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✦

1 OUR SHAPENETCORE SPLIT

Due to uneven distribution of training and testing sub-
sets within categories, duplicates and some models being
present in multiple categories in the official ShapeNetCore
split, we generated our split where each category has 70%
of objects used for training, 10% for validation and 20% for
testing. Table 1 shows the category sizes and train/test/val
subset sizes. The final split can be downloaded from the
project webpage.1

TABLE 1
List of ShapeNetCore categories and the number of training and test

models in each category in our split

Category Train/Test/Val
table 5862/1676/838
chair 4616/1319/660
airplane 2831/809/404
car 2460/703/351
sofa 2103/601/300
rifle 1631/467/233
lamp 1621/464/232
vessel 1356/388/194
bench 1213/347/173
loudspeaker 1114/319/159
cabinet 1082/310/155
display 755/216/108
bus 657/188/94
bathtub 598/171/85
cellular 580/166/83telephone
guitar 557/160/80
faucet 519/149/74
clock 450/129/64
pot 384/110/55
jar 383/110/55
bottle 333/96/48
laptop 315/91/45
bookshelf 308/89/44
knife 297/85/42
train 272/78/39
motorcycle 235/68/34
ashcan 225/65/32
file 199/58/29
(continues in the next column)

Category Train/Test/Val
pistol 185/53/27
telephone 180/52/26
piano 167/48/24
bed 153/44/22
stove 152/44/22
mug 150/43/21
bowl 121/35/17
washer 115/34/17
printer 115/33/17
helmet 113/33/16
skateboard 106/31/15
microwave 105/31/15
tower 86/25/12
camera 79/23/11
can 73/21/11
basket 71/21/10
pillow 66/20/10
mailbox 65/19/9
dishwasher 63/19/9
rocket 59/17/9
bag 57/17/8
birdhouse 51/15/7
earphone 51/15/7
microphone 46/14/7
remote 52/14/7control
computer 45/13/6keyboard
cap 38/12/6
Total 35513/10178/5078

1. https://cgg.mff.cuni.cz/∼martinm/papers/2021-survey-eval

2 COMPARISON OF DIFFERENT DATA CONVER-
SION METHODS

Here we show outputs of different conversion methods for
each representation. The model airplane 0627 from Model-
Net40 is used as an example 3D shape. Some original con-
version tools were not included in our framework because
they use of commercial software ([27] and [44]) or they were
not publicly available ([61]).

Figure 1 shows slight differences in the voxelization
result of the OpenVDB library, which we used in our con-
version, compared to the original voxelization provided by
Brock et al. [27].

(a) Original voxel representation
provided by authors of VRN

(b) Our voxelization using
OpenVDB

Fig. 1. Illustration of voxel representation

For image-based multi-view approaches, we render
three kinds of images: one using a physically based renderer
PBRT [? ] using a perspective (not orthographic) camera
projection, and shaded and depth images using code by Su
et al. [13]. Outputs of these rendering methods are shown
in Figure 2, compared to the pre-rendered subset of Mod-
elNet40 provided by Su et al. [44]. Across all three dataset
variants used in our experiments, the shaded method yields
the best results: on average 0.59 pp better than depth, which
is on average better by 0.68 pp than pbrt.

The methods we used for point cloud generation by
sampling a mesh surface also affect the achieved perfor-
mance: the uniform sampling reached the highest maximum
accuracy, followed by lloyd and sobol, but did not reach the

https://cgg.mff.cuni.cz/~martinm/papers/2021-survey-eval
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(a) Phong-shaded image from
[44]

(b) Our PBRT rendering

(c) depth image rendered using
code from [13]

(d) shaded image rendered using
code from [13]

Fig. 2. Illustration of differently rendered airplane 0627 model

performance of the authors-provided point clouds created
using farthest point sampling. Figure 3 shows a visualiza-
tion of the different point cloud sampling methods.

3 TRAINING PARAMETERS

The most important parameters we used to train the neural
networks were set as follows:

• vrn
training epochs: 20
batch size: 24
learning rate: 0.002 for 10 epochs and then 0.0002
number of rotations: 12

• octree
training epochs: 50
batch size: 64
learning rate: 0.1, divided by ten every ten epochs
depth: 6
number of rotations: 12

• octree-adaptive
training epochs: 50
batch size: 64
learning rate: 0.1, divided by ten every ten epochs
depth: 5
number of rotations: 12

• vgg
training epochs: 20
batch size: 60
learning rate: 0.0001, multiplied by 0.75 every three
epochs
number of views: 12

• mvcnn2

(a) Original point cloud pro-
vided by the authors of PointNet

(b) Uniform sampling

(c) Lloyd sampling (d) Sobol sequence sampling

Fig. 3. Illustration of point cloud representations, each sampling contains
2048 points

training epochs: 30+30
batch size: 64
learning rate: 0.00005
number of views: 12

• rotnet
training epochs: 200
batch size: 40
learning rate: 0.0001 divided by ten every fifty epochs
number of views: 12

• seq2seq
training epochs: 200
batch size: 32
learning rate: 0.0002
number of views: 12

• pointnet
training epochs: 200
batch size: 64
number of points: 2048
learning rate: 0.0001 multiplied by 0.8 every 20 epochs
number of rotations: 12

• pointnet2
training epochs: 200
batch size: 32
number of points: 2048
learning rate: 0.0001 multiplied by 0.7 every 20 epochs
number of rotations: 12

• sonet
training epochs: 400
batch size: 8
number of points: 5000
learning rate: 0.001 divided by two every 40 epochs
number of rotations: 1
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• kdnet
training epochs: 200
batch size: 16
number of points: 2048
learning rate: 0.001
network depth: 10
number of rotations: 12

4 RESULTS

The results of our experiments are shown in Figure 6. In
Table 3 we show the source data of the plot – the highest
accuracies on test and validation sets achieved during our
experiments and the test accuracy at the epoch where the
highest validation accuracy was achieved.

5 ADDITIONAL EXPERIMENTS

In addition to evaluating the methods on the ModelNet40
and ShapeNetCore datasets split into train/test/val subsets,
we also ran experiments on a train/test split and include
a manually-aligned version of the ModelNet40 dataset[29].
The official train/test split was used in case of ModelNet40
and its aligned version. For ShapeNetCore, we used our
own split. In all cases the shapes assigned to the test subset
are the same as in the experiments in the main paper
body. Using the two-way split allows us to use all the
available data, not excluding the validation subset from
training. Because the validation subset is not available for
determining the training epoch count and possibly other
hyperparameters, and because most of the reported results
use the ModelNet40 train/test split and the reported accura-
cies appear to be the achieved maxima, we follow the same
evaluation approach. In addition, we report the distribution
of test subset accuracies around the best epoch: three epochs
before and three epochs after the epoch with the highest
test set accuracy. This is done to reduce the impact of the
bias caused by taking just the maximum of noisy test set
accuracies.

There are following changes to the dataset conversion,
compared to the experiments in the body of the article.
Instead of Poisson-sampled point clouds, we use a low-
discrepancy Sobol’ sequence for sampling the faces. How-
ever, the points within the chosen face is sampled uniformly,
leading to small-scale point clusters. For rendering images
for multi-view image-based networks, we additionally use a
physically-based renderer PBRT, which could capture global
illumination effects such as occlusion, which are not present
in the images created by commonly-used rasterization or
simple ray casting. Neither of these changes provide a
significant improvement to the accuracy, therefore we don’t
include these methods in the main paper body.

The results of our experiments are shown in Figure 7.
In Table 4 we present details about the distribution of the
achieved accuracies during our experiments.

5.1 The Impact of Rotational Alignment
Overall, we do not observe a significant change in average
or maximum accuracy on the aligned ModelNet40 dataset
compared to the original ModelNet40; however, networks
in each representation behave differently.

Volumetric grid-based networks vrn and octree tend to
achieve slightly lower accuracy (by about 0.11 pp on aver-
age) on the aligned dataset. A possible explanation could be
“cheating”: the network may be exploiting the fact that some
categories are more likely to be already axis aligned, which
the network might be able to learn2. This distinction is lost in
the ModelNet40-aligned dataset. The octree-adaptive network
uses a plane in each leaf octree node to approximate the
original shape – the planes’ normal vectors can represent
any direction making the representation less reliant on the
shape alignment relative to the voxel grid.

Multi-view image-based approaches are unimpacted by
the alignment, likely due to using 12 turntable views of
the shape for both training and inference, making rotational
alignment of the input irrelevant.

All point cloud-based methods in our experiments ap-
pear to benefit from the alignment, reaching on average
2.02 pp higher accuracy on the aligned dataset version. The
pointnet network uses an initial transformation network (T-
Net) to normalize the input object’s rotation. Using a pre-
aligned input simplifies T-Net’s work – reducing possible
rotational error should produce more consistent point sets,
which are easier to detect in the following layers. Similarly,
in the case of pointnet2 and sonet, which detect and then
aggregate local shape features, learned weights re-use is
possible: thanks to the alignment, fewer fundamental shapes
need to be detected. For kdnet, the alignment also helps since
the kd-tree data structure uses axis-aligned splits.

5.2 The Impact of Dataset Size
Comparing the training performance on ShapeNetCore to
the ModelNet40 dataset, most networks’ accuracy improves
(on average by 1.60 pp) with two exceptions: octree-adaptive
and kdnet networks achieve a lower accuracy, possibly due
to limited capacity. Both networks have the smallest model
size of the evaluated networks within their representation.
Another possible reason is their hyperparameters may have
been optimized for a smaller ModelNet40 dataset. All other
networks seem to benefit from a larger dataset, image-based
networks showing the most consistent increase in accuracy
(1.82 pp). These networks have the capacity to internally
learn more features as the image-based models are largest
of all the representations.

5.3 Relationship of achieved accuracy and computa-
tional cost
In Table 2 we show run times and sizes of the stored model
for each network. Figures 4 and 5 show the relationships of
accuracy and time or model size graphically.

2. E.g. some early convolutional kernels could be axis-aligned edge
detectors, which would give lower activation if the object is unaligned.
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TABLE 2
Table of approximate training times on ModelNet40 (time spent training

one epoch) and approximate sizes of the saved models, roughly
corresponding to the number of trainable parameters of the model

Network Epoch time [min] Model size [MB]
Volumetric grid
vrn 407 52
octree 5.5 2.5
octree-adaptive 1.5 2.5
Multi-view
mvcnn2 12.5 510
rotnet 6 230
vgg 29 550
seq2seq 0.6 30
Point cloud
pointnet 4.5 40
pointnet2 2 17
sonet 1.5 10
kdnet 3 8

0.5 1.0 2.0 3.0 5.0 10.0 30.0 100.0 200.0 400.0
Epoch time (minutes)
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Fig. 4. Relationship of the achieved accuracy and training time.
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TABLE 3: Accuracies (%) measured at the epoch with the highest
test (@best test) or highest validation (@best val) accuracy. In this
table, MN40val is short for ”modelnet40val”, SNCval is short for
”shapenetcoreval”.

test acc@best test test acc@best val val acc@best val
representation net dataset

Multi-view (images) mvcnn2 MN40val-depth 91.41 91.00 93.46
MN40val-shaded 91.53 90.96 93.21
SNCval-depth 92.98 92.79 92.97
SNCval-shaded 92.75 92.59 92.32

rotnet MN40val-depth 90.72 90.64 92.25
MN40val-shaded 92.18 92.10 93.21
SNCval-depth 91.48 90.91 92.60
SNCval-shaded 92.32 91.87 92.91

seq2seq MN40val-depth 90.03 89.91 91.20
MN40val-shaded 91.33 90.64 91.92
SNCval-depth 92.61 92.48 92.30
SNCval-shaded 93.06 92.73 92.71

vgg MN40val-depth 89.48 88.43 90.27
MN40val-shaded 90.66 90.13 91.97
SNCval-depth 92.67 92.37 92.06
SNCval-shaded 93.06 92.84 93.00

Point cloud kdnet MN40val-lloyd2048 85.29 84.08 87.16
MN40val-poisson2048 87.80 87.28 89.50
MN40val-uniform2048 87.28 86.39 87.96
SNCval-lloyd2048 87.19 87.19 86.98
SNCval-poisson2048 87.36 87.19 87.46
SNCval-uniform2048 87.00 86.92 86.92
modelnet40-qi1024 88.41 88.25 88.65

pointnet MN40val-lloyd2048 87.44 85.53 88.77
MN40val-poisson2048 87.64 87.12 89.26
MN40val-uniform2048 86.99 84.97 88.53
SNCval-lloyd2048 89.91 89.60 89.78
SNCval-poisson2048 90.20 89.86 90.29
SNCval-uniform2048 89.84 89.74 89.82

pointnet2 MN40val-lloyd2048 89.38 89.10 91.28
MN40val-poisson2048 89.51 88.82 90.87
MN40val-uniform2048 89.51 89.10 90.55
SNCval-lloyd2048 90.34 90.17 90.37
SNCval-poisson2048 90.73 90.72 90.67
SNCval-uniform2048 90.32 90.16 90.19

sonet MN40val-lloyd2048 88.70 88.49 89.42
MN40val-poisson2048 88.98 88.45 89.34
MN40val-uniform2048 87.36 86.91 88.37
SNCval-lloyd2048 89.99 89.67 90.00
SNCval-poisson2048 90.72 90.47 90.65
SNCval-uniform2048 89.79 89.70 89.94

Volumetric grid octree MN40val 89.39 88.84 89.60
SNCval 90.66 89.91 90.89

octree-adaptive MN40val 89.03 88.83 89.40
SNCval 87.35 87.24 86.78

vrn MN40val 90.58 89.77 90.99
SNCval 88.30 88.15 88.29
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TABLE 4: Minimum, maximum and mean test set accuracies (%) and
standard deviation (in percentage points) of the measured accuracies
around the epoch with the highest test accuracy. The suffix od marks
“original data” (provided by respective authors)

accuracy
min max mean std

representation net dataset

Multi-view (images) mvcnn2 modelnet40-aligned-depth 90.07 92.26 91.00 0.72
modelnet40-aligned-pbrt 89.79 91.49 90.62 0.61
modelnet40-aligned-shaded 91.13 91.57 91.34 0.14
modelnet40-depth 91.65 92.26 91.96 0.20
modelnet40-pbrt 89.55 91.13 90.35 0.53
modelnet40-shaded 90.11 91.53 90.84 0.50
shapenetcore-depth 92.06 93.24 92.79 0.44
shapenetcore-pbrt 91.90 92.60 92.27 0.25
shapenetcore-shaded 92.31 92.83 92.57 0.21

rotnet modelnet40-aligned-depth 90.60 91.00 90.75 0.14
modelnet40-aligned-pbrt 90.44 90.56 90.47 0.04
modelnet40-aligned-shaded 92.10 92.18 92.13 0.04
modelnet40-depth 90.32 90.56 90.46 0.11
modelnet40-pbrt 90.52 90.60 90.56 0.04
modelnet40-shaded 91.98 92.06 92.00 0.03
shapenetcore-depth 91.40 91.45 91.42 0.02
shapenetcore-pbrt 91.73 91.81 91.78 0.04
shapenetcore-shaded 92.37 92.42 92.39 0.02

seq2seq modelnet40-aligned-depth 88.86 90.15 89.62 0.39
modelnet40-aligned-pbrt 87.72 88.98 88.23 0.44
modelnet40-aligned-shaded 90.68 91.82 91.04 0.39
modelnet40-depth 90.48 90.72 90.62 0.08
modelnet40-pbrt 88.33 89.55 89.23 0.42
modelnet40-shaded 90.92 91.29 91.17 0.13
shapenetcore-depth 91.97 92.44 92.26 0.16
shapenetcore-pbrt 91.94 92.34 92.16 0.16
shapenetcore-shaded 92.45 92.82 92.58 0.13

vgg modelnet40-aligned-depth 88.83 89.65 89.28 0.30
modelnet40-aligned-pbrt 87.62 88.43 88.02 0.31
modelnet40-aligned-shaded 90.22 91.60 90.79 0.49
modelnet40-depth 89.36 90.05 89.57 0.32
modelnet40-pbrt 87.25 89.52 88.31 0.70
modelnet40-shaded 89.20 91.68 90.39 0.70
shapenetcore-depth 92.36 92.44 92.39 0.04
shapenetcore-pbrt 92.01 92.26 92.17 0.10
shapenetcore-shaded 92.58 93.00 92.74 0.16

Point cloud kdnet modelnet40-aligned-uniform 87.72 89.51 88.71 0.57
modelnet40-uniform 85.66 87.56 86.58 0.61
shapenetcore-uniform 82.16 84.23 82.89 0.72

pointnet modelnet40-aligned-lloyd 84.32 86.63 85.67 0.71
modelnet40-aligned-sobol 84.24 86.02 84.92 0.68
modelnet40-aligned-uniform 84.68 85.98 85.18 0.44
modelnet40-lloyd 82.13 83.67 82.88 0.49
modelnet40-od 87.03 87.80 87.27 0.28
modelnet40-sobol 83.06 85.25 83.96 0.71
modelnet40-uniform 82.74 83.83 83.14 0.34
shapenetcore-lloyd 88.01 88.47 88.21 0.16
shapenetcore-sobol 87.82 88.45 88.13 0.25
shapenetcore-uniform 87.84 88.24 87.98 0.13

pointnet2 modelnet40-aligned-lloyd 88.61 89.02 88.85 0.17
modelnet40-aligned-sobol 88.05 88.45 88.27 0.16
modelnet40-aligned-uniform 87.52 88.25 87.89 0.31
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modelnet40-lloyd 86.10 86.95 86.60 0.36
modelnet40-od 89.14 90.03 89.52 0.33
modelnet40-sobol 84.85 86.75 85.87 0.63
modelnet40-uniform 85.53 86.67 86.11 0.41
shapenetcore-lloyd 88.03 88.25 88.14 0.08
shapenetcore-sobol 88.10 88.23 88.15 0.06
shapenetcore-uniform 87.87 88.05 87.95 0.08

sonet modelnet40-aligned-uniform 87.64 88.53 88.09 0.34
modelnet40-uniform 84.72 86.06 85.48 0.44
shapenetcore-uniform 88.47 88.97 88.67 0.19

Volumetric grid octree modelnet40 88.90 89.50 89.16 0.24
modelnet40-aligned 88.92 89.22 89.07 0.10
shapenetcore 90.15 90.77 90.44 0.20

octree-adaptive modelnet40 88.62 89.27 89.00 0.22
modelnet40-aligned 88.51 89.40 89.01 0.31
shapenetcore 87.28 87.72 87.43 0.15

vrn modelnet40 88.65 90.80 90.19 0.68
modelnet40-aligned 90.07 90.40 90.25 0.14
shapenetcore 89.04 91.11 89.74 0.94
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