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Abstract: We present an accurate and low-cost method for measuring fluorescence in materials.
Our method outputs an estimate of the material’s Donaldson matrix, which is a commonly used
two-dimensional spectral characterization of its fluorescence and reflectance properties. To find
the estimate, only a few measurements of the material’s reflectance under a few illuminants are
needed, which we demonstrate using low-cost optical components. Internally, our algorithm
is based on representing each Donaldson matrix with a multivariate Gaussian mixture model
and its diagonal with a bounded MESE (maximum entropy spectral estimate). It parametrizes
and constrains the estimate in a robust and simple way, allowing the use of gradient-descent
optimization. We evaluate our algorithm on a combination of real and synthetic data, and four
examples of distinct optical components. We reach significantly lower errors than the current state
of the art on the exact same inputs, our estimates do not suffer from artifacts such as oscillations
of the spectra, and they are stable and robust.

© 2023 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreement

1. Introduction

When a material is illuminated, a fraction of the incoming photons is reflected. The ratio between
the reflected and incoming photons is called the material’s surface reflectance. In general, the
reflectance varies per wavelength, which gives materials their various colors. Materials may
also absorb and re-emit a fraction of the incoming photons at a different wavelength than they
originally had, which is called wavelength shifting. For instance, minerals such as fluorite or
calcite will glow in color even when illuminated only with invisible ultraviolet light. This effect
is called fluorescence, and it is immediate and observable with bare eyes.

Fluorescence is common in both natural (minerals, corals, tissues) and synthetic (pigments in
papers, textiles, plastics) objects. Distinct fluorophores (chemicals) can also be combined in a
single object. Due to the re-emission of incoming photons into longer wavelengths, fluorescent
materials can appear brighter and more saturated than their non-fluorescent counterparts, and
their color or reflectance may significantly change under various illuminants (Fig. 1). This has
been studied in computer graphics to allow accurate visualizations and color rendering of such
objects [1–7], but also in remote sensing of vegetation [8], and in fluorescence imaging in biology
and medicine, including diagnostics in animals and humans [9], plants [10], and coral reefs [11].

All of these methods rely on measuring the fluorescence in the materials. A simple solution
is shining monochromatic light on the sample, measuring the whole reflected spectrum, and
repeating this for each illumination wavelength, e.g., in 10 nm steps (Sec. 2.1; [12]; partially
illustrated in Fig. 1(bc)). It has several downsides: it needs repeating for each wavelength,
it requires an expensive monochromator with a powerful broadband light source, and the
monochromatic light is weak leading to even weaker fluorescent emission and substantial
measurement noise.
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Fig. 1. Photographs of fluorescent (sticky notes, liquid detergent) and non-fluorescent (color
chart) materials under different illuminants. The monochrome illuminants reveal which
objects are fluorescent: they emit different wavelengths than the illuminants had.

Alternative solutions are based on sparse measurements (Sec. 2.2): instead of scanning all
combinations, only a few illuminants are used and the reflectances may be measured by a sensor
with a coarse resolution. The fluorescence is then estimated by solving an inverse problem,
i.e., by numerically finding which fluorescence could have resulted in the observed reflectances.
Some of these approaches still require expensive equipment such as programmable filters [13] or
high-frequency spectral illuminants [14], only assume RGB data [15], or can inherently only
support one fluorophore in each material [16–20]. The most important work in our context
is by Blasinski et al. [21], who not only summarize the previous approaches, but also unify
and generalize several of them into a new cohesive framework. Their method can estimate
fluorescence, even from multiple fluorophores simultaneously, using any arbitrary illuminant
spectra and sensor spectral sensitivities, which makes it compatible with low-cost optical setups.

However, their estimates can be significantly improved, which we show both quantitatively
and qualitatively in our evaluations, where our new method outperforms their results on the exact
same inputs. For example, their estimated spectra often suffer from oscillations and ripples: a
flat spectrum is reconstructed as a wavy spectrum oscillating around the ground truth value,
or a single peak is reconstructed as multiple peaks instead. Similar problems are common in
methods that represent the spectra with basis functions that were built from fluorophore and
reflectance datasets [17–21]. In our method, we represent fluorescence in a different way, using
Gaussian distributions and maximum entropy spectral estimates, which we picked to ensure that
the estimated fluorescence is accurate, including fluorescent peaks and potential flat spectra.

Our contribution We develop a robust algorithm for accurately estimating fluorescence and
reflectance from sparse measurements acquirable with low-cost optical setups. Our algorithm
is based on solving an inverse problem. While several previous approaches use a dataset of
reflectances and fluorophores to reduce the dimensionality of the problem [17–21], we instead
represent the fluorescence with a multivariate Gaussian mixture model and the reflectance with
a bounded MESE (maximum entropy spectral estimate), which, to our knowledge, is their first
application in such measurements. We show that our approach is simple, yet accurate and
robust, and even though the inverse problem is non-convex, it behaves well with our chosen
gradient-descent optimization strategy. We demonstrate how our method adapts to optical setups
of different equipment costs. We evaluate all on a combination of real and synthetic data and
compare to state of the art, showing consistently lower errors and higher-quality spectra.

2. Problem statement and prior work

The reflectance from fluorescent materials can be mathematically modeled (Sec. 2.1) and the
measurement problem can then be written and solved as an inverse problem (Secs. 2.2 and 2.3).
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2.1. Modeling fluorescence with the Donaldson matrix

Assuming fixed illumination and observation angles, when a fluorescent material is illuminated
by a light source with spectrum l(λi), then the reflected intensity r(λo) is (Fig. 2):

r(λo) =

∫
Φ(λi, λo) l(λi) dλi, (1)

where Φ(λi, λo) is a two-dimensional function jointly describing the material’s reflectance
and fluorescence, and λi and λo are incoming (excitation) and outgoing (reflected, emitted)
wavelengths, respectively. For practical purposes, we discretize the spectral dimension into
Ni incoming and No outgoing wavelengths, and then l ∈ RNi and r ∈ RNo become vectors,
Φ ∈ RNo×Ni becomes a matrix, and Eq. (1) becomes a matrix-vector multiplication (Fig. 2):

r = Φ · l. (2)

Finding the exact values of the Φ matrix for the given material is our goal. The matrix is often
called the Donaldson matrix after Donaldson [12], who measured the matrix values directly using
monochromatic light (as introduced in Sec. 1). Note that the matrix exists also for non-fluorescent
materials: it is simply zero everywhere except for the diagonal (λi = λo), which represents pure
reflectance. As Fig. 2 shows, it is natural to separate the diagonal Φdiag (pure reflectance) and the
off-diagonal Φfluo (pure fluorescence), and write Φ = Φdiag + Φfluo.

Fig. 2. Illustration of Eqs. (1) and (2). The reflected spectrum (a) is computed from
the Donaldson matrix (b) and illuminant spectrum (c). While the illuminant is green, the
reflection is orange with two peaks, which results from fluorescence.

Sometimes, assumptions are made to simplify the shape of Φ [7,12,21]. First, we expect the
emitted photons to have longer wavelengths than the excitation, hence Φ(λi, λo) = 0 for λi>λo, or
equivalently, the matrix is zero below the diagonal. Second, by following Kasha’s rule, Φfluo
would be a separable function Φfluo(λi, λo) = ϕem(λi) · ϕex(λo) with one-dimensional emission
ϕem(λi) and excitation ϕex(λo) spectra [21]. But this does not hold in general, especially for
materials with multiple fluorophores, so we do not assume such separability in this publication.

2.2. Sparse measurements

As measuring the Donaldson matrix Φ directly is expensive, slow, and suffers from noise, we
focus on the idea of estimating Φ from only sparse measurements (Fig. 3) that are typically
faster to acquire and do not always rely on expensive components [13–21]. In general, such a
measurement setup consists of:

• a set of nl illuminants with spectra l1(λ), . . . , lnl (λ), and

• a detector of the reflected light, which can detect ns spectral channels with spectral
sensitivities s1(λ), . . . , sns (λ).
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In our method, we impose no implicit restrictions. The detector can be an RGB camera with only
3 channels, as well as a spectrometer with a sub-nanometer resolution and hundreds of channels.
The illuminants can be individual LEDs, but also a single broadband lamp with switchable filters.

Fig. 3. Illustration of Eq. (3) (sparse measurements). In this example, the Donaldson matrix
(a) is unknown, and the sparse measurements are based on 8 illuminants (b) and an 8-channel
sensor (c), resulting in 8 × 8 detected intensity values Ij,k (d).

By discretizing the problem and using the notation above, we can write that when the fluorescent
sample is illuminated by the j-th illuminant, then the k-th channel of the detector should detect
the reflected intensity of (Fig. 3): (︁

Φ · lj
)︁
⊙ sk, (3)

where ⊙ is an element-wise multiplication (Hadamard product). In order to estimate an unknown
Φ, we can hence illuminate the sample once with each illuminant and detect the reflected
intensities per channel, which gives nl × ns measurements denoted as Ij,k. Estimating the
Donaldson matrix Φ̂ then becomes an inverse optimization problem, for which we chose the
Euclidean distance (ℓ2 norm) between the actual measurements and their estimation:

Φ̂ = argmin
Φ

⌜⃓⎷ nl∑︂
j

ns∑︂
k

(︂
Ij,k −

(︁
Φ · lj

)︁
⊙ sk

)︂2
. (4)

In general, this problem is significantly underdetermined and has infinitely many solutions,
most of which are not even physically plausible. Therefore, a good method needs not only to
minimize the error, but mainly converge to a realistic and plausible solution.

2.3. Previous approaches finding a solution of Eq. (4)

To simplify the space of possible solutions of Eq. (4), many approaches use basis functions derived
from a database of a priori known reflectances and fluorophores and essentially interpolating
between them [17–21]. As we explained in Sec. 1 and show in Sec. 4.5, fitting the spectra
onto the small linear bases results in artifacts such as a flat spectrum being reconstructed with
oscillations.

From the broader perspective, Blasinski et al. [21] categorized the existing sparse approaches
into two groups: bispectral separation [14,16–19] and computational separation [13,15,20,21].
Using our notation from Sec. 2.2, we could say that bispectral separation methods rely on
high-resolution spectral detectors, meaning ns>30. Such tailored methods can operate under a
very small number of illuminants nl, e.g., two broadband illuminants [16], two high-frequency
illuminants [14], or even just one spiky illuminant [18]. On the other hand, the computational
separation methods employ more complex algorithms to allow cheaper detectors, e.g., just a
simple RGB camera with two broadband illuminants [15] or a set of narrowband illuminants
[20]. Using this terminology, our method would certainly fall into computational separation.

Out of all of these methods, only these by Suo et al. [13], Blasinski et al. [21], and ours are
general enough to resolve materials with more than one fluorophore, mainly because they do not
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build on the assumption of Kasha’s rule and separability (Sec. 2.1). The algorithm of Blasinski
et al. reaches higher accuracy than Suo et al., it employs and unifies the concepts from the other
methods, and it is the most recent method. For the purpose of comparisons, we refer to it as the
state of the art.

3. Estimating fluorescence with Gaussian distributions and bounded MESE

We design a sparse measurement algorithm that finds a solution to Eq. (4). It ensures that the
Donaldson matrix is smooth and plausible by parametrizing it via Gaussian mixtures and bounded
MESE, and it finds the final estimate using gradient-descent optimization.

3.1. Overview

Input The inputs of our algorithm are sparse measurements of the material following Fig. 3
and Sec. 2.2. The inputs include the spectra l1(λ), . . . , lnl (λ) of the nl illuminants, the spectral
sensitivities s1(λ), . . . , sns (λ) of the detector’s ns spectral channels, and the nl ×ns detected values
of the material’s reflectances corresponding to Ij,k in Eq. (4) and Fig. 3(d).

Output The output of our algorithm is an estimate of the material’s Donaldson matrix Φ.
Because it is represented parametrically in our algorithm, it has a small memory footprint, and a
fully continuous signal Φ can be easily reconstructed with any spectral resolution.

Processing We split the estimate Φ = Φdiag + Φfluo into the off-diagonal elements Φfluo
(Fig. 4(ab)) and the diagonal Φdiag (Fig. 4(c)). The fluorescence Φfluo is represented by a
multivariate Gaussian mixture model (GMM), which consists of individual two-dimensional
Gaussian distributions parametrized by their intensity, mean, and covariance (Sec. 3.2). The
diagonal Φdiag is represented by a small set of trigonometric moments that define a continuous
signal given by the bounded maximum entropy spectral estimate (bounded MESE) (Sec. 3.3).
Using Eq. (4) then allows estimating the whole matrix via gradient-descent optimization (Sec.
3.4).

Fig. 4. Illustration of our parametric model. The Gaussian mixture model (GMM) consists
of independent distributions. Their contours and mean values (× symbols) are visualized in
(a), and their superposition Φfluo in (b). The pure reflectance Φdiag (c) is visualized with its
discrete samples (blue) together with the final bounded MESE (red).

3.2. Fluorescence as a Gaussian mixture

A two-dimensional Gaussian mixture model (GMM) is a linear superposition of Gaussian
distributions (Fig. 4(ab)). Following Hua et al. [7], we define it as a weighted sum of ng
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individual Gaussians:

f (x) =
ng∑︂

m=1
wmN(x | µm, Σm), (5)

where N(x | µ, Σ) : R2 → R is a two-dimensional Gaussian distribution:

N(x | µ, Σ) =
(︂
2π

√︁
|Σ|

)︂−1
exp

(︃
−

1
2
(x − µ)TΣ−1(x − µ)

)︃
, (6)

and wm>0, µm ∈ R2, and Σm ∈ R2×2 are the weight, mean, and covariance matrix of the m-th
distribution in the mixture. In our context, the GMM and Eq. (6) are interpreted to be in the
wavelength domain, meaning x = (λi, λo) is a vector of the incoming and outgoing wavelengths,
and µ = (µi, µo) represents the mean incoming and outgoing wavelengths. The pure fluorescence
of the Donaldson matrix is then defined as Φfluo(λi, λo) = f (x).

This concept follows the recent publication of Hua et al. [7], who worked on compressing
fluorescent textures in photorealistic rendering. They observed that the fluorescence distribution’s
shape resembles Gaussian distributions and it can be modeled as a sum of a few Gaussians.
We use this observation in the new context of measurements as it allows using only a few
parameters to control the fluorescence while also ensuring that the result will be physically
plausible to a certain degree. Furthermore, the estimate naturally supports multiple fluorophores,
it is continuous and can be evaluated at any wavelength resolution, and it is directly compatible
with efficient importance sampling in Monte Carlo rendering [7]. We observed that the GMM is
a smooth, differentiable function that behaves well in the gradient-descent optimization setting.

3.3. Diagonal as a bounded MESE

We represent the diagonal Φdiag as a one-dimensional bounded maximum entropy spectral
estimate (bounded MESE, Fig. 4(c)). Following Peters et al. [22], we know that a bounded
2π-periodic signal g(φ) ∈ [0, 1] can be represented by m + 1 complex Fourier coefficients
c = (c0, . . . , cm), which can also be viewed as the signal’s trigonometric moments:

c =
∫ π

−π
g(φ)F (φ)dφ ∈ Cm+1, (7)

where F (φ) is the Fourier basis:

F (φ) =
1

2π
(exp(−ijφ))mj=0 ∈ Cm+1. (8)

With the whole signal g(φ) reduced to only m + 1 complex coefficients, we also need a way to
solve the inverse problem: finding a signal that corresponds to the given coefficients. Broadly
speaking, MESE [22,23] is the result of such an inverse process: it is an estimated signal that best
corresponds to the given coefficients c, and by “best" we mean that it maximizes Burg entropy, so
the estimate is a relatively smooth signal. This is a memory compression mechanism, as a whole
curve is represented by only a few numbers, but it also acts as a smoothing operator, because after
computing the first few moments of a noisy signal, its MESE will be a smoother signal (Fig. 4(c),
compare the blue samples to the red curve).

Spectral reflectances, in our case Φdiag(λ) ∈ [0, 1], are generally not periodic signals and they
are additionally bounded due to energy conservation. Hence, in our algorithm, we follow Peters
et al.’s method [22] for computing bounded MESE and transforming them to reflectance spectra
by mirroring and wavelength-mapping the signals. Such transformed moments also lose their
imaginary part, so they become real instead of complex numbers. The meaningful ranges of the
moment values are c0 ∈ [0, 1] and cj ∈ [− 1

π , 1
π ] for j ∈ {1, . . . , m}. We confirm Peters et al.’s

observation that 8 moments (m = 7) are sufficient for reflectance spectra.
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3.4. Estimating the Donaldson matrix via gradient descent

The GMM and bounded MESE models from Secs. 3.2 and 3.3 together form a parametric model
that describes a continuous Donaldson matrix Φ with only a handful of parameters (Fig. 4).
Plugging our model into Eq. (4) leads to an inverse problem, in which these model parameters
are the unknown variables that we need to solve for.

This problem has significantly fewer parameters and is more constrained than just naïvely
discretizing the whole matrix, which in our early experiments did not lead to any meaningful
results. For example, a Donaldson matrix in the wavelength range of 400 to 700 nm discretized
with a 10 nm resolution has 496 free parameters (the whole matrix has 31 · 31 = 961 elements,
out of which 31 are the diagonal, 465 are the upper left triangle, and 465 are zero), whereas our
parametric model has almost ten times fewer parameters.

Our parametric model is non-linear and non-convex, since a sum of multiple Gaussian
distributions can have more local extrema. Fortunately, it has well-defined derivatives, which
allows using numerical optimization algorithms based on gradient descent [24]. We take
inspiration from the field of deep learning, where non-convex optimizations are often solved
by adaptive step sizes. Specifically, we noticed that the adaptive moment estimation algorithm
Adam [25] converges well to estimates with high accuracy.

Optimized parameters In order to minimize Eq. (4), the optimization algorithm estimates
the following parameters:

• for each Gaussian distribution, its weight w>0, mean wavelength µ ∈ [400, 700]2, and
covariance matrix Σ ∈ R2×2 (we used only two non-zero elements to prevent rotations of
the distribution), in total 5 real numbers per distribution,

• for the diagonal, the trigonometric moments c0 ∈ [0, 1] and cj ∈ [− 1
π , 1

π ] for j ∈ {1, . . . , m}

defining the bounded MESE curve, in our case using 8 moments (m = 7).

While estimating the trigonometric moments directly via the optimization algorithm is possible
and leads to valid results, in practice, it is computationally expensive and also hinders the accuracy.
Hence, during the optimization, we instead discretize the diagonal with a 10 nm resolution,
leading to 31 parameters (visualized by the blue crosses in Fig. 4(c)), and we let the optimizer
estimate them individually with a simple penalization to keep them in the bounded [0, 1] range.
Only then, we compute the 8 trigonometric moments corresponding to the discretized diagonal,
which finally gives a continuous smooth bounded MESE curve (red curve in Fig. 4(c)).

Initial estimates For the optimization to converge, each parameter needs to be initialized within
a valid and meaningful range. Experimentally, we verified that the specific initialization does not
play such an important role. We initialized the diagonal as a constant function of 0.5 = 50%
reflectance, and each Gaussian distribution with a covariance matrix Σ = {{4000, 0}, {0, 4000}}
to make their support large enough to reach from the edges to the center, weight w = 100,
and their mean wavelengths covering the whole triangle, making sure every corner is covered,
i.e., for 6 Gaussian distributions: (400, 400), (550, 550), (700, 700), (550, 400), (700, 400), and
(700, 550) nm.

Iterations and step sizes To ensure fast convergence, we ran each optimization in three loops
with decreasing step sizes. Hence, the Adam algorithm is executed 3 times per Donaldson matrix:
first for 100 iterations with a step size of 0.10; second for 200 iterations and 0.05; and third for 800
iterations and 0.02. The second and third loops are initialized with the parameters that yielded
the lowest error in the previous loop. Furthermore, the step sizes need to be scaled for each
parameter separately, because different parameters have different ranges, e.g., the reflectance is
only valid between 0 and 1, whereas the Gaussian covariance matrix can reach large values. The
exact values are not critical, because Adam is an adaptive algorithm. In our case, we multiplied
the reflectance’s step size by 0.05, and each Gaussian parameter’s step size by 200, e.g., the
actual step size of the Gaussian mean wavelength in the first loop would be 0.10 · 200 = 20.
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3.5. Algorithm implementation

The algorithm itself was implemented in Python and the source codes together with accompanying
data are attached in Code 1, Ref. [26]. Most of the implementation is straightforward application
of the equations in the paper, with one exception, which is the optimization itself. The gradient-
descent algorithm requires computing the gradients (partial derivatives) of Eq. (4) w.r.t. the
parameters of the Gaussian distributions and the diagonal. We achieved that using the jax
auto-differentiation framework [27]. With such a naive implementation, the run-time per material
is a couple of minutes, but since it can be trivially executed in parallel, estimating a batch of
32 materials on a 32-core CPU takes the same time as a single material. For comparison, the
implementation of Blasinski et al. [21,28] is faster, taking a couple of seconds per material, but
that is for the price of lower accuracy.

4. Evaluation

We evaluate our method on a combination of synthetic data and real measurements. We first
introduce examples of optical setups compatible with our method (Sec. 4.1), then our synthetic
dataset (Sec. 4.2), and then our real measurements (Sec. 4.3). The evaluation itself is both
quantitative, based on commonly used error metrics (Sec. 4.4), and qualitative, based on visual
examinations of the matrices, spectra, and predictive image rendering (Sec. 4.5).

4.1. Optical setups

We introduce two sets of illuminants (LEDs and color filters) and two kinds of detectors (a
spectrometer and a multispectral sensor chip) to demonstrate the variability and compatibility of
our method. These illuminants and detectors can be used interchangeably, which gives 2 · 2 = 4
different examples of compatible measurement setups. We illustrate some of them in Fig. 5 and
their spectra in Fig. 6.

(a) (b)

Fig. 5. Examples of optical setups with different optical components compatible with our
algorithm. The abbreviations L1, L2, S1, and S2 are from Sec. 4.1.

Measurement geometry Figure 5 shows what is often called a 45°/0° measurement: a diffuse
material sample is illuminated under approximately 45°, while the detector is placed orthogonally
to the sample to avoid specular reflections. To measure how the material performs under varying
angles, our method could in principle be extended to a fully goniophotometric setup, e.g., with
the detector on a rotating arm. Our algorithm would then reconstruct one Donaldson matrix per
each angle separately, and these results could be interpolated if needed.

Calibration The Donaldson matrix is a unitless distribution that describes ratios of the reflected
and re-emitted energy, so the exact units of l1(λ), . . . , lnl (λ) and s1(λ), . . . , sns (λ) are arbitrary.
It is critical to normalize the values with respect to a single value to ensure that the estimated
ratios in the Donaldson matrix are meaningful. For example, Fig. 6(bd) are normalized to the
peak of the strongest spectrum. To calibrate the illuminants, we used Spectralon, which has a

https://doi.org/10.6084/m9.figshare.23567073


Research Article Vol. 31, No. 15 / 17 Jul 2023 / Optics Express 24355

Fig. 6. Measured spectra of our exemplar optical setups from Sec. 4.1 and Fig. 5.

guaranteed 99% diffuse reflectance in the whole visible spectrum. By illuminating the Spectralon
with each of the illuminants, the illuminant spectra are obtained from the known reflectance of
99%. It is also important that the detector’s spectral sensitivity is calibrated beforehand, such
that the detected peaks have correct intensities. Many spectrometers and detectors come factory
pre-calibrated, or their calibration is possible with a stabilized light source of a known spectrum.

Examples of illuminants (L1, L2) The goal is to have a set of illuminants distinctly covering
the intended spectral range, in our case the visible range from around 400 to 700 nanometers.
We demonstrate two affordable options. The first option (denoted L1) is light-emitting diodes
(LEDs), which are readily available with various spectra. In our example (measured in Fig. 6),
we use 6 narrowband and 2 broadband (warm white and cold white) LEDs from OptoSupply with
the cost of about 0.50 U.S. dollars per piece. The second option (denoted L2) is placing different
color filters in front of a white illuminant. In our example (measured in Fig. 6), we purchased
colored foils from a photography equipment store (about 25 U.S. dollars) and we placed them
in front of a 200 W white LED panel (about 140 U.S. dollars). Note that it was necessary to
add an additional near-ultraviolet LED (about 0.50 U.S. dollars), otherwise the spectrum would
not cover the wavelengths around 400 nm. The main difference between L1 and L2 is that L1
relies on multiple LEDs where each is electronically controlled, whereas in L2, the filters can be
exchanged quickly by hand.

Examples of detectors (S1, S2) An optimal spectral detector in our case can differentiate
between reflected light throughout the whole spectral range. The most straightforward option
(denoted S1) is a spectrometer, which can easily have a sub-nanometer resolution and hundreds of
spectral channels. An entry-level USB spectrometer (Ocean Insight USB-650) can be purchased
for around 2000 U.S. dollars. A significantly more low-cost solution (denoted S2) relies on a
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multi-spectral sensor, which is a small chip containing a few pixels, each with a different spectral
sensitivity. In our example (measured in Fig. 6), we used the 8 narrowband channels of the AMS
AS7341 sensor (about 25 U.S. dollars).

Cost comparison In Table 1, we summarize the aforementioned rough estimated costs of the
individual optical setups L1-S1, L1-S2, L2-S1, and L2-S2. We also compare these costs to the
reference setup that is used for ground truth measurements, which includes a monochromator,
a broadband Xenon light source including its power supply, and a spectrometer. Because the
manufacturer of our reference setup does not exist anymore, we instead decided to use the publicly
available price lists of Newport Corporation (newport.com, sections “CS130B 1/8m Configured
Monochromator" and “Low Power Xenon (Xe) Research Light Sources") to estimate the prices
for the monochromator and light source.

Table 1. Rough estimated costs for the individual optical setups.

Reference setup L1-S1 L1-S2 L2-S1 L2-S2

Illuminants
Monochromator: 8,500 USD

4 USD 4 USD 165 USD 165 USD
Xe light: 10,000 USD

Detector 2,000 USD 2,000 USD 25 USD 2,000 USD 25 USD

Total 20,500 USD 2,004 USD 29 USD 2,165 USD 190 USD

4.2. Synthetic dataset and simulated measurements

For evaluating fluorescence estimation methods, it is common to simulate measurements on
synthetic datasets of Donaldson matrices [14,16,21], i.e., instead of performing an actual
measurement, the optical setup is only simulated to evaluate the method’s performance. Such an
approach has many benefits: the ground truth matrices are precisely known, the simulations are
efficient, and the synthetic datasets can contain many materials, so the evaluation is statistically
meaningful compared to real measurements on only a few isolated samples.

Base dataset We use a dataset of real materials that were measured by Gonzales [29], who
directly acquired the Donaldson matrices using a specialized bi-spectral spectrophotometer
(Labsphere BFC-450), which has two monochromators measuring the ground truth as shown
by Donaldson [12] (Sec. 2.1). These ground truth matrices are available in a 10 nm resolution
and they cover our range of interest of 400 to 700 nm. As the matrices were acquired with a real
setup, they already contain significant noise, hence no synthetic noise was added. We picked 32
samples with strong fluorescence, including color pigments, polymer clays, golf balls, textiles,
papers, and index cards, all showing various reflectances and levels of fluorescence. Out of these
samples, 28 contained a single fluorophore, and we judged 4 to have two fluorophores.

Enlarging the dataset To enlarge the dataset, we further created 56 synthetic Donaldson
matrices containing two fluorophores. First, we sorted the original 28 matrices based on their
emission peaks (to prevent entirely overlapping spectra), and then we summed the Donaldson
matrices while preserving the original diagonals (reflectances). Physically, this would be roughly
equivalent to overlaying two transparent fluorescent slides with different fluorophores, which was
done by Blasinski et al. [21].

Simulating the measurements Because we know the parameters of the optical setups from
Sec. 4.1, mainly the illuminant and sensor spectra lj, sk (Fig. 6), and we know the ground truth
matrix Φ from the synthetic dataset, we can use Eq. (3) to compute Ij,k (the reflectances that
the sensor detects). These values are then used as the sparse inputs to the actual fluorescence
estimation method. The method then outputs the estimated matrix Φ̂. The similarity between Φ̂
and Φ is then evaluated (Secs. 4.4 and 4.5). A perfect estimation method would output Φ̂ = Φ.
The data and the algorithm for these simulations are part of the attachment Code 1, Ref. [26].

https://doi.org/10.6084/m9.figshare.23567073
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4.3. Real measurements

Apart from the synthetic measurements, we also performed real measurements. Specifically,
we measured fluorescent papers of different colors and fluorophores. To obtain ground truth
measurements of the same materials, we relied on a tunable monochromator by AMKO GmbH,
with a spectral range from 350 nm to 780 nm. We illuminated the sample in 10 nm steps, while
the reflected light was being measured by a spectrometer. From these data, the ground truth
Donaldson matrix was reconstructed [12]. When obtaining the ground truth matrices, the material
needs to be illuminated under the same measurement geometry as when obtaining the sparse
measurements. We solved this by using optical fiber to direct the light from the monochromator
and from the LEDs into the exact same spot on the material samples. Each measurement was
then performed once with the monochromator (for the ground truth Donaldson matrix), and once
with the LED spectra (for the Donaldson matrix estimated using our method). Our experiments
confirmed that our method works in real conditions, and we discuss the accuracy of the estimated
matrices of real and synthetic data together in Sec. 4.5.

4.4. Quantitative evaluation

We evaluate the accuracy of our method on the various low-cost optical setups from Sec. 4.1. We
focus on the synthetic dataset as it allows for drawing statistically meaningful conclusions. The
exact same inputs were also evaluated using fiToolbox [28], an open-source implementation
of the state-of-the-art method by Blasinski et al. [21]. This allows us to directly compare the
estimated matrices between our method, the state of the art, and ground truth.

Root-mean-square error A commonly used quantitative metric is the root-mean-square error
(RMSE) of the estimated matrices compared to the ground truths. Since the diagonal Φdiag
and fluorescence Φfluo can be separated, we evaluate their errors independently, which gives
more insight into the algorithms’ behaviors. We compare the RMSE on all combinations of the
exemplar optical setups from Sec. 4.1, namely L1-S1, L1-S2, L2-S1, and L2-S2, which vary by
their illuminants (L) and sensors (S). The resulting errors are visualized in Fig. 7 using standard
boxplots, which show the medians, quartiles, minimum and maximum errors, and outliers, all
separately for the four optical setups, and for one and two fluorophores.

Following Fig. 7, we can conclude that our algorithm reaches lower errors than the state of the
art, and it is also more stable with fewer outliers. The biggest difference is visible in the L1-S1
setup on the single fluorophore dataset, where our fluorescence median error is three times lower
than Blasinski et al. Notice that our algorithm’s error significantly decreases with better optical
setups (L1-S1 vs. L2-S2, the worst setup), whereas Blasinski et al. reaches similar errors in most
setups. In the original publication by Blasinski et al. [21], Fig. 4, we can see that for a small
number of illuminants, increasing the sensor resolution (camera filters) above some point does not
improve the accuracy anymore, whereas our algorithm still takes advantage of the extra resolution
to lower the estimation error. The only test in which our algorithm underperformed was the most
difficult L2-S2 setup on the two-fluorophores dataset, where Blasinski et al. benefitted from their
pre-learned basis functions.

Color accuracy Another important aspect is the color accuracy under narrowband illumination
provided by our estimates (Fig. 8) to ensure that our method is suitable for predictive rendering of
such scenarios in computer graphics. Given the estimated Donaldson matrices, we evaluated the
error in predicting the color that is reflected from the fluorescent materials when illuminated by
varying monochromatic illuminants. We calculated the color difference using the standardized
perceptual metric CIEDE2000 (denoted ∆E00, [30]). Following Fig. 8, our color predictions
are consistently and significantly more accurate than in the estimates of Blasinski et al. The
highest differences can be seen for low wavelengths, because most fluorophores in our dataset
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Fig. 7. Quantitative evaluation comparing the root mean square errors (RMSE) of Donaldson
matrices estimated with our method (orange) and the state of the art (blue, Blasinski et al.
[21]). The boxes show quartiles, horizontal lines are median errors, whiskers minimum and
maximum errors, and the plus symbols are outliers. The L1-S1, L1-S2, L2-S1, and L2-S2
correspond to different optical setups per Sec. 4.1.

are triggered with a blue illuminant. Towards red wavelengths, the reflected color becomes
independent of the fluorescence, it is given mostly by the pure reflectance (diagonal), and hence
the overall color difference is lower.

Fig. 8. Quantitative evaluation measuring the color difference (CIEDE2000, ∆E00 [30],
lower is better) between the ground truth materials and our estimates (orange boxplots), and
the state-of-the-art estimates (blue boxplots, Blasinski et al. [21]). The vertical axis shows
how much the predicted reflected color is wrong, given the material was monochromatically
illuminated with the wavelength on the horizontal axis. The dataset in this plot is the
single-fluorophore, L1-S1 optical setup.
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4.5. Qualitative evaluation

While the previous section focused on objective quantitative metrics using the synthetic dataset,
we now perform a qualitative examination of all our data to understand the behavior of the
estimation methods in various contexts.

Visualized matrices In Figs. 9 and 10, we show a small subset of ground truth Donaldson
matrices and their estimates using our algorithm and state of the art. We chose 2 examples from
the synthetic one-fluorophore dataset, 1 example from the synthetic two-fluorophores dataset,
and 2 examples from real measurements. While one can see that the RMSE is typically lower for
our estimates compared to Blasinski et al., the major observation is that the estimates of Blasinski
et al. suffer from the aforementioned oscillations.

Fig. 9. Examples of Donaldson matrices of five different materials and their estimates using
the L1-S1 optical setup, comparing our method (a,b) to ground truth (c) and the state of the
art (d,e). The top three measurements are synthetic, the bottom two are real.

For example, in Fig. 9, all the ground truth matrices have either a single fluorescent peak
or two peaks. While our estimates manage to reconstruct the number of peaks with a high
accuracy, Blasinski et al. often overestimate the number of peaks, and the Donaldson matrices
then resemble ripples on the water surface. In Fig. 10, we can see a similar effect in the reflectance
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Fig. 10. Examples of ground truth and estimated pure reflectances (diagonals) of the five
materials from Fig. 9 under identical conditions, comparing our method (a) to the state of
the art (b). The left three measurements are synthetic, the right two are real.

spectra: where the ground truth and our estimates have a relatively flat spectrum, the estimates of
Blasinski et al. often oscillate and create waves, which are not present in the ground truth spectra.

Using the estimates in predictive rendering Furthermore, we also present an example of
using our estimated Donaldson matrices in the Monte Carlo predictive renderer ART [31], which
is open-source and supports fluorescent materials. In Fig. 11, we show a comparison of six
images rendered with ground truth matrices, and matrices estimated with our method and by
Blasinski et al. [21] for two fluorescent materials lit by a monochromatic illuminant at 560 nm.
This is an illustration of Fig. 8: the importance of having a consistently low ∆E color error over
the illuminants to ensure high color accuracy. The renders have been tonemapped with the exact
same parameters to ensure that the exposure and contrast do not vary from result to result.

Fig. 11. A fluorescent ball is monochromatically illuminated (560 nm). The ball in each
rendered image has a different Donaldson matrix. The balls (a) and (d) use the ground truth
matrices from the material dataset, and the balls (b)-(c) and (e)-(f) use matrices estimated
with our method, and with Blasinski et al. [21].

5. Conclusion

We have presented a simple and affordable technique for estimating fluorescence in materials.
The inputs for our algorithm are easily acquirable with low-cost optical setups, and the output
is in the form of a parametrized Donaldson matrix with a small memory footprint, usable in
any standard application including predictive and photorealistic rendering. We showed that our
estimates have objectively lower errors than the state-of-the-art algorithm on the exact same
input data, our algorithm is also more stable and robust with a lower number of outliers, and our
estimates are qualitatively better and more suitable for color-accurate predictive rendering.

Our paper’s core principle was the parametrization of the Donaldson matrix by a Gaussian
mixture model (GMM) and bounded maximum entropy spectral estimate (bounded MESE), which
can be done in a differentiable way compatible with gradient-descent optimization algorithms.
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This makes it compatible with sparse measurements and makes it possible to measure fluorescence
accurately without specialized and expensive bi-spectral spectrophotometers.

Future work We can see several minor directions for future work. One improvement would
consist of a faster implementation that does not rely on auto-differentiation, and instead computes
derivatives using equations derived by hand, possibly accelerated on the GPU. Furthermore, the
optimization itself could consist of more adaptive steps, such that only one Gaussian distribution
is estimated at first, and more Gaussians are added subsequently to allow faster convergence for
materials with only one fluorophore. Finally, our method allows anyone to quickly build a dataset
of Donaldson matrices of common materials, which would be useful in computer graphics for
predictive and photorealistic rendering.
Funding. Grantová Agentura České Republiky (GAČR-22-22875S); Horizon 2020 Framework Programme (956585);
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