then decomposed into
an outer vector product using the CPD low rank approximation
algorithm. Note that in theory, we could extend this process by un-
wrapping the input into a three or even higher dimensional look-up
table, e.g. parametrised by (𝛾, 𝜃, 𝜎). CPD is a tensor decomposition
algorithm and would deal with the resulting tensor natively. The
problem of this approach is that the valid combinations of angles
form a 2D manifold inside this 3D space – in other words the tensor
is mostly undefined, which makes the decomposition unstable.

Even in 2D, the issue of undefined values requires us to in-fill parts
the re-projected image. Not all combinations of angles are valid,
e.g. in a sky where the sun is at the horizon there is no direction that
would correspond to both 𝛾 and 𝛼 being 0. The valid combinations
form a parallelogram, see Fig. 3. The CPD algorithm deals natively
with undefined values, however there is no guarantee what the
undefined part is going to look like in the resulting approximation. In
Sec. 1.3, we claimed that data from one sky-dome configuration can
be re-used e.g. for other solar elevations if it is suitably reprojected.
This is true, but a potential issue arises due to the changing shape
of the parallelogram of valid combinations: upon re-projection, we
might attempt to read from an undefined part of the (𝛾, 𝛼) image.

To fix this, the re-projected image has to be partially infilled. The
valid area of the tensor is dilated, and the missing data is again filled
using Matlab’s regionfill algorithm. The amount of dilation is the
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Fig. 3. Left: A single spectral channel of the input fisheye image in false
color. Solar elevation 8◦, observer altitude 15 m, so the image is almost com-
pletely zero below the horizon line. Middle: The same image transformed
to (𝛾, 𝛼 ) space: the valid combinations of 𝛾 and 𝛼 form a parallelogram. The
below-horizon part of the image is amplified by the pre-emphasis process.
Right: The (𝛾, 𝛼) remapping of a different sky-dome, solar elevation 55◦:
this illustrates the changing shape of the parallelogram of valid values.

minimal amount required to cover the intermediate values between
the provided fittings (see Table 2).
After in-filling, the tensor also has to be filtered, as CPD decom-

position not only retains noise present in the input, but moves it
to (𝛾, 𝛼) space: so instead of grain-like Monte Carlo noise, there are
ringing artefacts. To be useable, the final fitting has to be completely
devoid of any such artefacts: even the slightest unevenness is very
apparent in renderings, especially as they are usually dissimilar
across spectral channels, and show up as rainbow effects. So the
reference renderings are filtered (using the wdenoise wavelet noise
reduction algorithm found in Matlab version 2019b), and after the
image is reprojected to a tensor and in-filled, it is again filtered,
this time using a gaussian blur with 𝜎 = 1 both in the solar and
zenith/shadow axis (recall that the resolution of the tensor is 0.5◦
per pixel).
Regarding the decomposition itself, we have chosen to use de-

composition rank 𝑛 = 9, i.e. the decomposition produces ten sets of
vectors. In all images we have tested, 𝑛 = 9 produces a decomposi-
tion that explains > 99.5 % of the variance in the tensor.
The tensor decomposition produces vectors of length 361 (0.5◦

increments). These do not have to be distributed in their entirety in
the final model: they essentially represent tabulated functions, and
the samples do not have to be placed uniformly. We have chosen to
sample F𝑠𝑜𝑙𝑎𝑟 densely at lower angles (areas directly surrounding
the sun) and sparsely around the anti-solar point, giving us satis-
factory results at 275 samples. Similarly, F𝑧𝑒𝑛𝑖𝑡ℎ/𝑠ℎ𝑎𝑑𝑜𝑤 is sampled
sparsely around the zenith and nadir and densely around the hori-
zon, giving us 205 samples. The same approach has been used for
the de-emphasis function, which is sampled more densely around
the horizon, giving us 118 samples.

1.7 The evaluation process
The complete radiance function is evaluated as follows: for a given
viewing direction the angles 𝛾 , 𝛼 and 𝜃 are computed first. Then
the 9 pairs of tabulated functions F(𝑖)

𝑠𝑜𝑙𝑎𝑟
(𝛾), F(𝑖)

𝑧𝑒𝑛𝑖𝑡ℎ/𝑠ℎ𝑎𝑑𝑜𝑤 (𝛼) are
looked up and combined according to equation 4. Finally, the result
is multiplied by looked-up value of the de-emphasis function 𝐸 (𝜃 ).

2 FITTING ATMOSPHERIC TRANSMITTANCE
For the atmospherical transmittance, we parameterise the atmo-
sphere by altitude from ground level 𝑎𝑙𝑡 and distance along the
planet surface 𝑑 , see Fig. 4. This is motivated by a similar argument
to Sec. 1.2 in that it is desirable to keep features as axis-aligned as
possible; in our case, features are related to the 1D distribution of
atmospheric constituents which is always aligned with the normal
of the planet leading to the 𝑎𝑙𝑡, 𝑑 parametrisation. Transmittance is
computed at the same set of altitudes as the in-scattered radiance
model using ratio tracking at a set of points. These points are non-
linearly distributed in the region of the atmosphere which covers the
maximum viewable distances from the camera and are distributed
to capture aspects of the atmosphere such as inversion layers and
the transmittance falloff with distance; however, any other set of
points can be used.

When applying the Singular Value Decomposition (SVD) to com-
press the data, we first non-linearly transform the data via a square
root to boost small transmittance values which allows us to use a
lower rank approximation than using untransformed data.We exper-
imented with other invertible non-linear transforms, but the square
root gave the best results and is fast to invert at runtime. The SVD
produces a sorted list of eigenvectors and values𝑈 Σ𝑉 ∗ for each alti-
tude. Reconstruction at an altitude 𝑎𝑙𝑡 uses the first 𝑅 bases,𝑈𝑎𝑙𝑡 (𝑅),
with associated coefficients 𝐶𝑎𝑙𝑡 (𝑅) = Σ𝑎𝑙𝑡 (𝑅)𝑉 ∗

𝑎𝑙𝑡
(𝑅). 𝑈𝑎𝑙𝑡 (𝑅) is

𝑅 times the number of non-linearly distributed points for a single
atmosphere configuration and 𝐶𝑎𝑙𝑡 (𝑅) is 𝑅 times the number of
configurations. We use 𝑅 = 12, leading to a maximum absolute er-
ror over the dataset of 0.014. The supplementary materials provide
visual and numerical results for the transmittance component.

At runtime, the transmittance 𝜏 (𝑥1, 𝑥2) between two points in
the atmosphere 𝑥1 and 𝑥2 at a given wavelength is computed from
the reduced rank approximation. First, the basis coefficients cor-
responding to the atmospheric configuration and wavelength 𝐶

′
𝑅

are interpolated from the nearest nearest altitudes to 𝑥1. Then 𝑥2 is
projected into the 2D parametrisation, leading to 𝑎𝑙𝑡𝑥2 and 𝑑𝑥2 . The
inner product between the basis evaluated at 𝑎𝑙𝑡𝑥2 and 𝑑𝑥2 and 𝐶

′
𝑅

are then computed for each altitude:

alt

d

Fig. 4. Illustration of the 2D atmospheric parametrisation showing the
non-uniformly distributed set of points (pink dots) where transmittance is
calculated for the model.
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𝜏𝑎𝑙𝑡 (𝑥1, 𝑥2) = 𝑠𝑎𝑡

(〈
𝑈𝑎𝑙𝑡 (𝑅) (𝑎𝑙𝑡𝑥2 , 𝑑𝑥2 ) |𝐶

′

𝑎𝑙𝑡
(𝑅)

〉2)
(9)

This value is interpolated between altitudes resulting in the re-
quired transmittance value 𝜏 (𝑥1, 𝑥2).

3 VALIDATION AGAINST LIBRADTRAN

The dataset for fitting our analytical model was generated using
atmo_sim, an atmospheric path tracer which we developed our-
selves using some polarisation rendering infrastructure from the
ART framework [Wilkie 2018]. Details about why we chose to de-
velop our own system are available in Sec. 4.4 in the main article.
In this supplement, we provide a validation of the results computed
by atmo_sim against those obtained by libradtran, a scientific
software package for radiative transfer calculations within an atmo-
sphere [Emde et al. 2016].
For the comparisons, we use libradtran’s Monte Carlo radia-

tive transfer solver MYSTIC [Mayer 2009], which traces photons
at given wavelengths through the atmosphere. We run MYSTIC
individually for every single pixel at selected wavelengths 420 nm,
540 nm and 620 nm, which roughly corresponds to blue, green and
red, respectively. To get comparable outputs from atmo_sim, we
render spectral images with 46 bands with 10 nm spacing and ex-
tract corresponding single-wavelength data using the tonemap tool
from the ART toolchain. The comparison images show radiances
captured by a panoramic 180° × 180° camera with 90° towards the
zenith (top half) and 90° towards the ground (bottom half).

3.1 Atmosphere Without Aerosols
The first validation was done for a simple atmosphere without any
aerosols. The only molecules taken into account are N2, O2 and O3
(ozone) and their concentrations correspond to the U.S. Standard
Atmosphere from libradtran (see Sec. 3.2 in the main article).
In atmo_sim, we simulate Rayleigh scattering caused by N2 and

O2, and only take absorption into account for O3. For the N2 and O2
Rayleigh scattering cross sections, both atmo_sim and libradtran
use the same formula from Bodhaine et al. [1999, Equation 23].
For the O3 absorption cross sections, atmo_sim uses Gorshelev
et al. [2014], as shown in Fig. 4 of the main article.
Validations against MYSTIC (Fig. 6) were performed with a dif-

fuse ground albedo 0.2 for two different observer altitudes (0 km
and 10 km) and solar elevations (5° and 45°). The chosen altitudes
correspond to viewing the sky from the ground (0 km) and from
a commercial airplane (with typical flight altitudes around 10 km).
The elevation of 5° was chosen to validate the O3 absorption, as it
is most noticeable at low sun elevations. The difference images are
computed by dividing the radiances simulated by atmo_sim by the
radiances from MYSTIC, which shows which areas are brighter and
darker, respectively.
The average difference at solar elevation 45° is 1.0025 with an

average signal correlation of 0.99978. The error is uniformly dis-
tributed over the images with no apparent patterns.

At 5°, the average difference is 1.0002 but with a higher variance
than at 45°. The average signal correlation is 0.99960. Notice that
atmo_sim is darker at higher wavelengths, which is most likely due

to a slightly different O3 absorption curve, as this does not happen
when we remove O3 from the atmosphere.

Finally, notice that in some comparisons there is a 1 pixel hori-
zontal stripe of large differences between atmo_sim and MYSTIC.
The stripe is always located at the planet edge, i.e. at the horizon
for altitudes of 0 km, or slightly below the horizon for 10 km. These
artefacts are most likely caused by sub-pixel sampling and jittering
in atmo_sim, when for a pixel on the planet edge, some of the pho-
ton paths hit the planet and some do not. On the other hand, in our
script that evaluates MYSTIC, we always simulate the radiance in
the middle of a pixel, hence it is always either above or below the
planet edge with no jittering and randomness.

3.2 Atmosphere With Aerosols
We now take the simple atmosphere from Sec. 3.1 and extend it
by adding aerosols according to Hess et al. [1998], with concen-
trations corresponding to a continental average atmosphere from
libradtran. The aerosols include water-insoluble (INSO) particles
consistingmostly of soil and organicmaterials,water-soluble (WASO)
particles at 50 % humidity consisting of various sulfates, nitrates
and others, and finally black carbon (SOOT).

The optical properties of the different aerosols can be computed
as discussed in the documentation for the OPAC (Optical Properties
of Aerosols and Clouds) software package [Hess et al. 1998], and
are also available online1. In libradtran, the optical properties are
computed using Mie theory from the particle size distributions, and
using refractive indices from OPAC. In our atmo_sim verification,
we used the same absorption and scattering cross sections as used
in libradtran.
However, as discussed in Sec. 4.2.1 of the main paper, atmo_sim

uses analytical Henyey-Greenstein phase functions [Henyey and
Greenstein 1941] instead of precisely sampled phase functions from
libradtran. The parameters 𝑔 of WASO and SOOT aerosols are
very close matches to “real” Mie lobes we computed ourselves, while
we used more “blurry” asymmetry parameters provided by OPAC
for the INSO particles. The effect of this simplification is that the
circumsolar region has a considerably less “peaky” distribution of
energy right next to the solar disc. This, in turn, makes the result-
ing function easier to fit, and atmo_sim rendering converges faster.
However, it is worth noting that the more blurry asymmetry pa-
rameters we use are not per se unrealistic – they just deviate from
what the U.S. Standard Atmosphere datasets should contain, in that
the more blurry parameters correspond to different particles being
present, instead of the actual INSO ones. The remainder of the at-
mosphere remains exactly as specified. Validations against MYSTIC
(Fig. 7) were again performed in the same way as in Sec. 3.1.

As expected, due to the INSO phase function simplification dis-
cussed in the previous paragraph, the largest differences can be seen
in the immediate circumsolar region, which is especially noticeable
at 0 km and 45°. The inner parts of the solar glow are darker in
atmo_sim, and the outer parts are lighter. The “real” INSO particles
are very strongly forward-scattering, but we wanted to avoid using
such an extreme phase function in atmo_sim. So the more “blurry”
estimate provided by OPAC – possibly because they also had, at

1http://cds-espri.ipsl.fr/etherTypo/?id=989
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some point, a reason to avoid the very narrow “real” INSO lobes –
came in very handy for our purposes.
To verify that all the observable differences are indeed due to

the INSO scattering implementation in atmo_sim, we ran another
experiment with only INSO aerosols present, where we forced
libradtran to use the same Henyey-Greenstein phase function
with the same asymmetry parameters as in atmo_sim. As we can
see in Fig. 5, this completely eliminates all the noticeable differences
and results in a perfect match across all the wavelengths. Hence,
we conclude that the noticeable differences between atmo_sim and
libradtran are caused by us using aerosol phase functions that
are only approximated by the Henyey-Greenstein formula, and by
using blurred asymmetry parameters for the INSO particle class.

3.3 Conclusion
To summarise, we can see that the radiances simulated by our at-
mospheric path tracer atmo_sim which we used for generating our
reference dataset are good matches to results obtained with a well-
established research-grade atmospheric library libradtran and its
Monte Carlo radiative transfer solver MYSTIC.

Atmospheres without any aerosols yield almost exactly the same
results, which means that Rayleigh scattering and absorption are
simulated correctly. The addition of aerosols yields differences
caused by the analytical Henyey-Greenstein phase function ap-
proximation, which is especially noticeable around the sun as its
light spreads more. However, even then, the outer solar glow is only
less than 2 times as bright than in libradtran, which we consider
to be a perfectly valid approximation.

4 DATASET STATISTICS

4.1 Reference Dataset
The brute force rendered reference has 348 480 images ( = 6 visibili-
ties x 30 solar elevations x 22 observer altitudes x 4 ground albedos
x 11 wavelengths x 2 stokes vector components). The dataset size
is 255 GB in uncompressed form, 96 GB when compressed. It was
created by running 3960 render jobs, each of which gives result
images for 4 ground albedos times 11 wavelengths and two 2 Stokes
components. For the post sunset solar elevations, 200k samples
per pixel were used, for the remainder, 100k spp. We needed up
to 600 core hours per render job, which was computed on a scien-
tific supercomputing cluster (acknowledgments will be made in the
non-anonymous version of the paper).

4.2 Fitted dataset
We use a decomposition rank of 9 for the radiance image, and 5 for
the considerably smoother polarisation images. There are about 400
coefficients per fitted image. Currently, the size of a full polarisation-
capable dataset is 410 MB per visibility: 247 MB radiance data + 127
MB polarisation data + 36 MB transmittance data. Consequently,
the dataset for a non-polarising renderer is 283 MB.

5 FITTING STATISTICS
Each of the approximately 350k images was fitted separately, which
took about 1 core hour per fit.
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Fig. 5. Comparison of our Henyey-Greenstein phase function against a
tabulated phase function for INSO scatterers. The atmosphere only contains
molecules and INSO aerosols.Top: atmo_sim uses INSOHenyey-Greenstein
phase function (see text for details), libradtran uses their tabulated phase
function. Notice that our scattering is less forward, so the sun energy is
blurred in a wider area, which makes the inner part darker and outer part
brighter. Bottom: Both use the same Henyey-Greenstein phase function,
the difference disappears. Notation and scale: See caption of Fig. 6, where
the image notations and scales are explained.
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10 km altitude, 45° solar elevation

Fig. 6. Atmospheres without any aerosols at 0 km and 10 km altitudes (top, bottom) with solar elevations 5° and 45° (left, right). Notice that the radiances
simulated by atmo_sim are comparable to libradtran without any noticeable error patterns. With increasing wavelengths, our atmospheric model produces
slightly darker images, which only happens with an O3 layer and is most likely due to a different absorption cross section. The error lines at horizons are
discussed in the text. Notation and scale: The top two rows of every comparison show radiances with a color scale inW · sr−1 ·m−2 per wavelengths 420 nm,
540 nm and 620 nm separately in the three columns. The difference images are acquired by dividing atmo_sim radiances by libradtran radiances per pixel.
The color scale is normalised to show brighter and darker areas with an equivalent weight. The median, average and maximum absolute errors are computed
directly from the per-pixel divided radiances. The signal correlation coefficients are computed from the radiances flattened to a 1D array.
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Fig. 7. Similar as Fig. 6, but this time with INSO, WASO and SOOT aerosols from OPAC corresponding to a continental average concentration distribution from
libradtran. Notice that the color scales are the same as in Figs. 5 and 6, which allows us to see that errors appeared because of differently modelled aerosol
phase functions, which we discuss in the text. The errors are more pronounced around the solar disk due to our INSO phase function being less forward
scattering. Notation and scale: See caption of Fig. 6, where the image notations and scales are explained.
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Fig. 8. A low inversion layer on a clear autumn day in Central Europe. These photos were taken seconds apart from on board of a glider that was flying at
about 1000m above ground level. Fig. 9 shows the corresponding ground view after the flight. Note that the haze layer with its tops at around 500m above
ground level was homogeneous across the entire region: the strong forward scattering coming from the solar direction, and the comparative transparency in
the antisolar direction, moved with the aircraft viewpoint - the haze was not actually denser in the direction of the sun. Above such an inversion layer, the
viewing conditions are typically exceptionally clear: the mountaintops in the lowest image are between 100 km and 150 km away. Please note that this is an
example of a fairly sharp inversion layer transition at a lower altitude than the OPAC atmospheres we use in our model.

5.1 Fit Quality Analysis
One in eight of all images (every other albedo, elevation, altitude)
were selected for quality control of the obtained fit. This was done
via a comparison between the rendered references and renderings
that use the fit. This included a manual check for artefacts, but also
a systematic SNR analysis. For all images, the minimum SNR was
14.35, the maximum 34.15, and the mean 28.52. The lowest SNR
values were obtained for low solar elevations and high observer
altitudes, where there is a narrow bright orange wedge on one
side of the horizon: in this setting, the added horizon blur causes
the most damage. Samples of the automatically and systematically
generated comparison images which were manually viewed to check
for artefacts can be found in this supplement as EXRs: a tone-mapped
sample is shown in Fig. 10.
We also analysed the “end-to-end” error incurred by the whole

process we are using. A summary of our findings is that the follow-
ing components affect the end result:

• Noise in the reference images: this has some effect, but is
limited.

• The direct error incurred by the fit: this is the main source of
error.

• Error incurred by dataset compression: so far, this is just the
inaccuracies introduced by the conversion from double (all
our computations are performed as doubles) to half. This
introduces some error but the net effect of it is still negligible.

• Noise in the renderings using the fit: this proved to be negli-
gible as well.

5.2 InterpolationQuality Analysis
We also performed a systematic analysis of the error incurred by the
interpolation between data points which were provided during the
fit. That is, e.g. how far the radiance patterns diverge from the true
solution for solar elevations between the ones that were used for
the fitting. For a small subset (6) of altitudes in the middle of each
elevation interval, 3 images were compared: brute force (B), fit (F),
and interpolation (I) from the fits at interval borders. The maximum

of ratio rmse(B, I) / rmse(B, F) was 1.52 (1 at interval borders), which
we deemed to be acceptable.

Fig. 9. This photo was taken ≈ 30 minutes after the in-flight images shown
in Fig. 8. No atmospheric layering is visible from the ground: the inversion
layer does not produce any noticeable brighter stripe along the horizon.
However, noticeable ground haze for horizontal viewing directions can be
observed: the trees and buildings at the edge of the airfield are less than 2 km
away. Contrast this with the 100–150 km viewing distances seen towards
the mountains in the third image of Fig. 8.

6 PLAUSIBILITY OF THE ATMOSPHERIC
CONFIGURATION

As discussed in Sec. 4.2 of the paper, we use scatterer profiles pro-
vided by OPAC to model our atmosphere: and the vertical profiles
defined by OPAC exhibits a distinct lower haze layer. Here, we pro-
vide anecdotal real-life imagery of what a similar configuration looks
from higher observer altitudes. Fig. 8 and Fig. 9 show photographs
taken on a fairly typical clear autumn day in Central Europe during
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Fig. 10. A sample of the kind of comparison imagewhichwere systematically
generated to evaluate the model fit. Please disregard the tone mapping
artefacts seen in some of the side facing fish eye views: and please refer
to the EXR version (which is also supplied as part of the supplemental
materials) of this HDR image to get a good impression of its contents.

high pressure weather. In this region, the presence of a marked, hazy
inversion layer that can be seen in these images is typical for not
just autumn days, but generally high pressure scenarios where the
atmospheric layering is so stable that no cloud-forming convection
can start. On such days, clear, cloud-free skies can be expected from
dawn to dusk: in other words, exactly the conditions that a clear sky
model attempts to represent. The only change during such a day is
usually a gradual rise of the inversion layer during the course of the
day, and a more or less pronounced increase in turbidity: both are
due to residual convection within the inversion layer. Compare the
photos with the results of our model, e.g. those shown in Fig. 19.

Fig. 11. A box plot of the normalised mean absolute errors for the albedos
covered by our model. The logic of the plot follows that discussed in the
caption of Fig. 12.

Fig. 12. A box plot of the normalised mean absolute errors for the solar
elevations covered by our model. The red line is the median, the blue box
goes from the first to the third quartile, and the whiskers are the minimum
and maximum values. The labeled values represent solar elevations for
which reference images were computed in the brute force dataset, and the
errors shown there are between the fit and those images. For these values, it
can be observed that as expected, for elevations with brute force reference
images, the error increases with decreasing solar elevation due to the higher
noise levels in these images.
In between the labeled values, the interpolation error had to be estimated, as
intermediate reference images were generally not available. The estimate is
the difference between the two neighbouring fits: while this is a loose bound
on the true interpolation error, it can best be interpreted as "howwrong could
one get if one did not interpolate at all", and not as the actual interpolation
error. If this difference-based estimate was low, it would mean there is no
point in using the non-trivial image interpolation scheme proposed in the
paper, because normal pixel-wise interpolation would already work well.
This, in turn, means that the sometimes quite large interpolation error
seen here is not automatically a bad thing: if it were too low, the proposed
interpolation scheme would be pointless.

Fig. 13. A box plot of the normalised mean absolute errors for the observer
altitudes covered by our model. The logic of the plot follows that discussed
in the caption of Fig. 12.

7 COMPARISON TO OTHER SKY MODELS
In Sec. 6.5 of the paper we discuss limitations of models based on
exponential scatterer distributions and show a sample compari-
son between one such approach and our OPAC-based model for a
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Fig. 14. A box plot of the normalised mean absolute errors for the visibilities
covered by our model. The logic of the plot follows that discussed in the
caption of Fig. 12.

Fig. 15. A box plot of the normalised mean absolute errors for the wave-
lenghts covered by our model. The logic of the plot follows that discussed
in the caption of Fig. 12.

hazy atmosphere. Here we provide some additional comparisons.
In Fig. 17 we place reference renderings of our atmosphere next to
three examples of exponential scatterer distributions in a clearer
atmosphere. The first exponential profile (second column) is con-
structed to match our OPAC-based profile below the inversion layer.
As such it results in much hazier atmosphere. On the other hand,
the second profile (third column) matching ours above the inversion
layer makes the atmosphere much clearer as the inversion layer
is completely missing there. Finally, the third exponential profile
(fourth column) is designed to give the same ground level visibility
and vertical turbidity as our atmosphere. Conclusion in this case
is the same as in the paper - the exponential profile gives similar
results at lower altitudes but diverges as altitude increases.

To verify this observation we provide a direct comparison to two
existing sky models that are based on exponential scatterer distribu-
tions: the model by Hillaire [2020] and the one by Bruneton [2016].
For this, we used source code provided by Hillaire which imple-
ments both his and Bruneton’s model. We set the input parameters
so as the used extinction coefficients were the same as in our model,
and the used exponential aerosol profile resulted in the same ground

level visibility and vertical turbidity. As expected, both models then
provide output very close to renders of the similarly constructed
exponential profile presented in Fig. 17 (the rightmost column).
Therefore, in Fig. 18 we can observe a good match between all three
models at 2m. But with increasing observer altitude, differences
between our OPAC-based atmosphere and the two exponential ones
start to manifest themselves.

Fig. 16. A close-up of one of the column bases of the scene shown in Fig. 14
in the paper and Fig. 20 in this supplement, with an Airbus A380 airliner
placed next to it for scale. This intends to give a sense of the massive extent
of these scenes: as they show a somewhat sterile “atmospheric debugging”
set-up, it is easy to under-estimate how large everything seen in them is.
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Fig. 17. A comparison of our OPAC-based atmosphere scatterer profile versus three examples of purely exponential ones.
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Fig. 18. A comparison of our fitted model with two other related works by Hillaire [2020] and Bruneton [2016].
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Fig. 19. Our model is capable of rendering ground level visibilities in range between 20 km and 131.8 km. Here is an example of 4 of them: note how the
inversion layer becomes more and more transparent for higher visibility ranges.

Fig. 20. A viewing geometry for which the limitations of just using a pre-computed sky dome radiance model become noticeable. Left: a reference rendering
done with atmo_sim, observer altitude 8km, looking towards the sun, which is at 16° elevation, and outside the frame. Right: the same scene rendered purely
by evaluation of the pre-computed model. Note the absence of volumetric shadows in the ground haze layer. However, a good approximation for these shadows
could comparatively easily be computed by simple ray marching, which would still be a lot cheaper than a full path tracing solution. Rendering times are 10+
hours for the not fully converged reference, and 4.5 minutes for the model-based rendering.
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Fig. 21. The two mountain landscape images from the teaser with in-scattered light for finite viewing distances removed.

Fig. 22. Two more examples rendered using our model in a production renderer, for post-sunset conditions.
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