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Figure 1: Our method generates cloudy sky images from a user-chosen sun position that are readily usable as an environment map in any
rendering system. We leverage an existing clear sky model to produce the input to our neural network which enhances the sky with clouds,
haze and horizons learned from real photographs.

Abstract

Achieving photorealism when rendering virtual scenes in movies or architecture visualizations often depends on providing a
realistic illumination and background. Typically, spherical environment maps serve both as a natural light source from the
Sun and the sky, and as a background with clouds and a horizon. In practice, the input is either a static high-resolution HDR
photograph manually captured on location in real conditions, or an analytical clear sky model that is dynamic, but cannot
model clouds.

Our approach bridges these two limited paradigms: a user can control the sun position and cloud coverage ratio, and generate
a realistically looking environment map for these conditions. It is a hybrid data-driven analytical model based on a modified
state-of-the-art GAN architecture, which is trained on matching pairs of physically-accurate clear sky radiance and HDR fish-
eye photographs of clouds. We demonstrate our results on renders of outdoor scenes under varying time, date, and cloud covers.

CCS Concepts
» Computing methodologies — Rendering; Supervised learning; * Applied computing — Earth and atmospheric sciences;

1. Introduction provide information about the directional illumination in the scene,
and second, the 360° images are used as the visible background.
Captured imagery or analytical sky models are used in practice,
such as the widely adopted HoSek-Wilkie [HW12; HW13] or the
more general model by [WVB*21]. While clear sky models serve
excellently for realistic illumination, they can be perceived as too
t Contributed equally. simple as a background. For added realism, VFX artists, architects,

In photorealistic rendering, scenes are commonly surrounded by
environment maps, a concept also referred to as image-based light-
ing (IBL) [Deb98]. The pictures serve two purposes: First, they
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and other rendering users are also looking to incorporate clouds
into the sky, leaving them with expensive volumetric cloud simu-
lation, or static photographs. Such photographs (termed “HDRIs”)
need to cover the full dynamic range of the sky and, as such, are
expensive to capture: a lot of manual effort and professional gear is
required for high-quality results. At the same time, the images are
static, meaning limited to the location and weather conditions at
the time of capture. The user cannot parametrically change the ap-
pearance of the sky, as in the analytical models. That’s why finding
the appropriate match for requirements such as lighting (mood) or
artistic composition of the background scenery is a manual, linear
search in a database of pictures [TYS09; CZR22].

We propose a hybrid data-driven generative approach. It is based
both on an analytical sky model and a dataset of photographs, and
it generates a skydome with realistically looking clouds for any de-
sired sun position and cloud coverage ratio. Our pipeline first uses
the analytical model to generate a clear sky image corresponding
to the sun position, and feeds it into an encoder-generator network,
which generates a corresponding cloudy image. The cloudy image
can then be used as a hemispherical environment map in a renderer.
The pipeline is trained on high dynamic range (HDR) images, so it
produces HDR output crucial for photorealistic rendering.

The state-of-the-art generative adversarial network (GAN) archi-
tecture [KAL*21] forms the core of our method, and we propose
several domain-specific modifications to it. These mainly serve to
condition the generator for the sun position input parameter, but
also to support accuracy in the output. As usual, the discrimina-
tor loss is in place to produce fake imagery that closely resembles
features of the training dataset despite being randomly generated.
Additionally, we employ an autoencoder (reconstruction) loss to
constrain the generator on the clear sky, for which we leverage an
existing accurate model [WVB*21].

In this paper, we take the initial steps towards reaching the ulti-
mate goal: a fully automated model, which generates a correspond-
ing realistic and physically-accurate HDR skydome for a given
artist’s input (parameters). The results presented in this paper are
still limited in quality due to several constraints that we discuss in
the text, but these are not fundamental issues of our approach. With
this intermediate report we hope to share the hurdles we encoun-
tered so far and gather feedback on the proposed solutions.

Our contributions include:

e A directly parameterizable cloudy sky model based on a condi-
tional GAN architecture

e Support for HDR images in the StyleGAN3 codebase

o A method for fitting the [WVB*21] clear sky model to real pho-
tographs

e A dataset of 33 000 HDR sky photographs in 30s intervals

2. Related Work

In previous publications, generating skydomes and image-based
lighting (IBL) was mainly solved by atmospheric clear sky mod-
els or machine learning approaches.

2.1. Atmospheric Models

In high-quality rendering of outdoor scenes, accurate skydome il-
lumination and sky colors can be achieved by using an atmospheric
model. One can either perform highly accurate brute-force Monte
Carlo simulations based on first principles, evaluating light trans-
port in the atmospheric gasses, or use much faster analytical models
that can be directly evaluated with a potentially lower accuracy. We
provide a brief overview in this section, but we also refer the reader
to [Brul6] for an evaluation of analytical and brute-force models.

Brute-force solutions Probably the most accurate atmospheric
simulations are available in the 1ibRadtran research package
[EBK*16], which can serve as a reference, but is too complex and
slow for a direct use in computer graphics. Methods more suited
for image rendering, such as [HMSO05; BNO8; GGJ18], usually in-
clude pre-computation steps that later allow more efficient evalua-
tions during the actual path tracing. The main benefit of brute-force
simulations is that they are physically accurate for any given sun
position. However, path tracing of atmospheres is a very slow pro-
cess, and furthermore, the models do not directly support rendering
of clouds and overcast skies. For that, one would render fully vol-
umetric clouds from a simulation [HMP*20] with expensive vol-
umetric path tracing, or use machine learning [KMM*17] for im-
proved efficiency.

Analytical and empirical solutions Our method is closer to an-
alytical atmospheric models, which are not strictly physically ac-
curate, but still result in realistically looking images with a very
high performance. Unlike our method, they are limited to clear
cloudless skies. They are usually based on fitting parametric func-
tions to reproduce the actual sky radiance patterns. One of the first
widely used models was the Preetham model [PSS99], which was
directly based on older brute-force and analytical models. It was
later improved in [HW12] to support more accurate sunset and
high-turbidity settings, and in [HW13], by adding accurate solar
radiance from the solar disk itself. The authors of [LM14] empir-
ically alter the Preetham model to match also the overcast skies.
A new model based on tensor decomposition was recently intro-
duced [WVB#*21], supporting different observer altitudes, post-
sunset conditions, in-scattered radiance and attenuation for finite
distances, and polarization. We use the unpolarized ground-level
version of this model to produce the matching synthetic clear sky
images for our real photographs.

2.2. Machine Learning for IBL

In Computer Vision, there are many methods for generating en-
vironment maps using deep-learning tools, especially on the task
of lighting estimation. There, the posed problem consists of esti-
mating the spherical scene illumination from narrow field of view
images, which can, in turn, be used to render a virtual object into
the scene with plausible shadows, reflections, and colors. Input im-
ages are conventionally low dynamic range (LDR), while output
imagery is always HDR. A comprehensive survey on the topic can
be found in [EGH21], and in the following, we will highlight a few
methods that overlap with our approach.

In 2017, [HSH*17] proposed a convolutional neural network
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(CNN) to fit the parameters of the HoSek-Wilkie model from an
exemplar image. Conceptually similarly, [ZSH*19] use a slightly
more expressive empirical model (Lalonde-Matthews) [LM14] to
improve the quality of overcast skies. As both methods rely on an-
alytical clear sky models, the output imagery does not contain any
clouds. [HAL19] try to overcome this limitation by proposing a
new data-driven sky model that learns the features of cloudy skies
from hemispherical HDR photographs using an autoencoder archi-
tecture. Our method follows a similar path, but we still leverage
the expressiveness and controllability of a clear sky model to form
a hybrid approach, and we aim more on also reconstructing the
proper cloud shapes.

Contrary to finding parameters to a fixed model, [SK21] formulate
the lighting estimation problem as a task for spherical image extrap-
olation given a partial observation of the scene. Similar to our ar-
chitecture, the authors employ a convolutional autoencoder jointly
with an adversarial discriminator, and output HDR data. Another
major difference of our work to all the methods above is that in
Computer Graphics, we aim not only at the plausibility of diffuse
and glossy reflections and shadows given a photographed backdrop,
but the whole environment map needs to look photorealistic when
directly observed.

2.3. GANs and generating cloud images

A generative adversarial network (GAN) [GPM*14] consists of two
neural networks — a generator and a discriminator — which com-
pete against each other in producing and detecting fake imagery re-
spectively. This architecture has reached increased popularity and
technologically matured over the past years. GANSs are used in un-
supervised and semi-supervised tasks such as the “image-to-image
translation” [ZPIE17] where two classes of images should be con-
verted into each other despite not having a perfect match between
individual training samples. The task we are solving is similar but
we benefit from having matched image pairs. Our architecture can
also be seen as a form of a conditional GAN [MO14; DWX*20]
where we enforce the generator to output a matching cloudy sky
given a clear sky as input.

GANSs are well known for photorealistic results when trained

long enough on tens of thousands of images. With adaptive dis-
criminator augmentation (ADA) [KAH*20] it becomes possible to
have datasets of even just a few thousand images and still avoid
overfitting to a particular training set.
Karras et al. [KAL*21] recently proposed a solution to the long-
standing problem of textures “sticking” to the underlying pixel grid.
They redesign the generator architecture with respect to fundamen-
tal signal processing rules to avoid any sources of aliasing. A de-
tailed analysis of their method is provided in the next section.

Generating cloud images In atmospheric science, GANs are
used for short-term forecasting of cloud coverage. Given previous
frames of a video sequence, the authors of [ATO*19] predict how
the clouds will move in the upcoming frames. They work on fish-
eye images directly out of the camera, similar to our raw dataset,
but we process the projection to be a stereographic projection that
has known properties. Although our dataset also consists of se-
quential images, we do not make use of the time dependency yet.
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For an image-based relighting approach in neural rendering, Yu et
al. [YME*20] employ a GAN that fills the image background with
realistic sky imagery given a segmentation map. For cloud image
segmentation a GAN is used to augment the training dataset and
produce ground-truth segmentation maps [MCS21].

There is prior art that is directly related to our approach. We build
upon initial works [Hoj19; Spa20] that apply GANs to cloud im-
age generation but are missing the direct control over the sun po-
sition and the clear sky supervision. Concurrently to our work, a
very similar approach has been published [SMDB22]. They use a
U-Net autoencoder architecture to transfer clear sky images of the
Hosek-Wilkie sky model together with a cloud segmentation map
to realistic cloudy images. This segmentation map on the one hand
allows for artistic control of the cloud placement but on the other
hand also requires manual input for every picture to achieve realis-
tic distributions. Our method does not allow for spatial control of
the clouds, but generates plausible distributions for any input from
a random generator.

3. Analysis

We base our method on the StyleGAN3 architecture [KAL*21]
which we analyze in this section. The authors provide an interac-
tive visualizer application that loads pre-trained network weights
and lets the user tweak the network inputs. Then, one can visually
observe the network output at every layer as an image and its spatial
frequency analysis. We inspected pre-trained networks provided by
the authors that generate human or animal portraits and made three
important observations.

First, as described in their paper, the generator architecture is de-
signed to avoid introducing aliasing and other artifacts related to the
pixel grid. All signals are composed of a set of 2D basis functions
that are randomly generated on network initialization. With each in-
creased resolution, higher frequency content is allowed in, thus ef-
fectively refining the signal as it flows through the network. Trans-
lation and rotation of the signal are achieved by an affine trans-
formation of the input random vector that influences each layer’s
weights as well as the basis functions. In contrast, the discrimina-
tor architecture is strictly working on a pixel grid — thus exhibiting
any problems that may come with this approach.

Second, the generator spends parts of its capacity to learn tex-
tures and parts to generate grid-like coordinate systems that carry
semantic meaning. Only at the very last layers, do these two parts
get interleaved and the final image is blended from the textures
based on the spatial coordinate grid.

Third, along the blending seams, we observe visible “halo” arti-
facts that hint at remaining aliasing problems within the generator
architecture. We first spotted this problem in early iterations of our
training where visible seam artifacts were trying to pass as clouds.
For well-converged networks such as the ones provided by the au-
thors, this effect is most visible but not limited to high-frequency
textures such as hair, fur, or beards where the discriminator has dif-
ficulties discerning between the artifact and the intended content.
The fact that it is still visible in the long trained networks gives us
reason to believe that these artifacts are systematic despite being
suppressed by the discriminator over training time.
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Figure 2: Our network is trained on matching photos and fitted clear sky images. The clear skies are encoded into the generator’s latent
space and concatenated with random values. The generator reconstructs from this again a matching pair of the clear and cloudy sky. The
quality of the clear sky is judged against the input clear sky, while the generated cloudy sky is judged by the discriminator for its realism.

4. Method

Our method trains a generator for realistic cloudy sky images from
a set of example pictures that we captured. In addition, it combines
the training set with analytical clear sky images that correspond
in the solar constellation and atmospheric conditions to the real
photographs. The method builds on state-of-the-art GAN architec-
tures, for which we propose modifications to take advantage of the
matched image pairing and to ensure the outputs are usable in a
rendering context.

We show our network architecture in Figure 2. At training time,
we feed a clear sky image into an encoder to compress its informa-
tion to a few numbers. Concatenated together with a random vec-
tor, these form the input to a generator that is tasked with producing
two images — one clear sky reconstruction and the desired cloudy
equivalent. The clear sky image can trivially be compared against
the input clear sky image effectively forming an autoencoder loss.
An adversarial discriminator network is trained in parallel to the
generator and discerns between real and fake imagery effectively
challenging the generator to produce more and more realistic look-
ing cloudy skies.

As shown in Figure 1, during inference, the user can input the
desired sun position and get a corresponding cloudy sky image. By
adjusting the random seed for the latent vector, one can explore
different cloud constellations. This works by generating a clear sky
image from a state-of-the-art atmospheric model [WVB*21] given
the desired sun position. This gets again encoded and combined
into the random latent vector of the generator. Finally, the cloudy
image from the generator’s output can be re-projected to equirect-
angular projection and then used in a standard rendering pipeline
as an environment map. When the images are not only used as a
background, but provide the illumination for the scene, a high dy-
namic range becomes increasingly important. With clipped values,
the renderings will exhibit reduced contrast that makes them look
flat and unrealistic. For maximum realism, the sun values should
not be clipped.

In the following, we will explain our method in more detail while

keeping the order of data flow. We start with the dataset, before
diving into the network architecture and the training procedure.

4.1. Dataset

The real photographs used during the network training are based on
a selected subset of our dataset of HDR skydome photos. The pho-
tos were captured on a full-frame camera sensor by aiming an § mm
circular fisheye lens upward towards the sky. Each hemispherical
HDR photo was developed from an exposure stack of five to nine
exposures. But even with the shortest possible exposure time, the
sun’s brightness is clipped on direct observation without the use
of an neutral density (ND) filter [SJW*06]. The dataset is based
on several locations, mostly in a central European climate and in
coastal California. It includes both clear skies and various cloud
covers ranging from small isolated clouds to fully overcast skies.
The captures were performed in sequence (stop motion), one photo
per 15-120 seconds (mostly 30s), sometimes for a very long time
ranging from a sunrise to sunset. Around 33,000 HDR images were
captured in total, from 54 different days distributed over 6 months
(May-November).

It is important to note that for simplicity, our network was only
trained on a limited subset of about 5,000 images for the time be-
ing. We picked skies with only a light cloud cover, mostly with
high-altitude cirrus clouds, and where the sun is directly observ-
able. We discarded most of the sunrise and sunset situations where
the sun position could not be detected, as these also correspond to
substantially different sky radiance. The light cloud cover corre-
sponds more closely to the input clear sky model which intuitively
decreases the difficulty for the generator. We refer the reader to the
supplemental material for a preview of the training dataset. The
whole dataset will be used in an extended version of this paper
alongside which we also plan to release the dataset in full resolu-
tion (> 8192 px) and including the fitted metadata.

Before passing a photo from the training dataset to the network,
it is first transformed from the fisheye projection on the camera
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sensor to a stereographic projection (in resolution 1024 x 1024),
and the region outside the projected circle is masked out.

Figure 3: Two example photographs from our dataset (left) with
their fitted corresponding clear skies (right) — all in stereographic
projection. The visibility distance mostly affects the aura around
the sun, while the ground albedo brightens towards the horizon.

Fitting a clear sky model The clear sky model by Wilkie et al.
[WVB#*21] provides incoming light intensity from queried direc-
tions and wavelengths, given the 2D sun position, the visibility dis-
tance (also called turbidity in older models), ground albedo and
the altitude above ground. For simplicity, we use the hemispheri-
cal version of the model that is, just like older models, limited to
sea-level observer altitude. As our dataset only contains sun posi-
tions above the horizon this should be enough information to learn
also the lighting of the clouds. For post-sunset conditions one could
additionally include clear sky images from the clouds’ altitudes to
inform the networks about the correct cloud illumination.

For each captured image in our dataset we detect the sun posi-
tion by fitting an ellipse to the sun disk. The search region can be
narrowed down by the expected sun position given the capture lo-
cation, time and date. Due to calibration mistakes there might be
minor mismatches that are corrected by this procedure. If the sun
disk detection fails, we filter the image out of our dataset. For one
exemplar image per day, we mask non-clear-sky objects like hori-
zon, clouds, sun disk, lens flares and dust on the lens, finding the
remaining clear sky model parameters using the BFGS algorithm
with finite-difference gradients. The optimization has three steps:
we first match the exposure, then run L-BFGS-B to find the model
parameters constrained by their range, and finally we jointly fine-
tune both the parameters and the exposure. We show results of this
procedure in Figure 3. A related fitting procedure is described in
[HSH*17, Section 4.2] for the HoSek-Wilkie sky model.

© 2022 The Author(s)
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4.2. Architecture

On a high level the architecture is a hybrid between a Generative
Adversarial Network (GAN) and an Autoencoder. We prepend the
generator with an encoder to form an Autoencoder for clear sky
images. At the same time, the generator also outputs cloudy im-
ages, which are judged by the adversarial loss of a discriminator
network. We also apply modifications to the data processing such
that it supports HDR values throughout the pipeline.

Encoder We base the encoder architecture on the architecture of
the discriminator in our codebase [KAL*21] as both have a similar
overall shape. Both take an image as input and reduce it gradu-
ally to a few numbers. Instead of outputting a single variable (real
or fake score) like the discriminator does, the encoder is working
with a bottleneck width of ten values. We estimate this should be
more than enough information to describe the clear sky appearance
which is inherently defined by model’s four parameters. Ablation
experiments have shown that a minimum of two values would be
enough to reconstruct reasonably high quality results.

Generator The StyleGAN3 generator has been carefully designed
to follow basic signal processing rules and avoid any source of
aliasing throughout the layers of the network. We acknowledge this
being a complex system whose parameters have been well tweaked
to allow for the high quality results shown in their paper. For this
reason, we keep modifications to the generator network to a mini-
mum and again only adjust the final output layer. The output is ex-
tended to two corresponding images — one clear sky and one cloudy
sky. Because the split between the two is only enforced at the last
layer, the generator can benefit from the synergies between both
images throughout all layers. This is a way of supervising the inter-
nals of the generator to produce specific patterns without interfering
with the alias-free signal processing. Traditionally one would use
losses at different resolutions of the generator to supervise the for-
mation of intermediate patterns. In our case, this helps the generator
to produce the unobstructed clear sky for which we have a ground
truth and which should be the background of any cloudy sky im-
age. As with the real photographs, we mask the image outside the
projected circle of the stereographic projection.

Discriminator The discriminator remains unchanged from the
StyleGAN 3 (originally from 2) codebase. We make use of the
adaptive discriminator augmentation (ADA) [KAH*20] feature that
prevents overfitting of the discriminator on small dataset sizes such
as ours. The authors warn to enable only transformations that are
valid within the domain of the images (e.g. X-axis flip) or else un-
wanted transformations (e.g. hue rotation) might leak into the Gen-
erator. However, we have not experienced that being an issue in our
case despite enabling all transformations.

4.3. HDR values

HDR sky images can exhibit a very high value range while most
parts of the sky have reasonable values below 1. Especially the sun,
the aura, and any lens flares show a very high local contrast to the
surrounding atmosphere. When working with HDR in neural net-
works it is common practice to transform the values using a com-
pressive function such as a logarithm and then un-transforming it
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for final output [EKD*17]. This prevents numerical issues such as
exploding gradients while still allowing the network to produce big
values albeit at reduced precision. For the training, we processed
the images with a log transform and a fixed shift in order to squeeze
all intensity values to a semi-open interval with a fixed minimum
[—1,00). In practice however most values lie in the interval [—1, 1]
resembling a normal distribution curve with zero mean, while only
the sun values reach up to 2. The circular mask that ensures that the
values outside the sky hemisphere are exactly zero, corresponds to
-1 in the transformed images.

Large value ranges can be processed differently as proposed by
[YGH*21] who follow a divide-and-conquer approach to HDR
skies by splitting the responsibilities into multiple networks each
specialized on specific spatial parts (sun and sky) and thus differ-
ent value ranges. While it simplifies the training task for individual
networks, it also requires a way of merging the results together —
typically through another HDR network.

4.4. Training Procedure

We are training our network according to standard StyleGAN 3 pro-
cedures for the translationally invariant configuration (StyleGAN3-
T) with the resolution 1024 x 1024. We are using a single GPU for
training which renders training times in the order of weeks. On
top of the discriminator loss for the real images, we have an au-
toencoder loss in place that supervises the generation of clear sky
images. This is a simple L, loss between the input image and the
reconstructed image from the generator. We weight this loss with a
factor of 10* higher in order to level it with the magnitude of the
discriminator loss.

The circular mask that is applied on top of generated images
is really important for the trajectory of a training run. Without a
mask, the generator will spend a lot of effort on reproducing the
sharp circular boundaries and the horizon, while any sky pattern
in the center will have to be a byproduct. Much of the frequency
budget in each layer (especially the higher frequencies) is spent to
produce the image boundary so that less is available to produce
intricate cloud patterns. With a circular mask, any accidental image
content on the outside will be ignored by the discriminator thus
freeing resources of the generator.

The final quality of the generated images in an adversarial net-
work depends on the training progress of the discriminator. When
training from a random initialization most training time is spent
bringing the discriminator to a point where it can judge high-quality
imagery. One can however benefit from transfer learning and start
from network weights that were initially trained for a different
(possibly unrelated) dataset. Then, the early discriminator layers
already contain good image feature detectors which otherwise have
to be learned.

4.5. Rendering

In order to prepare the generator output for the usage in a render-
ing system, the cloudy images have to be converted into a different
projection. Most rendering systems use the equirectangular spheri-
cal projection (latitude-longitude) as the input format. Our images
are encoded in the stereographic hemispherical projection and are

thus only covering the top hemisphere. We re-project the image
data with bilinear interpolation into equirectangular images of size
2048 x 1024 using PTGui before using them as IBL in Blender
Cycles to light some scenes.

5. Results
For the results, we trained three variants of our network:

B A Baseline which is trained from scratch without our encoder
and clear sky reconstruction loss. This corresponds to a standard
StyleGAN3-T with support for HDR values.

O A version with all Our modifications enabled. This includes the
encoded clear sky images and the reconstruction loss.

JF A version similar to the above except that it was transfer learned
from a pre-trained network that generates human Faces.

Figure 4 depicts a matrix of images for these three training runs.
The figure can be read row-wise, from left to right which represents
the flow of data through our pipeline. The input clear sky (a) is
generated from a picked sun position (part of the dataset) and then
fed to the encoder of the applicable networks (O and F). Mixed
together with random noise, the encoded images are fed to the gen-
erator who produces two output images: the reconstructed clear sky
in column two (b) and the cloudy sky in column three (c). The re-
construction column also has insets showing the signed difference
towards the input clear sky with an exposure amplification of 22,
In the last two columns (d,e) we show examplar renderings of an
outdoor scene lit by these cloudy skies. The scene contains a mir-
ror ball and a 100% Lambertian reflective 3DBenchy boat. The
last column (e) additionally adds an explicit sun light source in the
renderer that produces a physically correct irradiance. We refer the
reader also to the supplementary video, where an animated version
of this figure is shown. The animations are linear interpolations in
latent space for four different random vectors and a static clear sky
input.

Reconstructed Clear Skies The three networks show different be-
haviour when looking at the reconstructed clear skies in Figure 4b.
As expected, a network without any conditioning for clear skies
(B) produces arbitrary images in this output slot. The two networks
with encoder (O and F) that have been trained to also output clear
skies do reconstruct a meaningful image. The sun position matches
in a side-by-side comparison, however the difference image reveals
a slight shift in position. This also shows in the animated videos
with a temporal instability and the sun position moves around. The
clear sky image in O is brighter than the reference, but seems more
stable than F.

Cloudy Skies When viewed from farther away, all three networks
produce shapes and patterns that compare with the clouds and hori-
zons in the training dataset. On closer inspection of Figure 4c,
the results are however far from photorealistic and look more like
clouds from a cartoon.

The clouds in the Baseline show smooth gradients albeit also
some visible halo artifacts with sharper corners are visible. The
illumination has realistic tendencies with bright scattering clouds
in front of the sun and absorbing shadows in the thicker clouds
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(a) Input Clear Sky

(b) Reconstructed Clear Sky

(¢) Output Cloudy Sky

(d) Rendered Scene (e) + Sun

Figure 4: Three training runs of equal length (1.1 million images): A Baseline (top row), Our network with encoder and reconstruction loss
(middle row), and a version of the latter that was transfer learned from Faces (bottom row). The encoder conditions a roughly matching sun
position (a-c) with minor shifts being visible in the difference image (b). The generated sun’s brightness is however not enough (d), requiring
the addition of an artificial sun light source (e). An animated version of this figure is shown in the supplemental video.

away from the sun. The antennas on the horizon become part of the
sky pattern and directly flow into each other or into a cloud. Note
the arbitrary sun position that is not directly controllable. Instead,
the network picks a sun position from the random latent vector.

Our network exhibits rather sharp cloud boundaries and strong
halo artifacts that produce a spotty pattern. The cloud textures are
less nuanced and look more like images from an earlier point in
training time of B. This hints at slower convergence. The sun po-
sition does coincide with the input clear sky and the reconstructed
clear sky, despite this not being directly enforced by the loss.

The network transfer-learned from human Faces shows a richer
horizon that stays disconnected from the sky pattern for the most
part. The clouds have a distinct thin appearance, with visible lines
crossing trough at random. Halo artifacts are not visible, but the
clouds occasionally show a discoloration that has nothing to do
with the illumination. The sun position is again correctly matched
to the desired input in this example, but for some latent vectors it
produces two suns that seem to be mirrored around some non-static
axis. This training on the one hand benefits from the pre-trained
discriminator, but also suffers from some deeply rooted concepts
of the generator such as skin color and face symmetry. We observe
that these artifacts are vanishing over training time.

© 2022 The Author(s)
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Rendered Scenes When used as-is in a renderer to illuminate the
scene (Figure 4d), the HDR cloudy skies look fairly convincing in
glossy reflections. A direct observation in the background is how-
ever showing the absence of detail. The scenes look rather dark and
are lacking contrast which can be explained by the clipped sun val-
ues in the training dataset. This motivates the last column (e), where
we manually add a sun light source to compensate for the missing
energy. There, the boat actually appears in the intended white color.

Controlling the cloud coverage We demonstrate in Figure 5 how
our method can also produce images with varying cloud coverage

Figure 5: The cloud coverage can be globally controlled by scaling
the magnitude of the random latent vector.
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while keeping the surrounding and sun position constant. This re-
lies on limiting the deviation of the random latent vector from the
centroid in latent space and is referred to as the “Truncation Trick”
in GAN literature. In our networks, the origin of the latent space
produces a clear sky while cloudy images tend to be located farther
from the origin.

Quantitative Evaluation Measuring the quality of a generative
model is commonly using the Fréchet inception distance (FID), a
metric comparing the statistical distribution between a number of
generated images and the training dataset. For each datapoint in
Figure 6, we generate 5000 images (matching the dataset size) and
compute the FID score. The metric is based on a neural network
that was pre-trained on ImageNet and thus only supports LDR in-
put. Since our network produces HDR outputs, we clipped the val-
ues, disregarding the sun brightness in the computation.

Our Baseline experiment achieved a minimum FID 89.1 in the
training time of 1.1 million images. In comparison, Karras et
al. [KAL#*21] report values of 5 and below for their networks
trained on faces. Ours achieved minimum FID of 95.5. While this
score is worse, the inclusion of Encoder gives control over the sun
position. The transfer-learned Faces experiment reached FID of
76.5, consistently outperforming the other runs. This is expected
as the discriminator has a significant head-start in judging finer de-
tails which challenges the generator more. The graphs confirm our
hypothesis of slower convergence of O that we have drawn from
visual inspection above.

6. Discussion and Future Work

In the previous section, we saw that our method is capable of gener-
ating skydomes for given sun positions and cloud coverage ratios,
and it can be used in HDR rendering. We now discuss the specifics
and limitations of our approach, and how they could be addressed.

Overcast skies and sun position detection We found that train-
ing our network works best when the clear sky images and real
photographs are matched and synchronized during training, chal-
lenging the discriminator even more. This requires detecting the
sun position in the photographs such that matching clear sky im-
ages can be generated. Unfortunately, automatically detecting the

—— Baseline
200 + Ours
—— Faces

FID «

0 200 400 600 800 1000
Training progress [x1000 images]

Figure 6: Convergence plot in terms of the FID metric where lower
is better.

sun position is a challenging task in the presence of occlusion by a
thick cloud, or when the sky is completely overcast. Hence for the
current experiments, we only used a subset of our dataset with a
directly visible or easily detectable sun position, which means that
the network cannot generate any overcast skies, or skies with thick
clouds obscuring the sun yet.

In the future, a more robust sun position detection technique should
be used, e.g., applying temporal constrains to fit a parabola to the
sun trajectory in consecutive detected frames. In case the sun disk
is hidden behind a cloud in some of the frames, its position can be
reliably interpolated from the known positions.

Direct sun radiance The radiance (light energy) coming from the
sky can be split to indirect radiance, which arrives from the Sun
and is scattered in the atmosphere or clouds, and direct radiance,
which is coming directly from the sun disk and is only weakened
by the transmission through the atmosphere. While the indirect en-
ergy is rather accurately represented by the clear sky model and
the dataset photographs, the direct energy is very high and concen-
trated in a tiny sun disk. This results in two major difficulties. First,
since the signal has a very high-frequency and value, it is not trivial
for a generative network to accurately generate a sun disk with the
correct energy. Second, the energy is so intense that it is impossi-
ble to be captured unclipped without using a neutral density (ND)
filter in the camera. In this paper, we solved this issue by manually
adding the extra solar energy on top of the skydome in the render-
ings, which is common practice for clipped HDRIs. That makes the
final renders look less dull and better represent the actual illumina-
tion. In the future, a more robust solution would be to capture a
dataset with an ND filter and adaptive exposure times [SJTW*06],
and possibly generate the sun disk in a separate dedicated network
layer. Extra care would have to be taken in case a sun disk is only
partially occluded by a cloud.

Stereographic projection distortion The stereographic projec-
tion used in our method results in the directions towards the zenith
having the highest resolution, while the horizon has the lowest reso-
lution. This is beneficial for learning the details of the cloud shapes
above the observer, but is not ideal for rendering flat areas such as
sea or oceans that do not have any objects on the horizon covering
the low resolution of the generated skydome’s horizon. Our early
experiments show that the network could be trained with different
projections without such prominent distortions, and it could result
in fewer problems in the training, so it is an important future re-
search direction.

Convergence It should also be noted that generative adversar-
ial networks (GANs) typically need many iterations to converge.
While [KAL*21] trained their network for so long that it saw as
many as 25 million training images in total, we only managed to
train on 1.1 million in 9 days. From our experiments on lower reso-
lutions, we know that longer trainings result in higher details in the
textures, as the network is slowly learning the high-frequency data.
Figure 7 confirms this also for the higher resolution when compared
to Figure 4. Training our network on an expensive GPU cluster for
a long time would likely result in more realistic looking clouds with
a less “cartoon-like” appearance.

© 2022 The Author(s)
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Figure 7: Results of a more converged training (O after 2.3 million
images) that promises higher fidelity is possible with our method.

High-resolution tiling The convergence is also related to the ac-
tual skydome resolution. While our network was trained on 1024 x
1024 pixels, training on even higher resolutions would benefit the
high-resolution renders, but it would be very hard to achieve with a
limited GPU memory and time. We believe that tiling several lower-
resolution subsets of the skydome could be a solution.

User parameters Our current method allows the users to select a
sun position and a cloud coverage ratio. We believe that many ad-
ditional parameters could be added to allow a finer selection of the
generated skydomes, which would be perfect for artists to match
the mood of their renderings. For example, we could expose all
existing parameters of the clear sky model [WVB*21] such as vis-
ibility distance or elevation. We could also condition the generator
on outputting certain types of clouds, e.g., thin high-altitude clouds
vs. dense thunderstorm clouds. We will also inspect the generator
to find latent dimensions that are responsible for certain cloud po-
sitions and types, in order to enable spatial control of where exactly
the clouds should appear, a concept similar to GauGAN [PLWZ19].

7. Conclusion

We have shown a GAN that produces cloudy skies in stereographic
projection. While the goal of photorealism has not been reached
due to limited resources, the proposed clear sky encoder approach
does help to directly parametrize the sun position. Our network is
able to produce the high dynamic range required in rendering, but
we see a limitation in our dataset that prohibits our environment
maps to light scenes realistically on their own.

With this paper, we are paving the way for a hybrid between analyt-
ical and data driven solutions for image-based lighting. Through the
combination of parameterizable synthetic and diverse real data, our
method leverages the strengths of both classical analytical models
and modern data-driven approaches.
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