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Abstract

We propose a method that improves automatic colour correction operations for rendered images. In particular, we
propose a robust technique for estimating the visible and pertinent illumination in a given scene. We do this at very
low computational cost by mostly re-using information that is already being computed during the image synthesis
process. Conventional illuminant estimations either operate only on 2D image data, or, if they do go beyond pure
image analysis, only use information on the luminaires found in the scene. The latter is usually done with little or
no regard for how the light sources actually affect the part of the scene that is being viewed. Our technique goes
beyond that, and also takes object reflectance into account, as well as the incident light that is actually responsible
for the colour of the objects that one sees. It is therefore able to cope with difficult cases, such as scenes with mixed
illuminants, complex scenes with many light sources of varying colour, or strongly coloured indirect illumination.

Categories and Subject Descriptors (according to ACM CCS):

Computer Graphics [1.3.7]: Three-Dimensional Graphics and Realism—Colour, shading, shadowing, and texture
Image Processing and Computer Vision [1.4.8]: Scene Analysis—Colour

1. Introduction

In digital photography, the chromatic adaptation of the
viewer is routinely — though not always entirely success-
fully — compensated by the white balance post-processing
performed by the camera software. This issue does not only
affect photography, though, but is potentially relevant for all
colour imagery, even renderings.

For most of current 3D graphics work, the luminaire
colours are directly chosen so that the appearance of the re-
sulting image meets the expectations of the designer, so no
actual white balance step is needed. However, if the lumi-
naire colours for a scene are fixed, e.g. for the evaluation
of an interior design that involves a particular type of light,
a white balance step has to be performed. For such appli-
cations that attempt to predict scene appearance, image- or
scene-based illumination colour estimation methods are nor-
mally used as part of the tone reproduction process. These
have shortcomings, though, and can fail for certain types of
scene; figure 1 shows a such a problematic setting.

In this context, the contribution of our research is to
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demonstrate that one can perform highly robust white bal-
ance computations for rendered images by appropriately re-
using some of the information that has to be computed dur-
ing image synthesis anyway. Our technique is very simple,
and can completely replace conventional image-based illu-
mination colour estimates for rendered images.

2. The Phenomenon of Chromatic Adaptation

The processes that govern the chromatic adaptation state of a
human observer are complex, subtle, and not entirely under-
stood in all their details, although we can claim to understand
their most important aspects [Boy79, LM71, Fai98, Ebn07].
From an end-user perspective, it is usually sufficient to con-
sider this to be a process that can identify the colour cast
caused by the illumination in a scene; the actual object
colours in a scene only have a very small influence [Bae99].

One of the numerous problems with the derivation of ac-
curate models of this phenomenon is that it is not something
that happens on a sensor level within the eye alone; cogni-
tive functions do play a significant role as well. Any objects
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Figure 1: A rendering where colour correction of the result is necessary, but where conventional techniques have problems in
determining what to compensate for. The room is lit by daylight, but the window consists of alternating pink and purple stained
glass panes. a) raw image, b) colour correction performed with the Retinex method — a slightly problematic residual colour cast
is evident, ¢) luminaire analysis [WEV02] yields no compensation at all, and d) a fully automatic compensation performed by
our method. The image-based technique b) only performs passably well because this particular scene contains white objects; if
these were removed, it could start to have problems. By comparison, our proposed technique simply works, regardless of scene
content, and luminaire arrangements. In image d), the cyan colour of the purple glass panes is the result of applying the same
Bradford transform to all pixels in an HDR image, even the very bright ones. This artefact does not affect the point we wish to

make here, though, namely that our method is capable of automatically determining the correct colour to compensate for.

of neutral colour that are present in a scene (usually referred
to as the reference white objects) apparently play a major
role in the identification of the illumination colour cast; the
perceived colour of these objects closely correlates with the
illumination. The mechanism that identifies these objects in
a scene is a higher brain function, and not easy to analyse.
This situation makes it hard to replicate this process in soft-
ware, especially if only 2D image data is available as input.

2.1. Models of Chromatic Adaptation

Most of the work on computational models of this phe-
nomenon has been in the field of image processing and ma-
chine vision, with sidelines in digital camera development,
and actual computer graphics. The main goal is to estimate
the unknown illuminant(s) found in an image, and to use this
information to correct any colour cast that is present. Fig-
ure 2 gives an overview of the workflow.

The actual colour correction that is performed in the sec-
ond stage is usually done by applying a von Kries or a
Bradford [Lam85] transform, or the more recent CIECAT02
transform [MFH™*02]. The correction step is not particularly
complex, so the main technical difficulty of image based
white balance is the identification of the illuminant colour.

2.1.1. Image Based Colour Constancy Methods

All the techniques discussed in this section are only based on
the analysis of a single 2D input image, and therefore lim-
ited in one way or another. No one-size-fits-all image based
technique has been found so far, although existing meth-
ods offer a reasonable level of reliability for common us-
age scenarios. Due to the large amount of theoretically rele-
vant work in this very active [HMP*08] and diverse research
area [Bar99,Ebn07], we can only give a broad overview over
the main existing techniques. Moreover, since the focus of

this research is usually the derivation of a colour constant
image descriptor that can be used for shadow removal or
similar processing tasks, some of the methods are only of
indirect use if one wants to simulate human perception.

Gray world techniques [Buc80] are based on the assump-
tion that, if all surface colours in a scene are averaged, the
scene is gray (neutral); any difference that is found can be
assumed to be a colour cast, and will be compensated. White
Patch algorithms assume that at least one object in the scene
is white. Any colour cast found there will be compensated;
this is also the idea behind the Retinex method [LM71].
A more sophisticated approach is that of the Gamut Con-
straint Methods, which consider the possible gamut of object
colours under a known illuminant, compare this to the gamut
of colours found in the image, and derive the necessary shift
from the difference between the two [FEB95, Fin96]. Local
Shift techniques [Ebn07] go further, attempt to analyse any
local variations in illumination across the image.

2.1.2. Scene Based Colour Constancy for Renderings

The same techniques that were developed for image pro-
cessing can also be used on renderings. Although a rare
functionality in rendering engines, this does get discussed
and implemented from time to time in a tone reproduction
context [FPSG96, PFFG98, DD00], or more recently in con-
junction with models of human colour perception [KWKO09].
One crucial difference to photography is that for renderings
one actually has information about the depicted scene at
one’s disposal. [WEV02] were the first to make use of this,
and proposed a direct correction for the illuminants defined
in a scene. This approach works very well if only a single
illuminant is present.

However, knowing the reflectances in a scene, or the
colour of the illuminants, does not necessarily help with the
automatic white balance computations, at least not for all
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Figure 2: The two stages of a white balance workflow: a raw image is analysed to determine the illuminant, and then an
appropriate correction is applied. Our contribution is an improvement to step 1, which so far was the weak link in this chain.

possible scene types. This information is in object space,
but the white balance has to be computed for the resulting
image. There is, for example, no guarantee that any of the
white objects in a scene will actually be visible in a rendered
image. The same holds for the illuminants: although their
colour is known, not all of them will necessarily contribute
to the image in question.

Of course it would be possible to derive scene analysis
heuristics that deal with such cases. But as we will see in the
next section, it is much simpler and more efficient to store
and analyse related information that can be obtained as a
by-product during rendering, instead of directly analysing
the 3D model of the scene. Also, no such analysis can yield
information on indirect illumination colour, which can be
very significant in some scenes. Our proposed technique is
also capable of this without any additional modifications.

3. Our Approach: Scene-Based Chromatic Adaptation

The basic idea of our technique is to extract some easily
computable additional information during rendering, and to
use this later during the colour correction. More specifically,
we re-use data that is already being computed during image
synthesis to reduce the colour constancy problem to a setting
where the assumptions that are typical for gray world tech-
niques reliably hold. This yields a robust illumination colour
estimate, and allows us to closely mimic the colour adapta-
tion process behaviour of the human visual system. We do
this by biasing the process so that the illumination that falls
on white objects becomes a preferred source for the estimate.

3.1. Storing Scene Information in Auxiliary Images

The key concept to realise these goals is that we generate
two additional, auxiliary images during rendering:

e an image that shows what a given scene would look if
direct and indirect illumination were neutral, the CWNI
image (Coloured World Neutralised Illuminants),

e and how this scene would look like if all BRDFs were
replaced with surfaces of neutral colour, the NWCI image
(Neutralised World Coloured Illuminants).

These two auxiliary images are then later used to guide the
actual colour constancy computations. It is fairly straight-
forward to modify an existing global illumination renderer
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so that these two additional output images are created as by-
products of the rendering calculations, along with the nor-
mal image that is being computed. Both images are cheap to
obtain, since no additional ray-casting operations or BRDF
samples have to be done. Figure 3 gives an overview of the
basic principle. Although we demonstrate our technique for
a ray-based renderer, it would also work for a scanline/GPU
renderer, or even with radiosity methods, where the needed
incident illumination information can be taken from the ra-
diosity data during the shading computations.

Figure 3: The content of the auxiliary images interpreted in
accordance with the rendering equation [Kaj86]. The CWNI
(Coloured World Neutralised Illuminants) image is com-
puted by replacing the incident illumination i’ (red) with
neutralised light of similar brightness, and the NWCI image
(Neutralised World Coloured Illuminants) by replacing the
reflectance r at point x' (blue) with a neutralised reflectance
of similar albedo.

3.1.1. The CWNI Image

The first of the two auxiliary images, the CWNI image,
shows the scene under a neutral illumination — regardless
of whether this incident light is direct or indirect illumina-
tion, and regardless of its original colour. This allows us to
reliably identify those objects in the scene that are genuinely
white, irrespective of their appearance in the main image. We
later use this information to bias the chromatic adaptation
simulation towards giving greater emphasis to the illumina-
tion that falls onto white objects, since the human brain ap-
parently works along similar lines in this regard. The CWNI
image is computed by doing the following at the first inter-
section of the viewing ray with the scene (and only there):

e the energy spectrum of the incident illumination at this
point is averaged, to obtain a neutralised light of simi-
lar brightness. It is important to use a neutralised version



A. Wilkie & A. Weidlich / A Robust Illumination Estimate for Chromatic Adaptation in Rendered Images

of the incident light, and not a pre-defined neutral illumi-
nant here. Neutralising the actual incident light retains the
power relationships between the illuminants in a scene if
there are several of them, and also retains the indirect il-
lumination.

e this neutralised incident light is multiplied with the cur-
rent BRDF sample; the result is written to the CWNI out-
put image.

The resulting image looks more or less like a normally ren-
dered version of the scene under white light, even though it
is not an unbiased GI solution of this type of scene; see fig-
ure 4 for an example. The main "inaccuracy" compared to a
real solution is that while the magnitude of any indirect illu-
mination is correct, its colour is not, so any colour bleeding
effects are removed.

However, this is exactly what we want. Due to the neutral-
isation of all incident light, the identification of white objects
based on the CWNI image delivers correct results even in the
presence of arbitrarily strong, coloured indirect illumination
that is distinct from any light source found in the scene.

Figure 4: Raw image (left), and the corresponding CWNI
(middle) and NWCI images (right). Directly viewed lumi-
naires are omitted so they do not interfere with the identifi-
cation of white objects.

3.1.2. The NWCI Image

The second auxiliary image, the NWCI image, shows the
scene under its original illumination, but with all the surfaces
replaced with a neutralised version of themselves. This is
simply done by

e replacing the BRDF sample value with an neutralised re-
flectance spectrum of similar overall albedo

e multiplying the original illumination with the neutralised
BRDEF, and writing this result to the NWCI output image.

The purpose of the NWCI image is to yield a reliable esti-
mate of incident illumination colour for all pixels, regardless
of the surface colours found in the scene; figure 4 shows an
example. This image is more obviously "wrong" than the
CWNI image — note that all colour bleeding effects are still
clearly visible, even though there would be nothing in a gen-
uinely neutral scene that could cause them.

In theory, the NWCI image could already be used to get
an illumination estimate, at least for mostly Lambertian en-
vironments. Scenes with specular objects are more problem-

atic; as figure 5 demonstrates, objects seen in specular re-
flections retain their colours, so direct use of NWCI images
is inadvisable. But as we discuss in the next section, one can
both make the estimate robust for specular scenes, and also
improve the quality of the chromatic adaptation so that ref-
erence white objects are taken into account, by combining
the NWCI information with the CWNI image.

Figure 5: Issues with NWCI images: a scene with specular
metallic spheres on beige tiles under a strongly blue illumi-
nation before (top left) and after colour compensation (top
right). The NWCI enlargement (bottom) shows that only the
colour of the mirror is neutralised, but the objects that are
being reflected retain their colours.

3.2. Combining the CWNI and NWCI Images

The CWNI and NWCI images are created as by-prodcuts
of the rendering process, and are only used later, during the
tone reproduction step. Making the most of the information
contained in them requires the creation of two additional
auxiliary images. Both additional images are only created
during the tone reproduction computations, so that the effect
on rendering performance is negligible. The entire proposed
white balance workflow is outlined in figure 6.

3.2.1. The "1 - Chroma'' Image

The first additional image is created by extracting a
grayscale image, which we refer to as the ''1 - Chroma"
image, from the CWNI image. Its purpose is to increase the
contribution of those parts of the image which contain white
objects. When it performs its own colour correction, the hu-
man visual system places an emphasis on the illumination
that falls on such objects, and the 1-Chroma image is a tool
for emulating this: a monochrome version of the rendered
image which is dark in areas of high surface chroma, and
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Figure 6: Flowchart of our entire proposed algorithm. The detailed meaning and creation of the individual auxiliary images
(CWNI, NWCI, 1-Chroma, NWCI Multiplied) are discussed in sections 3.1.1, 3.1.2, 3.2.1 and 3.2.2, respectively.

bright in areas of low surface chroma. Figure 7 shows an
example of this.

To do this, we convert the image to CIE LCH [WS82]
space. Then, given the minimum and maximum chroma and
luminance values Cyi, Cinax and Lpax of all pixels in the
CWNI image, and we store the value

g= ((1_ Cpixel_Cmin) *Lpixel)w (1)
Cmax — Ciin Linax

for each pixel. The parameter w controls the influence of this
"white object information"; if it is left at 1, a wider range
of pixels is used, while higher values create a successively
stronger bias towards only using the most neutral pixels. The
largest practical value of w appears to be at about 4; larger
values do not seem to provide any additional useful bias, and
a value of 2 seems to be optimal. Unfortunately, no quantita-
tive model of how reference white objects influence human
perception exists, so we had to resort to trial and error to find
these values. Figure 12 demonstrates the effect of varying w.

3.2.2. The "NWCI Multiplied' Image

The content of the "1 - Chroma" image is then used to scale
the NWCI image on a pixel-by-pixel basis. This yields the
"NWCI Multiplied'' image (figure 7), from which the illu-
mination colour is later extracted. Areas in the NWCI im-
age where illumination falls onto reasonably neutral objects
are emphasised by this multiplication. A reliable and robust
identification of these areas would be hard by using only
2D image information. As shown by the images in figure 8,
it also prevents any negative impact of the peculiar feature
of plain NWCI images — shown in figure 5 — that specular
reflections retain their colour.
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Figure 7: Top: comparison of a CWNI image (left) and the
corresponding "1 - Chroma" image (right), which is bright
in exactly those areas that are well lit and that contain the
pixels with the least chroma. It is also dark in those with
the highest chroma values, and in those areas that are not
well lit, and therefore not perceptually important. Bottom:
comparison of an NWCI image (left) and the corresponding
"NWCI Multiplied" image (right). The latter emphasises il-
lumination that falls onto neutral objects.

3.3. Performing the Colour Correction

As the actual colour correction operation we use a Brad-
ford [Lam85, Lin] transform, that is applied after the image
has been converted to colour space and tone mapped, but be-
fore it is reduced from floating point colour values to a 24
bit integer image. The transform operates on colours given
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in CIE XYZ coordinates, and moves colours from an un-
corrected source space to the corrected destination space via
multiplication with a matrix M:

[X(hdeZd} = [XS7YS7ZSHM]

The formulas for the matrix M only require the CIE XYZ
chromaticities of source and destination white as input:

e The source white that we use for our corrections is derived
from the "NWCI Multiplied" image through averaging of
the pixel chromaticies. This is equivalent to a simple gray
world approach; the result is directly assumed to be an es-
timate of the unknown illumination. Since the underlying
assumption of gray world algorithms is guaranteed to be
met (the "NWCI Multiplied" image is tailored to satisfy
it), this result can be directly used.

o The destination white is the default white point of the out-
put colour space one chooses for the tone mapped image.
Usually, this is CIE D50, the default white point for the
CIE L*a*b* colour space, or the white point of the dis-
play targeted by the tone mapping step.

We use a Bradford transform because it is sufficient for
our purposes; however, other, more sophisticated techniques
could easily be substituted in its place [MFH* 02, CGZ07].

Figure 8: A demonstration of how the interaction between
the NWCI (a), CWNI (b) and "I-Chroma" (c) images re-
moves the potentially unwanted coloured reflections in the
NWCI image of the scene shown in figure 5. The "NWCI
Multiplied" image (d) contains only information from dif-
fuse, neutral surfaces, and neutral specular reflections.

3.4. Performance Impact

For an unbiased global illumination renderer, we found that
the computation of the two additional output images causes
an almost negligible overhead (see table 1) even if they are
created at the same resolution as the original image. If their
creation turned out to be a performance problem, e.g. if our
technique were to be used in a real-time rendering applica-
tion, it is important to note that the CWNI and NWCI images
can — and probably even should — be rendered at a much
smaller resolution than the original image. Our experiences
suggest that very small resolutions (in the order of 50 x 50
pixels and less) are completely sufficient. The only reason
we did not implement some form of sub-sampling for the
auxiliary images was lack of incentive in the case of the GI
renderer we used; any performance gains would have been
hard to measure, given the already low impact of writing the
two additional images at full resolution.

without - plain path tracer | with our method

238.7 seconds
92.76 seconds

239.8 seconds
94.86 seconds

Figure 5
Figure 9

Table 1: Overall rendering times for two typical images.

4. Evaluation of Our Approach

Our goal is to reproduce a scene as it would be perceived by
an observer who is fully adapted to the surroundings. Since
there are no formal models of this phenomenon, we have
the same problem as all other colour correction algorithms
— there is no "correct" solution, and we have to be content
with delivering a reasonable approximation of what the vi-
sual system does. So we have to demonstrate that our tech-
nique

1. works as advertised for normal, realistic scenes with
complex illumination and object reflectances, and

2. can also handle a number of problematic scenarios that
are difficult or impossible for image-based techniques.

The test images can be seen in table 4. For all "problem-
atic" test cases there is at least one conventional algorithm
that also works reasonably well, but none of them works
for all test cases. Apart from a couple of pathological con-
figurations where no colour correction is possible anyway
(such as scenes illuminated by monochrome illuminants — in
this case the theory behind the Bradford transform fails; our
method still gathers the correct illumination information),
we were not able to find any scenarios where our approach
fails. Together with its relative simplicity and low computa-
tional cost, this suggests that our method is a viable technol-
ogy for colour constancy computations on rendered images.
In the following paragraphs, the circled number corresponds
to the test case number in table 4.

@ @ Standard Scene: the test scene is illuminated by CIE
Illuminant A and a green light, with a small contribution
from a dark blue late evening sky outside the window. The
point of these test cases is not to show that one can per-
form an automatic white balance computation here — after
all, most conventional, image-based algorithms would work
for this scene. What we demonstrate is that our technique
works reliably for standard environments.

 Transmission Colour: the scene from figure 1.

@ Indirect Illumination: a problematic scenario for meth-
ods that analyse the luminaires are scenes with strongly
coloured indirect illumination. The luminaire in the scene is
white, but is oriented so that it shines towards the blue wall.
Our technique would also work properly if the coloured wall
were not visible, if the luminaire was also strongly coloured,
and if no white objects were present.

(® ©® Dominant Overall Hue: images with a strong colour
bias towards a specific hue are a problem for image-based
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methods, because they can violate some of the common as-
sumptions made about the scene. To demonstrate that our
technique also works for such scenes, we created four types
of "3D Mondrians" that contain a several randomly coloured
diffuse blocks under a diffuse illumination. They are ar-
ranged by increasing difficulty for image-based techniques:

1. The first contains an even selection of random colours, as
well as one white block. [llumination is a reddish orange.
This is potentially easy for image-based methods.

2. Similar to the first type, but without the white block. This
is harder for image-based techniques, but still solvable,
especially if the distribution of the colours is even.

3. A type that contains a strongly skewed sample of colours,
as well as one white block. The illumination is cyan. This
is still solvable for all those image-based techniques that
are capable of identifying the white block.

4. Similar to type 3, but without the white block. This is a
very hard problem for all image-based algorithms.

Figure 9 shows Mondrians of all four types. Note that our
method performs reliably and consistently for all of them.
One usage scenario where this kind of consistency is vital
are animations — the colour correction should not change just
because the only white object in the scene moves outside the
field of vision during a camera zoom.

Figure 9: Results for all four types of 3D Mondrian scenes
introduced as "Dominant Overall Hue" test cases in sec-
tion 4. Our technique consistently applies the same correc-
tion, regardless of whether white objects are present or not.

@ @ World of One Reflectance: a study by [RB07] shows
that human observers can distinguish between neutral scenes
that are illuminated by a coloured light, and coloured scenes
under neutral illumination. This confirmes earlier results
by [GJ84], and implies that a chromatic adaptation algorithm
should also behave accordingly. The awareness of observing
a neutral scene under a coloured illumination should lead to
a colour compensation, while coloured scenes should remain
much the way they are. White balance techniques that only
use 2D image data as input have a hard time here, while our
method is able to distinguish between these two cases.

Multiple Coloured Illuminants and Reference White Ob-
jects: one scenario where the CWNI image is essential to de-
livering good results are scenes with just a few white objects,
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and multiple coloured illuminants. Figure 10 shows such a
set-up: the scene is mostly made up of brightly coloured ob-
jects, and only one of the crate-like objects in the foreground
is actually white. This object is lit by a light source that has
a different colour than all the others in the scene.

Figure 10: A box with coloured walls and a green luminaire
on the ceiling, and where the only prominent white object in
the scene is being illuminated by a strong red light source
(left the uncorrected image, middle only based on the con-
tents of the NWCI image and right the corrected version).

Human observers base their chromatic adaptation on ref-
erence white objects in a scene. The degree by which our
method favours information from white surfaces over oth-
ers is a user-controllable parameter: figure 12 shows an im-
age sequence where the selectivity parameter w of the "1-
Chroma" image is varied between 1 and 4 for the exam-
ple scene from figure 10. For the comparatively high value
of w =4 used to generate figure 10, the compensation is
done almost exclusively against the red illuminant; figure 11
shows the CWNI and NWCI images for this scene.

Figure 11: The CWNI and NWCI images for the scene
shown in figure 10. The CWNI image shows that the object in
the foreground is the only white object, and the NWCI image
shows that the incident illumination is green and red.

Figure 10 shows what the results would be, if only the
contents of the NWCI image were used without any scal-
ing by the "1-Chroma" image. The resulting compensation
is ambiguous, and without the additional information found
in the CWNI image the method lacks the capability to selec-
tively focus on the illumination that falls on the white object.

As already mentioned, the extent to which the presence of
reference white objects influences the chromatic adaptation
of the human visual system has not been quantified in a rig-
orous fashion yet. We are not aware of a mathematical model
that would allow a prediction of how much influence a given
white object in a scene context will have on the adaptation
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Figure 12: The effect of the "1-Chroma" selectivity param-
eter w (as defined in equation 1) for the scene shown in fig-
ure 10. The top row shows the "1-Chroma" images, while the
bottom row contains the corresponding "NWCI Multiplied"
images. The values of w are (from left to right): 1, 2, 3, 4.

state of an observer. The almost complete compensation of
the red illuminant applied in figure 10 is almost certainly too
strong, and was mainly done to demonstrate the capabilities
of our technique. But even if we do not yet know how much
influence a given white object should have on the overall
correction of a scene, the development of the technical ca-
pability to easily perform such a selective correction (which
is what our technique is about) is still a useful improvement.

5. Conclusion and Outlook

We demonstrated a simple and robust way to automatically
determine the necessary colour shift for chromatic adapta-
tion computations of rendered images. Our technique be-
haves in a fashion that is consistent with what one would
expect in a human observer. Possible future improvements
would involve investigation of more sophisticated analysis
algorithms on the data contained in the "NWCI Multiplied"
image. One might also want to investigate the derivation of
efficient gamut constraint techniques that use CWNI images.
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A. Wilkie & A. Weidlich / A Robust Illumination Estimate for Chromatic Adaptation in Rendered Images

Test Case
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Table 2: Comparison of different white balance algorithms for several representative scenarios. The leftmost column shows the
uncorrected images, and arrows mark instances where an algorithm fails. Arrows in brackets indicate questionable results.
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