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Abstract
Achieving photorealism when rendering virtual scenes in movies or architecture visualizations often depends on providing a
realistic illumination and background. Typically, spherical environment maps serve both as a natural light source from the
Sun and the sky, and as a background with clouds and a horizon. In practice, the input is either a static high-resolution HDR
photograph manually captured on location in real conditions, or an analytical clear sky model that is dynamic, but cannot model
clouds. Our approach bridges these two limited paradigms: a user can control the sun position and cloud coverage ratio, and
generate a realistically looking environment map for these conditions. It is a hybrid data-driven analytical model based on a
modified state-of-the-art GAN architecture, which is trained on matching pairs of physically-accurate clear sky radiance and
HDR fisheye photographs of clouds. We demonstrate our results on renders of outdoor scenes under varying time, date and
cloud covers. Our source code and a dataset of 39 000 HDR sky images are publicly available at https://github.com/CGGMFF/
SkyGAN.

Keywords: modelling; natural phenomena, rendering; image-based rendering, rendering; atmospheric effects

CCS Concepts: • Computing methodologies → Rendering; Supervised learning; • Applied computing → Earth and atmo-
spheric sciences

1. Introduction

In photorealistic rendering, scenes are commonly surrounded by en-
vironment maps, a concept also referred to as image-based lighting
(IBL) [Deb98]. The pictures serve two purposes: First, they pro-
vide information about the directional illumination in the scene,
and second, the 360◦ images are used as the visible background.
Captured imagery or analytical sky models are used in practice,
such as the widely adopted HW [HW12, HW13] or the more gen-
eral model by [WVB*21]. While clear sky models serve excel-
lently for realistic illumination, they can be perceived as too sim-
ple as a background. For added realism, VFX artists, architects,
and other rendering users are also looking to incorporate clouds
into the sky, leaving them with expensive volumetric cloud simu-
lation or static photographs. Such photographs (termed ‘HDRIs’)
need to cover the full dynamic range of the sky and, as such,
are expensive to capture: a lot of manual effort and professional

*Both the authors contributed equally.

gear are required for high-quality results. At the same time, the
images are static, meaning they are limited to the location and
weather conditions at the time of capture. The user cannot para-
metrically change the appearance of the sky, as in the analytical
models. That is why finding the appropriate match for requirements
such as lighting (mood) or artistic composition of the background
scenery is a manual, linear search in a database of pictures [TYS09,
CZR22].

We propose a hybrid data-driven generative approach. It is based
on an analytical sky model and a dataset of photographs. It gen-
erates a skydome with realistically looking clouds for any de-
sired sun position and cloud coverage ratio. Our pipeline first uses
the analytical model to generate a clear sky image correspond-
ing to the sun position. Then it feeds the image into an encoder-
generator network, which generates a corresponding cloudy im-
age. This image can then be used as a hemispherical environment
map in a renderer. The pipeline is trained on high dynamic range
(HDR) images, so it produces HDR output crucial for photorealistic
rendering.
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The state-of-the-art generative adversarial network (GAN) archi-
tecture [KAL*21] forms the core of our method, and we propose
several domain-specific modifications to it. These mainly serve to
condition the generator for the sun position input parameter but also
to support accuracy in the output. As usual, the discriminator loss is
in place to force the generator to produce fake imagery that closely
resembles features of the training dataset despite being randomly
generated. Additionally, we employ an autoencoder (reconstruction)
loss to constrain the generator on the clear sky, for which we lever-
age an existing accurate model [WVB*21].

This paper serves as a stepping stone towards reaching the ulti-
mate goal: a fully automated model which generates a correspond-
ing realistic and physically accurate HDR skydome in high resolu-
tion for a given artist’s input (parameters). While our results pre-
sented here are not production-ready yet, we support the progress
by publishing our source code, including the data-processing tools,
and the processed dataset.

Our contributions include the following:

• A directly parameterizable cloudy sky model based on a condi-
tional GAN architecture (Section 4)

• A dataset of 39 000 HDR sky photographs in 30-s intervals (4.1)
• An automatic processing pipeline for HDR, panoramic time-lapse

photographs (4.1)
• A method for fitting the [WVB*21] clear sky model to real pho-

tographs (4.2)
• Support for HDR images in the StyleGAN3 codebase (4.4)
• An evaluation of a dataset augmentation method (azimuth

marginalization) for training with more cloud covers per sun po-
sition (4.5)

We have shown an earlier version of this paper at a conference
[MRI*22]. Since then, we have significantly enlarged the available
dataset size and improved the overall visual quality.

2. Related Work

In previous publications, generating skydomes and image-based
lighting (IBL) was mainly solved by atmospheric clear sky models
or machine learning approaches.

2.1. Atmospheric models

In the high-quality rendering of outdoor scenes, accurate skydome
illumination and sky colours can be achieved using an atmospheric
model. One can perform accurate brute-force Monte Carlo simu-
lations based on first principles, evaluating light transport in atmo-
spheric gases. Or one can use faster analytical models that can be di-
rectly evaluated with potentially lower accuracy. We provide a brief
overview in this section, but we also refer the reader to [Bru16] for
an evaluation of analytical and brute-force models.

Brute-force solutions. Probably the most accurate atmospheric
simulations are available in the libRadtran research package
[EBK*16], which can serve as a reference but is too complex and
slow for direct use in computer graphics. Methods more suited for
image rendering, such as [HMS05, BN08, GGJ18], include pre-

computation steps that later allow more efficient evaluations during
the actual path tracing. The main benefit of brute-force simulations
is that they are physically accurate for any given sun position. How-
ever, path tracing of atmospheres is a lengthy process, and more-
over, the models do not directly support the rendering of clouds and
overcast skies. For that, one would render fully volumetric clouds
from a simulation [HMP*20, HHP*21] with expensive volumetric
path tracing, or use machine learning [KMM*17] for improved ef-
ficiency.

Analytical and empirical solutions. Our method is closer to ana-
lytical atmospheric models, which are not strictly physically accu-
rate, but still result in realistically looking images with very high
performance. Unlike our method, they are limited to clear, cloud-
less skies. They are usually based on fitting some parametric func-
tions to reproduce the actual sky radiance patterns. One of the first
widely used models was the Preetham model [PSS99], which was
directly based on older brute-force and analytical models. It was
later improved in [HW12] to support more accurate sunset and high-
turbidity settings, and in [HW13], by adding accurate solar radiance
from the solar disk itself. The authors of [LM14] empirically alter
the Preetham model to also match overcast skies.

The most recent is the Prague Sky Model [WVB*21], which is
based on tensor decomposition and supports different observer al-
titudes, post-sunset conditions, in-scattered radiance and attenua-
tion for finite distances, and polarization. Using the provided trans-
mission function, one can accurately add the solar disk including
effects like the red sun at golden hour. Subsequent work extends
the model to a wider spectral range from ultraviolet (UV) to near-
infrared (NIR) wavelengths [VBKW22]. We use the unpolarized
ground-level version of this model to produce the matching syn-
thetic clear sky images for our real photographs.

An approach used in production to add clouds to a clear sky uses
procedural or pre-computed volumetric density fields. During ren-
dering, these are evaluated using ray marching which is computa-
tionally more demanding than simple image-based lighting. The di-
versity of cloud types is also limited to handcrafted models.

2.2. Machine learning for IBL

In Computer Vision, there aremanymethods for generating environ-
ment maps using deep-learning tools, especially for lighting estima-
tion. There, the posed problem consists of estimating the spherical
scene illumination from the narrow field-of-view images, which, in
turn, can be used for rendering a virtual object into the scene with
plausible shadows, reflections, and colours. Input images are con-
ventionally low dynamic range (LDR), while output imagery is al-
ways HDR. A comprehensive survey on the topic can be found in
[EGH21], and in the following, we will highlight a fewmethods that
overlap with our approach.

In 2017, [HSH*17] proposed a convolutional neural network
(CNN) for fitting the parameters of the Hošek-Wilkie model from
an exemplar image. Conceptually similarly [ZSH*19], use a slightly
more expressive empirical model (Lalonde-Matthews) [LM14] to
improve the quality of overcast skies. Both methods rely on ana-
lytical clear sky models, so the output imagery contains no clouds.
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[HAL19] try to overcome this limitation by proposing a new data-
driven sky model that learns the features of cloudy skies from hemi-
spherical HDR photographs using an autoencoder architecture. Our
method follows a similar path, but we still leverage the expres-
siveness and controllability of a clear sky model to form a hybrid
approach. Simultaneously we aim more on also reconstructing the
proper cloud shapes.

Contrary to finding parameters to a fixed model, [SK21] formu-
late the lighting estimation problem as a task for spherical image
extrapolation given a partial scene observation. Similar to our ar-
chitecture, the authors employ a convolutional autoencoder jointly
with an adversarial discriminator and output HDR data. Another
major difference of our work to all the methods above is that in
Computer Graphics, we aim not only at the plausibility of diffuse
and glossy reflections and shadows given a photographed backdrop,
but the whole environment map needs to look photorealistic when
directly observed.

2.3. GANs and generating cloud images

A generative adversarial network (GAN) [GPM*14] consists of two
neural networks – a generator and a discriminator – which com-
pete against each other in producing and detecting fake imagery,
respectively. This architecture has reached increased popularity and
technologically matured over the past years. GANs are used in un-
supervised and semi-supervised tasks such as the ‘image-to-image
translation’ [ZPIE17] where two classes of images should be con-
verted into each other despite not having a perfect match between
individual training samples. The task we are solving is similar, but
we benefit from having matched image pairs. Our architecture can
also be seen as a form of a conditional GAN [MO14, DWX*21]
where we enforce the generator to output a matching cloudy sky
given a clear sky as input.

GANs are well known for photorealistic results when trained long
enough on tens of thousands of images. With adaptive discrimina-
tor augmentation (ADA) [KAH*20], it becomes possible to have
datasets of even just a few thousand images and still avoid overfit-
ting to a particular training set.

Karras et al. [KAL*21] recently proposed a solution to the long-
standing problem of textures ‘sticking’ to the underlying pixel grid.
They redesigned the generator architecture with respect to funda-
mental signal processing rules to avoid any sources of aliasing. A
detailed analysis of their method is provided in the next section.

Generating cloud images. In atmospheric science, GANs are used
for short-term forecasting of cloud coverage. Given previous frames
of a video sequence, the authors of [ATO*19] predict how the clouds
will move in the upcoming frames. They work on fisheye images di-
rectly out of the camera, similar to our raw dataset, but we process
the projection to be a stereographic projection with known prop-
erties. Although our dataset also consists of sequential images, we
do not exploit the time dependency yet. [SB23] predicts the clouds
movement from a single input image. For an image-based relighting
approach in neural rendering, Yu et al. [YME*20] employ a GAN
that fills the image background with realistic sky imagery given a
segmentation map. For cloud image segmentation, a GAN is used

to augment the training dataset and produce ground-truth segmen-
tation maps [JMD21].

We instead build upon initial works [Hoj19, Špa20] that ap-
ply GANs to cloud image generation but are missing the direct
control over the sun position and the clear sky supervision. Con-
currently to our work, a very similar approach has been pub-
lished [SMDB22]. The authors use a U-Net encoder-decoder ar-
chitecture to transfer clear sky images of the Hošek-Wilkie sky
model together with a cloud segmentation map to realistic cloudy
images. This segmentation map, on the one hand, allows for artis-
tic control of the cloud placement. On the other hand, it also re-
quires manual input for every picture to achieve realistic distribu-
tions. Our method does not allow for spatial control of the clouds
but generates plausible distributions for any input from a random
generator.

Inspired by our conference paper [MRI*22], another U-Net-like
network [VMM*23] generates clouds on top of a clear sky im-
age without direct supervision. It uses a patch-based adversarial
loss, a perceptual loss comparing generated to a real cloudy im-
age, and a loss that simulates illumination in a simple scene to en-
sure the correct sun brightness and shadow sharpness. Combined
with their unclipped HDR dataset [LAB*16], this loss enables a
physically correct sun brightness directly out of the network. Con-
strained by a clipped HDR dataset, our images require an additional
sun light source placed by the artist. Compared to this method,
we use a more recent sky model [WVB*21], a conditional GAN
architecture based on StyleGAN3 [KAL*21] (potentially avoid-
ing texture sticking/aliasing, and the adversarial loss is not patch-
based), and use azimuth marginalization to aid our generation
method.

3. Analysis

We base our method on the StyleGAN3 architecture [KAL*21],
which we analyze in this section. The authors provide an interac-
tive visualizer application that loads pre-trained network weights
and lets users tweak the network inputs. Then, one can visually ob-
serve the network output at every layer as an image and its spatial
frequency analysis. We inspected pre-trained networks provided by
the authors that generate human or animal portraits and made three
important observations.

First, as described in their paper, the generator architecture is de-
signed to avoid introducing aliasing and other artifacts related to the
pixel grid. All signals are composed of 2D basis functions randomly
generated on network initialization. With each increased resolution,
higher frequency content is allowed in, thus effectively refining the
signal as it flows through the network. Translation and rotation of the
signal are achieved by an affine transformation of the input random
tensor that influences the basis functions. In contrast, the discrim-
inator architecture strictly works on a pixel grid – thus exhibiting
any problems that may come with this approach.

Second, the generator spends parts of its capacity learning tex-
tures and parts to generate grid-like coordinate systems carrying se-
mantic meaning. Only at the very last layers do these two parts get
interleaved, and the final image is blended from the textures based
on the spatial coordinate grid.

© 2023 The Authors. Computer Graphics Forum published by Eurographics - The European Association for Computer Graphics and John Wiley & Sons Ltd.
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Figure 1: Our network is trained on matching photos and fitted clear sky images. The clear skies are encoded into the generator’s latent
space w and concatenated with (mapped) random values z. The generator reconstructs a matching pair of the clear and cloudy sky from this
vector. The quality of the clear sky is judged against the input clear sky, while the generated cloudy sky is evaluated by the discriminator for
its realism.

Figure 2: Our method generates cloudy sky images from a user-chosen sun position that are readily usable as an environment map in any
rendering system. We leverage an existing clear sky model to produce the input to our neural network which enhances the sky with clouds,
haze and horizons learned from real photographs.

Third, along the blending seams, we observe visible ‘halo’ ar-
tifacts that hint at remaining aliasing problems within the gener-
ator architecture. We first spotted this problem in early iterations
of our training, where visible seam artifacts were trying to pass
as clouds. For well-converged networks such as the ones provided
by the authors, this effect is most visible but not limited to high-
frequency textures such as hair, fur, or beards where the discrim-
inator has difficulties discerning between the artefact and the in-
tended content. The fact that it is still visible in the long-trained
networks gives us reason to believe that these artifacts are system-
atic despite being suppressed by the discriminator over training
time.

4. Method

Our method trains a generator for realistic cloudy sky images from
a set of example pictures we captured. In addition, it combines
the training set with analytical clear sky images that correspond in
the solar constellation to the real photographs. The method builds
on state-of-the-art GAN architectures. We propose modifications to

take benefit of the matched image pairing and ensure the outputs are
usable in a rendering context.

We show our network architecture in Figure 1.We feed a clear sky
image into an encoder at training time to compress its information
to a few numbers. Concatenated with a mapped random vector z, it
forms the latent input w to a generator tasked with producing two
images – one clear sky reconstruction and the desired cloudy equiva-
lent. The clear sky image can trivially be compared against the input
clear sky image, effectively forming an autoencoder loss. An adver-
sarial discriminator network is trained parallel to the generator and
discerns between real and fake imagery, effectively challenging the
generator to produce gradually more realistic-looking cloudy skies.

As shown in Figure 2, the user can input the desired sun position
and get a corresponding cloudy sky image during inference. One
can explore different cloud constellations by adjusting the seed for
the random generator z. This works by generating a clear sky image
from a state-of-the-art atmospheric model [WVB*21] given the de-
sired sun position. This gets again encoded and combined into the
latent vector w of the generator. Finally, the cloudy image from the

© 2023 The Authors. Computer Graphics Forum published by Eurographics - The European Association for Computer Graphics and John Wiley & Sons Ltd.
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generator’s output can be re-projected to an equirectangular projec-
tion and used in a standard rendering pipeline as an environment
map. When the images are not only used as a background but pro-
vide illumination for the scene, high dynamic range becomes in-
creasingly important. With clipped values, the renderings will ex-
hibit reduced contrast, making them look flat and unrealistic. For
maximum realism, the sun values should not be clipped.

In the following, we will explain our method in more detail while
keeping the order of data flow. We start with the dataset before div-
ing into the network architecture and the training procedure. The
processed dataset, including the fitted metadata, and all source code,
including the processing pipeline and networks, are publicly avail-
able [MRI*23].

4.1. Dataset

The real photographs used during the network training are based on
a novel dataset of HDR skydome photos. The photos were captured
on a full-frame camera sensor by aiming an 8 mm circular fisheye
lens upward towards the sky. The dataset is based on several loca-
tions, mainly in Central Europe and coastal California. It includes
both clear skies and various cloud covers ranging from small iso-
lated clouds to fully overcast skies. The captures were performed in
sequence (time-lapse), one photo per 15–120 s (mostly 30 s), some-
times over a long time period from sunrise to sunset. We captured
around 39 000 HDR images from 62 different days at 16 locations
distributed primarily over 6months (May–November) with sporadic
sessions in winter. Our training used 35 425 images.

Each hemispherical HDR photo was developed from an exposure
stack of five to nine exposures. But even with the shortest possi-
ble exposure time, the brightness of the sun and its surroundings
is clipped on direct observation without the use of a neutral density
(ND) filter [SJW*06]. While mounting an ND filter on a hemispher-
ical fisheye is technically possible behind the lens, it would require
lens distortion re-calibration and also prolong the exposure times on
darker images where the clouds are visible. This would lead to sig-
nificant motion blur with moderate wind speeds and ghosting arte-
facts in the stacked HDR image.

Processing photographs. We have developed a semi-automated
pipeline for processing of RAW image files into brightness, colour,
and geometry-calibrated OpenEXR images. The pipeline performs
demosaicing, HDR merging, and panorama re-projection based on
each image’s EXIF data, using RawTherapee [HR05] for RAW
processing and PTGui Pro [New01] for operations on spherical
panoramas. We refer the reader to the supplemental material for de-
tails about the training dataset and the processing algorithm.

4.2. Fitting a clear sky model

The clear sky model by Wilkie et al. [WVB*21] provides incoming
light intensity from queried directions and wavelengths, given the
2D sun position, the visibility distance (also called turbidity in older
models), ground albedo, and the altitude above ground. Optionally,
one can also query the transmission function for finite (e.g. moun-
tains) and infinite (e.g. sun) distances to weight any direct irradiance

Figure 3: The distribution of sun positions in our dataset, plotted
in stereographic projection, similarly to our images. The right plot
shows the data augmention we apply (see Section 4.5).

coming from a direction. For simplicity, we use the hemispherical
version of the model that is, just like older models, limited to sea-
level observer altitude. As our dataset mostly contains sun positions
above the horizon, this information is enough to learn also the light-
ing of the clouds. For post-sunset conditions, one could additionally
include clear sky images from the clouds’ altitudes to inform the
networks about the correct cloud lighting.

Sun position. For each captured image in our dataset, we detect
the sun position by fitting an ellipse to the sun disk. Thanks to the
brightness consistency in our dataset, we can use adaptive thresh-
olding with a fixed minimum brightness. We are filling in the gaps
where the sun detection failed (e.g. due to occlusion by clouds or the
horizon) using a fitted trajectory of the sun’s movement over time.
The python package pysolar [SP07] provides an expected curve
for sun positions from location and capture times. This expected
trajectory is fitted against the observed sun positions by minimiz-
ing the deviation over a time shift of ±20 min. Thus any calibration
errors in camera time setting, tripod levelling, and north orientation
are revealed. In the future, we would like to inform the re-projection
step of our data pipeline to also compensate for the geometric errors
in a subsequent run. Figure 3 displays the density of sun positions
over the hemisphere.

Visibility and ground albedo. The remaining two parameters of
the clear sky model can be fitted from a clear sky photo using the
L-BFGS-B algorithm with finite-difference gradients. After manu-
ally masking non-clear-sky objects like the horizon, clouds, the sun
disk, lens flares and dust on the lens, the optimization is a three-
step procedure. First, the exposure is roughly matched to get the
values in the same order of magnitude. Then the optimizer searches
for the model parameters constrained by their range, and finally, we
jointly fine-tune both the parameters and the exposure. Related fit-
ting procedures are described in [HSH*17, Section 4.2] for the HW
sky model and in [VMM*23, Section 3.1] for the LM model. We
show the results of this procedure in Figure 4. Because this step in-
volves a manual input, we have not yet performed this fitting for
every day in our dataset. As described in the following subsection,
the clear sky input acts only as a guiding channel during training
and is not directly visible in the final output. This allows us to stay
with a fixed visibility and ground albedo despite a slight mismatch

© 2023 The Authors. Computer Graphics Forum published by Eurographics - The European Association for Computer Graphics and John Wiley & Sons Ltd.
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Figure 4: Two example photographs from our dataset (left) with
their fitted corresponding clear skies (right) – all in stereographic
projection. The visibility distance mostly affects the aura
around the sun, while the ground albedo brightens towards the
horizon. Our clear sky images only depict the atmospheric scatter-
ing component, neglecting the attenuated sun disk and rays caused
by aperture on the photograph.

in atmospheric conditions between real photos and the correspond-
ing clear skies.

4.3. Architecture

On a high level, the architecture, as seen in Figure 1, is a hybrid
between a Generative Adversarial Network (GAN) and an autoen-
coder. We prepend the generator with an encoder to form an au-
toencoder for clear sky images. At the same time, the generator also
outputs cloudy images, which are judged by the adversarial loss of
a discriminator network. We also apply modifications to the data
processing to support HDR values throughout the pipeline.

Encoder. We base the encoder architecture on the architecture of
the discriminator in our codebase [KAL*21] as both have a similar
overall shape. Both take an image as input and reduce it gradually
to a few numbers. Instead of outputting a single variable (real or
fake score) as the discriminator does, the encoder works with a bot-
tleneck width of ten values. We estimate this should be more than
enough information to describe the clear sky appearance, which is
inherently defined by the model’s four parameters. Ablation exper-
iments have shown that a minimum of two values would be enough
to reconstruct reasonably high-quality results. On top of the RGB
clear sky image, the encoder is passed the angular distance from the
sun in a separate channel with the intention of disambiguating post-
sunset conditions. The encoded clear sky is injected into the net-
work’s latent space w after batch-normalization. An injection into

the random vector z would unnecessarily correlate the sun position
with the cloud distribution in the mapping network and thus lead to
a less predictable user experience.

Generator. The StyleGAN3 generator has been carefully designed
to follow basic signal processing rules and avoid any source of alias-
ing throughout the layers of the network. We acknowledge this be-
ing a complex system whose parameters have been well tweaked to
allow for the high-quality results shown in their paper. For this rea-
son, we keep modifications to the generator network to a minimum
and again only adjust the final output layer. The output is extended
to two corresponding images – one clear sky and one cloudy sky.
Because the split between the two is only enforced at the last layer,
the generator can benefit from the synergies between both images
throughout all layers. This is a way of supervising the internals of
the generator to produce specific patterns without interfering with
the frequency-based, alias-free signal processing. Traditionally one
would use losses at different resolutions of the generator to super-
vise the formation of intermediate patterns. In our case, this helps
the generator to produce the unobstructed clear sky for which we
have a ground truth and which should be the background of any
cloudy sky image. Matching the real photographs, we mask the im-
age outside the projected circle of the stereographic projection.

Discriminator. The discriminator remains unchanged from the
StyleGAN3 (originally from StyleGAN2) codebase. We use the
adaptive discriminator augmentation (ADA) [KAH*20] feature that
prevents overfitting of the discriminator on small dataset sizes such
as ours. The authors warn to enable only transformations that are
valid within the domain of the images (e.g. X-axis flip) or else un-
wanted transformations (e.g. hue rotation) might leak into the Gen-
erator. Our dataset uses a stereographic projection; therefore, we ex-
clude augmentations related to translation and scaling, keeping only
arbitrary rotation and colour transformations (brightness, contrast,
luma flip, hue rotation and saturation).

4.4. HDR values

HDR sky images can exhibit a very high-value range while most
parts of the sky have reasonable values below 1. Especially the sun,
the aura, and any lens flares show a very high local contrast to the
surrounding atmosphere. When working with HDR in neural net-
works, it is common practice to transform the values using a com-
pressive function such as a logarithm and then un-transforming it
for final output [EKD*17]. This prevents numerical issues such as
exploding gradients while still allowing the network to produce big
values, albeit at reduced precision. For the training, we processed
the images with a log transform and a fixed shift in order to squeeze
all intensity values to a semi-open interval with a fixed minimum
[−1, ∞). In practice, however, most values lie in the interval [−1, 1]
resembling a normal distribution curve with zero mean, while only
the sun values reach up to 2. The circular mask that ensures that the
values outside the sky hemisphere are exactly zero, corresponds to
-1 in the transformed images.

Large value ranges can be processed differently as proposed
by [YGH*21] who follow a divide-and-conquer approach to HDR
skies by splitting the responsibilities into multiple networks each
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M. Mirbauer et al. / SkyGAN: Realistic Cloud Imagery for Image-based Lighting 7 of 12

specialized on specific spatial parts (sun and sky) and thus differ-
ent value ranges. While it simplifies the training task for individual
networks, it also requires a way of merging the results together –
typically through another HDR network.

4.5. Training procedure

We are training our network according to standard StyleGAN3 pro-
cedures for the translationally invariant configuration (StyleGAN3-
T) with the resolution 256 × 256. When using eight GPUs for train-
ing, a full 30M images training runs in about 5 days.

A common data augmentation technique previously also used by
[HSH*17] is to rotate all photographs upon loading such that the
sun position lies on a common azimuth angle. This was inspired by
a body of research from clear-sky models [PSM93, PSS99, HW12,
WVB*21] where the radiance patterns are parameterized indepen-
dently of azimuth. The sun thus only moves on the line from the
zenith, in the centre of the image, to the horizon on the bottom. This
marginalizes out the azimuth dimension of the dataset and increases
the variety for each elevation angle (see Figure 3b). Effectively this
augments the data for each sun position, as more distinct cloud for-
mations with the same elevation angle are available. We call this
azimuth marginalization and evaluate its performance in Section 5.

The circular mask applied on top of generated images is really
important for the trajectory of a training run. Without a mask, the
generator spends a lot of effort on reproducing the sharp circular
boundaries and the horizon, while any sky pattern in the centre will
have to be a byproduct. Much of the frequency budget in each layer
(especially the higher frequencies) is spent to produce the image
boundary so that less is available to produce intricate cloud patterns.
With a circular mask, any accidental image content on the outside
will be ignored by the discriminator, thus freeing resources of the
generator. Similarly, it would be helpful to mask foreground objects
like trees on the horizon to prevent them from appearing on some
generated outputs.

The final quality of the generated images in an adversarial net-
work depends on the training progress of the discriminator. When
training from a random initialization, most training time is spent
bringing the discriminator to a point where it can judge high-quality
imagery. However, one can benefit from transfer learning and start
from network weights that were initially trained for a different (pos-
sibly unrelated) dataset. Then, the early discriminator layers al-
ready contain good image feature detectors, which otherwise have
to be learned.

On top of the discriminator loss for the real images, we have an
autoencoder loss in place that supervises the generation of clear sky
images. This is a simple L2 loss between the input image and the
reconstructed image from the generator. We weight this loss with a
factor of 104 higher in order to level it with the magnitude of the
discriminator loss.

4.6. Rendering

To prepare the generator output for usage in a rendering system,
the cloudy images have to be converted into a different projection.

Most rendering systems use the equirectangular spherical projection
(latitude-longitude) as the input format. Our images are encoded in
the stereographic hemispherical projection and are thus only cover-
ing the top hemisphere. For azimuth-marginalized networks we first
rotate the image to the actually desired azimuth. Then, we re-project
the image data with bilinear interpolation into equirectangular im-
ages of size 2048 × 1024 using PTGui before using them as IBL in
Blender Cycles to light some scenes.

5. Results

For the results, we trained four variants of our network:

B A Baseline which is trained from scratch without our encoder
and clear sky reconstruction loss. This corresponds to a stan-
dard StyleGAN3-T with support for HDR values.

BA The same network architecture as B, but trained on azimuth-
marginalized images (see Section 4.5).

BC The Baseline network but including the autoencoder task for
the clear sky (see Section 4.3).

O Aversion with allOur modifications enabled. This includes the
encoded clear sky images, the reconstruction loss (BC) and the
training on azimuth-marginalized images (BA).

Figure 5 depicts a matrix of images for these four variants. The
figure can be read row-wise, from left to right which represents the
flow of data through our pipeline. The input clear sky (a) is gener-
ated from a picked sun position (part of the dataset) and then fed to
the encoder of the applicable networks (BC andO). Concatenated to
a random latent-space position w, the encoded images are fed to the
generator that produces two output images: the reconstructed clear
sky in column two (b) and the cloudy sky in column three (c). The
reconstruction column also has insets showing the signed difference
towards the input clear sky with an exposure amplification of 25. In
the last two columns (d,e) we show examplar renderings of an out-
door scene lit by these cloudy skies. The scene contains a mirror ball
and a 100% Lambertian reflective 3DBenchy boat. The last column
(e) additionally adds an explicit sun light source in the renderer that
produces a physically-plausible irradiance.

In the supplementary material, we show the HDR images corre-
sponding to Figure 5 as well as additional uncurated samples for
each variant.

Reconstructed clear skies. The three networks show different be-
haviour when looking at the reconstructed clear skies in Figure 5b.
As expected, a networks without any conditioning for clear skies
(B and BA) produce arbitrary images in this output slot. The two
networks with encoder and reconstruction loss (O and BC) do out-
put a meaningful image. The sun position matches in a side-by-side
comparison, however the amplified difference image reveals a slight
shift in position. For BC there is a shift in azimuth (rotation) visible
that likely stems from a bias in sun position density of our training
data (see Figure 3a). The error in O is slightly lower and is limited
to the elevation axis (up/down).

Cloudy skies. When viewed from farther away, all four networks
produce shapes and patterns that compare with the clouds and hori-
zons in the training dataset. On closer inspection of Figure 5c, the
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8 of 12 M. Mirbauer et al. / SkyGAN: Realistic Cloud Imagery for Image-based Lighting

Figure 5: Ablation study over four training runs: A Baseline (top row) andOur network (bottom row) with encoder and azimuth marginaliza-
tion. In between, BA isolates the azimuth marginalisation feature and BC the clear sky encoding. The encoder conditions a roughly matching
sun position (a–c) with minor shifts being visible in the difference image (b). The generated sun’s brightness is however not enough (d),
requiring the addition of an artificial sun light source (e) whose brightness was artistically chosen to match the cloud cover.

results are however clearly distinguishable from real photographs.
Most noticeable are banding and halo artifacts around cloud edges.
The horizon is slightly blurred or even half-transparent. Occasion-
ally the horizon structures “flow” into the nearby clouds. These ar-
tifacts can be explained by the choice of GAN architecture. As the
StyleGAN3 generator works in Fourier space, it reconstructs the
images from a set of base frequencies. Starting with the low-
frequency structure it adds higher frequencies over (training) time.
Sharp cloud boundaries are thus harder to represent often resulting
in under- and overshooting (halos) before and after the edges. Judg-
ing the visible artifacts (e.g. ringing around the horizon), B seems
to be worst, whereas O has less apparent problems. BA and BC rank
somewhere between them. This visual impression is also supported
by the quantitative evaluation (Figure 7). The sun positions for the
B and BA networks are effectively random, as they were not condi-
tioned for this parameter by the encoded clear sky. For the networks

with the encoder, the sun position roughly coincides with the one in
the clear sky. However, later on during training the sun starts to de-
couple and shift slightly. We see room for improvement here, with
an explicit (adversarial) loss between the clear and cloudy sky to
avoid such divergence.

Rendered scenes. When used as-is in a renderer to illuminate the
scene (Figure 5d), the HDR cloudy skies look fairly convincing
in glossy reflections. A direct observation in the background is
however showing the absence of detail and the low resolution of
256 × 256. The scenes look rather dark and lack contrast. While
the generated HDR values match the scale of the training dataset,
the clipped sun values are omitting vital energy for photorealistic
rendering. This motivates the last column (e), where we manually
add a sun light source to compensate for the missing energy. There,
the boat actually appears in the intended white colour.

© 2023 The Authors. Computer Graphics Forum published by Eurographics - The European Association for Computer Graphics and John Wiley & Sons Ltd.
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M. Mirbauer et al. / SkyGAN: Realistic Cloud Imagery for Image-based Lighting 9 of 12

Figure 6: The cloud coverage can be globally controlled by scal-
ing the magnitude of the random latent vector w. Note how the sun
moves for B, as its position is entangled with the clouds in the latent
space.

Figure 7: Convergence plot in terms of the FID metric where lower
is better. The best FID value is highlighted for each run.

Controlling the cloud coverage. We demonstrate in Figure 6 how
our method can also produce images with varying cloud coverage
while keeping the surrounding and sun position constant. This re-
lies on limiting the deviation of the random latent vector from the
centroid in latent space and is referred to as the ‘truncation trick’
in GAN literature. In our networks, the origin of the latent space
produces a clear sky while cloudy images tend to be located farther
from the origin.

Quantitative evaluation. Measuring the quality of a generative
model is commonly accomplished using the Fréchet inception dis-
tance (FID), a metric comparing the statistical distribution between
a number of generated images and the training dataset. For each dat-
apoint in Figure 7, we generate 35 424 images (the used dataset size
rounded to a multiple of the generation batch size) and compute the
FID score. The metric is based on a neural network that was pre-
trained on ImageNet and thus only supports LDR input. Since our
network produces HDR outputs, we clipped the values, disregarding
the sun brightness in the computation.

Our Baseline experiment achieved a minimum FID 25.5 in
the training time of 30 million images. In comparison, Karras

et al. [KAL*21] report values of 5 and below for their networks
trained on faces. Note that the absolute FID values are not directly
comparable, because their dataset is two times larger, and is more
or less aligned: facial features are present at roughly the same posi-
tions with eyes exactly matching. In contrast, cloud covers are more
or less random. Ours achieved a minimum FID of 14.6 and the in-
dividual features (BA and BC) lie in between with 20.8 and 21.5 re-
spectively. This aligns with the impression of the visual inspection
above. We therefore conclude that both our proposed features have
a positive effect on the training convergence and image quality.

6. Discussion and Future Work

In the previous section, we saw that our method can generate sky-
domes for given sun positions and cloud coverage ratios, and it can
be used in HDR rendering. We now discuss the specifics and limi-
tations of our approach and how they could be addressed.

Direct sun radiance. The radiance (light energy) coming from the
sky can be split into indirect radiance, which arrives from the Sun
and is scattered in the atmosphere or clouds, and direct radiance,
which comes directly from the sun disk and is only weakened by the
transmission through the atmosphere. While the indirect energy is
rather accurately represented by the clear sky model and the dataset
photographs, the direct energy is very high and concentrated in a
tiny sun disk. This results in two major difficulties. First, since the
signal has a very high frequency and value, it is not trivial for a
generative network to accurately generate a sun disk with the correct
energy. Second, the energy is so intense that it is impossible to be
captured unclipped without using a neutral density (ND) filter in the
camera. In this paper, we solved this issue by manually adding the
extra solar energy on top of the skydome in the renderings, which is
common practice for clipped HDRIs. That makes the final renders
look less dull and better represent the actual illumination. In the
future, a more robust solution would be to capture a dataset with
an ND filter and adaptive exposure times [SJW*06, LAB*16] and
possibly generate the sun disk in a separate dedicated network layer.
The encoded clear sky could also be augmented with the correctly
attenuated sun disk using the transmission component of the Prague
sky model [WVB*21]. Extra care would have to be taken in case a
sun disk is only partially occluded by a cloud. Another improvement
could be to train the networks in LDR brackets which would avoid
potential numerical issues and distribute the impact of the losses
more evenly across the value range.

Stereographic projection distortion. The stereographic projec-
tion used in our method results in the directions towards the zenith
having the highest resolution, while the horizon has the lowest reso-
lution. This is beneficial for learning the details of the cloud shapes
above the observer but is not ideal for rendering flat areas such as the
sea that do not have any objects on the horizon covering the low res-
olution of the generated skydome’s horizon. Our early experiments
show that the network could be trained with different projections
without such prominent distortions, resulting in fewer problems in
training, so it is an important future research direction.

Resolution. Our network was trained on 256 × 256 pixels, but for
sharp backgrounds in high-resolution renders a resolution of 8196

© 2023 The Authors. Computer Graphics Forum published by Eurographics - The European Association for Computer Graphics and John Wiley & Sons Ltd.
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or more would be required. This seems utopic given that resolu-
tions of 512 or 1024 already showed significantly lower quality re-
sults, because of the GPU memory (48 GB) limiting the network
capacity. We see two possible solutions: First, the tiling of several
lower-resolution cutouts of the skydome or second, the usage of
up-sampling networks that add detail and sharpness. Additionally,
it may be worth adapting our approach to use a visual transformer-
based image generator like VQGAN [ERO21].

User parameters. Our current method allows the users to select a
sun position and a cloud coverage ratio. We believe that many ad-
ditional parameters could be added to allow a finer selection of the
generated skydomes, which would be perfect for artists to match the
mood of their renderings. For example, we could expose all exist-
ing parameters of the clear sky model [WVB*21] such as visibility
distance or elevation. We could also condition the generator to out-
put certain types of clouds, for example thin high-altitude clouds
vs dense thunderstorm clouds. We will also inspect the generator to
find latent dimensions responsible for certain cloud positions and
types to enable spatial control of where precisely the clouds should
appear, a concept similar to GauGAN [PLWZ19].

Consistency. Our dataset contains time-lapse photographs which
could be exploited to train a time-consistent generator. We have ob-
served an implicit organization of the latent space along the time
dimension, but it currently is not user-accessible nor is this consis-
tency explicitly trained for.

When traversing the latent space, the sun position is not always
steady but moves with the clouds. Future work could address this
consistency of sun position by passing the discriminator pairs of
clear and cloudy images and let it judge the consistency between
the two. In addition, the discriminator could be tasked with recon-
structing the sun position as further conditioning.

7. Conclusion

We have shown aGAN that produces cloudy skies usable for render-
ing of 3D scenes. The proposed clear sky encoder approach helps
to directly parametrize the sun position while our data augmenta-
tion technique of marginalising the azimuth increases the variety in
cloud shapes for each elevation. Our network is able to produce the
high dynamic range required in rendering, but we see a limitation
in our dataset that prohibits our environment maps to light scenes
realistically on their own. We also hope for future work to increase
the resolution in order to prepare our method for production usage.

With this paper, we open the way for a hybrid between analyti-
cal and data driven solutions for image-based lighting. Through the
combination of parameterizable synthetic and diverse real data, our
method leverages the strengths of both classical analytical models
and modern data-driven approaches.
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