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for cooperation on the implementation of the UPBP algorithm and Iliyan Georgiev,
Toshiya Hachisuka, Derek Nowrouzezahrai, and Wojciech Jarosz for advices and
suggestions on improving the implementation. I would also like to thank Iliyan
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Introduction

One of the significant areas of computer graphics is realistic image synthesis. Its
goal is creating an image of a virtual scene indistinguishable from a photography.
To achieve physically plausible results it simulates light transport in the scene,
i.e. how light propagates through the space after emitting from a light source till
reaching a human eye or a camera sensor. The process of synthesizing images by
means of computer programs is often called rendering.

Modern realistic image synthesis aims to reproduce a wide range of lighting
effects, including the interaction of light with participating media, e.g. light
scattering in fog, smoke, wax, skin or liquids (see Figure 1). However, faithfully
simulating light transport in media can incur a large computational cost as
variations in media density (e.g., haze vs. skin), scattering albedo (wine vs.
milk), and scattering anisotropy (air vs. dust) result in significantly different light
behaviour. As such, designing a single light transport simulation algorithm that is
robust to these variations remains an open problem, which is important not only
in computer graphics but also across many other diverse fields, such as medical
imaging or nuclear physics.

Two classes of widely adopted approaches excel at rendering complex vol-
umetric shading effects: those based on Monte Carlo (MC) estimation of the
path integral [5] and those based on photon density estimation [10]. None of
them alone is perfect though. Several different photon density estimators focus on
handling complex effects such as indirect caustics, where bidirectional path-tracing
(BPT) [15, 27], the main representative of the former group, performs poorly.
On the other hand, BPT is unbiased, general and better captures e.g. direct
illumination in media far away from lights.

Křivánek et al. [14] sought to combine the strengths of volumetric photon
density estimators with the versatility of BPT in a principled way. The resulting
algorithm called unified points, beams, and paths (UPBP) excels at rendering scenes
with different kinds of media, where previous techniques each fail in complementary
ways. It also naturally incorporates a combination of BPT and surface photon
density estimator (surface photon mapping) [12], which was previously described
by Georgiev et al. [4] and Hachisuka et al. [7].

We collaborated with Křivánek on the UPBP algorithm and created its imple-
mentation, which provided evidence for the qualities of the algorithm in practice
and was used for generating results in the UPBP paper [14] presented at the
SIGGRAPH 2014 conference [23]. The result of our work, a renderer called
SmallUPBP, is released online [24] and can be used and modified freely.

This thesis presents the implementation. It explains how we extended the code
of the SmallVCM project [25], describes the infrastructure we had to build to add
media support, what methods and data structures we used for volumetric photon
density estimators and how we dealt with the key aspect of the implementation -
computation of multiple importance sampling (MIS) weights.

The thesis has four chapters, the first two are theoretical, the remaining two
describe implementation. We begin with a review of the theory related to BPT
and photon density estimators in Chapter 1 and introduce our approach to their
combination in Chapter 2. Chapter 3, the main chapter of the thesis, then focuses
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on our work, i.e. the implementation of the UPBP algorithm. Finally, capabilities
of our program are demonstrated in Chapter 4.

The implementation can be found on the attached DVD, its contents are listed
in Attachment 3. Basic information about compilation, running and controlling
the program are provided in Attachment 1.
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Figure 1: A few examples of participating media. Images 1, 3, and 5 are real photos
of clouds, fog and fire with smoke, respectively. Images 2, 4 and 6 are computer
generated. Image 2 shows subsurface scattering in skin. Image 4 captures a steamy
bathroom with several flasks filled with different media. Image 6 shows from left to
right: wax candle, glycerin soap bar on top of a block of a back-scattering medium,
diluted wine, apple juice, and olive oil. Images 4 and 6 were rendered using
the UPBP algorithm [14]. Source: Image 1: http://commons.wikimedia.org/

wiki/File:Sky_Riyadh.jpg, Image 2: http://www.mrbluesummers.com/3510,
Image 3: http://www.panoramio.com/photo/14455719, Image 4: [14], Image 5:
http://thewmpa.org/resources/forest-fire-info, Image 6: [14].
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1. Background

A necessary theoretical background is presented in this chapter. We define
our notation and review the theory of both estimator families (the path integral
formulation of light transport for MC estimators and the volumetric photon density
estimation). This chapter contains modified text of Section 4 in [14].

1.1 Path integral formulation

Intuitively, a sensed image of a scene is made by light emitted from a light
source that travelled through the scene, got scattered on surfaces and/or in media
and finally hit our eyes. Light can follow many different paths from a light source
to the eye and if we sum up contributions of all such paths, we get a complete
image of the scene. Formally, the path integral framework [26, 20] expresses
image pixel intensity I as an integral over the space Ω of light transport paths:
I =

∫
Ω
f(x) dµ(x). A length-k path x = x0 . . .xk ∈ Ω has k ≥ 1 segments and

k + 1 vertices, with its first vertex x0 on a light source, its last vertex xk on the
eye/camera1 sensor, and the x1 . . .xk−1 inner scattering vertices on surfaces and/or
in media. The differential path measure dµ(x) is a product measure corresponding
to area and volume integration for surface and medium vertices, respectively. The
measurement contribution function f(x) measures contribution of the path x to
the image and it is the product of emitted radiance Le(x0) = Le(x0→x1)2, path
throughput T (x), and sensor sensitivity We(xk)=We(xk−1→xk):

f(x) = Le(x0)T (x)We(xk). (1.1)

The path throughput T (x) determines how much of the emitted light reaches
the sensor. It is the product of the geometry and transmittance terms for path
segments, and scattering function for the inner path vertices, as expressed and
illustrated below:

T (x)=

[
k−1∏
i=0

G(xi,xi+1)Tr(xi,xi+1)

][
k−1∏
i=1

ρ(xi)

]
. (1.2)

medium

surface

The geometry term for a path segment xy is given by

G(x,y)=V (x,y)
D(x→ y)D(y→ x)

‖x− y‖2
, (1.3)

1The words “camera” and “eye” are interchangeable in this context. We use mainly the first
one since the implementation uses it. Křivánek et al. [14] and our images use “eye”.

2Light transport quantities are often directional dependent. We use a common notation with
the arrow sign “→” to clearly and simply identify the intended direction.
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where D(x→ y) = |nx · ωxy| if x is on a surface, and D(x→ y) = 1 if x is
in a medium, and likewise for D(y→ x). Here nx is the surface normal at x
and ωxy is a unit-length vector from x to y. V (x,y) is the visibility indicator
function, V (x,y) = 1, if y is directly visible from x (i.e. no geometry blocks a
ray connecting these two vertices), otherwise V (x,y) = 0. The transmittance of
segment xy captures attenuation by intersected media and is given by

Tr(x,y) = exp
(
−
∫ ‖x−y‖

0

σt(x + tωxy) dt
)
. (1.4)

We will often write only Tr(t) where t = ‖x − y‖, if x,y are obvious or not
important. Finally, the scattering function describes effects of a surface or medium
at a path vertex. We define it as

ρ(xi)=

{
ρs(xi−1→xi→xi+1) if xi on surface

ρp(xi−1→xi→xi+1)σs(xi) if xi in medium,
(1.5)

where ρs and ρp are the bidirectional scattering distribution function (BSDF) and
phase function, respectively. σs and σt denote the scattering and attenuation
(extinction) coefficients.

1.1.1 MC estimators

The path integral can be evaluated with an unbiased MC estimator 〈I〉 =
1
m

∑m
j=1 f(xj)/p(xj) that averages estimates from m random paths xj sampled

using a path sampling technique with probability distribution p(x) dµ(x). The path
pdf p(x) is given by the joint density of the individual path vertices, i.e., p(x) =
p(x0, . . . ,xk), and it is determined by the path sampling technique employed to
generate the path. We use bidirectional path tracing (BPT) which generates paths
by independently sampling one subpath from a light and another from the camera,
optionally connecting them with an edge. The different path sampling techniques
in BPT for generating a given path correspond to the different lengths of the light
and camera subpaths. The full path pdf is then given by the product of the pdfs
for the two subpaths, p(x) = p(x0 . . .xs)p(xt . . .xk). The subpath pdf reflects the
local sampling techniques used to generate the individual subpath vertices, and
can be written as a product of vertex pdfs p(xi|vertices sampled before xi).

In our notation, we express directional pdfs p(ω) w.r.t. the projected solid angle
measure, p̂(ω) w.r.t. the (non-projected) solid angle measure, distance pdfs p(t)
w.r.t. the Euclidean length on R1, and volume vertex pdfs p(x) w.r.t. the Euclidean
volume on R3. In participating media, converting from the projected solid angle
× length product measure to the volume measure involves multiplication by the
geometry term G(x,y). Converting from the solid angle× length product measure
to the volume measure lacks factor D(x→ y) (since p̂(ωxy) = p(ωxy)D(x→ y)).

We define the subpath contribution, or weight, for light and camera subpaths
as the partial evaluation of a path integral estimator:

Cl(x0 . . .xi) = Le(x0)
T (x0 . . .xi)

p(x0 . . .xi)
(1.6)

Cc(xj . . .xk) =
T (xj . . .xk)

p(xj . . .xk)
We(xk). (1.7)
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1.2 Volumetric photon density estimation

Jarosz et al. [10] introduced several distinct volumetric photon density estima-
tors that differ in the representation of equilibrium radiance they employ (point
samples or “photons”/trajectory samples or “photon beams”), the radiometric
quantities they estimate (in-scattered radiance at a point/integrated radiance
along a ray), and the dimension of blur employed when reconstructing the desired
quantity from the samples (1D/2D/3D). If we should describe this second ap-
proach in a nutshell, it is based on distribution of light in a form of photons and
beams all over a scene and then averaging contributions of photons and beams
found around a place of interest. In contrast to the aforementioned unbiased
path integral estimators, Jarosz et al.’s volumetric photon density estimators are
not given as general path sampling techniques, i.e. they have no notion of path
contribution function and path pdf. Such a formulation is provided by Křivánek
et al. [14] and used in our implementation.

b) Point-Point 3Da) Input configuration c) Point-Beam 2D d) Beam-Beam 1D

Figure 1.1: Illustration of the used volumetric radiance estimators.

Fig. 1.1a shows the shared geometric setup for the Křivánek et al.’s formulation
of the volumetric photon density estimators. A light subpath extends up to a
vertex xs−1, hereafter denoted as a for brevity, and a direction ωa is sampled
from a. The ray (a, ωa) defines a photon beam, whose energy is given by the light
subpath weight including scattering at a (evaluating the scattering function and
dividing by the probability of sampling the ray direction):

Cl(x0 . . . a] = Cl(x0 . . . a)
ρ(a)

p(ωa)
. (1.8)

Similarly, a camera subpath extends up to a vertex xs+1, denoted c, and a direction
ωc is sampled from c. The ray (c, ωc) defines a query beam with weight w.r.t. the
pixel estimate given by

Cc[c . . .xk) =
ρ(c)

p(ωc)
Cc(c . . .xk). (1.9)

By sampling a distance ta along the ray (a, ωa), one could create a photon at

position b̃ ≡ x̃s with weight Cl(x0 . . . a]Tr(ta)
p(ta)

(it is the photon beam energy
attenuated by transmittance along the beam and amplified by probability of
sampling its length). Similarly a query point at b ≡ xs could be created by
sampling a distance tc along the ray (c, ωc). Instead, Křivánek et al. [14] treated
the photon beam (a, ωa) and the query beam (c, ωc) as the common input to
all the estimators, and included the terms involved with the calculation of the
photon or query point weights into the estimator expressions themselves. With
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this convention in place, every estimator operates on the same shared input, shown
in Fig. 1.1a.

One remark about the notation. If meaning of ωx would not be clear from the
context, we use ωxy to denote a direction from x to y. If the second vertex is not
yet known, ωx→ denotes a direction sampled from light vertex x (i.e. “towards the
camera”) and ω←y a direction sampled from camera vertex y (i.e. “towards the
light ”). Similarly, we add some notion of direction to sampled distance t. We use
txy to denote a distance sampled along the ray (x, ωxy). If the second vertex is
not yet known, tx→ denotes a a distance sampled along the ray (x, ωx→) and t←y

a distance sampled along the ray (y, ω←y). This way we distinguish later in this
text between pdfs/probabilities of sampling a distance of the same path segment
as if it was sampled on the way from the light and as if it was sampled on the
way from the camera.

〈I〉P-P3D =
Tr(ta)

p(ta)︸ ︷︷ ︸
photon sampling

ρ(b̃,b)K3(b̃,b)
Tr(tc)

p(tc)︸ ︷︷ ︸
query point sampling

(1.10)

〈I〉P-B2D =
Tr(ta)

p(ta)︸ ︷︷ ︸
photon sampling

ρ(b̃,b)K2(b̃,b)Tr(tc) (1.11)

〈I〉B-B1D = Tr(ta) ρ(b̃,b)
K1(b̃,b)

sin θac
Tr(tc) (1.12)

Equations 1.10–1.12 give the resulting expressions of the estimators, which
are also illustrated in Figs. 1.1b–d. We list only three out of the 9 estimators
reformulated by Křivánek et al. [14]. As shown in the same paper, not all of the
estimators have complementary advantages that the combined algorithm could
benefit from. For instance, P-B2D and P-B3D both have very similar pdfs and
only differ by the amount of bias. For this reason, we choose to only use the
minimum-blur volumetric estimators, i.e., P-P3D, P-B2D and B-B1D, as they
introduce less bias (though the B-P2D estimator has this property too we leave
it out as it cannot be implemented as efficiently as P-B2D). Note that these
three estimators are also known under other names, P-P3D as volumetric photon
mapping [13], P-B2D as beam radiance estimate (BRE) [9] and B-B1D as photon
beams [10].

All three estimators share the same prefix Cl(x0 . . . a] and postfix Cc[c . . .xk)
which are purposefully omitted for notational brevity. Kd denotes a normalized
d-dimensional kernel. The scattering function ρ at a query location xj is evaluated
with the direction of the photon beam or photon, which may not pass through
this location. To describe this behaviour, definition of ρ is amended as

ρ(xi,xj)=


ρs(xi−1→xi,xj→xj+1) both xi,xj on surface

ρp(xi−1→xi,xj→xj+1)σs(xj) both xi,xj in medium

0 otherwise.

If one vertex is on a surface while the other in a medium the scattering function ρ
is zero (it does not make sense to merge them).
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The estimator abbreviations provide information about the radiance data
(photon Points or photon Beams), query type (Point or Beam) and the kernel
dimension (1D, 2D or 3D), in exactly this order (e.g., P-B2D refers to point data
× beam query, 2D kernel).

1.2.1 “Long” and “short” beams.

Jarosz et al. [10] derived photon beams assuming a beam extends until the
closest surface, with the transmittance along the beam appearing as a part
of the estimator. We follow Křivánek et al. [14] and refer to this as “long”
beams (Fig. 1.2a). Jarosz et al. [11] also proposed an unbiased approximation of
transmittance by several step functions, and coined this approach “progressive
deep shadow maps”. Approximating transmittance by a single step function
yields beams of finite extent where the transmittance vanishes (it is replaced by
a constant 1). Křivánek refers to this as “short” beams (Fig. 1.2b). The same
idea can be applied to query beams. To distinguish between these options, we
will use Bs and Bl to denote short and long beams, respectively, either of which
can be used in place of any B in the estimators P-B2D and B-B1D. The original
names P-B2D and B-B1D without beam type specification will denote generally
all estimators P-Bl2D, P-Bs2D and Bl-Bl1D, Bl-Bs1D, Bs-Bl1D, Bs-Bs1D.

c) Photon pointsb) Short photon beamsa) Long photon beams

Figure 1.2: “Long” and “short” photon beams, and photon points.

Equations 1.11–1.12 hold for long photon and query beams. To derive the
impact of short beams, Křivánek et al. [14] used a new interpretation of short
beams as a Russian roulette (RR) decision on the outcome of the long-beam
estimator.

Consider a pdf p(t) = σt(t)Tr(t) used to sample the length of a short beam.
The probability that the beam contributes at some distance t0 from its origin is
the probability that the beam length l is at least t0:

Pr{l>t0} =

∫ ∞
t0

p(t′) dt′ = Tr(t0) . (1.13)

Any long beam estimator can be converted to a corresponding short beam esti-
mator by making a zero contribution whenever the beam is too short to make
the considered contribution, else by the original estimator divided by the RR
probability (1.13). The short beam variants of the estimators Equations 1.11–1.12
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then read:

〈I〉P-Bs2D = 〈I〉P-Bl2D
H(lc − tc)
Pr{lc>tc}

(1.14)

〈I〉Bl-Bs1D = 〈I〉Bl-Bl1D
H(lc − tc)
Pr{lc>tc}

(1.15)

〈I〉Bs-Bl1D = 〈I〉Bl-Bl1D
H(la − ta)

Pr{la>ta}
(1.16)

〈I〉Bs-Bs1D = 〈I〉Bl-Bl1D
H(la − ta)

Pr{la>ta}
H(lc − tc)
Pr{lc>tc}

, (1.17)

where la is the length of the photon beam, lc is the length of the query beam, and
the Heaviside step function H indicates whether or not the beam is long enough
to make a contribution at ta and tc, respectively. We purposefully do not expand
these equations and let transmittances cancel out since that would not be correct
if transmittance was a vector (as in our implementation).
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2. Combining estimators

In the previous chapter we introduced two estimator families, now we would
like to combine them. Why? As Křivánek et al. proved by a variance analysis
of the volumetric photon density estimators (see Section 5 in [14]), no single
estimator is superior to all others in all circumstances. Points can be better than
beams and vice versa, depending on the relative size of the blur kernel to the mean
free path (MFP, a mean distance between two subsequent scattering events in a
medium). Dense media are better handled by points and thin media by beams.
This suggests it would be beneficial to combine the volumetric photon density
estimators. And such combination would be even more robust and also capable of
handling light transport outside participating media, if BPT could be plugged in.

Multiple importance sampling (MIS) [28] is one approach for combining esti-
mators. Consider an integral I =

∫
Dx f(x) dx and its n estimators

〈I〉i =
1

ni

ni∑
j=1

f(Xi,j)

pi(Xi,j)
, i = 1, . . . , n. (2.1)

The i-th estimator is constructed by taking ni random variables Xi,j , j = 1, . . . , ni
from a sampling technique with the pdf pi(x). Multiple importance sampling
combines (weighted instances of) these estimators:

〈I〉MIS =
n∑
i=1

1

ni

ni∑
j=1

wi(Xi,j)
f(Xi,j)

pi(Xi,j)
, (2.2)

where wi(x) are heuristic weighting functions that must sum up to one for any x.
A provably good choice for wi(x), in terms of minimizing the variance of 〈I〉MIS,
is the balance heuristic:

ŵi(x) =
nipi(x)∑n
k=1 nkpk(x)

. (2.3)

In this original formulation MIS is designed to combine unbiased estimators
of the same integral. However, this is not the case in our setup. We would like
to combine unbiased path integration techniques from BPT with the volumetric
photon density estimators. These estimators, in fact, converge to different results,
and, in addition, operate on space of different dimension (the volumetric photon
density estimators have the additional integration that corresponds to blurring by
the kernel; no such thing exists in BPT).

Similar incompatibility has already been encountered when trying to combine
BPT with surface photon density estimators and previous work proposed number
of solutions to resolve it. Georgiev et al. [4] derived the Vertex Connection and
Merging framework (VCM), where the extra integration that corresponds to
blurring is interpreted as a Russian roulette decision, with an immediate impact
on the path pdf. The UPS framework by Hachisuka et al. [7] defined an extended
path space by introducing a “virtual perturbation” of one of the path vertices
in BPT. While it is not impossible to extend VCM or UPS to handle media,
Křivánek et al. [14] has chosen a more rigorous approach. He derived an extended

12



version of MIS that is able to combine estimators of integral over spaces of different
dimensions. While this extended MIS can be readily used to combine all of the
aforementioned estimators, the theory is somewhat unweildy. For this reason, we
describe a much more direct approach for deriving the MIS weights for combining
the estimators. We derive a “pdf” for each of the estimators, which can then be
directly plugged into the balance heuristic (2.3).

2.1 Intuitive pdf derivation

To easily derive path pdfs for the estimators, we use a somewhat artificial, yet
reasonable, separation of the terms that appear in the (known) estimator formulas
into the path contribution function and the “pdf” itself. Because we know that
estimators are generally constructed as 〈I〉 = f(x)/p(x), we can write the pdf
p(x) with which each considered technique creates path x as:

p(x) =
f(x)

〈I〉
. (2.4)

We arbitrarily choose the path contribution function to be:

f(x) = Le(x0)T (x0 . . . b̃)ρ(b̃,b)T (b . . .xk)We(xk), (2.5)

and dividing it by the known estimator formulas we get the pdf for each of the
estimators.

2.1.1 Point-Point 3D

We start with the P-P3D estimator. The contribution of a photon at b̃ to a
pixel value through a P-P3D estimate performed at vertex b is (after completing
and expanding Equation 1.10):

〈I〉P-P3D = Le(x0)
T (x0 . . . a)

p(x0 . . . a)

ρ(a)

p(ωa)

G(a, b̃)

G(a, b̃)

Tr(ta)

p(ta)
ρ(b̃,b)K3(b̃,b)

Tr(tc)

p(tc)

G(b, c)

G(b, c)

ρ(c)

p(ωc)

T (c . . .xk)

p(c . . .xk)
We(xk). (2.6)

Notice that ρ(a)G(a, b̃)Tr(ta) is simply the throughput between a and b̃ including
scattering at a. Multiplying T (x0 . . . a) by this factor therefore yields T (x0 . . . b̃).
Similarly Tr(tc)G(b, c)ρ(c)T (c . . .xk) = T (b . . .xk). Furthermore, p(ωa)p(ta) is
the probability density of sampling b̃ from a in the projected solid angle× length
product measure (first we sample the direction ωa of the photon beam, then a length
on it). Multiplication by the geometry term G(a, b̃) then converts it to the volume
measure, that is p(b̃ | a), and clearly p(b̃ | a)p(x0 . . . a) = p(x0 . . . b̃). Analogously
for the camera subpath we get p(tc)G(b, c)p(ωc)p(c . . .xk) = p(b | c)p(c . . .xk) =
p(b . . .xk). We apply these equalities on Equation 2.6 and get a more compact
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formula:

〈I〉P-P3D = Le(x0)
T (x0 . . . b̃)

p(x0 . . . b̃)

ρ(b̃,b)K3(b̃,b)

T (b . . .xk)

p(b . . .xk)
We(xk). (2.7)

Dividing the contribution function (2.5) by the expression above yields the “reverse-
engineered” path pdf:

pP-P3D(x) = p(x0 . . . b̃)
1

K3(b̃,b)
p(b . . .xk). (2.8)

2.1.2 Point-Beam 2D

Following similar steps as in the P-P3D case we rewrite the contribution of
the P-Bl2D estimator as:

〈I〉P-Bl2D = Le(x0)
T (x0 . . . b̃)

p(x0 . . . b̃)

ρ(b̃,b)K2(b̃,b)

T (b . . .xk)

G(b, c)p(ωc)p(c . . .xk)
We(xk). (2.9)

Again, by dividing the contribution function (2.5) by the estimator we obtain the
path pdf:

pP-Bl2D(x) = p(x0 . . . b̃)
G(b, c)p(ωc)

K2(b̃,b)
p(c . . .xk). (2.10)

When considering a short query beam, the estimator is according to Equation 1.14
divided by probability Pr{lc>tc} that the query beam of length lc was sampled
long enough to make a contribution at tc. So the resulting path pdf is:

pP-Bs2D(x) = Pr{lc>tc} pP-Bl2D(x). (2.11)

2.1.3 Beam-Beam 1D

Finally, we rewrite the contribution of the Bl-Bl1D estimator:

〈I〉Bl-Bl1D = Le(x0)
T (x0 . . . b̃)

p(x0 . . . a)p(ωa)G(a, b̃)

ρ(b̃,b)
K1(b̃,b)

sin θac
T (b . . .xk)

G(b, c)p(ωc)p(c . . .xk)
We(xk). (2.12)
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As before, we divide the path contribution function (2.5) by the estimator to
obtain the path pdf expression:

pBl-Bl1D(x) = p(x0 . . . a)
p(ωa)G(a, b̃) sin θacG(b, c)p(ωc)

K1(b̃,b)
p(c . . .xk). (2.13)

Getting pdfs for the short beam variants is straightforward (la is the length of the
photon beam, lc is the length of the query beam):

pBl-Bs1D(x) = Pr{lc>tc} pBl-Bl1D(x)

pBs-Bl1D(x) = Pr{la>ta} pBl-Bl1D(x)

pBs-Bs1D(x) = Pr{la>ta}Pr{lc>tc} pBl-Bl1D(x).

(2.14)

(2.15)

(2.16)

2.1.4 Comparison to Křivánek’s work

We will now compare the pdf formulas we derived above with those presented
by Křivánek et al. [14]. Let’s assume using a constant kernel in the form Ki(x,y) =
|Si(x)|−1, where Si(x) is the support of Ki(x,y) for a given x. Then we have

pP-P3D(x) = |S3(b̃)|p(x0 . . . b̃)p(b . . .xk) (2.17)

pP-Bl2D(x) = |S2(b̃)|p(x0 . . . b̃)G(b, c)p(ωc)p(c . . .xk) (2.18)

pBl-Bl1D(x) = |S1(b̃)|p(x0 . . . a)p(ωa)G(a, b̃) sin θacG(b, c)p(ωc)p(c . . .xk).
(2.19)

These expressions are exactly the same as those Křivánek et al. derived under
the constant kernel assumption for the MIS weights computation (see Section 7
in [14]).

2.1.5 Bidirectional path tracing

As already mentioned, our goal is to combine the volumetric photon density
estimators with unbiased path integration techniques from BPT. Assuming the
same input configuration as shown in the Fig. 1.1a, there are two such techniques
that produce path of the same length as the volumetric photon density estimators
do. Either we can sample the light subpath up to the vertex b̃ and then explicitly
connect it to the camera subpath endpoint c, or we can generate the camera
subpath till the vertex b and connect it to the last vertex on the light subpath
a. We label the first one as BPTb̃c and the second one as BPTab (the subscript
denotes the explicitly connected subpath endpoints). Deriving their formulas is
easy, their are products of subpath contributions and the throughput along the
connecting edge:

〈I〉BPTb̃c
= Le(x0)

T (x0 . . . b̃)

p(x0 . . . b̃)
ρ(b̃)Tr(b̃, c)G(b̃, c)ρ(c)

T (c . . .xk)

p(c . . .xk)
We(xk) (2.20)

〈I〉BPTab
= Le(x0)

T (x0 . . . a)

p(x0 . . . a)
ρ(a)Tr(a,b)G(a,b)ρ(b)

T (b . . .xk)

p(b . . .xk)
We(xk). (2.21)
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Product of throughput of subpaths x0 . . . b̃, c . . .xk, and the connecting edge b̃c
is the throughput of the whole path x0 . . . ab̃c . . .xk. That means:

T (x0 . . . b̃)T (c . . .xk)ρ(b̃)Tr(b̃, c)G(b̃, c)ρ(c) = T (x0 . . . ab̃c . . . xk) (2.22)

and Equation 2.20 becomes

〈I〉BPTb̃c
= Le(x0)

T (x0 . . . ab̃c . . .xk)

p(x0 . . . b̃)p(c . . .xk)
We(xk). (2.23)

Similarly, we simplify the second formula (2.21) and get:

〈I〉BPTab
= Le(x0)

T (x0 . . . abc . . .xk)

p(x0 . . . a)p(b . . .xk)
We(xk). (2.24)

Since there are not both vertices b̃,b on the path as with the volumetric photon
density estimators but only one depending on the connecting edge, the contribution
function (2.5) turns into:

fBPTb̃c
(x) = Le(x0)T (x0 . . . ab̃c . . .xk)We(xk) (2.25)

fBPTab
(x) = Le(x0)T (x0 . . . abc . . .xk)We(xk). (2.26)

Following the same procedure as before, we divide these formulas by the expressions
2.23 and 2.24, respectively, which yields the (expected) path pdfs:

pBPTb̃c
(x)= p(x0 . . . b̃)p(c . . .xk)

pBPTab
(x)= p(x0 . . . a)p(b . . .xk).

(2.27)

(2.28)

Note that the estimator and pdf equations for BPT hold not only in media but
also on surfaces.

Apart from the input configuration shown in the Fig. 1.1a there are two more
situations when this estimator can be applied: if the whole light transport path
is sampled from a light and if it is entirely sampled from the camera. These
situations are possible only if the camera and the light, respectively, can be hit by
a ray and can give out importance and radiance, respectively, in its direction (i.e.
it is not a point or direction light or a pinhole camera). Since there is no explicit
connection of subpath ends, all formulas are simple and the same for both cases -
the estimator contribution:

〈I〉BPTdirect
= Le(x0)

T (x0 . . .xk)

p(x0 . . .xk)
We(xk), (2.29)

the contribution function:

fBPTdirect
(x)= Le(x0)T (x0 . . .xk)We(xk), (2.30)

and the resulting path pdf:

pBPTdirect
(x)= p(x0 . . .xk). (2.31)
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2.1.6 Surface photon density estimator

There is one more estimator included in the UPBP implementation, the surface
photon density estimator (denoted P-P2D in [14], we use SURF). Assume the same
input configuration as shown in the Fig. 1.1a and that the rays (a, ωa), (c, ωc) got
through any media (if present) and hit surface at the point b̃ and b, respectively.
The estimator formula has the following form

〈I〉SURF = Le(x0)
T (x0 . . . a)

p(x0 . . . a)

ρ(a)

p(ωa)

G(a, b̃)

G(a, b̃)

Tr(ta)

p(ta)
ρ(b̃,b)K2(b̃,b)

Tr(tc)

p(tc)

G(b, c)

G(b, c)

ρ(c)

p(ωc)

T (c . . .xk)

p(c . . .xk)
We(xk), (2.32)

where ta, tc denotes lengths of the rays. Actually, it is almost identical to the
P-P3D estimator (2.6) with two differences. Only a two-dimensional kernel is
used (since the vertices are located on a surface) and the terms p(ta), p(tc) have
a different meaning. While they expressed the probability density of sampling
distances ta, tc along the rays in the P-P3D case, here they express the probability
mass (as opposed to the probability density) that the rays got through media and
reached a surface at these distances (we explain this issue in Section 3.2.5). We
can follow exactly same steps as in the P-P3D case and arrive at a very similar
path pdf expression:

pSURF(x) = p(x0 . . . b̃)
1

K2(b̃,b)
p(b . . .xk). (2.33)

2.1.7 List of pdfs

We conclude this subsection with a list of all the derived path pdfs:

pP-P3D(x) = p(x0 . . . b̃)
1

K3(b̃,b)
p(b . . .xk)

pP-Bl2D(x) = p(x0 . . . b̃)
G(b, c)p(ωc)

K2(b̃,b)
p(c . . .xk)

pP-Bs2D(x) = Pr{lc>tc} pP-Bl2D(x)

pBl-Bl1D(x) = p(x0 . . . a)
p(ωa)G(a, b̃) sin θacG(b, c)p(ωc)

K1(b̃,b)
p(c . . .xk)

pBl-Bs1D(x) = Pr{lc>tc} pBl-Bl1D(x)

pBs-Bl1D(x) = Pr{la>ta} pBl-Bl1D(x)

pBs-Bs1D(x) = Pr{la>ta}Pr{lc>tc} pBl-Bl1D(x)

pBPTb̃c
(x) = p(x0 . . . b̃)p(c . . .xk)

pBPTab
(x) = p(x0 . . . a)p(b . . .xk)

pBPTdirect
(x) = p(x0 . . .xk)

pSURF(x) = p(x0 . . . b̃)
1

K2(b̃,b)
p(b . . .xk).
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2.2 Estimators along a path

All the estimators and their equations stated above were derived for the vertex
xs on a length-k path x = x0 . . .xk ∈ Ω with k ≥ 1 segments and k + 1 vertices,
with its first vertex x0 on a light source, its last vertex xk on the camera sensor,
and the x1 . . .xk−1 scattering vertices on surfaces and/or in media. We would
like to point out that this is a general derivation and each of the estimators can
be actually applied on different vertices along the path, i.e. on the vertex xs for
different s, yielding a whole family of estimators.

Let there be m out of the k − 1 scattering vertices located in media and the
remaining n = k − 1−m vertices on (not purely specular) surfaces. Then there
are 7m volumetric photon density estimators (P-P3D, P-Bl2D, P-Bs2D, Bl-Bl1D,
Bl-Bs1D, Bs-Bl1D, Bs-Bs1D for each of the m vertices in media), n surface photon
density estimators (SURF for each of the n vertices on surfaces) and k + 2 path
integral estimators (BPT for each connecting edge, i.e. for each of the k segments,
+1 for a path sampled completely from a light, +1 for a path sampled completely
from the camera). If any of the n vertices is located on a purely specular surface
(its BRDF is a delta function) then the surface photon density estimator for such
vertex as well as both path integral estimators for incident edges do not exist
(there is zero probability of having sampled exactly the one and only acceptable
direction). Figure 2.1 shows an example how the volumetric photon density
estimators can be applied on different vertices along a path, Figure 2.2 illustrates
all estimators along a fixed path.

P-P3D

P-BL2D

BS-BL1D

4

4

4

4

4

4

4

4

4

Figure 2.1: An example how the volumetric photon density estimators (shown
P-P2D, P-Bl2D, Bs-Bl1D) can be applied on different vertices along a path (the
path is located entirely in a medium).

2.3 Summary

At the beginning of this chapter, we explained why combination of volumetric
photon density estimators and BPT seems promising. Then we show how combi-
nation of estimators using MIS works and that it depends on path pdfs. The rest
of the chapter described derivation of path pdfs for all necessary estimators. We
finished here the theoretical part of the thesis, description of the implementation
follows.
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P-P3D

P-Bl2D

Bs-Bl1D

BPT01

BPT12

BPT23

BPTdirect

BPTdirect

SURF

medium

surface

Figure 2.2: An example of all estimators along a fixed path. The path has 4
vertices (i.e. its length is 3), one of the two inner vertices is located in a medium,
the other on a surface. Therefore, there are 7 volumetric density estimators, 5 path
integral estimators and one surface photon density estimator. Only 3 volumetric
photon density estimators are actually shown as the others differ only in a beam
type and their image would be very similar.
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3. Our work

Our work was to transform the theory described in the previous chapters into
practice, i.e. to implement the UPBP algorithm. We decided not to start from
scratch but to build on SmallVCM [25], an open-source implementation of the
VCM [4] algorithm. It was a reasonable choice since UPBP “includes” VCM (VCM
simulates a subset of light transport UPBP can handle and they are the same in
scenes without media). However, SmallVCM had no support for media so it was
still a challenging task. For example we had to add a representation of media and
a phase function, completely change the ray-scene intersection routine to be able
to tell in what medium a traced ray is located, add data structures for photon
beams, and, most importantly, implement a new computation of MIS weights.
The resulting program called SmallUBPB was used to generate images in the
UPBP paper [14] (e.g. those in Figure 1) and its source code can be downloaded
from [24]. This chapter describes its main features.

3.1 Code introduction

3.1.1 Structure

We begin with a brief overview of the code. It is written in C++ and divided
into two solutions: OpenEXR and SmallUPBP. The former one contains OpenEXR
library [19] we use to read and save images in the OpenEXR format. The latter
one is further divided into three projects: embree, sys and SmallUPBP. The first
two contain Embree [3] which we employed for acceleration of ray tracing and
photon lookup. Along with OpenEXR they are almost unmodified third-party
code. We rather focus on the last one as it contains the UPBP algorithm itself.
Its (mostly header) files are separated into these folders:

Beams Code in this folder relates to the B-B1D estimator. It implements
its evaluation (PhBeams.hxx, PhBeams.cxx, PhotonBeam.hxx) and data
structures needed for beam lookup (Grid.hxx, PhGrid.hxx). There are also
files adding some debugging features (BeamDensity.hxx, GridStats.hxx)
and alternative data structures (PhBrute.hxx, PhEmbree.hxx).

Bre Similarly to the B-B1D estimator, P-B2D has also its own folder. It contains
code for evaluation of this estimator (Bre.hxx, Bre.cxx) and incorporation
of Embree for photon lookup along a beam (EmbreeAcc.hxx).

Misc Files that do not fit in other folders are located here. They serve for
debugging (DebugImages.hxx, Timer.hxx), configuration of a scene and its
rendering (Config.hxx), scene import (ObjReader.hxx, ObjReader.cxx),
random number generation (Rng.hxx) or SSE support (Sse.hxx). Also ba-
sic definitions (Defs.hxx), auxiliary (mathematical) functions (Utils.hxx,
Utils2.hxx) and a few data structures (Framebuffer.hxx, HashGrid.hxx,
KdTmpl.hxx) can be found in this folder.

Path All code related to a light transport path was put here. It comprises de-
scription of a ray, its segments and intersections (Ray.hxx), data structures
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for keeping record of intersected media boundaries (BoundaryStack.hxx,
PriorityStack.hxx, StaticArray.hxx), evaluation of scattering function
(PhaseFunction.hxx, Bsdf.hxx) and definition of a coordinate system
(Frame.hxx) or path vertices (UPBPLightVertex.hxx, VltPathVertex.hxx).
The very important MIS weights computation functions (PathWeight.hxx)
are also in this folder.

PrecompiledLibs Contains mainly third-party code for SSE acceleration.

Renderers All renderers (i.e. classes implementing different light transport algo-
rithms) can be found here. There is one abstract renderer (Renderer.hxx)
and seven derived, three of them with no media support (EyeLight.hxx,
PathTracer.hxx, VertexCM.hxx) and four volumetric (VolBidirPT.hxx,
VolLightTracer.hxx, VolPathTracer.hxx, UPBP.hxx).

Scene Code for description of a scene is placed in this folder. That includes a cam-
era (Camera.hxx), lights (Distribution.hxx, EnvMap.hxx, Lights.hxx),
surfaces (Materials.hxx), media (Media.hxx), geometry (Geometry.hxx,
Geometry.cxx) and overall scene setup along with ray-scene intersection
functions (Scene.hxx).

Structs Folder containing implementation of simple basic data structures describ-
ing vectors (Vector.hxx), matrices (Mat4f.hxx), directions and positions
(Vector3.hxx), color values (Pixel.hxx, Rgb.hxx) and bounding boxes
(BoundingBox.hxx). Code duplication is mainly for performance reasons.

Outside the folders lies the SmallUPBP.cxx file which contains the main function.

3.1.2 Highest level

Once we roughly know how the code is organized, we can proceed to explanation
of its operation. This section is an introduction and describes only the highest
level of the program, i.e. where it all starts. The following sections then go to
depth. They put emphasis on our contribution and more closely describe main
features we had to add in order to get a usable implementation of the UPBP
algorithm.

To make the description as clear as possible we use mostly pseudocode with
references to the files listed above. The pseudocode is actually quite close to
the real code, only simplified. Most of the fields and methods exist in the real
code and those which do not (methods defined for pseudocode simplification)
are marked with a green asterisk. Bold style is used for pieces of code that are
important and will be described more closely. Comments are printed in green and
keywords and data types in blue. A name surrounded by three dots marks a place
where a piece of code was left out to improve clarity, the code will be supplied
afterwards labelled with this name.

This introduction is also a good place to clarify one aspect of the imple-
mentation. It produces RGB images. It means that the following quantities
introduced in previous chapters are actually RGB triplets: f, Le,We, T , Tr,
ρ, σt, σs, ρs, ρp, Cl( . . . ), Cc( . . . ), Cl( . . . ], Cc[ . . . ). All the equations still hold, com-
putations are simply preformed component-wise. The only difference is in sampling
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short query beams described in Section 1.2.1. Since a pdf is a scalar quantity
while attenuation coefficient an RGB triplet we use only the minimum positive
component of the coefficient. The transmittance in the sampling pdf as well as in
the probability of sampling the short query beam long enough is then computed
only for this one component of the coefficient.

Now we get to the promised highest implementation level. The program starts
in the main method:

Listing 3.1: main (method, SmallUPBP.cxx)
1 main ( )
2 {
3 // A c o n f i g u r a t i o n = a s e t o f va lue s s p e c i f y i n g what and how to render .
4 Config c o n f i g ;
5

6 // Set up the c o n f i g u r a t i o n accord ing to the command l i n e arguments .
7 ParseCommandline ( c o n f i g ) ;
8

9 // Create a f ramebu f f e r r e p r e s e n t i n g the r e s u l t i n g image .
10 Framebuffer f b u f f e r ;
11 c o n f i g . mFramebuffer = &f b u f f e r ;
12

13 // Render the image to the f ramebu f f e r accord ing to the c o n f i g u r a t i o n .
14 render ( c o n f i g ) ;
15

16 // Save the f ramebu f f e r to a f i l e .
17 f b u f f e r . Save ( c o n f i g . mOutputName ) ;
18 }

Note that the configuration setup besides reading options specified on the command
line also covers loading a scene.

The m prefix in front of some variable names denotes a class (or struct) property.
We also use a to prefix input method arguments, o for output method arguments
(ao for both input and output arguments) and k for enumeration constants.

Let’s take a closer look at the render method:

Listing 3.2: render (method, SmallUPBP.cxx)
1 render ( Config &aConfig )
2 {
3 i n t usedThreads = aConfig . mNumThreads ;
4

5 // Create 1 r ende re r per thread . The CreateRenderer func t i on i s a s imple
6 // switch where a con s t ruc to r o f a r ende re r s p e c i f i e d by the c o n f i g u r a t i o n
7 // i s c a l l e d .
8 AbstractRenderer ∗∗ r e n d e r e r s = new AbstractRenderer ∗ [ usedThreads ] ;
9 f o r ( i n t i =0; i < usedThreads ; i++) r e n d e r e r s [ i ] = CreateRenderer ( aConfig ) ;

10

11 // Rendering loop . Run each i t e r a t i o n on a c u r r e n t l y a v a i l a b l e r ende re r .
12 f o r ( i n t i t e r =0; i t e r < aConfig . mI te ra t i ons ; i t e r ++)
13 {
14 i n t threadId = GetAvai lableThreadId ∗ ( ) ;
15 r e n d e r e r s [ threadId]−>RunIteration ( i t e r ) ;
16 }
17

18 // Accumulate f r amebu f f e r s o f a l l used r e n d e r e r s ( not a l l c r ea ted r e n d e r e r s
19 // had to have been used ) .
20 i n t usedRenderers = 0 ;
21 f o r ( i n t i =0; i < usedThreads ; i++)
22 {
23 . .AccumUsed. .
24 }
25

26 // Sca l e the f ramebu f f e r by the number o f used r e n d e r e r s .
27 aConfig . mFramebuffer−>Sca l e ( 1 . f / usedRenderers ) ;
28 }
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Listing 3.3: AccumUsed (part of the render method, SmallUPBP.cxx)
1 i f ( ! r e n d e r e r s [ i ]−>WasUsed ( ) ) cont inue ;
2

3 // The f i r s t one i s taken d i r e c t l y as the r e s u l t ( the f ramebu f f e r
4 // returned by the GetFramebuffer method in the output parameter
5 // i s a l r eady d iv ided by the number o f i t e r a t i o n s the r ende re r
6 // has c a r r i e d out ) .
7 i f ( usedRenderers == 0)
8 r e n d e r e r s [ i ]−>GetFramebuffer (∗ aConfig . mFramebuffer ) ;
9 e l s e

10 {
11 // The othe r s are added to the f i r s t one .
12 Framebuffer tmp ;
13 r e n d e r e r s [ i ]−>GetFramebuffer (tmp ) ;
14 aConfig . mFramebuffer−>Add(tmp ) ;
15 }
16

17 usedRenderers++;

That is all about the highest level of the program. In a nutshell it reads command
line arguments, creates renderers according to them, calls their RunIteration

method, accumulates the result (averages framebuffers over iterations and render-
ers) and saves it to an image. The following text in this chapter describes key parts
of the implementation necessary to understand the RunIteration method.

3.2 Media support

In this section we present changes we made to the original SmallVCM implemen-
tation and infrastructure we newly built in order to add support for participating
media. We begin with an overview of the original representation of a scene. Then
we explain how we add representation of media. Furthermore, we show how
to track what media a ray intersects. And finally, we describe sampling and
evaluating of the scattering function in media.

3.2.1 Representing scenes

A scene is represented by the Scene class (in Scene.hxx). Its geometry
is stored as a list of geometric primitives – triangles and spheres. They are
implemented as classes Triangle and Sphere derived from a common ancestor
AbstractGeometry (all in Geometry.hxx) and offer mainly the Intersect method
capable of intersecting the primitive with a given ray.

Besides geometry there is a list of so called materials (mMaterials). A ma-
terial defines reflective and refractive properties of a surface. Phong reflection
model is used along with Fresnel terms for mixing mirror reflection and refrac-
tion. A material is represented by the Material class (in Materials.hxx) which
contains parameters of the Phong model (diffuse reflectance, phong reflectance
and exponent), mirror reflectance and the index of refraction (IOR). Surfaces
with a material with zero diffuse and phong reflectance are called purely specular.
Evaluation of the model and its sampling will be described later in this section.

There is one more list – that of light sources (mLights). There are several
types of lights:

Area An area light source with cosine light distribution, located in the scene.
Can be hit by a traced ray.

23



Point An ideal point light source with uniform light distribution, located in the
scene. Cannot be hit by a traced ray (it does not have an area).

Directional An ideal directional light source with delta light distribution, located
in infinity. Cannot be hit by a traced ray (actually it could be, but since it
has delta light distribution, its contribution would be zero anyway).

Background A background light source with light distribution uniform or con-
trolled by an environment map, located in infinity. Can be hit by a traced
ray.

Each type is implemented as an individual class derived from a common ancestor
AbstractLight (in Lights.hxx) which prescribes methods for sampling and
evaluation of contribution of the light. There can be an arbitrary number of
lights of the first three types in the list, the background light, however, is either
missing or there is only one and stored outside the list (as mBackground). The
code of light sources is almost completely taken from the original SmallVCM
implementation and we won’t describe it closer.

The last thing a description of a scene includes is a camera (stored in mCamera).
An ideal pinhole camera is used and it is represented by the Camera class (in
Camera.hxx) which stores parameters of the camera and provides methods for
points transformation (between world and image plane coordinates) and ray
generation.

Note that the definition of factor D(x→y) for geometry term G(x,y) (1.3) in
Section 1.1 specifies its value neither for a vertex on the camera nor a vertex on
light sources. We therefore amend this definition as follows. D(x→y) = |nx ·ωxy|
if x is an inner path vertex located on a surface or the first path vertex located
on an area light source. D(x→ y) = 1 otherwise (if x is an inner path vertex
in a medium or the last vertex on the camera or the first vertex on other than
an area light source). Furthermore, we introduce notation for situations when
only a direction was sampled and the distant vertex is not yet known. Then
D(x→) = |nx · ωx→| if x is an inner path vertex located on a surface or the
first path vertex located on an area light source and D(x→) = 1 otherwise.
Similarly, D(←y) = |ny · ω←y| if y is an inner path vertex located on a surface
and D(←y) = 1 otherwise

Each geometry primitive in a scene must be associated with a material, i.e.
must contain an index of a material in the mMaterials list, and those that serves
as area light sources must be also associated with the corresponding light, i.e. must
contain an index of an area light source in the mLights list. All the aforementioned
data as well as these links between them are obtained during loading of a scene.

3.2.2 Representing media

We implemented media in a similar way as materials. A scene now contains
also a list of media (mMedia) and every geometry primitive that forms a boundary
of a medium must be associated with it, i.e. must contain its index in the list.
Crossing a geometry primitive with an associated medium then means either
entering or leaving the medium depending on whether the primitive was hit from
its front or back face, i.e. whether a cosine of a ray direction and a normal of the
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primitive at the intersection is negative or positive, respectively. This suggest
that if we want to have a bounded medium in a scene, we have to enclose it in
geometry associated with it.

In order not to be limited to media enclosed by solid surfaces a scene can also
contain one global medium (its index is stored as mGlobalMediumID) and geometry
with so called “imaginary materials”. An imaginary material is also an object
of the Material class and is distinguished from normal materials only by a flag
(mGeometryType). Geometry associated with an imaginary material then acts only
as a container for a medium and does not interact with light in any way. When
tracing a light transport path crossing such geometry, only the current medium
can be affected and the geometry is ignored, meaning that there is no reflection or
refraction on its surface and no path vertex is created on it. We call geometry with
imaginary materials “imaginary geometry”, the rest is “real geometry” and we store
it separately (as mRealGeometry and mImaginaryGeometry). Normal materials
are then called “real materials”. Similarly, an intersection with real geometry
is called “a real intersection” and an intersection with imaginary geometry “an
imaginary intersection”.

If a light source or the camera are located in other than the global medium,
they have to be associated with this medium and also with a material of geometry
that encloses it. A ray leaving such light or camera can be viewed as immediately
entering the geometry enclosing the medium (without any interaction with its
surface).

Now let’s take a look at what exactly a medium is. It is represented by
a class derived from a common ancestor AbstractMedium (in Media.hxx). We
implemented homogeneous medium in the HomogeneousMedium class (also in
Media.hxx). Its most important parts are shown in the following pseudocode
(actual code is more complicated since the AbstractMedium class is general and
supports heterogeneous media too):

Listing 3.4: HomogeneousMedium (class, Media.hxx)
1 c l a s s HomogeneousMedium
2 {
3 Rgb mAbsorptionCoef ;
4 Rgb mEmissionCoef ;
5 Rgb mScatter ingCoef ;
6 Rgb mAttenuationCoef ; // = mAbsorptionCoef + mScatter ingCoef
7 f l o a t mMeanCosine ;
8 f l o a t mContinuationProb ;
9

10 // Evaluates emis s ion that i s accumulated by a ray
11 // t r a v e l l i n g in t h i s media over the g iven d i s t ance .
12 Rgb EvalEmission ( const f l o a t aDistanceAlongRay ) const
13 {
14 r e turn mEmissionCoef ∗ aDistanceAlongRay ;
15 }
16

17 // Evaluates a t t enuat ion that i s accumulated by a ray
18 // t r a v e l l i n g in t h i s media over the g iven d i s t ance .
19 Rgb EvalAttenuation ( const f l o a t aDistanceAlongRay ) const
20 {
21 r e turn Rgb : : exp(−mAttenuationCoef ∗ aDistanceAlongRay ) ;
22 }
23

24 . .HomogeneousMediumPart2 . .
25 }

25



Listing 3.5: HomogeneousMediumPart2 (part of the HomogeneousMedium class,
Media.hxx)

1 // Evaluates a t t enuat ion that i s accumulated by a ray
2 // t r a v e l l i n g in t h i s media over the g iven d i s t ance
3 // in one c o l o r channel only , i . e . us ing only the g iven
4 // component o f the at t enuat ion c o e f f i c i e n t .
5 f l o a t EvalAttenuationInOneDim (
6 const f l o a t aAttenuationCoefComp ,
7 const f l o a t aDistanceAlongRay ) const
8 {
9 r e turn std : : exp(−aAttenuationCoefComp ∗ aDistanceAlongRay ) ;

10 }
11

12 // Samples the d i s t ance a ray w i l l t r a v e l in t h i s medium be f o r e
13 // a c o l l i s i o n ( absorpt ion or s c a t t e r i n g ) . I f i t i s l e s s e r than or
14 // equal to the g iven d i s t ance to a boundary o f the medium ,
15 // the sampled d i s t ance i s returned along with a pdf o f sampling
16 // t h i s d i s t ance . Otherwise , the d i s t ance to a boundary i s returned
17 // with a p r o b a b i l i t y o f sampling d i s t ance g r e a t e r than the d i s t anc e
18 // to the boundary .
19 f l o a t SampleRay (
20 const f l o a t aDistToBoundary ,
21 const f l o a t aRandom ,
22 f l o a t ∗oPdf ,
23 const u int aRaySamplingFlags = 0 ,
24 f l o a t ∗oRevPdf = NULL) const
25 {
26 . . SampleRay . .
27 }
28

29 // Gets a pdf / p r o b a b i l i t y that a ray w i l l t r a v e l the g iven d i s t ance
30 // in t h i s medium . The given f l a g s s p e c i f y whether the d i s t ance
31 // i s with in the medium or the ray l e f t i t . Returns the pdf / p r o b a b i l i t y
32 // the SampleRay method would re turn with the g iven d i s t anc e .
33 f l o a t RaySamplePdf (
34 const f l o a t aSampledDist ,
35 const u int aRaySamplingFlags = 0 ,
36 f l o a t ∗oRevPdf = NULL) const
37 {
38 f l o a t oPdf = 1 .0 f ;
39 i f ( oRevPdf ) ∗oRevPdf = 1 .0 f ;
40

41 // Same cond i t i on as in the SampleRay method .
42 i f ( mMinPositiveAttenuationCoefComp ( ) && HasScatter ing ( ) )
43 {
44 // Compute at t enuat ion f o r the d i s t ance .
45 f l o a t a t t = EvalAttenuationInOneDim (
46 mMinPositiveAttenuationCoefComp ( ) , aSampledDist ) ;
47

48 // Compute a pdf / p r o b a b i l i t y o f the sampling .
49 i f ( aRaySamplingFlags & kEndInMedium)
50 // Pdf o f a sample be f o r e the boundary .
51 oPdf = mMinPositiveAttenuationCoefComp ( ) ∗ at t ;
52 e l s e
53 // P ro b a b i l i t y o f sampling beyond the boundary .
54 oPdf = at t ;
55

56 // Compute a pdf / p r o b a b i l i t y o f the sampling as i f i t was done
57 // in a r e v e r s e d i r e c t i o n .
58 i f ( oRevPdf )
59 {
60 i f ( aRaySamplingFlags & kOriginInMedium )
61 // Pdf o f a sample be f o r e the boundary .
62 ∗oRevPdf = mMinPositiveAttenuationCoefComp ( ) ∗ at t ;
63 e l s e
64 // P ro b a b i l i t y o f sampling beyond the boundary .
65 ∗oRevPdf = at t ;
66 }
67 }
68

69 r e turn oPdf ;
70 }
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Listing 3.6: SampleRay (part of the SampleRay method, Media.hxx)
1 // We sample only i f the at t enuat ion and s c a t t e r i n g c o e f f i c i e n t s
2 // o f the medium have p o s i t i v e components . The f i r s t cond i t i on
3 // i s needed s i n c e we sample accord ing to the minimum p o s i t i v e
4 // component o f the at t enuat ion c o e f f i c i e n t . The second one
5 // because i t i s u s e l e s s to c r e a t e a path ver tex in a pure ly
6 // absorb ing medium .
7 i f ( mMinPositiveAttenuationCoefComp ( ) > 0 && HasScatter ing ( ) )
8 {
9 // Sample the d i s t anc e .

10 f l o a t d = −std : : l og (1−aRandom) / mMinPositiveAttenuationCoefComp ( ) ;
11 i f (d <= aDistToBoundary ) // The sample i s b e f o r e the boundary .
12 {
13 // Compute at t enuat ion f o r the sampled d i s t ance
14 // ( needed f o r pdfs only ) .
15 f l o a t a t t = EvalAttenuationInOneDim (
16 mMinPositiveAttenuationCoefComp ( ) , d ) ;
17

18 // Compute a pdf o f a sample be f o r e the boundary .
19 i f ( oPdf ) ∗oPdf = mMinPositiveAttenuationCoefComp ( ) ∗ at t ;
20

21 // Compute a pdf / p r o b a b i l i t y o f the sampling as i f i t was done
22 // in a r e v e r s e d i r e c t i o n .
23 i f ( oRevPdf )
24 {
25 i f ( aRaySamplingFlags & kOriginInMedium )
26 // Pdf o f a sample be f o r e the boundary .
27 ∗oRevPdf = ∗oPdf ;
28 e l s e
29 // P ro b a b i l i t y o f sampling beyond the boundary .
30 ∗oRevPdf = at t ;
31 }
32

33 // Return the sampled d i s t ance .
34 r e turn d ;
35 }
36 e l s e // The sample i s beyond the boundary .
37 {
38 // Compute at t enuat ion f o r the d i s t ance to the boundary
39 // ( needed f o r pdfs only ) .
40 f l o a t a t t = EvalAttenuationInOneDim (
41 mMinPositiveAttenuationCoefComp ( ) , aDistToBoundary ) ;
42

43 // Compute the p r o b a b i l i t y o f sampling beyond the boundary .
44 i f ( oPdf ) ∗oPdf = at t ;
45

46 // Compute a pdf / p r o b a b i l i t y o f the sampling as i f i t was done
47 // in a r e v e r s e d i r e c t i o n .
48 i f ( oRevPdf )
49 {
50 i f ( aRaySamplingFlags & kOriginInMedium )
51 // Pdf o f a sample be f o r e the boundary .
52 ∗oRevPdf = mMinPositiveAttenuationCoefComp ( ) ∗ at t ;
53 e l s e
54 // P ro b a b i l i t y o f sampling beyond the boundary .
55 ∗oRevPdf = at t ;
56 }
57

58 // Return the d i s t ance to the boundary .
59 r e turn aDistToBoundary ;
60 }
61 }
62 e l s e // We cannot sample a d i s t ance .
63 {
64 i f ( oPdf ) ∗oPdf = 1 .0 f ;
65 i f ( oRevPdf ) ∗oRevPdf = 1 .0 f ;
66 r e turn aDistToBoundary ;
67 }

The code is quite long but not difficult. In Listing 3.4 we can see that a homoge-
neous medium is described with a several coefficients: the absorption coefficient
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σa (mAbsorptionCoef), the emission coefficient ε (mEmissionCoef), the scatter-
ing coefficient σs (mScatteringCoef) and the attenuation (extinction) coefficient
σt = σa + σs (mAttenuationCoef). We use the Henyey-Greenstein phase function
so there is also the mean cosine g (mMeanCosine) that determines the (an)isotropy
of scattering. And finally there is the continuation probability pC used for the
Russian roulette decision whether a traced subpath will scatter out and continue
or end (mContinuationProb). For the sake of simplicity, this probability is set by
the user in our implementation.

Since the medium is homogeneous, the way it attenuates a ray travelling
through it depends only on the distance the ray travels in it, the ray location
and direction are irrelevant. The emission Le accumulated along a ray over the
distance d then equals

Le = εd (3.1)

and the attenuation Tr from Equation 1.4 becomes

Tr(x,y) = exp
(
−
∫ ‖x−y‖

0

σt(x + tωxy) dt
)

(3.2)

= exp
(
−
∫ d

0

σt dt
)

(3.3)

= exp(−σtd) ≡ T ′r(d). (3.4)

These formulas are implemented in the EvalEmission and EvalAttenuation

methods listed above.
The SampleRay method (Listing 3.6) samples a distance a ray travels in the

medium before a collision, i.e. before absorption or scattering. In other words
it samples the ray in the medium for a next path vertex. Evaluating estimators
at the vertex and continuing the subpath from it represent scattering, failing to
continue because of the Russian roulette decision can be viewed as absorption
(but note that the probability of such a decision 1− pC is not necessarily equal to
the probability of absorption since pC is set by the user). The SampleRay method
performs the sampling only if the scattering coefficient of the medium is not zero.
It is because no estimators can be evaluated in a purely absorbing medium (it
would imply scattering) and therefore it is useless to create a path vertex in such
a medium. Absorption is handled there only via attenuating the throughput of
the ray.

We want to sample proportionally to attenuation of the medium, i.e. we want
to importance sample the ray with a pdf proportional to T ′r(d). Since T ′r(d) is an
RGB triplet and pdf a scalar quantity, we define

T ′r,m(d) = exp(−σt,md), (3.5)

where σt,m is the minimum positive component of σt. Then we seek a pdf
proportional to T ′r,m(d). Normalization yields a pdf p̄(d) = σt,mT

′
r,m(d). We use

the standard inversion method for drawing samples from a given distribution.
By integrating p from 0 to d we get the cumulative distribution function (cdf)
P (d) = 1− T ′r,m(d) and from its inversion we obtain a formula for sampling the
distance d:

d = − ln(1− r)/σt,m (3.6)
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where r ∈ [0, 1) is a randomly generated number. Let dmax denote a distance
along the ray from a point where it enters the medium (or from the ray origin if
it is already in the medium) to a point where it leaves. If the sampled distance
d is lesser than or equal to dmax, the method returns d along with the desired
pdf p̄(d) = σt,mT

′
r,m(d). If it is longer, dmax is returned with a probability Pr{d>

dmax} = 1− P (dmax) = T ′r,m(dmax).
Besides the HomogeneousMedium class there is also the ClearMedium class. It

is a special case of HomogeneousMedium with all coefficients and the mean cosine
zero and the continuation probability equal to 1. Implementation of other types
of media, e.g. heterogeneous media, is left for future work. The UPBP algorithm
is not limited to a homogeneous case.

This section revealed how media are represented and sampled. We could see
that they are objects of quite a simple class and that these objects are associated
with geometry. But how do we know in what medium we are?

3.2.3 Intersecting media

In order to provide larger scene variability and also because of numerical
stability our implementation allows geometry and consequently media to overlap.
However, we had to solve how to correctly track the current medium along a traced
light transport path as well as which geometry can interact with light and which
should be ignored. Our goal was to ensure that if two objects intersect, only one
of them is present in the overlap region. This decision should apply consistently
to both geometry and media, and must be independent of the direction in which
the path is propagated. It is necessary since we do not support media mixing.
Possible results for two overlapping spheres are shown in Figure 3.1.

Firstly, if there is more than one object at one place, we need to decide which
one to use. Such a decision is made based on priorities (as proposed by Schmidt
et al. [22]). Each material is given a priority (the mPriority property of the
Material class), objects are then judged according to the priority of a material
associated with their geometry. The object with the highest priority is used. If
there are more objects with the same priority, the one entered by the traced path
as the last is used.

Secondly, we need to recognize that the path is entering an overlap region
of some objects and we need to figure out in what object the path will stay
after leaving the region. For this reason we employed a priority stack of crossed
object boundaries. We call it “boundary stack” and it is implemented in the
BoundaryStack.hxx and PriorityStack.hxx files. A boundary is represented by
a triplet consisting of the material, medium and priority associated with geometry
of the boundary. The stack keeps these triplets sorted according to the priority
with the triplet with the highest priority on its top.

When a new path is about to be traced, the stack is cleared and initialized
with a global medium (there is always a global medium, either specified by the
scene or clear). A triplet (−1, mGlobalMediumID, GLOBAL_MEDIUM_PRIORITY) is
put on the bottom of the stack. This triplet is never removed from the stack and
always stays at its bottom. After that, if the light source or the camera that the
path is started from is associated with some medium (i.e. when it is located in
other than the global medium), a corresponding triplet is put on the stack too.
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A B A B

Figure 3.1: Two possible results of rendering two overlapping spheres. Only a
planar cut through the spheres is shown, the thick line on their circumference
represents their geometry, the less saturated color inside them represents media.
Notice that either geometry and medium of sphere B are used in the overlap
region with sphere A completely ignored there (the left image) or vice versa (the
right image).
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Figure 3.2: An example of how the boundary stack works. The upper image shows
three overlapping rectangles A,B,C. The green rectangle A has material matA,
medium medA and priority 1, the red rectangle B has material matB, medium
medB and priority 2 and the blue rectangle C has material matC , medium medC
and priority 3. Outside the rectangles there is a global medium medG with priority
-2. The rectangles are intersected by a ray from left to right, active intersections
are yellow, passive are white. The middle row shows how the stack changes. Each
column represents the state of the stack between the indicated intersections. The
bottom image shows the result. At each state it corresponds to the top of the
stack.
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During tracing every time the path enters an object, i.e. crosses geometry from
its front face, a triplet consisting of the associated material, medium and priority
is created. The triplet is put on the top of the stack and then moved towards
the bottom until there is no triplet with a higher priority below it. When the
path leaves an object, i.e. crosses geometry from its back face, a triplet consisting
of the associated material, medium and priority is looked up in the stack and
removed. The medium on the top of the stack is the current medium, the geometry
that added or removed the top triplet can affect the result (real geometry can
directly interact with light, imaginary geometry can at least change the current
medium). We call intersections with such geometry “active” and the rest “passive”.
Figure 3.2 shows an example.

3.2.3.1 Intersection method

After we explained what to do when crossing geometry in order not to lose
track of the current medium, we can proceed to the ray-scene intersection method.
We implemented a completely new one – the Intersect method of the Scene

class. The rest of this section is focused on its implementation.
What should be an output of such method? What the traced ray hit and what

it went through on the way.

Intersection. When a ray is traced through a scene, it either leaves the scene or
a scattering event occurs. That means the ray gets scattered in a medium or hits
a surface. We speak about both these situations as finding an “intersection” with
the scene. The task of the Intersect method is to find the first “intersection” of
the ray with the scene while respecting priorities of scene objects. Firstly, the
method tries to find the first active real intersection of the ray with the scene,
i.e. the first intersection with the real geometry (as opposed to imaginary, see
Section 3.2.2) not ignored because of priorities. After that, it samples media along
the ray from its origin to the first active real intersection (or to infinity if there
is none) for a possible medium scattering point. Data of the “intersection” are
returned in a common structure Isect:

Listing 3.7: Isect (struct, Ray.hxx)
1 s t r u c t I s e c t
2 {
3 f l o a t mDist ; // Distance to the found medium s c a t t e r i n g po int
4 // or the r e a l i n t e r s e c t i o n .
5 i n t mMatID ; // Index o f the mate r i a l o f the h i t geometry f o r the r e a l
6 // i n t e r s e c t i o n , −1 f o r the medium s c a t t e r i n g po int .
7 i n t mMedID; // Index o f the i n t e r a c t i n g medium f o r the medium s c a t t e r i n g
8 // point , index o f the medium enc lo s ed by the h i t geometry
9 // f o r the r e a l i n t e r s e c t i o n .

10 i n t mLightID ; // Index o f the h i t l i g h t , −1 means none .
11 Dir mNormal ; // Normal at the r e a l i n t e r s e c t i o n .
12 bool mEnter ; // Whether the ray e n t e r s geometry at the r e a l i n t e r s e c t i o n
13 // ( c o s i n e o f i t s d i r e c t i o n and the normal i s negat ive ) .
14 }

Volume segments. No matter whether the “intersection” is found or not, the
method returns parts of the ray going through any medium as so called “volume seg-
ments” of the ray. There are two types – VolumeSegment and LiteVolumeSegment.
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The former one is defined as follows:

Listing 3.8: VolumeSegment (struct, Ray.hxx)
1 s t r u c t VolumeSegment
2 {
3 f l o a t mDistMin ; // Distance o f the segment beg inning from
4 // the ray o r i g i n .
5 f l o a t mDistMax ; // Distance o f the segment end from the ray o r i g i n .
6 i n t mMediumID ; // ID o f the medium in t h i s segment .
7 f l o a t mRaySamplePdf ; // I f s c a t t e r i n g occurred in t h i s medium : pdf o f
8 // having sampled a d i s t ance with in the medium ;
9 // otherwi se : p r o b a b i l i t y o f pas s ing through

10 // the e n t i r e medium .
11 f l o a t mRaySampleRevPdf ; // S im i l a r to mRaySamplePdf but in the r e v e r s e
12 // d i r e c t i o n o f the ray .
13 Rgb mAttenuation ; // Attenuation caused by t h i s segment ( not d iv ided
14 // by the pdf ) .
15 }

The LiteVolumeSegment structure is a subset of VolumeSegment, it contains
only the first three fields (the distances and the medium index). It is used with
photon beams because of lower memory consumption. The Intersect method
returns all parts of the ray going through any medium from the origin of the
ray up to its first active real intersection (or to infinity if there is none) as
LiteVolumeSegment structures. All parts are also returned as VolumeSegment

structures except the case of scattering in a medium. Then only those parts located
before the scattering point are returned as VolumeSegment structures (Figure 3.3
illustrates this difference). This is because we do not need the additional data
for segments behind the scattering point and therefore outside the traced light
subpath but we need to know those segments for construction of long photon
beams.

LiteVolumeSegments

VolumeSegments

Figure 3.3: Illustration of the difference between LiteVolumeSegment and
VolumeSegment structures returned by the Intersect method in case of scattering
in a medium.

Assumptions. However, there are several assumptions that have to hold for
our method to work correctly:

1. A scene is completely filled with media (places where no medium is specified
are filled with the clear medium). It is quite natural and lowers the number
of special cases to handle.

2. There is always one global medium (possibly clear). No material is assigned
a lower priority than the GLOBAL_MEDIUM_PRIORITY (the priority at the
bottom of the stack). It ensures that the global medium triplet is always at
the bottom of the stack and the stack is never emptied.
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3. All other media are associated with geometry. All geometric primitives
enclosing one instance of a medium (e.g. all triangles forming a surface of
one wax candle) are associated with the same medium and material. It is
necessary in order to correctly identify when a path enters and exits one
object, i.e. to correctly match the triplet of the exit point with the triplet of
the entry point on the boundary stack. Infinite media, i.e. media with open
boundary geometry, are allowed but should be used with caution. Figure 3.4
shows an example.

A
B

A
B

A
B

A
B

Figure 3.4: An example of a “medium leak”. The left two images show two
empty touching rectangles A and B, rectangle B having a higher priority,
the right two images show what happens if geometry of the rectangles is
associated with media. The thick line on their circumference represents
their geometry, the less saturated color inside them represents media. If
rectangle A is complete as in the upper two images, media stay inside the
rectangles. However, if rectangle A lacks the side adjacent to rectangle B as
in the lower two images, its medium fills the entire scene except for objects
with an equal or higher priority, i.e. rectangle B does not block it. This
“medium leak” is not global, it applies only to paths that enter rectangle A
from the outside and then leave it through the missing side (the medium of
rectangle A is not removed from the stack). Other paths produce the same
result as in the upper right image.

4. All imaginary materials have lower priority than any real material. It
is also quite natural and allows the method to find an intersection with
real geometry first and than handle intersections with imaginary geometry
separately.

5. No imaginary geometry intersect real geometry. But imaginary geometry
can intersect imaginary geometry, real geometry can intersect real geometry
and imaginary geometry can surround real geometry (without intersection).
This assumption means that if a path is behind real geometry (if there is a
real material on the top of the boundary stack), then the method does not
have to test imaginary geometry for intersections.

6. Intersecting geometry is assigned different priorities. Otherwise, the result
would be directionally dependent. Imagine two overlapping spheres. If they
have the same priority, then the one entered by a traced path as the last
is used in the overlap region. However, that depends on the direction of
the path, i.e. from which side of the region the path comes (e.g. for a path
coming in the opposite direction the other sphere is used).
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Algorithm. Let’s take a closer look at how the Intersect method works. It is
given a ray and a current boundary stack and performs the following steps:

1. Tries to find the first active real intersection with the scene. That means:

(a) Creates copies of the given ray and boundary stack. In order to find
the intersection the method needs to modify a ray and a boundary
stack starting in the original states, i.e. the states of the given ray and
boundary stack. However, the original states will be still needed lately.
Therefore, the method uses copies.

(b) Casts the ray copy in the scene and tries to find its first intersection with
the real geometry (using the mRealGeometry->Intersect method).

(c) If it is unsuccessful, goes to 2.

(d) If it is successful and the priority of the intersection (i.e. of the material
associated with the intersected geometry) is equal to or higher than the
priority on the top of the stack copy, the first active real intersection is
found and the method goes to 2. Although only the real geometry was
tested, we know the intersection is active since the imaginary geometry
has always lower priority (according to the assumptions).

(e) If it is successful and the priority of the intersection is lower than the
priority on the top of the stack copy, the intersection is passive. The
method stores the intersection, updates the stack copy for crossing the
geometry, takes the intersection as a new origin of the ray copy and
goes to 1b.

2. Finds all volume segments along the given ray in a range from its origin to
the found first active real intersection (or to infinity if there is none) and
stores the LiteVolumeSegment structure for each of them.

(a) If there is a real material on the top of the given stack, then the origin
of the given ray is located behind the real geometry. Therefore, no
geometry with a real or imaginary material with a priority equal to
or higher than the one at top is crossed in the range since the found
active real intersection is the first and there are no imaginary materials
in the range at all (according to the assumptions). It means that there
is exactly one volume segment covering the entire range (if no medium
is specified by the scene there, the clear medium is used). The method
stores the LiteVolumeSegment structure for it and goes to 3.

(b) Otherwise, there might be volume segments separated by imaginary
geometry in the range (not by real geometry since the found active real
intersection is the first). So the method finds all intersections of the
given ray with the imaginary geometry of the scene in the range (the
mImaginaryGeometry->IntersectAll method is used). The result is
a list of the intersections sorted in ascending order according to their
distance from the origin of the ray.

(c) Creates a new copy of the given boundary stack. In order to correctly
handle overlap of imaginary geometry the method needs to modify a
boundary stack starting in the original state. However, the original
state will be still needed lately. Therefore, the method uses a copy.
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(d) Goes through the list of intersections and for each of them performs:

i. Checks if the intersection is on the front face of geometry and its
priority is equal to or higher than the top of the stack copy. It
would mean that the intersection is active, a volume segment is
being closed by beginning of a new one enclosed in geometry with
an equal or higher priority and needs to be stored.

ii. Checks if the intersection is on the back face and the corresponding
triplet is the same as on the top of the stack copy. It would mean
that the intersection is active, a volume segment is being closed by
its own enclosing geometry and needs to be stored.

iii. If any of the two conditions is satisfied, creates and stores the
LiteVolumeSegment structure which extends from the end of a
previously stored segment (or from the range beginning, if it is
the first segment) to the intersection and is filled with the current
medium (the medium currently on the top of the stack copy). In
other cases, i.e. when entering a medium with a lower priority or
leaving other than the current medium, the intersection is passive,
the current medium is not affected and therefore no segment is
created.

iv. Uses the intersection for updating the stack copy.

(e) Stores a segment for the remaining part of the range filled with the
current medium.

3. Samples the volume segments found in 2 for a possible medium scattering
point and creates VolumeSegment structures from them, i.e. goes through
the stored LiteVolumeSegment structures and for each of them performs:

(a) Samples the given ray within the segment using the SampleRay method
(Listing 3.4) of the medium in the segment. The distance passed to the
SampleRay method is the length of the segment.

(b) Creates the VolumeSegment structure. Its beginning and medium is
taken from the LiteVolumeSegment structure, pdfs were returned by
the SampleRay method, attenuation and emission is computed using
the EvalAttenuation and EvalEmission methods (Listing 3.4) of the
medium. If scattering occurred, i.e. if the SampleRay method returned
distance within the segment, the end of the VolumeSegment is set in
this distance; otherwise, the end of the LiteVolumeSegment is used
(as shown in Figure 3.3).

(c) Updates the given boundary stack by imaginary intersections found
in 2b, which lie within the range of the created VolumeSegment (ex-
cluding the beginning, including the end). This is the last time the
original state of the given boundary stack is needed, therefore no stack
copy is necessary.

(d) If scattering occurred, stops creating VolumeSegment structures (as
shown in Figure 3.3) and goes to 4.

4. Updates the given boundary stack by real intersections found in 1e. If
scattering occurred, only those that lie before the scattering point are used.
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Together with updates in 3c this step ensures that the given stack at the end
of the method corresponds to the position of the returned “intersection”.
Note that the updates by imaginary geometry and real geometry can be done
separately only because no imaginary geometry can intersect real geometry
and imaginary materials have always lower priority than real materials
(according to the assumptions).

5. Returns true, if scattering occurred or if the ray got through media but an
active real intersection with geometry was found; otherwise, false (the ray
continued to the infinity). Furthermore, returns the LiteVolumeSegment

and VolumeSegment structures, the updated boundary stack and data of
the scattering point/real intersection in the Isect structure.

We described a typical run of the Intersect method. However, the method
is overloaded and depending on the overloading and given flags some steps can be
skipped. For example, volume segments may not sampled, the VolumeSegment

structures may not be created or media might be completely ignored. The method
for testing whether a connection between two vertices is occluded by geometry
or not – the Occluded method – is also only a call to the Intersect method
with the right arguments. It then looks for an active intersection only along the
connection and only if none exists, it finds volume segments without sampling them
(only computes the probabilities of getting through them using the RaySamplePdf

method).
The code of the Intersect method is quite complex, therefore we omit it here.

It can be found in the Scene.hxx file. We at least went through its outline since
it is essential part of the renderer.

Numerical issues. Unfortunately, we did not manage to solve all numerical
problems. When a ray intersects geometry, there is an epsilon distance the ray
must travel before a next intersection can be detected. This is because of numerical
issues when one intersection with a geometric primitive could be detected twice.
On the other hand, if two geometric primitives are within the epsilon distance
from each other, then an intersection with one of them can be ignored yielding an
error. This error is negligible for areas around an intersection of two objects, but
can be bigger if a region between two objects has large area but is narrower than
the epsilon, especially if the objects contain media. Therefore, objects touching
each other in the reality should be modelled as objects that overlap by more
than the epsilon distance. The epsilon value can be found in the Defs.hxx file
(EPS_RAY).

3.2.4 Evaluating media

After solving how to represent media and how to keep track of what medium
a ray is located in, evaluation and sampling of the phase function at path vertices
is quite straightforward. When the Intersect method (Section 3.2.3.1) finds
an intersection of a ray with the scene (either a medium scattering point or a
real intersection), an object of the BSDF class (from the Bsdf.hxx file) is created
based on the ray and the returned Isect structure (Listing 3.7). The constructor
mainly stores some data describing the material or medium at the intersection
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and computes the local coordinate frame. If the intersection is on a surface,
its normal is taken as the z-axis of the frame; otherwise, the ray direction is
used. Furthermore, the ray direction is stored as the fixed incoming direction but
with the opposite sign to point away from the intersection. If the intersection is
on a surface, the constructor also computes probabilities of sampling different
components of the Phong BSDF (diffuse reflection, Phong reflection, mirror
reflection, mirror refraction) and the continuation probability. This is carried out
by the GetComponentProbabilities method in the Bsdf.hxx file. Probability
of sampling a component is computed as a ratio of the corresponding albedo and
the total albedo. The continuation probability is computed as the maximum
component of the summed material reflectance coefficients. If the intersection is
in a medium, there is only one component and the continuation probability is a
constant (the mContinuationProb property of the HomogeneousMedium class, see
Listing 3.4).

There are three main methods the BSDF class offers: Evaluate, Pdf and Sample.
They handle the case of a surface intersection directly, for an intersection in a medi-
um they call static methods of the same name from the PhaseFunction class which
implements the Henyey-Greenstein phase function (in the PhaseFunction.hxx

file). We briefly describe the methods:

Evaluate. Evaluates the scattering function for the stored fixed incoming direc-
tion and the given generated outgoing direction (aWorldDirGen), both pointing
away from the intersection. Returns the scattering function factor, a cosine
between the frame z-axis and the outgoing direction (oCosThetaGen) and pdfs
w.r.t. the solid angle measure of having sampled the outgoing direction given the
incoming (oDirectPdfW) and vice versa (oReversePdfW). If the intersection is
in a medium, a sine between the frame z-axis and the outgoing direction is also
returned (oSinTheta). If the intersection is on a surface, the returned factor is a
sum of factors of the two non-specular components (diffuse and Phong, others
have zero probability) and the returned pdfs are sums of pdfs of sampling the
directions from the two components weighted by component probabilities. Special
cases:

• oCosThetaGen is always 1 if the intersection is in a medium.

• oSinTheta is always 0 if the intersection is on a surface.

• all returned values are always 0 if the intersection is in a medium without
scattering.

Listing 3.9: Evaluate (method, Bsdf.hxx)
1 Rgb Evaluate (
2 const Dir &aWorldDirGen ,
3 f l o a t &oCosThetaGen ,
4 f l o a t ∗oDirectPdfW = NULL,
5 f l o a t ∗oReversePdfW = NULL,
6 f l o a t ∗oSinTheta = NULL)
7 { . . . }
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Pdf. When aPdfDir == kReverse, this method returns a pdf w.r.t. the solid
angle measure with which would be the given outgoing direction (aWorldDirGen)
generated from the stored fixed incoming direction. When aPdfDir == kReverse,
it provides a pdf for the reverse direction. If the intersection is on a surface,
the returned pdf is a sum of pdfs of sampling the direction from the two non-
specular components (diffuse and Phong, others have zero probability) weighted
by component probabilities.

Listing 3.10: Pdf (method, Bsdf.hxx)
1 f l o a t Pdf (
2 const Dir &aWorldDirGen ,
3 const PdfDir aPdfDir = kForward )
4 { . . . }

Sample. Samples an outgoing direction for the stored fixed incoming direction.
Returns the scattering function factor, the generated direction (oWorldDirGen),
a pdf of sampling w.r.t. the solid angle measure (oPdfW), the cosine between the
frame z-axis and the generated direction (oCosThetaGen) and a flag indicating
the sampled event (oSampledEvent). The events are the four BSDF components
plus scattering in a medium. If the intersection is in a medium, sine between
the frame z-axis and the generated direction is also returned (oSinTheta). If the
intersection is on a surface, firstly a component is randomly picked according to
the component probabilities, then the component is sampled. If a non-specular
component is chosen (diffuse, Phong), the other non-specular component is also
evaluated (the factor and pdf are then sums again). Special cases:

• oCosThetaGen is always 1 if the intersection is in a medium.

• oSinTheta is always 0 if the intersection is on a surface.

• all returned values are always 0 if the intersection is in a medium without
scattering.

Listing 3.11: Sample (method, Bsdf.hxx)
1 Rgb Sample (
2 const Dir &aRndTriplet ,
3 Dir &oWorldDirGen ,
4 f l o a t &oPdfW ,
5 f l o a t &oCosThetaGen ,
6 uint ∗oSampledEvent = NULL,
7 f l o a t ∗oSinTheta = NULL)
8 { . . . }

Note that besides different interface there is one important distinction between
using the Evaluate and Sample methods of the Bsdf class and using static
methods of the same name from the PhaseFunction class. While the former
return a complete value of the scattering function (1.5), the latter returns only
value of the phase function, i.e. it has to be multiplied by the scattering coefficient
to produce the same result.

The part of the code of the three methods above that handles the case of
a surface intersection is taken almost without modifications from the original
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SmallVCM implementation. Therefore, we won’t describe it closer. However, the
case that handles medium scattering is completely new and so, for the sake of
completeness, we would like to present here the formulas the methods implement.
Let cos θo denote the cosine between z-axis of the local coordinate frame and
the outgoing direction ωo. The frame z-axis is the ray direction, i.e. −ωi, a
direction opposite to the stored fixed incoming direction ωi. Then the phase
function factor ρp as well as the pdf of sampling the outgoing direction given the
incoming direction p̂(ωo) (w.r.t. the solid angle measure) and the pdf of sampling
the incoming direction given the outgoing direction p̂(ωi) (w.r.t. the solid angle
measure) equal

ρp(ωi, ωo) = p̂(ωi) = p̂(ωo) =
1

4π

1− g2

(1 + g2 − 2g cos θo)
3
2

,

where g is the mean cosine. In the Evaluate and Pdf methods both directions ωi
and ωo are known so cos θo can be easily computed. In the Sample method, only
ωi is known. Firstly, cos θo is generated:

cos θo =

 1
2g

(
1 + g2 −

(
1−g2

1−g+2gr1

)2
)

if g 6= 0,

1− 2r1 if g = 0,

then the coordinates of ωo in the local coordinate frame are computed as

x = cos(2πr2) sin θo,

y = sin(2πr2) sin θo,

z = cos θo,

where r1, r2 ∈ [0, 1) are randomly generated numbers and sin θo =
√

1− cos2 θo.

3.2.5 Multiple media along a ray

The theory derived in Chapters 1 and 2 assumed that path segments always
completely lie in a single medium. However, such assumption does not always
hold as there can be more than one volume segment a traced ray got through
before interacting with a surface or a medium. For this reason we have to amend
the previous definitions. Assume two vertices xi and xi+1 on a subpath and n
volume segments s1, . . . , sn along a ray between them. Let dj denote a length of
sj, d

′
j a length that was sampled when the ray entered sj, ti a distance between

xi and xi+1, and li length of a beam shot from vertex xi. Then we redefine:

p(ti) =


∏n

k=1 Pr{d′k>dk} =
∏n

k=1 T
′
r,m(dk) if xi+1 is on a surface,(∏n−1

k=1 Pr{d′k>dk}
)
p̄(dn) =

if xi+1 is in a medium(∏n−1
k=1 T

′
r,m(dk)

)
σt,mT

′
r,m(dn)

Pr{li>ti} =
n∏
k=1

Pr{d′k>dk} =
n∏
k=1

T ′r,m(dk) ≡ Tr,m(ti)

Tr(xi,xi+1) = Tr(ti) =
n∏
k=1

T ′r(dk).
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Expressed by words, attenuation along the path segment is simply a product of
attenuation by all volume segments along it. Similarly, probability of getting over
the path segment is a product of probabilities of overcoming the volume segments.
If xi+1 is on a surface, also the pdf has the same value. Otherwise, the last volume
segment contributes with a pdf of sampling inside it instead of probability of
getting through.

3.2.6 Summary

We explained how we cope with media from their representation over tracking
in a scene to evaluation of their phase function. The environment is therefore
described and we can move to the rendering itself.

3.3 Renderers

The UPBP algorithm is implemented as a so called “renderer”. A renderer
is a class derived from the AbstractRenderer class (located in Renderer.hxx)
which prescribes implementing the RunIteration method - a key method where
all the rendering takes place.

We followed the convention of SmallVCM and kept renders for different esti-
mators and their combinations separate. It made the development and debugging
simpler and may also help understanding the code.

There are seven renderers (each written in its own file of the same name).
Three of them come from the original SmallVCM implementation and have no
support for media. They are EyeLight (simple shading based on a visualization of
the dot product of a surface normal and an incoming ray direction), PathTracer
(traditional path tracing with next event estimation [21]) and VertexCM (VCM [4]).
During the development we gradually added four new renderers capable of handling
light transport in media. They are VolPathTracer (a volumetric version of
PathTracer), VolLightTracer (volumetric light tracing, BRE [9] and photon
beams [11]), VolBidirPT (volumetric BPT) and finally UPBP.

Obviously, we will further focus mainly on the UPBP renderer. It can handle
absorption and scattering in any homogeneous1 participating media. It is the
most complete and consequently also the most complex renderer. Therefore we
describe here only its very core and leave out many less important features of the
actual implementation (mostly auxiliary and debugging).

In this section we describe mainly skeleton of the algorithm with evaluation of
the BPT estimator. Evaluation of photon density estimators and computation of
MIS weights are presented later in separate sections.

3.3.1 UPBP initialization

We begin with a few notes about the initialization of the UPBP renderer. As
expected, most of it takes place in a constructor of the renderer and takes the
configuration (the Config instance) as its input.

1As we mentioned in Section 3.2.2, the UPBP algorithm is not limited to the homogeneous
case. An implementation of heterogeneous media is possible but we left it for the future work.
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For example:

• a framebuffer of the renderer (mFramebuffer) is set up for the desired
resolution

• structures for storing and evaluating contribution of photons and beams
(mPB2DEmbreeBre, mBB1DPhotonBeams) are initialized (see Section 3.4.2 and
3.4.3 for more information about them)

• initial and reduction factor values for kernel radii are set (the fields have
names in a form m<est>RadiusInitial, m<est>RadiusAlpha, where <est>

stands for Surf, PP3D, PB2D and BB1D)

• a random number generator (mRng) is initialized

• photon and query beam types (mPhotonBeamType, mQueryBeamType) are set

• a number of carried out iterations (mIterations) is set to zero

• a reference to a scene to render (mScene) is set

• a maximum path length (mMaxPathLegth) is set.

The UPBP renderer (as well as some of the others) is configurable to render
images using only a subset of all estimators it otherwise combines. For this purpose
two more variables are set in the constructor based on its input:

mAlgorithm Determines the basic algorithm. Has (exactly) one of these values:

kLT light tracing

kPTdir the simplest path tracing, no light sampling, waits for a direct hit
of a light source

kPTls path tracing with explicit light sampling only, does not accumulate
emission of directly hit light sources

kPTmis path tracing with contributions of light sampling and directly hit
light sources combined by MIS

kBPT bidirectional path tracing (BPT)

kPPM progressive (surface) photon mapping

kBPM bidirectional (surface) photon mapping

kVCM VCM (vertex connection in media, merging on surfaces only)

kCustom custom subset of estimators from UPBP

mEstimatorTechniques Specifies which estimators from UPBP are used when
mAlgorithm == kCustom. Contains any subset of these: kBPT, kSURF,
kPP3D, kPB2D and kBB1D.

When mAlgorithm != kCustom, mEstimatorTechniques are set to contain
kBPT if mAlgorithm ∈ {kBPT, kVCM}, and to contain kSURF if mAlgorithm
∈ {kPPM, kBPM, kVCM}.
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According to these two variables a group of boolean flags are set in order to
simplify switching conditions in code:

mTraceLightPaths whether or not to trace paths from lights

mTraceCameraPaths whether or not to trace paths from the camera

mConnectToCamera if paths from lights can be explicitly connected to the camera

mConnectToLightSource if paths from the camera can be explicitly connected
to lights

mConnectToLightVertices if paths from the camera can be explicitly connected
to vertices on paths from lights

mMergeWithLightVerticesSurf whether or not to apply the SURF estimator

mMergeWithLightVerticesPP3D whether or not to apply the P-P3D estimator

mMergeWithLightVerticesPB2D whether or not to apply the P-B2D estimator

mMergeWithLightVerticesBB1D whether or not to apply the B-B1D estimator

Relations among all these values are shown in Table 3.1.

3.3.1.1 Rendering modes

While the aforementioned values control what algorithms are used to find light
transport paths there is also a way to limit what light transport paths are found.
We incorporated this feature to be able to compare the UPBP algorithm with
the previous work [13, 9, 10] since the volumetric photon density estimators are
originally designed to capture only medium transport. There are two more values
mEstimatorTechniques can contain - PREVIOUS and COMPATIBLE (and if any of
them is present another flag, mConnectToCameraFromSurf, is set to false). These
values enable the so called previous and compatible rendering modes. In both
modes the renderer will simulate only a subset of light transport paths that can
be described by the regular expression L(S|D|M)∗MS∗C, where L denotes a light
source, C the camera, S a purely specular surface interaction, D a diffuse/glossy
surface interaction and M a medium interaction. That means no non-specular
surface interaction on a path from the camera before the first medium interaction.
This is the only condition put on the compatible mode. The previous mode has
one more – a path from the camera does not continue after the first medium
interaction. So in the compatible mode the type of light transport paths is
limited to that original volumetric photon density estimators can sample but the
extended possibilities how to sample those paths are kept. In the previous mode
all limitations of the original volumetric photon density estimators are simulated.
Figure 3.5 shows an example.
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mAlgorithm

kLT kPTdir kPTls kPTmis

mTraceLightPaths 1 0 0 0
mTraceCameraPaths 0 1 1 1
mConnectToCamera 1 0 0 0
mConnectToLightSource 0 0 1 1
mConnectToLightVertices 0 0 0 0
mMergeWithLightVerticesSurf 0 0 0 0
mMergeWithLightVerticesPP3D 0 0 0 0
mMergeWithLightVerticesPB2D 0 0 0 0
mMergeWithLightVerticesBB1D 0 0 0 0

mAlgorithm

kBPT kPPM kBPM kVCM

mTraceLightPaths 1 1 1 1
mTraceCameraPaths 1 1 1 1
mConnectToCamera 1 0 0 1
mConnectToLightSource 1 0 0 1
mConnectToLightVertices 1 0 0 1
mMergeWithLightVerticesSurf 0 1 1 1
mMergeWithLightVerticesPP3D 0 0 0 0
mMergeWithLightVerticesPB2D 0 0 0 0
mMergeWithLightVerticesBB1D 0 0 0 0

mAlgorithm

kCustom

mTraceLightPaths 1 if mEstimatorTechniques 6= ∅
mTraceCameraPaths 1 if mEstimatorTechniques 6= ∅
mConnectToCamera 1 if kBPT ∈ mEstimatorTechniques

mConnectToLightSource 1 if kBPT ∈ mEstimatorTechniques

mConnectToLightVertices 1 if kBPT ∈ mEstimatorTechniques

mMergeWithLightVerticesSurf 1 if kSURF ∈ mEstimatorTechniques

mMergeWithLightVerticesPP3D 1 if kPP3D ∈ mEstimatorTechniques

mMergeWithLightVerticesPB2D 1 if kPB2D ∈ mEstimatorTechniques

mMergeWithLightVerticesBB1D 1 if kBB1D ∈ mEstimatorTechniques

Table 3.1: Relations among values that control functionality of the UPBP renderer.
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Previous
Compatible

Full

Figure 3.5: An example of different light transport paths simulated in “previous”
and “compatible” rendering modes and while rendering full light transport. A
cloud represents a medium, a straight line a purely specular surface and a zigzag
line diffuse/glossy surface. Only the camera subpath (red, right) is important,
the light subpath (green, left) can be arbitrary. The bottom two paths illustrate
that “previous” mode allows only camera subpaths ending at the first interaction
with a medium possibly preceded by an arbitrary number of interactions with
purely specular surfaces. “Compatible” mode contains all paths from “previous”
mode but additionally allows camera subpaths to continue after the first medium
interaction. While only purely specular surfaces are allowed before the first
medium interaction (same as in “previous” mode), camera subpaths can continue
without restrictions after it, e.g. with interactions with another medium or a
diffuse surface as shown by the middle two paths. While rendering full light
transport no restrictions are placed at all. Besides paths from “compatible” mode
all other paths are included, the top two paths serve as examples.

3.3.2 UPBP render iteration

After initialization we can proceed to the rendering algorithm itself - the
RunIteration method. It runs in two stages in order to maximize path reuse and
consequent brute-force variance reduction of photon density estimators.

In the first stage, we trace a number of light subpaths, connect their vertices
to the camera (corresponds to light tracing), and then store the vertices (in
mLightVertices) and parts of segments located in media (as photon beams
in mPhotonBeamsArray). We build separate hashed grids over the surface and
medium vertices (mSurfHashGrid, mPP3DHashGrid), which are later used for the
SURF and P-P3D estimators. We also build an additional bounding volume
hierarchy (BVH) over the medium vertices (mPB2DEmbreeBre) for the P-B2D
estimator. Photon beams are organized in a uniform grid (mBB1DPhotonBeams).
See Sections 3.4.1, 3.4.2 and 3.4.3 for more information about these structures.

In the second stage, we trace one camera subpath per pixel and construct a
number of estimates as follows. Each vertex, surface or medium, is connected to a
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light source and to the vertices of a light subpath in order to evaluate the different
unbiased estimators from BPT. Furthermore, at each camera subpath vertex we
evaluate the SURF (on surface) or the P-P3D (in medium) estimator by looking
up the photons from the corresponding grid. For each camera subpath segment
passing through a medium, we evaluate the P-B2D and B-B1D estimators.

This way the photon density estimators evaluated in the second stage can
benefit from reuse of all light subpaths traced in the first stage and amortize effort
put in their sampling.

Since a simple average of independent iterations would not be consistent as it
would contain bias in the form of blur inherited from the photon density estimators,
progressive reduction of kernel radii is implemented. At the beginning of each
iteration radii of the photon density estimator kernels are reduced according to a
scheme

ri = r1
d
√
iα−1, (3.7)

where r1 is an initial radius (m<est>RadiusInitial, where <est> stands for Surf,
PP3D, PB2D and BB1D), i an iteration number (aIteration+1), α a reduction factor
(m<est>RadiusAlpha) and d a dimension of the kernel. This scheme is proved by
Georgiev et al. [4] to ensure consistency of the SURF estimator, consistency of
the other estimators is the subject of our future work. Note that the results in
Chapter 4 and in the UPBP paper [14] do not use any radius reduction. The only
exception are the reference images where full light transport is simulated including
evaluation of the SURF estimator. There the radius for the SURF estimator is
reduced according to Equation 3.7 with α = 0.75 (as recommended in [4]).

That was an outline of the RunIteration method, here is its more detailed
pseudocode:

Listing 3.12: RunIteration (method, UPBP.hxx)
1 v i r t u a l void RunIterat ion ( i n t a I t e r a t i o n )
2 {
3 // I n i t /////////////////////////////////////////////////////////////////
4

5 const i n t resX = i n t ( mScene . mCamera . mResolution . get ( 0 ) ) ;
6 const i n t resY = i n t ( mScene . mCamera . mResolution . get ( 1 ) ) ;
7

8 // Get path count , one path f o r each p i x e l .
9 mPathCount = resX ∗ resY ;

10

11 // Compute reduced ke rne l r a d i i .
12 f l o a t rad iusSur f , radiusPP3D , radiusPB2D , radiusBB1D ;
13 ComputeRadii ∗ ( rad iusSur f , radiusPP3D , radiusPB2D , radiusBB1D ) ;
14

15 // Compute weight and norma l i za t i on f a c t o r s f o r photon dens i ty e s t imato r s .
16 . . . ComputeFactors . . .
17

18 // mPathEnds i s an array o f i n d i c e s to mLightVert ices . For each l i g h t
19 // subpath s t o r e s where i t ends . Here i t i s c l ea red , nothing ends anywhere .
20 mPathEnds . r e s i z e (mPathCount ) ;
21 memset(&mPathEnds [ 0 ] , 0 , mPathEnds . s i z e ( ) ∗ s i z e o f ( i n t ) ) ;
22

23 // Remove a l l l i g h t v e r t i c e s and r e s e r v e space f o r some .
24 mLightVert ices . c l e a r ( ) ;
25 mLightVert ices . r e s e r v e ( LightVertsUpperBound ∗ ( ) ) ;
26

27 // Remove a l l photon beams and r e s e r v e space f o r some .
28 mPhotonBeamsArray . c l e a r ( ) ;
29 mPhotonBeamsArray . r e s e r v e ( BeamsUpperBound∗ ( ) ) ;
30

31 . . RunIterationPart2 . .
32 }
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Listing 3.13: RunIterationPart2 (part of the RunIteration method, UPBP.hxx)
1 // ////////////////////////////////////////////////////////////////////////
2 // Stage 1 : Generate l i g h t paths
3 // ////////////////////////////////////////////////////////////////////////
4

5 // I f pure path t r a c i n g i s used , the re are no l i g h t s or only one path
6 // segment i s al lowed , l i g h t t r a c i n g step i s sk ipped .
7 i f ( mTraceLightPaths && mScene . GetLightCount ( ) > 0 && mMaxPathLength > 1)
8 {
9 . . . TraceLightPaths . . .

10 }
11

12 // ////////////////////////////////////////////////////////////////////////
13 // Build a c c e r e l a t i o n s t r u c t u r e s
14 // ////////////////////////////////////////////////////////////////////////
15

16 i f ( ! mLightVert ices . empty ( ) )
17 {
18 // For SURF.
19 i f ( mMergeWithLightVerticesSurf )
20 {
21 mSurfHashGrid . Reserve (mPathCount ) ;
22 mSurfHashGrid . Build ( mLightVert ices , rad iusSur f , SURF) ;
23 }
24

25 // For PP3D.
26 i f ( mMergeWithLightVerticesPP3D )
27 {
28 mPP3DHashGrid . Reserve (mPathCount ) ;
29 mPP3DHashGrid . Build ( mLightVert ices , radiusPP3D , PP3D) ;
30 }
31

32 // For PB2D.
33 i f ( mMergeWithLightVerticesPB2D )
34 {
35 mPB2DEmbreeBre . bu i ld (&mLightVert ices [ 0 ] ,
36 ( i n t ) mLightVert ices . s i z e ( ) , radiusPB2D ) ;
37 }
38

39 // For BB1D.
40 i f ( mMergeWithLightVerticesBB1D && ! mPhotonBeamsArray . empty ( ) )
41 {
42 mBB1DPhotonBeams . bu i ld ( mPhotonBeamsArray , radiusBB1D ) ;
43 }
44 }
45

46 // ////////////////////////////////////////////////////////////////////////
47 // Stage 2 : Generate camera paths
48 // ////////////////////////////////////////////////////////////////////////
49

50 // Unless r ender ing with t r a d i t i o n a l l i g h t t r a c i n g .
51 i f ( mTraceCameraPaths )
52 {
53 . . . TraceCameraPaths . . .
54 }
55

56 // ////////////////////////////////////////////////////////////////////////
57 // Fina l s t ep s
58 // ////////////////////////////////////////////////////////////////////////
59

60 // Increment the number o f i t e r a t i o n s made .
61 mIte ra t i ons++;
62

63 // Delete s to r ed photons .
64 i f ( mMergeWithLightVerticesPB2D && ! mLightVert ices . empty ( ) )
65 mPB2DEmbreeBre . des t roy ( ) ;
66

67 // Delete s to r ed photon beams .
68 i f ( mMergeWithLightVerticesBB1D && ! mPhotonBeamsArray . empty ( ) )
69 mBB1DPhotonBeams . des t roy ( ) ;
70

71 // (The other two s t r u c t u r e s do not have to be e x p l i c i t l y dest royed . )
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3.3.2.1 Tracing light subpaths

Let’s take a closer look at tracing light subpaths. Tracing a single light subpath
begins with sampling a position on a light source and a direction from it (an origin
and direction of the first ray on the subpath). Then in a loop a ray is cast and its
intersection with a surface or a scattering point in a medium is found together
with segments on the ray passing through media. These segments are used for
storing beams and attenuating the throughput of the subpath. A new vertex is
created, stored and taken as a new ray origin. An attempt to connect it to the
camera is made and finally a new ray direction is sampled, closing the loop. The
number of traced light subpaths npaths (mPathCount) is equal to the number of
pixels. Detailed pseudocode follows:

Listing 3.14: TraceLightPaths (part of the RunIteration method, UPBP.hxx)
1 f o r ( i n t pathIdx = 0 ; pathIdx < mPathCount ; pathIdx++)
2 {
3 // Generate an o r i g i n and a d i r e c t i o n o f the f i r s t segment
4 // o f a l i g h t subpath .
5 SubPathState l i g h t S t a t e ;
6 GenerateLightSample ( pathIdx , l i g h t S t a t e ) ;
7

8 // In at tenuat ing media the ray can never t r a v e l from i n f i n i t y .
9 i f ( ! l i g h t S t a t e . mIsF in i t eL ight

10 && mScene . GetGlobalMediumPtr()−>HasAttenuation ( ) )
11 {
12 mPathEnds [ pathIdx ] = ( i n t ) mLightVert ices . s i z e ( ) ;
13 cont inue ;
14 }
15

16 // We assume that the l i g h t i s ( on ) a s u r f a c e .
17 bool originInMedium = f a l s e ;
18

19 // Trace the subpath .
20 f o r ( ; ; ++l i g h t S t a t e . mPathLength )
21 {
22 // Prepare a ray .
23 Ray ray ( l i g h t S t a t e . mOrigin , l i g h t S t a t e . mDirection ) ;
24

25 // Cast the ray .
26 I s e c t i s e c t ;
27 mVolumeSegments . c l e a r ( ) ;
28 mLiteVolumeSegments . c l e a r ( ) ;
29 bool i n t e r s e c t e d = mScene. Intersect (
30 ray , originInMedium ? AbstractMedium : : kOriginInMedium : 0 ,
31 mRng, i s e c t , l i g h t S t a t e . mBoundaryStack ,
32 mVolumeSegments , mLiteVolumeSegments ) ;
33

34 // Store beams i f r equ i r ed .
35 i f ( mMergeWithLightVerticesBB1D )
36 AddBeams(
37 ray , l i g h t S t a t e . mThroughput , &mLightVert ices . back ( ) ,
38 originInMedium ? AbstractMedium : : kOriginInMedium : 0 ,
39 l i g h t S t a t e . mLastPdfWInv ) ;
40

41 // Stop t r a c i n g i f the ray l e f t the scene .
42 i f ( ! i n t e r s e c t e d ) break ;
43

44 . . TraceLightPath . .
45 }
46

47 // Remember the end o f t h i s path .
48 mPathEnds [ pathIdx ] = ( i n t ) mLightVert ices . s i z e ( ) ;
49 }
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Listing 3.15: TraceLightPath (part of the RunIteration method, UPBP.hxx)
1 // Attenuate by i n t e r s e c t e d media ( i f any ) .
2 . . AttenuateLightSubpath . . .
3

4 // Stop t r a c i n g i f the path throughput i s no l onge r p o s i t i v e .
5 i f ( l i g h t S t a t e . mThroughput . i sBlackOrNegat ive ( ) ) break ;
6

7 // Prepare s c a t t e r i n g func t i on at the h i t p o i n t (BSDF/ phase depending
8 // on whether the h i t p o i n t i s at s u r f a c e or in media , the i s e c t knows ) .
9 BSDF bsdf (

10 ray , i s e c t , mScene , BSDF : : kFromLight ,
11 mScene . RelativeIOR ( i s e c t , l i g h t S t a t e . mBoundaryStack ) ) ;
12

13 // Terminate i f the s c a t t e r i n g func t i on i s i n v a l i d ( e . g . when h i t t i n g
14 // s u r f a c e too p a r a l l e l with tangent plane .
15 i f ( ! bsdf . I sVa l i d ( ) )
16 break ;
17

18 // Compute the h i t p o i n t .
19 const Pos h i tPo in t = ray . o r i g i n + ray . d i r e c t i o n ∗ i s e c t . mDist ;
20

21 // Current ver tex w i l l be the next o r i g i n .
22 originInMedium = i s e c t . IsInMedium ( ) ;
23

24 // Create and s t o r e a new vertex .
25 . . . StoreVertex . . .
26

27 // Connect to the camera , u n l e s s omitted in the algor ithm ,
28 // the s c a t t e r i n g func t i on i s pure ly spe cu l a r or we are not
29 // al lowed to connect from a s u r f a c e (we are in the prev ious
30 // or compatible mode ) .
31 i f (mConnectToCamera && ! bsdf . I sDe l t a ( )
32 && ( bsdf . IsInMedium ( ) | | mConnectToCameraFromSurf ) )
33 ConnectToCamera(
34 pathIdx , l i g h t S t a t e , h i tPoint , bsdf ,
35 mLightVert ices . back ( ) . mMisData . mRaySamplePdfsRatio ) ;
36

37 // Terminate i f the path would become too long a f t e r s c a t t e r i n g .
38 i f ( l i g h t S t a t e . mPathLength + 2 > mMaxPathLength)
39 break ;
40

41 // Continue random walk .
42 i f ( ! SampleScattering (
43 bsdf , h i tPoint , i s e c t , l i g h t S t a t e , mLightVert ices . back ( ) . mMisData ,
44 mLightVert ices . at ( mLightVert ices . s i z e ( ) − 2 ) . mMisData ) )
45 break ;

The current state of the light subpath is kept in the SubPathState structure:

Listing 3.16: SubPathState (struct, UPBP.hxx)
1 s t r u c t SubPathState
2 {
3 Pos mOrigin ; // Or ig in o f the next path segment .
4 Dir mDirection ; // D i r e c t i on o f the next path segment .
5 Rgb mThroughput ; // Path c o n t r i b u t i o n .
6 uint mPathLength ; // Number o f path segments , i n c l u d i n g the next one .
7 uint mIsF in i teL ight ; // Whether the path was j u s t generated
8 // by a f i n i t e l i g h t .
9 uint mSpecularPath ; // Whether a l l s c a t t e r i n g events so f a r were spe cu l a r .

10 bool mLastSpecular ; // Whether the l a s t sampled event was spe cu l a r .
11 f l o a t mLastPdfWInv ; // Inve r s e o f pdf o f the l a s t sampled d i r e c t i o n w. r . t .
12 // to the s o l i d ang le measure at the l a s t ver tex .
13

14 BoundaryStack mBoundaryStack ; // Stack o f c ro s s ed boundar ies .
15 }

Note that the mThroughput variable, despite its name, actually stores the whole
subpath contribution (Equations 1.6, 1.7), not the throughput T alone. The
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mBoundaryStack field stores the boundary stack described in Section 3.2.3 needed
to correctly track the current medium along the subpath.

Naming convention. On the occasion of the first encounter of a pdf variable
(mLastPdfWInv in Listing 3.16) we would like to say a few words about our naming
convention. Names of pdf variables are typically in the form:

[m|a|o]<name>[Dir|Rev]Pdf[A|W][Inv]

Name of the pdf <name> can be prefixed with letters m, a or o which, as described
previously, denote a class (or struct) property or an input and output method
argument, respectively. After the name an identifier of the “direction of the
pdf” can come. It is the direction in which the related sampling is performed.
No identifier or Dir mean a direction congruent with the direction of currently
sampled subpath (i.e. from a light or from the camera), Rev means the reverse
direction. Then there is the word Pdf possibly followed by letters A or W denoting
the pdf is computed w.r.t. the surface area measure (“A” as an area) or the solid
angle measure (“W” as an ASCII substitution of ω). Finally, the name can end
with Inv if the variable actually stores an inverse value of the pdf.

Initialization. Initialization of the SubPathState structure is carried out in
the GenerateLightSample method after sampling lights and creating the first
vertex of the subpath:

Listing 3.17: GenerateLightSample (method, UPBP.hxx)
1 void GenerateLightSample ( i n t aPathIdx , SubPathState &oLightState )
2 {
3 // Choose a l i g h t uni formly .
4 const i n t l ightCount = mScene . GetLightCount ( ) ;
5 const f l o a t l i ghtPickProb = 1 . f / l ightCount ;
6 const i n t l i gh t ID = i n t (mRng. GetFloat ( ) ∗ l i ghtCount ) ;
7 const AbstractLight ∗ l i g h t = mScene . GetLightPtr ( l i gh t ID ) ;
8

9 // The chosen l i g h t may need these random numbers f o r sampling
10 // a p o s i t i o n on i t and a d i r e c t i o n from i t .
11 const Vec2f rndDirSamples = mRng. GetVec2f ( ) ;
12 const Vec2f rndPosSamples = mRng. GetVec2f ( ) ;
13

14 // Sample emis s ion o f the chosen l i g h t .
15 f l o a t emissionPdfW , directPdfA , cosL ight ;
16 oLightState . mThroughput = l ight−>Emit(
17 mScene . mSceneSphere , rndDirSamples , rndPosSamples , oL ightState . mOrigin ,
18 oLightState . mDirection , emissionPdfW , &directPdfA , &cosL ight ) ;
19

20 // Complete the p r o b a b i l i t i e s .
21 emissionPdfW ∗= l ightPickProb ;
22 directPdfA ∗= l ightPickProb ;
23

24 // Create and s t o r e the f i r s t ver tex on the subpath .
25 . . . StoreFirstVertex . . .
26

27 // Complete l i g h t subpath s t a t e i n i t i a l i z a t i o n .
28 oLightState . mThroughput /= emissionPdfW ;
29 oLightState . mPathLength = 1 ;
30 oLightState . mIsF in i t eL ight = l i g h t−>I s F i n i t e ( ) ? 1 : 0 ;
31 oLightState . mLastSpecular = f a l s e ;
32 oLightState . mLastPdfWInv = directPdfA / emissionPdfW ;
33

34 // I n i t the boundary stack with the g l o b a l medium and a medium
35 // o f the l i g h t ( i f de f i ned ) .
36 InitBoundaryStackForLight ∗ ( oL ightState . mBoundaryStack ) ;
37 }
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The light->Emit method samples emission of the chosen light, i.e. its surface (if
it has any) and outgoing direction. It returns the resulting point and direction
along with the throughput (emission in the direction) and probabilities of such
sampling (emissionPdfW) and of getting the same point and direction via explicit
light sampling (direct illumination sampling) when tracing a subpath from the
camera (directPdfA). For example for an area light source emissionPdfW is
probability of sampling a point on it and a direction from it, while directPdfA is
only probability of sampling the point.

The GenerateLightSample method also creates and stores the first vertex of
the light subpath. Vertices of light subpaths are of type UPBPLightVertex:

Listing 3.18: UPBPLightVertex (struct, UPBPLightVertex.hxx)
1 s t r u c t UPBPLightVertex
2 {
3 Pos mHitpoint ; // Pos i t i on o f the ver tex .
4 Rgb mThroughput ; // Path throughput .
5 i n t mPathIdx ; // Path index .
6 uint mPathLength ; // Number o f segments between a source and the ver tex .
7 bool mInMedium ; // Whether the ver tex i s in a p a r t i c i p a t i n g medium ( not on
8 // a s u r f a c e ) .
9 bool mConnectable ; // Whether the ver tex can be used f o r e x p l i c i t ve r tex

10 // connect ion in BPT.
11 bool mIsFin i te ; // Whether the ver tex i s not on an i n f i n i t e l i g h t source .
12 BSDF mBSDF; // Sto re s a l l r equ i r ed l o c a l in format ion , i n c l u d i n g
13 // the incoming d i r e c t i o n .
14 MisData mMisData ; // Data needed f o r MIS weights computation .
15 }

Again, the mThroughput variable stores the whole light subpath contribution
Cl(x0 . . .xj) (as proved at the end of this part as Theorem 1). The mConnectable

field is necessary since we store all light vertices to correctly compute MIS weighs
but not all of them can be used in BPT for explicit vertex connection. There is no
point in connecting to vertices on ideally specular surfaces as the probability of
connection in the only acceptable direction is zero. Similar to Georgiev et al. [4] we
also do not connect to vertices on light sources in order to reduce correlation, we
rather connect to a randomly sampled new point on a light source. Furthermore,
each light vertex stores the whole BSDF object representing the scattering function
at the vertex (see Section 3.2.4). The mMisData field is described in Section 3.5.

The SubPathState structure is similar to the UPBPLightVertex structure.
However, while the former one describes a current state of a traced subpath (both
light and camera) and there is always only one at a time, the latter one describes
a light vertex and is stored with each of them.

Here is the pseudocode creating and storing the first light vertex:

Listing 3.19: StoreFirstVertex (part of the GenerateLightSamplemethod, UPBP.hxx)

1 UPBPLightVertex l i gh tVe r t ex ; // Create
2 l i gh tVe r t ex . mHitpoint = oLightState . mOrigin ;
3 l i gh tVe r t ex . mThroughput = Rgb ( 1 . 0 f ) ;
4 l i gh tVe r t ex . mPathIdx = aPathIdx ;
5 l i gh tVe r t ex . mPathLength = 0 ;
6 l i gh tVe r t ex . mInMedium = f a l s e ;
7 l i gh tVe r t ex . mConnectable = f a l s e ;
8 l i gh tVe r t ex . mIsFin i te = l i g h t−>I s F i n i t e ( ) ;
9 . . . SetFirstLightVertexMisData . . . // Set up l i gh tVe r t ex . mMisData

10 mLightVert ices . push back ( l i gh tVe r t ex ) ; // Store

Section 3.5 describes how mMisData of the first light vertex are set.

50



The last step performed in the GenerateLightSample method is initializing
the boundary stack, i.e. the stack is cleared and triplets of the global medium and
the light source are put in it (see Section 3.2.3).

Tracing. We now have the first light vertex and a direction of the first segment
and can start tracing the subpath. The first ray is shot in the scene and traced.
This is done by the mScene.Intersect method. As described in Section 3.2.3.1
the method tries to find an “intersection” of the ray with the scene (a medium
scattering point or a real intersection) and also returns volume segments along
the ray.

What are the found volume segments used for? Firstly, each segment is
converted to a beam and stored in mPhotonBeamsArray. This is implemented in
the AddBeams method. It cycles through the segments (VolumeSegment if using
short photon beams, LiteVolumeSegment otherwise), for each segment creates a
corresponding beam and adds it to mPhotonBeamsArray. Beams are described in
Section 3.4.3. Secondly, throughput of the subpath is attenuated according to the
segments:

Listing 3.20: AttenuateLightSubpath (part of the RunIteration method,
UPBP.hxx)

1 f l o a t raySamplePdf ( 1 . 0 f ) ;
2 f l o a t raySampleRevPdf ( 1 . 0 f ) ;
3 i f ( ! mVolumeSegments . empty ( ) )
4 {
5 // Pdf o f sampling through the segments .
6 raySamplePdf = VolumeSegment : : AccumulatePdf ( mVolumeSegments ) ;
7

8 // Pdf o f sampling through the segments in the r e v e r s e d i r e c t i o n .
9 // Needed f o r s e t t i n g MIS data o f a s to r ed ver tex only .

10 raySampleRevPdf = VolumeSegment : : AccumulateRevPdf ( mVolumeSegments ) ;
11

12 // Attenuation by the segments .
13 l i g h t S t a t e . mThroughput ∗=
14 VolumeSegment : : AccumulateAttenuationWithoutPdf ( mVolumeSegments )
15 / raySamplePdf ;
16 }

The static methods VolumeSegment::Accumulate. . . simply multiply appropriate
values of the individual segments together. Attenuation of the throughput of the
subpath is then computed according to Equation 1.6.

New vertex. At this point we have everything we need to create and store a
new vertex of the subpath:

Listing 3.21: StoreVertex (part of the RunIteration method, UPBP.hxx)
1 UPBPLightVertex l i gh tVe r t ex ; // Create
2 l i gh tVe r t ex . mHitpoint = h i tPo int ;
3 l i gh tVe r t ex . mThroughput = l i g h t S t a t e . mThroughput ;
4 l i gh tVe r t ex . mPathIdx = pathIdx ;
5 l i gh tVe r t ex . mPathLength = l i g h t S t a t e . mPathLength ;
6 l i gh tVe r t ex . mInMedium = originInMedium ;
7 l i gh tVe r t ex . mConnectable = ! bsdf . I sDe l t a ( ) ;
8 l i gh tVe r t ex . mIsFin i te = true ;
9 l i gh tVe r t ex .mBSDF = bsdf ;

10 . . . SetLightVertexMisData . . . // Set up l i gh tVe r t ex . mMisData
11 mLightVert ices . push back ( l i gh tVe r t ex ) ; // Store

Section 3.5 describes how mMisData of the new light vertex are set.
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Connection to the camera. Before we continue tracing the subpath we try
to explicitly connect the subpath at the new vertex to the camera. It comprises
evaluation of the scattering function at the vertex for the incoming direction and
the direction to the camera, casting a ray to make sure the connection is not
occluded by geometry, attenuating by media the ray intersects and proper MIS
weighting. It is implemented in the ConnectToCamera method:

Listing 3.22: ConnectToCamera (method, UPBP.hxx)
1 void ConnectToCamera (
2 const i n t aLightPathIdx ,
3 const SubPathState &aLightState ,
4 const Pos &aHitpoint ,
5 const BSDF &aLightBSDF ,
6 const f l o a t aRaySampleRevPdfsRatio )
7 {
8 // Get the camera and a d i r e c t i o n to i t .
9 const Camera &camera = mScene . mCamera ;

10 Dir directionToCamera = camera . mOrigin − aHitpo int ;
11

12 // Check whether the ver tex i s in f r o n t o f camera .
13 i f ( dot ( camera . mDirection , −directionToCamera ) <= 0 . f ) r e turn ;
14

15 // Check whether i t p r o j e c t s to the s c r e en ( and where ) .
16 const Vec2f imagePos = camera . WorldToRaster ( aHitpo int ) ;
17 i f ( ! camera . CheckRaster ( imagePos ) ) re turn ;
18

19 // Compute d i s t ance and normal ize the d i r e c t i o n to the camera .
20 const f l o a t distEye2 = directionToCamera . square ( ) ;
21 const f l o a t d i s t anc e = std : : s q r t ( d istEye2 ) ;
22 directionToCamera /= d i s t ance ;
23

24 // Evaluate the s c a t t e r i n g func t i on at the ver tex .
25 f l o a t cosToCamera , bsdfDirPdfW , bsdfRevPdfW , sinTheta ;
26 Rgb bsdfFactor = aLightBSDF.Evaluate (
27 directionToCamera , cosToCamera , &bsdfDirPdfW , &bsdfRevPdfW , &sinTheta ) ;
28

29 i f ( bsd fFactor . i sBlackOrNegat ive ( ) ) re turn ;
30

31 // There i s a Russian r o u l e t t e d e c i s i o n at each ver tex whether the subpath
32 // w i l l cont inue . I t s pdf has to be inc luded . bsdfDirPdfW i s not updated
33 // s i n c e i t i s not used .
34 bsdfRevPdfW ∗= aLightBSDF . ContinuationProb ( ) ;
35

36 // Compute a pdf conver s i on f a c t o r from image plane area to s u r f a c e area
37 const f l o a t cosAtCamera = dot ( camera . mDirection , −directionToCamera ) ;
38 const f l o a t imagePointToCameraDist = camera . mImagePlaneDist / cosAtCamera ;
39 const f l o a t imageToSolidAngleFactor = U t i l s : : sqr ( imagePointToCameraDist )
40 / cosAtCamera ;
41 const f l o a t imageToSurfaceFactor = imageToSolidAngleFactor
42 ∗ std : : abs ( cosToCamera ) / U t i l s : : sqr ( d i s t anc e ) ;
43

44 // We put the v i r t u a l image plane at such a d i s t ance from the camera o r i g i n
45 // that the p i x e l area i s one and thus the image plane sampling pdf i s 1 . The
46 // area pdf o f aHitpo int as sampled from the camera i s then equal to the
47 // conver s i on f a c t o r from image plane area dens i ty to s u r f a c e area dens i ty .
48 const f l o a t cameraPdfA = imageToSurfaceFactor ;
49 const f l o a t surfaceToImageFactor = 1 . f / imageToSurfaceFactor ;
50

51 // Test whether the connect ion i s not occ luded by geometry and f i n d volume
52 // segments along i t .
53 mVolumeSegments . c l e a r ( ) ;
54 i f ( !mScene.Occluded (
55 aHitpoint , directionToCamera , d i s tance , aL ightState . mBoundaryStack ,
56 aLightBSDF . IsInMedium ( ) ? AbstractMedium : : kOriginInMedium : 0 ,
57 mVolumeSegments ) )
58 {
59 . .ConnectToCamContrib . .
60 }
61 }
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After a direction to the camera is computed, the scattering function is evaluated
in the aLightBSDF.Evaluate method (see Section 3.2.4). Note that the returned
pdfs of sampling the scattering function in the direct (i.e. from the light) and
reverse direction (bsdfDirPdfW and bsdfRevPdfW, respectively) are needed only
for MIS weights computation (we are making an explicit connection, there is no
sampling). The former one is actually not needed at all since there is no chance
of hitting our ideal pinhole camera by accident.

Before the resulting contribution is computed the mScene.Occluded method
casts a ray from the vertex to the camera in order to test that there are no
obstacles, i.e. the ray does not intersect any geometry before reaching the camera.
The method is more closely described in Section 3.2.3.1. If the connection is not
occluded, the contribution is computed:

Listing 3.23: ConnectToCamContrib (part of the ConnectToCamera method,
UPBP.hxx)

1 // Get at tenuat ion from i n t e r s e c t e d media ( i f any ) .
2 f l o a t raySampleRevPdf ( 1 . 0 f ) ;
3 Rgb at tenuat ion ( 1 . 0 f ) ;
4 i f ( ! mVolumeSegments . empty ( ) )
5 {
6 // Pdf o f sampling through the segments in the r e v e r s e d i r e c t i o n .
7 // Needed f o r MIS weight ing only , the d i r e c t one i s not needed
8 // at a l l (we cannot h i t the camera ) .
9 raySampleRevPdf = VolumeSegment : : AccumulateRevPdf ( mVolumeSegments ) ;

10

11 // Attenuation by the segments ( without pdf s i n c e we made
12 // an e x p l i c i t connect ion and did not sample media ) .
13 at tenuat ion =
14 VolumeSegment : : AccumulateAttenuationWithoutPdf ( mVolumeSegments ) ;
15

16 i f ( ! a t t enuat ion . i s P o s i t i v e ( ) )
17 r e turn ;
18 }
19

20 // Compute MIS weight ( i f not doing s imple l i g h t t r a c i n g ) .
21 f l o a t misWeight = 1 . f ;
22 i f ( mAlgorithm != kLT)
23 {
24 . . . ConnectToCameraMis . . .
25 }
26

27 // We d iv id e the c on t r i b u t i o n by surfaceToImageFactor to convert
28 // the ( a l r eady d iv ided ) pdf from s u r f a c e area to image plane area ,
29 // w. r . t . which the p i x e l i n t e g r a l i s a c t u a l l y de f ined . We a l s o
30 // d iv id e by the number o f samples t h i s techn ique makes , which i s
31 // equal to the number o f l i g h t sub−paths .
32 Rgb cont r ib = aLightState . mThroughput ∗ bsdfFactor ∗ at tenuat ion
33 / (mPathCount ∗ surfaceToImageFactor ) ;
34

35 // Weight the c o n t r i b u t i on .
36 con t r ib ∗= misWeight ;
37

38 // Update the f ramebu f f e r .
39 mFramebuffer . AddColor ( imagePos , con t r i b ) ;

First, the attenuation caused by the volume segments found along the ray is accu-
mulated. Then the MIS weight is computed (as described in detail in Section 3.5).
Finally, the unweighted contribution is computed according to Equation 2.23
(with c = xk).

53



We have

aLightState.mThroughput = Cl(x0 . . .xk−1),

bsdfFactor = ρ(xk−1),

attenuation = Tr(xk−1,xk),

misWeight = ŵBPTxk−1,xk
,

p(xk) = 1,

and use

We(xk) = p(ωxk)

p̂(ωxk) =
imageToSolidAngleFactor

mPathCount
.

Then

surfaceToImageFactor−1

mPathCount
=

imageToSurfaceFactor

mPathCount

=
imageToSolidAngleFactor

mPathCount

D(xk−1 → xk)

‖xk − xk−1‖2

= p̂(ωxk)
D(xk−1 → xk)

‖xk − xk−1‖2

= We(xk)G(xk−1,xk),

and the final contribution of the connection is:

contrib=misWeight ∗ aLightState.mThroughput*bsdfFactor*attenuation
mPathCount*surfaceToImageFactor

=ŵBPTxk−1,xk
Cl(x0 . . .xk−1)

Tr(xk−1,xk)G(xk−1,xk)ρ(xk−1)

p(xk)
We(xk)

=ŵBPTxk−1,xk
Le(x0)

T (x0 . . .xk)

p(x0 . . .xk−1)p(xk)
We(xk).

Sampling scattering. Everything for the light subpath of the current length
is done, now we can try adding another segment. We make a Russian roulette
decision whether to continue sampling the subpath or not, sample the scattering
function for a direction of the new segment and update the state of the subpath.
The SampleScattering method is responsible for this.
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Listing 3.24: SampleScattering (method, UPBP.hxx)
1 bool SampleScatter ing (
2 const BSDF &aBSDF,
3 const Pos &aHitPoint ,
4 const I s e c t &aI s e c t ,
5 SubPathState &aoState ,
6 MisData &aoCurrentMisData ,
7 MisData &aoPreviousMisData )
8 {
9 // Make a Russian r o u l e t t e d e c i s i o n .

10 const f l o a t contProb = aBSDF.ContinuationProb ( ) ;
11 i f ( contProb == 0 | | ( contProb < 1 .0 f && mRng. GetFloat ( ) > contProb ) )
12 r e turn f a l s e ;
13

14 // Sample the s c a t t e r i n g func t i on . I f the ver tex i s l o ca t ed
15 // in a medium , the returned cosThetaOut i s 1 .
16 Dir rndTr ip l e t = mRng. GetVec3f ( ) ;
17 f l o a t bsdfDirPdfW , cosThetaOut , s inTheta ;
18 uint sampledEvent ;
19 Rgb bsdfFactor = aBSDF.Sample( rndTr ip le t , aoState . mDirection ,
20 bsdfDirPdfW , cosThetaOut , &sampledEvent , &sinTheta ) ;
21

22 i f ( bsd fFactor . i sBlackOrNegat ive ( ) )
23 r e turn f a l s e ;
24

25 bool spe cu l a r = ( sampledEvent & BSDF : : kSpecular ) != 0 ;
26

27 // I f we sampled a specu l a r event , then the r e v e r s e p r o b a b i l i t y
28 // cannot be evaluated , but we know i t i s exac t l y the same as
29 // the forward p robab i l i t y , so j u s t s e t i t . I f non−spe cu l a r event
30 // happened , we eva luate the pdf . We need f o r MIS weight ing .
31 f l o a t bsdfRevPdfW = bsdfDirPdfW ;
32 i f ( ! s p e cu l a r )
33 bsdfRevPdfW = aBSDF. Pdf ( aoState . mDirection , BSDF : : kReverse ) ;
34

35 // Do not f o r g e t the Russian r o u l e t t e p r o b a b i l i t y .
36 bsdfDirPdfW ∗= contProb ;
37 bsdfRevPdfW ∗= contProb ;
38

39 const f l o a t bsdfDirPdfWInv = 1 .0 f / bsdfDirPdfW ;
40

41 // Update subpath s t a t e . aoState . mDirection s e t in aBSDF. Sample .
42 aoState . mOrigin = aHitPoint ;
43 aoState . mThroughput ∗= bsdfFactor ∗ cosThetaOut ∗ bsdfDirPdfWInv ;
44 aoState . mSpecularPath &= specu l a r ? 1 : 0 ;
45 aoState . mLastPdfWInv = bsdfDirPdfWInv ;
46 aoState . mLastSpecular = specu l a r ;
47

48 // Switch medium on r e f r a c t i o n .
49 i f ( ( sampledEvent & BSDF : : kRefract ) != 0)
50 mScene . UpdateBoundaryStackOnRefract ( a I s e c t , aoState . mBoundaryStack ) ;
51

52 // Update a f f e c t e d MIS data .
53 . . . SampleScatteringMis . . .
54

55 r e turn true ;
56 }

The Russian roulette decision is made with probability dependent on materi-
al or medium properties. How this probability is computed before returning
by the aBSDF.ContinuationProb method is described in Section 3.2.4. The
same Section also offers details about the aBSDF.Sample method which imple-
ments sampling of the scattering function. It mainly returns a sampled direction
(aoState.mDirection), a scattering function factor for it (bsdfFactor) and also
a pdf of the sampling (in a direct direction, i.e. from the light – bsdfDirPdfW).
When we have the new direction, the state of the subpath is updated as well as
some of the MIS data (see Section 3.5).
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Closing the loop. At this point the inner loop of tracing light subpaths starts
a new run, a new ray is shot from the last vertex in the new direction and tracing
continues. It stops when the subpath throughput drops to zero, the Russian
roulette decision fails or the subpath reaches its maximum length. Then a new
light subpath is traced. This way npaths (mPathCount) light subpaths are traced.

To conclude our description of tracing light subpaths we would like to prove
one important statement:

Theorem 1. Assume any light subpath traced by the described algorithm and its
i-th stored vertex (counting from zero). Then its mThroughput field satisfies:

mThroughput =

{
Rgb(1.0f) if i = 0,

Cl(x0 . . .xi) if i > 0,
(3.8)

where Cl(x0 . . .xi) is the subpath contribution (1.6).

Proof. Let i = 0. The first vertex of a subpath is created and stored in the
GenerateLightSample method and its mThroughput is not modified anywhere
else. Since the mThroughput field is assigned Rgb(1.0f) there (Listing 3.19, line 3)
the theorem holds for i = 0.

Let i > 0. The subsequent vertices are created and stored in the inner
loop of tracing light subpaths and their mThroughput field is assigned the value
of lightState.mThroughput there (Listing 3.21, line 3). These values are not
modified anywhere else.

i = 1 From the beginning of tracing of a new light subpath till reaching storing
of the second vertex (x1) the lightState.mThroughput value is modified
twice. Firstly in the GenerateLightSample method (Listing 3.17, lines 16
and 28) where it is initialized to

mThroughput = Le(x0)
D(x0 → x1)

p(x0)p̂(ωx0)
.

Le(x0)D(x0 → x1) is emission of the sampled light source returned by
the light->Emit method, p(x0) is the probability density of sampling x0

(picking a light source and potentially sampling its surface) and p̂(ωx0) is
the probability density of sampling the direction from the light w.r.t. the
(non-projected) solid angle measure. Note p(x0)p̂(ωx0) = emissionPdfW.

The second modification takes place after shooting the first ray when the
throughput is attenuated by the intersected volume segments (Listing 3.20,
line 13). The lightState.mThroughput value becomes

mThroughput = Le(x0)
D(x0 → x1)

p(x0)p̂(ωx0)

Tr(tx0)

p(tx0)
.

Tr(tx0) is the accumulated attenuation, p(tx0) is raySamplePdf, i.e. pdf of
sampling the distance tx0 through the segments w.r.t. the Euclidean length
on R1. Since we know the vertex x1 was created and using definitions of the
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throughput (1.2) and geometry term (1.3) we get

mThroughput = Le(x0)
D(x0 → x1)

p(x0)p̂(ωx0)

Tr(tx0)

p(tx0)

= Le(x0)
D(x0 → x1)

p(x0)p̂(ωx0)

Tr(tx0)

p(tx0)

D(x1 → x0)‖x1 − x0‖2

D(x1 → x0)‖x1 − x0‖2

= Le(x0)
Tr(tx0)

D(x0→x1)D(x1→x0)
‖x1−x0‖2

p(x0)
(
p̂(ωx0)p(tx0)

D(x1→x0)
‖x1−x0‖2

)
= Le(x0)

Tr(tx0)G(x0,x1)

p(x0)p(x1 |x0)

= Le(x0)
T (x0 . . .x1)

p(x0 . . .x1)
= Cl(x0 . . .x1).

We also used

p̂(ωx0)p(tx0)
D(x1 → x0)

‖x1 − x0‖2
= p(x1 |x0).

It is a conversion from the solid angle × length product measure to the
volume measure. p̂(ωx0) is w.r.t. the solid angle measure, not projected solid
angle measure, so it is not converted by the whole geometric factor.

The theorem holds for i = 1.

i > 1 Assume the theorem holds for j − 1, j > 1, i.e. mThroughput of the vertex
xj−1 equals Cl(x0 . . .xj−1). Between storing vertices xj−1 and xj the value
of lightState.mThroughput is again modified twice. First while sampling
scattering at xj−1 (Listing 3.24, line 43):

mThroughput = Cl(x0 . . .xj−1)
ρ(xj−1)D(xj−1 → xj)

pRR(xj−1)p̂(ωxj−1
)
.

ρ(xj−1) is bsdfFactor returned by the aBSDF.Sample method, D(xj−1 →
xj) = cosThetaOut, pRR(xj−1) is the probability of the Russian roulette deci-
sion and p̂(ωxj−1

) the probability density of sampling the scattering function
w.r.t. to the (non-projected) solid angle measure. Note pRR(xj−1)p̂(ωxj−1

) =
bsdfDirPdfW.

The second modification is the already described attenuation by intersected
volume segments. Repeating the same steps we get

mThroughput = Cl(x0 . . .xj−1)
ρ(xj−1)D(xj−1 → xj)

pRR(xj−1)p̂(ωxj−1
)

Tr(txj−1
)

p(txj−1
)

= Le(x0)
T (x0 . . .xj−1)

p(x0 . . .xj−1)

ρ(xj−1)G(xj−1,xj)Tr(txj−1
)

pRR(xj−1)p(xj |xj−1)

= Le(x0)
T (x0 . . .xj)

p(x0 . . .xj)
= Cl(x0 . . .xj).

The theorem holds for j and therefore, by mathematical induction, it holds
for all i > 1.
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3.3.2.2 Tracing camera subpaths

Similar to the way we described tracing light subpaths we now show how tracing
subpaths from the camera works. One camera subpath is traced for each pixel of
the resulting image. Its tracing begins with sampling a point within the area of the
corresponding pixel in the image plane. The camera origin and a direction from it
to the sampled point determines the origin and direction of the first ray on the
subpath. Then in a loop a ray is cast and we look for its “intersection” with the
scene (an intersection with a surface or a scattering point in a medium) together
with volume segments along the ray. The segments are used for evaluation of
the P-B2D and B-B1D estimators and attenuation of the subpath throughput.
Then, if the ray leaves the scene without any intersection, contribution of a
background light is added and the subpath is terminated. Otherwise, we get a
new camera vertex. In contrast to tracing light subpaths no vertices are stored,
only data needed for MIS weight computation are kept for vertices of the currently
traced camera subpath. If the new vertex is on a light source, its contribution is
added and the subpath terminated (our renderer makes a somewhat unrealistic
assumption that light sources do not reflect any light). Otherwise an attempt to
connect the vertex to a randomly sampled light source and to the stored light
vertices is made. Finally, the SURF and P-P3D estimators are evaluated, a new
ray direction is sampled and the tracing continues. Detailed pseudocode follows:

Listing 3.25: TraceCameraPaths (part of the RunIteration method, UPBP.hxx)
1 f o r ( i n t pathIdx = 0 ; pathIdx < mPathCount ; ++pathIdx )
2 {
3 // Generate an o r i g i n and a d i r e c t i o n o f the f i r s t segment
4 // o f a camera subpath .
5 SubPathState cameraState ;
6 const Vec2f screenSample =
7 GenerateCameraSample( pathIdx , cameraState ) ;
8

9 // For accumulating the r e s u l t .
10 Rgb c o l o r ( 0 ) ;
11

12 // We assume that the camera i s ( on ) a s u r f a c e .
13 bool originInMedium = f a l s e ;
14

15 // Whether only pure ly spe cu l a r s u r f a c e s are a l lowed on the subpath
16 // or g l o s s y and d i f f u s e too . Fa l se f o r the ‘ ‘ p rev ious ’ ’ and ‘ ‘ compatible ’ ’
17 // mode , f o r the ‘ ‘ compatible ’ ’ mode i t i s l a t e r r e s e t to t rue a f t e r
18 // the f i r s t s c a t t e r i n g in a medium .
19 bool on lySpecSur f =
20 ( mEstimatorTechniques & (PREVIOUS | COMPATIBLE) ) != 0 ;
21

22 // Trace the subpath .
23 f o r ( ; ; ++cameraState . mPathLength )
24 {
25 // Prepare a ray .
26 Ray ray ( cameraState . mOrigin , cameraState . mDirection ) ;
27

28 . . TraceCameraPathPart1 . .
29 . . TraceCameraPathPart2 . .
30 . . TraceCameraPathPart3 . .
31 . . TraceCameraPathPart4 . .
32 }
33

34 // Store the r e s u l t in the f ramebu f f e r .
35 mFramebuffer . AddColor ( screenSample , c o l o r ) ;
36 }
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Listing 3.26: TraceCameraPathPart1 (part of the RunIteration method,
UPBP.hxx)

1 // Trace the ray .
2 I s e c t i s e c t (1 e36 f ) ;
3 mVolumeSegments . c l e a r ( ) ;
4 mLiteVolumeSegments . c l e a r ( ) ;
5 i f ( !mScene. Intersect (
6 ray , originInMedium ? AbstractMedium : : kOriginInMedium : 0 ,
7 mRng, i s e c t , cameraState . mBoundaryStack ,
8 mVolumeSegments , mLiteVolumeSegments ) )
9 {

10 // No s c a t t e r i n g event occurred , the ray l e f t the scene .
11

12 // Evaluate PB2D ( u n l e s s omitted in the a lgor i thm ) .
13 i f ( mMergeWithLightVerticesPB2D && ! mLightVert ices . empty ( ) )
14 {
15 . . . EvaluatePB2DIfLeft . . .
16 }
17

18 // Evaluate BB1D ( u n l e s s omitted in the a lgor i thm ) .
19 i f ( mMergeWithLightVerticesBB1D && ! mPhotonBeamsArray . empty ( ) )
20 {
21 . . . EvaluateBB1DIfLeft . . .
22 }
23

24 // Get the background l i g h t ( i f the re i s any ) .
25 const BackgroundLight∗ background = mScene . GetBackground ( ) ;
26 i f ( ! background )
27 break ;
28

29 // Stop i f the re i s a g l o b a l a t t enuat ing medium s i n c e c o n t r i b u t i o n
30 // o f the background l i g h t coming from i n f i n i t y i s always attenuated
31 // to zero .
32 i f ( mScene . GetGlobalMediumPtr()−>HasAttenuation ( ) )
33 break ;
34

35 // Stop i f we are doing path t r a c i n g with e x p l i c i t l i g h t sampling
36 // and could have sampled t h i s l i g h t l a s t time in the next event
37 // e s t imat ion ( i f t h i s i s not the f i r s t segment and the l a s t sampled
38 // ver tex i s not on a pure ly spe cu l a r s u r f a c e where no l i g h t sampling
39 // i s performed ) .
40 i f ( mAlgorithm == kPTls && cameraState . mPathLength > 1
41 && ! cameraState . mLastSpecular )
42 break ;
43

44 // Attenuate by i n t e r s e c t e d media ( i f any ) .
45 . . . AttenuateCameraSubpath . . .
46

47 // Stop t r a c i n g i f the path throughput i s no l onge r p o s i t i v e .
48 i f ( cameraState . mThroughput . i sBlackOrNegat ive ( ) )
49 break ;
50

51 // Update a f f e c t e d MIS data .
52 . . . SetCameraVertexMisDataIfLeft . . .
53

54 // Accumulate c o n t r i b u t i o n o f the background l i g h t .
55 c o l o r += cameraState . mThroughput ∗
56 GetLightRadiance ( mScene . GetBackground ( ) , cameraState , Pos ( 0 ) ) ;
57

58 // Stop t r a c i n g t h i s subpath .
59 break ;
60 }
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Listing 3.27: TraceCameraPathPart2 (part of the RunIteration method,
UPBP.hxx)

1 // A s c a t t e r i n g event occurred .
2

3 // Evaluate PB2D ( u n l e s s omitted in the a lgor i thm ) .
4 i f ( mMergeWithLightVerticesPB2D && ! mLightVert ices . empty ( ) )
5 {
6 . . . EvaluatePB2D . . .
7 }
8

9 // Evaluate BB1D ( u n l e s s omitted in the a lgor i thm ) .
10 i f ( mMergeWithLightVerticesBB1D && ! mPhotonBeamsArray . empty ( ) )
11 {
12 . . . EvaluateBB1D . . .
13 }
14

15 // Attenuate by i n t e r s e c t e d media ( i f any ) .
16 . . . AttenuateCameraSubpath . . .
17

18 // Stop t r a c i n g i f the path throughput i s no l onge r p o s i t i v e .
19 i f ( cameraState . mThroughput . i sBlackOrNegat ive ( ) )
20 break ;
21

22 // Prepare s c a t t e r i n g func t i on at the h i t p o i n t (BSDF/ phase depending
23 // on whether the h i t p o i n t i s at s u r f a c e or in media , the i s e c t knows ) .
24 BSDF bsdf (
25 ray , i s e c t , mScene , BSDF : : kFromCamera ,
26 mScene . RelativeIOR ( i s e c t , cameraState . mBoundaryStack ) ) ;
27

28 // Terminate i f the s c a t t e r i n g func t i on i s i n v a l i d ( e . g . when h i t t i n g
29 // s u r f a c e too p a r a l l e l with tangent plane .
30 i f ( ! bsd f . I sVa l i d ( ) )
31 break ;
32

33 // Compute the h i t p o i n t
34 Pos h i tPo in t = ray . o r i g i n + ray . d i r e c t i o n ∗ i s e c t . mDist ;
35

36 // Current ver tex w i l l be the next o r i g i n .
37 originInMedium = i s e c t . IsInMedium ( ) ;
38

39 // Update a f f e c t e d MIS data .
40 . . . SetCameraVertexMisData . . .
41

42 // A l i g h t source has been h i t .
43 i f ( i s e c t . mLightID >= 0)
44 {
45 // Stop i f we are doing path t r a c i n g with e x p l i c i t l i g h t sampling
46 // and could have sampled t h i s l i g h t l a s t time in the next event
47 // e s t imat ion ( i f t h i s i s not the f i r s t segment and the l a s t sampled
48 // ver tex i s not on a pure ly spe cu l a r s u r f a c e where no l i g h t sampling
49 // i s performed ) .
50 i f ( mAlgorithm == kPTls && cameraState . mPathLength > 1
51 && ! cameraState . mLastSpecular )
52 break ;
53

54 // Get the h i t l i g h t .
55 const AbstractLight ∗ l i g h t = mScene . GetLightPtr ( i s e c t . mLightID ) ;
56

57 // Add i t s c o n t r i b u t i o n .
58 c o l o r += cameraState . mThroughput ∗
59 GetLightRadiance ( l i g h t , cameraState , h i tPo in t ) ;
60

61 // Terminate the subpath s i n c e our l i g h t sou r c e s do not have
62 // r e f l e c t i v e p r o p e r t i e s .
63 break ;
64 }
65

66 // Terminate i f the subpath i s a l r eady too long .
67 i f ( cameraState . mPathLength >= mMaxPathLength )
68 break ;
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Listing 3.28: TraceCameraPathPart3 (part of the RunIteration method,
UPBP.hxx)

1 // Connect to a l i g h t source , u n l e s s omitted in the algor ithm ,
2 // the s c a t t e r i n g func t i on i s pure ly specu lar , the re are no l i g h t s
3 // or we are not a l lowed to connect from a s u r f a c e (we are in
4 // the prev ious or compatible mode ) .
5 i f ( mConnectToLightSource && ! bsdf . I sDe l t a ( ) && mScene . GetLightCount ( ) > 0
6 && ( bsdf . IsInMedium ( ) | | ! on lySpecSur f ) )
7 {
8 c o l o r += cameraState . mThroughput ∗
9 DirectIllumination ( cameraState , h i tPoint , bsdf ) ;

10 }
11

12 // Connect to l i g h t v e r t i c e s , u n l e s s omitted in the algor ithm ,
13 // the s c a t t e r i n g func t i on i s pure ly specu lar , the re are no l i g h t
14 // v e r t i c e s s to r ed or we are not a l lowed to connect from a s u r f a c e
15 // (we are in the prev ious or compatible mode ) .
16 i f ( mConnectToLightVertices && ! bsdf . I sDe l t a ( ) && ! mLightVert ices . empty ( )
17 && ( bsdf . IsInMedium ( ) | | ! on lySpecSur f ) )
18 {
19 // Get i n d i c e s o f v e r t i c e s o f a l i g h t subpath with the same subpath
20 // index as t h i s camera subpath ( f o r ver tex connect ion each l i g h t
21 // subpath i s a s s i gned to a p a r t i c u l a r camera subpath , as in
22 // t r a d i t i o n a l BPT) .
23 const Vec2i range (
24 ( pathIdx == 0) ? 0 : mPathEnds [ pathIdx − 1 ] ,
25 mPathEnds [ pathIdx ] ) ;
26

27 // Cycle through the i n d i c e s .
28 f o r ( i n t i = range [ 0 ] ; i < range [ 1 ] ; i++)
29 {
30 // Get the cor re spond ing s to r ed l i g h t ver tex .
31 const UPBPLightVertex &l i gh tVe r t ex = mLightVert ices [ i ] ;
32

33 // Light v e r t i c e s are s to r ed in i n c r e a s i n g path l ength
34 // order . Once we go above the maximum path length , we can
35 // sk ip the r e s t .
36 i f ( ( l i gh tVe r t ex . mPathLength + 1 + cameraState . mPathLength )
37 > mMaxPathLength)
38 break ;
39

40 // We s t o r e a l l l i g h t v e r t i c e s in order to compute MIS weights
41 // but not a l l can be used f o r connect ion .
42 i f ( ! l i gh tVe r t ex . mConnectable )
43 cont inue ;
44

45 // Add c o n t r i bu t i o n .
46 c o l o r += cameraState . mThroughput ∗ l i gh tVe r t ex . mThroughput
47 ∗ ConnectVertices ( l i ghtVer tex , bsdf , h i tPoint , cameraState ) ;
48 }
49 }
50

51 // Evaluate SURF, u n l e s s omitted in the algor ithm , the s c a t t e r i n g
52 // func t i on i s pure ly specu lar , the re are no l i g h t v e r t i c e s stored ,
53 // we are in a medium or we are not a l lowed to merge at a s u r f a c e
54 // (we are in the prev ious or compatible mode ) .
55 i f ( mMergeWithLightVerticesSurf && ! bsdf . I sDe l t a ( )
56 && ! mLightVert ices . empty ( ) && bsdf . IsOnSurface ( ) && ! onlySpecSur f )
57 {
58 . . . EvaluateSURF . . .
59

60 // PPM merges only at the f i r s t non−spe cu l a r s u r f a c e
61 // from the camera .
62 i f ( mAlgorithm == kPPM) break ;
63 }
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Listing 3.29: TraceCameraPathPart4 (part of the RunIteration method,
UPBP.hxx)

1 // Evaluate PP3D, u n l e s s omitted in the algor ithm , the s c a t t e r i n g
2 // func t i on i s pure ly specu lar , the re are no l i g h t v e r t i c e s s to r ed
3 // or we are on a s u r f a c e .
4 i f ( mMergeWithLightVerticesPP3D && ! bsdf . I sDe l t a ( )
5 && ! mLightVert ices . empty ( ) && bsdf . IsInMedium ( ) )
6 {
7 . . . EvaluatePP3D . . .
8 }
9

10 // Continue random walk .
11 i f ( ! SampleScattering (
12 bsdf , h i tPoint , i s e c t , cameraState ,
13 mCameraVerticesMisData [ cameraState . mPathLength ] ,
14 mCameraVerticesMisData [ cameraState . mPathLength − 1 ] ) )
15 break ;
16

17 // Ensure f u n c t i o n a l i t y o f the prev ious and compatible modes .
18 i f ( bsdf . IsOnSurface ( ) )
19 {
20 // Terminate i f we h i t a s u r f a c e and sampled non−spe cu l a r component
21 // o f i t s bsdf whi l e in the prev ious or compatible mode .
22 i f ( on lySpecSur f && ! cameraState . mLastSpecular )
23 break ;
24 }
25 e l s e
26 {
27 // Terminate i f we sampled s c a t t e r i n g in a medium whi le in the prev ious
28 // mode . I f in the compatible mode cont inue un l imi ted from now on .
29 i f ( on lySpecSur f )
30 {
31 i f ( mEstimatorTechniques & COMPATIBLE)
32 onlySpecSur f = f a l s e ;
33 e l s e
34 break ;
35 }
36 }

Initialization. The current state of the camera subpath is kept in the same
structure as in the case of light subpaths – the SubPathState structure. Again its
mThroughput field stores the whole subpath contribution Cc(xj . . .xk) (as proved
at the end of this section as Theorem 2). This time the state is initialized in the
GenerateCameraSample method:

Listing 3.30: GenerateCameraSample (method, UPBP.hxx)
1 Vec2f GenerateCameraSample (
2 const i n t aPixe l Index ,
3 SubPathState &oCameraState )
4 {
5 const Camera &camera = mScene . mCamera ;
6

7 // Get the camera r e s o l u t i o n .
8 const i n t resX = i n t ( camera . mResolution . get ( 0 ) ) ;
9 const i n t resY = i n t ( camera . mResolution . get ( 1 ) ) ;

10

11 // Based on the r e s o l u t i o n and the g iven p i x e l (=subpath ) index determine
12 // the p i x e l c oo rd ina t e s .
13 const i n t x = aPixe l Index % resX ;
14 const i n t y = aPixe l Index / resX ;
15

16 // Sample a p o s i t i o n with in the p i x e l ( j i t t e r the coo rd ina t e s ) .
17 const Vec2f sample = Vec2f ( f l o a t ( x ) , f l o a t ( y ) ) + mRng. GetVec2f ( ) ;
18

19 . . GenerateCameraSamplePart2 . .
20 }
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Listing 3.31: GenerateCameraSamplePart2 (part of the GenerateCameraSample

method, UPBP.hxx)
1 // Generate a ray coming from the camera o r i g i n and i n t e r s e c t i n g the image
2 // plane in the sampled p o s i t i o n .
3 const Ray primaryRay = camera . GenerateRay ( sample ) ;
4

5 // Compute a PDF conver s i on f a c t o r from the area on the image plane
6 // to the s o l i d ang le on the ray .
7 const f l o a t cosAtCamera = dot ( camera . mDirection , primaryRay . d i r e c t i o n ) ;
8 const f l o a t imagePointToCameraDist = camera . mImagePlaneDist / cosAtCamera ;
9 const f l o a t imageToSolidAngleFactor =

10 U t i l s : : sqr ( imagePointToCameraDist ) / cosAtCamera ;
11

12 // We put the v i r t u a l image plane at such a d i s t anc e from the camera o r i g i n
13 // that the p i x e l area i s one and thus the image plane sampling pdf i s 1 .
14 // The s o l i d ang le ray pdf i s then equal to the conver s i on f a c t o r from
15 // image plane area dens i ty to ray s o l i d ang le dens i ty .
16 const f l o a t cameraPdfW = imageToSol idAngleFactor ;
17

18 // Set up the camera subpath s t a t e .
19 oCameraState . mOrigin = primaryRay . o r i g i n ;
20 oCameraState . mDirection = primaryRay . d i r e c t i o n ;
21 oCameraState . mThroughput = Rgb ( 1 ) ;
22 oCameraState . mPathLength = 1 ;
23 oCameraState . mSpecularPath = 1 ;
24 oCameraState . mLastSpecular = true ;
25 oCameraState . mLastPdfWInv = mPathCount / cameraPdfW ;
26

27 // I n i t the boundary stack with the g l o b a l medium and a medium
28 // o f the camera ( i f de f i ned ) .
29 InitBoundaryStackForCamera ∗ ( oCameraState . mBoundaryStack ) ;
30

31 // Return the sampled p o s i t i o n .
32 r e turn sample ;

Note that we use We(xk) = p(ωxk) and p̂(ωxk) = cameraPdfW/mPathCount. There-

fore, oCameraState.mThroughput = Rgb(1)
We(xk)
p(ωxk

)
= Rgb(1).

Tracing. After generating the origin and direction of the first ray we can start
tracing the camera subpath. This works in a similar way as tracing a light subpath.
In the mScene.Intersect method (see Section 3.2.3.1) the first ray is shot in the
scene. It either leaves the scene or an “intersection” with the scene is found. In
both cases its volume segments are returned and used for evaluation of the P-B2D
and B-B1D estimators. The segments are interpreted as query beams and nearby
photons and photon beams stored during tracing light subpaths are looked up and
possible contribution of the estimators is computed for them. See Sections 3.4.2,
3.4.3 for more information. Then the subpath throughput is attenuated:

Listing 3.32: AttenuateCameraSubpath (part of the RunIteration method,
UPBP.hxx)

1 f l o a t raySamplePdf ( 1 . 0 f ) ; f l o a t raySampleRevPdf ( 1 . 0 f ) ;
2 i f ( ! mVolumeSegments . empty ( ) )
3 {
4 // Pdf o f sampling through the segments ( needed f o r a t t enuat ion
5 // and MIS weight ing ) .
6 raySamplePdf = VolumeSegment : : AccumulatePdf ( mVolumeSegments ) ;
7 // Pdf o f sampling through the segments in the r e v e r s e d i r e c t i o n
8 // ( needed f o r MIS weight ing ) .
9 raySampleRevPdf = VolumeSegment : : AccumulateRevPdf ( mVolumeSegments ) ;

10 // Attenuation by the segments .
11 cameraState . mThroughput ∗=
12 VolumeSegment : : AccumulateAttenuationWithoutPdf ( mVolumeSegments )
13 / raySamplePdf ;
14 }
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Light hit. If the ray intersected the scene, the BSDF object (see Section 3.2.4) is
created for the new vertex, data needed for MIS weight computation are updated
(see Section 3.5) and contribution of possibly directly hit light source is evaluated
in the GetLightRadiance method. If the ray left the scene, MIS weights data are
also updated and contribution of a background light (if present) is computed in
the same GetLightRadiance method. Here it is:

Listing 3.33: GetLightRadiance (method, UPBP.hxx)
1 Rgb GetLightRadiance (
2 const AbstractLight ∗aLight ,
3 const SubPathState &aCameraState ,
4 const Pos &aHitpo int ) const
5 {
6 // aLight = the h i t l i g h t = e i t h e r a f i n i t e l i g h t i n t e r s e c t e d
7 // by the ray or a background l i g h t i f the ray l e f t the scene .
8

9 // Get p r o b a b i l i t y o f sampling the h i t l i g h t in case o f e x p l i c i t
10 // l i g h t sampling ( needed f o r MIS weight ing ) .
11 const i n t l ightCount = mScene . GetLightCount ( ) ;
12 const f l o a t l i ghtPickProb = 1 . f / l ightCount ;
13

14 // Get rad iance emitted by the h i t l i g h t in the i n c i d e n t d i r e c t i o n .
15 f l o a t directPdfA , emissionPdfW ;
16 const Rgb rad iance = aLight−>GetRadiance( mScene . mSceneSphere ,
17 aCameraState . mDirection , aHitpoint , &directPdfA , &emissionPdfW ) ;
18

19 i f ( rad iance . i sBlackOrNegat ive ( ) )
20 r e turn Rgb ( 0 ) ;
21

22 // I f the l i g h t was h i t d i r e c t l y from the camera , no weight ing i s r equ i r ed .
23 i f ( aCameraState . mPathLength == 1)
24 r e turn rad iance ;
25

26 // When eva lua t ing only photon dens i ty es t imators , only pure ly spe cu l a r
27 // camera subpaths are a l lowed to g ive rad iance when h i t t i n g a l i g h t
28 // (we cannot get i t o therw i se and the r e s t i s handled by the e s t imato r s
29 // at non−spe cu l a r v e r t i c e s ) .
30 i f ( mEstimatorTechniques && ! ( mEstimatorTechniques & BPT) )
31 r e turn aCameraState . mSpecularPath ? rad iance : Rgb ( 0 ) ;
32

33 // Complete the p r o b a b i l i t i e s .
34 directPdfA ∗= l ightPickProb ;
35 emissionPdfW ∗= l ightPickProb ;
36

37 // Compute c o r r e c t MIS weight .
38 f l o a t misWeight = 1 . f ;
39 . . . DirectlyHitLightMis . . .
40

41 // Return weighted r e s u l t .
42 r e turn misWeight ∗ rad iance ;
43 }

Radiance emitted by the hit light is computed in the aLight->GetRadiance

method. The method also returns the probability density of the ray hitting
the light in the given point and direction as if it was a result of explicit light
sampling (directPdfA) or of sampling emission of the light (emissionPdfW). The
meaning of these two pdfs is the same as in the GenerateLightSample method
(Listing 3.17) and they are needed for MIS weight computation. Before returning
the radiance it needs to be properly weighted. Section 3.5 describes how to
accomplish this. The returned radiance is then added multiplied by subpath
throughput according to Equation 2.29.
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Since

cameraState.mThroughput = Cc(x0 . . .xk),

misWeight = ŵBPTdirect
,

radiance = Le(x0)

the final contribution of the connection (as added on Line 55 in Listing 3.26 and
58 in Listing 3.27) is:

color+=cameraState.mThroughput*contrib

=ŵBPTdirect
Le(x0)Cc(x0 . . .xk)

=ŵBPTdirect
Le(x0)

T (x0 . . .xk)

p(x0 . . .xk)
We(xk).

Light sampling. If the ray left the scene the subpath is terminated. Otherwise,
explicit light sampling is performed, i.e. the new camera vertex (at the found
intersection) is connected to randomly chosen point on a light source. It actually
means sampling direct illumination for the camera vertex, therefore a method
that implements it bears the name DirectIllumination:

Listing 3.34: DirectIllumination (method, UPBP.hxx)
1 Rgb D i r e c t I l l u m i n a t i o n (
2 const SubPathState &aCameraState ,
3 const Pos &aHitpoint ,
4 const BSDF &aCameraBSDF)
5 {
6 // Choose a l i g h t uni formly .
7 const i n t l ightCount = mScene . GetLightCount ( ) ;
8 const f l o a t l i ghtPickProb = 1 . f / l ightCount ;
9 const i n t l i gh t ID = i n t (mRng. GetFloat ( ) ∗ l i ghtCount ) ;

10 const AbstractLight ∗ l i g h t = mScene . GetLightPtr ( l i gh t ID ) ;
11

12 // The chosen l i g h t may need these random numbers f o r sampling
13 // a p o s i t i o n on i t .
14 const Vec2f rndPosSamples = mRng. GetVec2f ( ) ;
15

16 // Light in i n f i n i t y in at t enuat ing homogeneous g l o b a l medium i s always
17 // reduced to zero .
18 i f ( ! l i g h t−>I s F i n i t e ( ) && mScene . GetGlobalMediumPtr()−>HasAttenuation ( ) )
19 r e turn Rgb ( 0 ) ;
20

21 // Get rad iance coming from the chosen l i g h t .
22 Dir d i r ec t i onToLight ;
23 f l o a t d i s t anc e ;
24 f l o a t directPdfW , emissionPdfW , cosAtLight ;
25 const Rgb rad iance = l ight−>Illuminate ( mScene . mSceneSphere , aHitpoint ,
26 rndPosSamples , d i rect ionToLight , d i s tance , directPdfW ,
27 &emissionPdfW , &cosAtLight ) ;
28

29 i f ( rad iance . i sBlackOrNegat ive ( ) )
30 r e turn Rgb ( 0 ) ;
31

32 // Evaluate the s c a t t e r i n g func t i on at the camera ver tex .
33 f l o a t bsdfDirPdfW , bsdfRevPdfW , cosToLight , s inTheta ;
34 Rgb bsdfFactor = aCameraBSDF.Evaluate (
35 di rect ionToLight , cosToLight , &bsdfDirPdfW , &bsdfRevPdfW , &sinTheta ) ;
36

37 i f ( bsd fFactor . i sBlackOrNegat ive ( ) )
38 r e turn Rgb ( 0 ) ;
39

40 . . DirectIlluminationPart2 . .
41 }
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Listing 3.35: DirectIlluminationPart2 (part of the DirectIllumination

method, UPBP.hxx)
1 // Needed f o r MIS weight ing only , we are making an e x p l i c i t connect ion ,
2 // the re i s no Russian r o u l e t t e d e c i s i o n .
3 const f l o a t c o n t i n u a t i o n P r o b a b i l i t y = aCameraBSDF . ContinuationProb ( ) ;
4

5 // I f the l i g h t i s d e l t a l i g h t , we can never h i t i t
6 // by BSDF sampling , so the p r o b a b i l i t y o f t h i s path i s 0 .
7 bsdfDirPdfW ∗= l i g h t−>I sDe l t a ( ) ? 0 . f : c o n t i n u a t i o n P r o b a b i l i t y ;
8 bsdfRevPdfW ∗= c o n t i n u a t i o n P r o b a b i l i t y ;
9

10 Rgb cont r ib ( 0 ) ;
11

12 // Test whether the connect ion i s not occ luded by geometry and f i n d volume
13 // segments along i t .
14 mVolumeSegments . c l e a r ( ) ;
15 i f ( !mScene.Occluded (
16 aHitpoint , d i rect ionToLight , d i s tance , aCameraState . mBoundaryStack ,
17 aCameraBSDF . IsInMedium ( ) ? AbstractMedium : : kOriginInMedium : 0 ,
18 mVolumeSegments ) )
19 {
20 // Get at tenuat ion from i n t e r s e c t e d media ( i f any ) .
21 f l o a t raySamplePdf ( 1 . 0 f ) ;
22 f l o a t raySampleRevPdf ( 1 . 0 f ) ;
23 Rgb at tenuat ion ( 1 . 0 f ) ;
24 i f ( ! mVolumeSegments . empty ( ) )
25 {
26 // Pdf o f sampling through the segments .
27 raySamplePdf = VolumeSegment : : AccumulatePdf ( mVolumeSegments ) ;
28

29 // Pdf o f sampling through the segments in the r e v e r s e d i r e c t i o n .
30 raySampleRevPdf =
31 VolumeSegment : : AccumulateRevPdf ( mVolumeSegments ) ;
32

33 // Attenuation by the segments ( without pdf s i n c e we made
34 // an e x p l i c i t connect ion and did not sample media ) .
35 at tenuat ion =
36 VolumeSegment : : AccumulateAttenuationWithoutPdf ( mVolumeSegments ) ;
37

38 i f ( ! nextAttenuat ion . i s P o s i t i v e ( ) )
39 r e turn Rgb ( 0 ) ;
40 }
41

42 // Compute c o r r e c t MIS weight .
43 f l o a t misWeight = 1 . f ;
44 . . . ConnectToLightMis . . .
45

46 // Compute the r e s u l t .
47 con t r ib = misWeight ∗ ( cosToLight / ( l i ghtPickProb ∗ directPdfW ) )
48 ∗ ( rad iance ∗ at tenuat ion ∗ bsdfFactor ) ;
49 }
50

51 // Return the r e s u l t .
52 r e turn cont r i b ;

The method starts with uniform sampling of light sources in the scene. One light
source is randomly chosen and its light->Illuminate method is called. It samples
the light (if necessary, e.g. for area lights) and returns the resulting direction (from
the camera vertex to the sampled light point), radiance coming in this direction
from the light and pdfs of the sampling (directPdfW) and of sampling emission
of the light (emissionPdfW). Note that while emissionPdfW is the same as in the
GenerateLightSample and GetLightRadiance methods (Listing 3.17 and 3.33),
directPdfW is different. In contrast to directPdfA in the other two methods,
directPdfW is expressed w.r.t. the solid angle measure at the camera vertex and is
equal to directPdfA‖x1 − x0‖2/D(x0 → x1). Then the aCameraBSDF.Evaluate

method computes the scattering function factor at the camera vertex for a direction
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of the last camera subpath segment and the computed direction. It also returns
pdfs, namely pdfs of sampling the scattering function in the direct (i.e. from
the camera) and reverse direction (bsdfDirPdfW and bsdfRevPdfW, respectively).
The next step is to test whether the connection between the camera vertex
and the light is not occluded by geometry. This is done by ray casting in the
mScene.Occluded method, which also finds volume segments intersected by the
ray. These segments are then used for accumulating attenuation by media along
the connection. For more information about the two aforementioned methods
see Section 3.2. Together with the attenuation pdfs of sampling through the
segments in a direct (i.e. from the camera) and reverse direction (raySamplePdf
and raySampleRevPdf, respectively) are computed. Note that we are making
an explicit connection, there is no sampling of media, scattering function or
light emission, therefore the pdfs raySamplePdf and raySampleRevPdf as well as
bsdfDirPdfW, bsdfRevPdfW and emissionPdfW are needed only for MIS weight
computation. It comes right after the attenuation part and is closely described
in Section 3.5. Finally, the resulting contribution is computed according to
Equation 2.24 (with a = x0). Since

cameraState.mThroughput = Cc(x1 . . .xk),

misWeight = ŵBPTx0,x1 ,

cosToLight

lightPickProb*directPdfW
=
G(x0,x1)

p(x0)
,

radiance = Le(x0),

attenuation = Tr(x0,x1),

bsdfFactor = ρ(x1),

the final contribution of the connection (as added on Line 8 in Listing 3.28) is:

color+=cameraState.mThroughput*contrib

=ŵBPTx0,x1Le(x0)
Tr(x0,x1)G(x0,x1)ρ(x1)

p(x0)
Cc(x1 . . .xk)

=ŵBPTx0,x1Le(x0)
T (x0 . . .xk)

p(x0)p(x1 . . .xk)
We(xk).

Vertex connection. After we tried connecting the last camera vertex to a
light source, connecting to the stored light vertices (i.e. evaluation of the rest of
the BPT techniques) is an obvious next step. We take all stored light vertices
of the corresponding light subpath (the one which has the same index as the
currently traced camera subpath) and try to connect the camera vertex to each of
them. Evaluation of one such connection is implemented in the ConnectVertices

method.
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Listing 3.36: ConnectVertices (method, UPBP.hxx)
1 Rgb ConnectVert ices (
2 const UPBPLightVertex &aLightVertex ,
3 const BSDF &aCameraBSDF ,
4 const Pos &aCameraHitpoint ,
5 const SubPathState &aCameraState )
6 {
7 // Get a d i r e c t i o n and d i s t anc e o f the connect ion .
8 Dir d i r e c t i o n = aLightVertex . mHitpoint − aCameraHitpoint ;
9 const f l o a t d i s t 2 = d i r e c t i o n . square ( ) ;

10 f l o a t d i s t ance = std : : s q r t ( d i s t 2 ) ;
11 d i r e c t i o n /= d i s t ance ;
12

13 // Evaluate the s c a t t e r i n g func t i on at the camera ver tex .
14 f l o a t cosCamera , cameraBsdfDirPdfW , cameraBsdfRevPdfW , sinThetaCamera ;
15 Rgb cameraBsdfFactor = aCameraBSDF.Evaluate (
16 d i r e c t i o n , cosCamera , &cameraBsdfDirPdfW ,
17 &cameraBsdfRevPdfW , &sinThetaCamera ) ;
18

19 i f ( cameraBsdfFactor . i sBlackOrNegat ive ( ) )
20 r e turn Rgb ( 0 ) ;
21

22 // Camera cont inuat i on p r o b a b i l i t y ( needed f o r MIS weight ing only ) .
23 const f l o a t cameraCont = aCameraBSDF . ContinuationProb ( ) ;
24 cameraBsdfDirPdfW ∗= cameraCont ;
25 cameraBsdfRevPdfW ∗= cameraCont ;
26

27 // Evaluate the s c a t t e r i n g func t i on at the l i g h t ver tex .
28 f l o a t cosLight , l ightBsdfDirPdfW , lightBsdfRevPdfW , s inThetaLight ;
29 const Rgb l i gh tBsd fFac to r = aLightVertex .mBSDF.Evaluate (
30 −d i r e c t i o n , cosLight , &lightBsdfDirPdfW ,
31 &lightBsdfRevPdfW , &sinThetaLight ) ;
32

33 i f ( l i gh tBsd fFac to r . i sBlackOrNegat ive ( ) )
34 r e turn Rgb ( 0 ) ;
35

36 // Light cont inuat i on p r o b a b i l i t y ( needed f o r MIS weight ing only ) .
37 const f l o a t l i ghtCont = aLightVertex .mBSDF. ContinuationProb ( ) ;
38 l ightBsdfDirPdfW ∗= l ightCont ;
39 lightBsdfRevPdfW ∗= l ightCont ;
40

41 // Compute a geometry term between the two v e r t i c e s .
42 const f l o a t geometryTerm = cosLight ∗ cosCamera / d i s t 2 ;
43 i f ( geometryTerm < 0)
44 r e turn Rgb ( 0 ) ;
45

46 // Convert s o l i d ang le PDFs to area PDFs .
47 const f l o a t cameraBsdfDirPdfA =
48 PdfWtoA( cameraBsdfDirPdfW , d i s tance , cosL ight ) ;
49 const f l o a t l ightBsdfDirPdfA =
50 PdfWtoA( lightBsdfDirPdfW , d i s tance , cosCamera ) ;
51

52 // Prepare f l a g s f o r the o c c l u s i o n t e s t i n g method . I t needs to know i f
53 // the o r i g i n ( the camera ver tex ) and end ( the l i g h t ver tex ) o f
54 // the connect ion are in a medium or not to c o r r e c t l y compute
55 // sampling pdfs .
56 uint raySamplingFlags = 0 ;
57 i f (aCameraBSDF . IsInMedium ( ) )
58 raySamplingFlags |= AbstractMedium : : kOriginInMedium ;
59 i f ( aLightVertex . mInMedium)
60 raySamplingFlags |= AbstractMedium : : kEndInMedium ;
61

62 // Test whether the connect ion i s not occ luded by geometry and f i n d volume
63 // segments along i t .
64 mVolumeSegments . c l e a r ( ) ;
65 i f (mScene.Occluded (
66 aCameraHitpoint , d i r e c t i o n , d i s tance , aCameraState . mBoundaryStack ,
67 raySamplingFlags , mVolumeSegments ) )
68 r e turn Rgb ( 0 ) ;
69

70 . . ConnectVerticesPart2 . .
71 }

68



Listing 3.37: ConnectVerticesPart2 (part of the ConnectVertices method,
UPBP.hxx)

1 // Get at tenuat ion from i n t e r s e c t e d media ( i f any ) .
2 f l o a t raySamplePdf ( 1 . 0 f ) ;
3 f l o a t raySampleRevPdf ( 1 . 0 f ) ;
4 Rgb at tenuat ion ( 1 . 0 f ) ;
5 i f ( ! mVolumeSegments . empty ( ) )
6 {
7 // Pdf o f sampling through the segments .
8 raySamplePdf = VolumeSegment : : AccumulatePdf ( mVolumeSegments ) ;
9

10 // Pdf o f sampling through the segments in the r e v e r s e d i r e c t i o n .
11 raySampleRevPdf = VolumeSegment : : AccumulateRevPdf ( mVolumeSegments ) ;
12

13 // Attenuation by the segments ( without pdf s i n c e we made
14 // an e x p l i c i t connect ion and did not sample media ) .
15 at tenuat ion =
16 VolumeSegment : : AccumulateAttenuationWithoutPdf ( mVolumeSegments ) ;
17

18 i f ( ! mediaAttenuation . i s P o s i t i v e ( ) )
19 r e turn Rgb ( 0 ) ;
20 }
21

22 // Compute c o r r e c t MIS weight .
23 f l o a t misWeight = 1 . f ;
24 . . . ConnectToVertexMis . . .
25

26 // Compute the r e s u l t .
27 Rgb cont r ib = misWeight ∗ cameraBsdfFactor ∗ l i gh tBsd fFac to r
28 ∗ at tenuat ion ∗ geometryTerm ;
29

30 // Return the r e s u l t .
31 r e turn cont r i b ;

To compute the contribution of the connection we first need to evaluate the
scattering function at both ends, i.e. at the camera vertex and at the light vertex.
This is done by the aCameraBSDF.Evaluate and aLightVertex.mBSDF.Evaluate

method, respectively. Except for the factors these methods again return pdfs
of sampling the scattering function in a direct direction (cameraBsdfDirPdfW
from the camera, lightBsdfDirPdfW from the light) and a reverse direction
(cameraBsdfRevPdfW from the light, lightBsdfRevPdfW from the camera). Since
we are making an explicit connection these pdfs are needed for MIS weighting only.
The methods also return cosines at the connecting edge which are subsequently
used for computing a geometry term. Then the mScene.Occluded method tests
whether the connection is not occluded by geometry and finds volume segments
intersected by the connecting edge. Evaluation of the scattering function as well as
the occlusion testing is more closely described in Section 3.2. The volume segments
are used for accumulating attenuation caused by media along the connection and
computing pdfs of sampling through the media in a direct (i.e. from the camera)
and reverse direction (raySamplePdf and raySampleRevPdf, respectively) needed
for MIS weighting. The MIS weight is computed right after that (see Section 3.5)
and used for weighting a contribution of the connection computed according to
Equation 2.24.
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Since

cameraState.mThroughput = Cc(xs . . .xk),

lightVertex.mThroughput = Cl(x0 . . .xs−1),

misWeight = ŵBPTxs−1,xs
,

cameraBsdfFactor = ρ(xs),

lightBsdfFactor = ρ(xs−1),

attenuation = Tr(xs−1,xs),

geometryTerm = G(xs−1,xs),

the final contribution of the connection (as added on Line 46 in Listing 3.28) is:

color+=cameraState.mThroughput*lightVertex.mThroughput*contrib

=ŵBPTxs−1,xs
Cl(x0 . . .xs−1)Tr(xs−1,xs)G(xs−1,xs)

ρ(xs)ρ(xs−1)Cc(xs . . .xk)

=ŵBPTxs−1,xs
Le(x0)

T (x0 . . .xk)

p(x0 . . .xs−1)p(xs . . .xk)
We(xk).

Last steps. That is all about the ConnectVertices method, let’s continue with
description of tracing the camera subpath. Evaluation of BPT techniques is just
finished, beam-based photon density estimators were evaluated right after casting
the ray so the only thing remaining are the point-based photon density estimators,
i.e. SURF and P-P3D. Their evaluation is performed now and is described in
Section 3.4.1. Everything on the camera subpath of the current length is then
done, the last step – adding another segment – is the same as when tracing light
subpaths. It is also implemented in the same method SampleScattering, see
Listing 3.24 for its description.

Closing the loop. At this point the inner loop of tracing camera subpaths
starts a new run, a new ray is shot from the last vertex in a direction sampled in
the SampleScattering method and tracing continues. It stops when the subpath
throughput drops to zero, the Russian roulette decision fails or the subpath reaches
its maximum length. Then a new camera subpath is traced. This way npaths
(mPathCount) camera subpaths are traced.
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To conclude our description of tracing camera subpaths we prove similar
statement as for light subpaths:

Theorem 2. Assume any camera subpath traced by the described algorithm,
number k ≥ 1 and the cameraState structure at vertex xk−i, i ∈ [1, k], i.e. after
attenuation by media along the i-th segment but before sampling the scattering
function (at lines 46-59 in Listing 3.26 and from 17 in Listing 3.27 to 9 in
Listing 3.29). Then its mThroughput field satisfies:

mThroughput = Cc(xk−i . . .xk), (3.9)

where Cc(xk−i . . .xk) is the subpath contribution (1.7).

Proof. Let i = 1. The cameraState is initialized in the GenerateCameraSample

method and its mThroughput field is assigned Rgb(1.0f) there (Listing 3.31,

line 21). That equals Rgb(1)
We(xk)
p(ωxk

)
. Then the cameraState.mThroughput value

is modified with attenuation by media along the first segment (Listing 3.32, line 11).
It becomes

mThroughput =
Tr(txk)

p(xk)p(ωxk)p(txk)
We(xk).

Tr(txk) is the accumulated attenuation, p(xk) = 1, p(txk) is raySamplePdf, i.e.
pdf of sampling the distance tx0 through the media w.r.t. the Euclidean length on
R1. Following the same steps as when deriving Equation 2.7 and we get

mThroughput =
Tr(txk)

p(xk)p(ωxk)p(txk)
We(xk)

=
Tr(txk)

p(xk)p(ωxk)p(txk)

G(xk−1,xk)

G(xk−1,xk)
We(xk)

=
Tr(txk)G(xk−1,xk)

p(xk)p(ωxk)p(txk)G(xk−1,xk)
We(xk)

=
T (xk−1 . . .xk)

p(xk−1 . . .xk)
We(xk)

= Cc(xk−1 . . .xk).

The cameraState.mThroughput value is then not modified until sampling the
scattering function in the SampleScattering method. The theorem holds for
i = 1.

Let i > 1. Assume the theorem holds for j − 1, j ∈ (1, k], i.e. mThroughput
at vertex xk−j+1 equals Cc(xk−j+1 . . .xk). Between vertices xk−j+1 and xk−j the
value of cameraState.mThroughput is modified twice. First while sampling the
scattering function (Listing 3.24, line 43):

mThroughput = Cc(xk−j+1 . . .xk)
ρ(xk−j+1)D(xk−j+1 → xk−j)

pRR(xk−j+1)p̂(ωxk−j+1
)

.

ρ(xk−j+1) is bsdfFactor returned by the aBSDF.Sample method, D(xk−j+1 →
xk−j) = cosThetaOut, pRR(xk−j+1) is the probability of the Russian roulette
decision and p̂(ωxk−j+1

) the probability density of sampling the scattering function
w.r.t. to the solid angle measure. Note pRR(xk−j+1)p̂(ωxk−j+1

) = bsdfDirPdfW.
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The second modification is the already described attenuation by intersected
media. Repeating the same steps we get

mThroughput = Cc(xk−j+1 . . .xk)
ρ(xk−j+1)D(xk−j+1 → xk−j)

pRR(xk−j+1)p̂(ωxk−j+1
)

Tr(txk−j+1
)

p(txk−j+1
)

=
T (xk−j+1 . . .xk)

p(xk−j+1 . . .xk)

ρ(xk−j+1)G(xk−j+1,xk−j)Tr(txk−j+1
)

pRR(xk−j+1)p(xk−j |xk−j+1)

=
T (xk−j . . .xk)

p(xk−j . . .xk)
= Cc(xk−j . . .xk).

for We(xk) = 1. The theorem holds for j and therefore, by mathematical induction,
it holds for all i > 1.

As a consequence of Theorem 2, the cameraState.mThroughput value on lines
58 in Listing 3.27, 8 and 46 in Listing 3.28 equals the subpath contribution Ce.

We finished our description of the UPBP renderer. We showed its main structure
and then thoroughly went through tracing of subpaths. We conclude this section
with a few notes about other renderers, the following sections will then focus on
other important parts of the code the renderers use (photon density estimators
implementation and MIS weights computation).

3.3.3 Other renderers

As mentioned at the beginning of this section there are three other renderers
we newly implemented besides UPBP – VolPathTracer, VolLightTracer and
VolBidirPT.

VolPathTracer. Implements traditional path tracing with next event estimation.
It can be run in three modes, either it simulates the simplest path tracing without
light sampling, which waits for a direct hit of a light source, or path tracing
with explicit light sampling only, which does not accumulate emission of directly
hit light sources. The third mode is path tracing with contributions of light
sampling and directly hit light sources combined by MIS. Its output almost equals
to running the UPBP renderer with mAlgorithm set to kPTdir, kPTls or kPTmis,
respectively. The only difference is that the VolPathTracer renderer, as the only
one of the renderers, supports light emission by participating media. It is easy
with path tracing as it only means adding emission of the intersected volume
segments right before using them for attenuating the path throughput. However,
it becomes difficult when tracing light subpaths as it would mean storing emission
of the segments and then going through them in the opposite direction and adding
them multiplied by throughput accumulated also in the opposite direction. That
is why we decided not to support media emission in other renderers.

VolLightTracer. Simulates ordinary light tracing and can also evaluate the
P-B2D and B-B1D estimators. Its output almost equals to running the UPBP

renderer with mAlgorithm set to kLT or to kCustom with mEstimatorTechniques

containing kPB2D or kBB1D, respectively. However, in contrast to UPBP the photon
density estimators are evaluated only for primary camera rays as there is no
camera subpath tracing.
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VolBidirPT. Implements bidirectional path tracing. It can also run in three
unidirectional path tracing modes, the same as VolPathTracer. Its output exactly
equals to running the UPBP renderer with mAlgorithm set to kBPT, kPTdir, kPTls
or kPTmis, respectively.

Original renderers. The rest of the renderers, EyeLight, PathTracer and
VertexCM, stay almost the same as in the original SmallVCM implementation.
However, they are modified to work with our new ray-scene intersection method
used by the newly added renderers. Since the original renderers are not capable
of handling scattering in media the method is given a flag meaning that all media
should be ignored. The original functionality is retained.

3.4 Photon density estimators implementation

For the sake of clarity we left out a description of several code parts in the
previous section. We return to them in the following text. Here we begin with
implementation of the photon density estimators.

3.4.1 SURF and P-P3D

First, there are the SURF and P-P3D estimators. They are very similar, they
differ only in the kernel dimension (2D vs. 3D) and location of vertices they can
be evaluated on (on a surface vs. in a medium). Therefore, they share almost the
same code.

These two estimators evaluate the contribution of stored photon points dis-
tributed from light sources over a scene at query points distributed from the
camera.

3.4.1.1 Photon points

The photon points are the light vertices stored during tracing of light subpaths.
The SURF estimator uses those located on surfaces, the P-P3D estimator those
in media. Note that we do not reuse these vertices among iterations, i.e. every
iteration uses only light vertices created in that iteration. For faster photon point
lookup we build hashed grids over them, one for each of the two estimators. A
hashed grid is implemented in the HashGrid class (in the HashGrid.hxx file).
The build is handled by its Build method and takes place right after all light
subpaths have been traced and before tracing camera subpaths (on lines 18-30
in Listing 3.13). It takes light vertices with the right location (on a surface/in a
medium depending on the estimator), divides their bounding box into cube cells
with a side two kernel radii long and hashes content of these cells into a small
number of bins (mPathCount according to our heuristic).

3.4.1.2 Query points

The query points are the camera vertices created during tracing of a camera sub-
path. The evaluation of the two estimators takes place at each camera vertex before
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sampling scattering and continuing the subpath (on lines 50in Listing 3.28 till 9
in Listing 3.29). Here is the left out code:

Listing 3.38: EvaluateSURF (part of the RunIteration method, UPBP.hxx)
1 RangeQuery query (∗ th i s , h i tPoint , bsdf , cameraState ) ;
2 mSurfHashGrid. Process(mLightVertices , query) ;
3 c o l o r += cameraState . mThroughput ∗ mSurfNormalization ∗ query . GetContrib ( ) ;

Listing 3.39: EvaluatePP3D (part of the RunIteration method, UPBP.hxx)
1 RangeQuery query (∗ th i s , h i tPoint , bsdf , cameraState ) ;
2 mPP3DHashGrid. Process(mLightVertices , query) ;
3 c o l o r += cameraState . mThroughput ∗ mPP3DNormalization ∗ query . GetContrib ( ) ;

The code is very similar for both estimators. Firstly, an object of the RangeQuery

class (from the UPBP.hxx file) is created, it stores all data necessary for evaluation
of the estimators. After that, it is passed to the Process method of a correspond-
ing hashed grid. This method searches 8 nearest cells around the query point
(hitPoint) and finds all photon points there that lie within kernel radius from
the query point (no point from other cells can be within the radius because of the
cell dimension). For each of them it then calls the Process method of the given
RangeQuery object to evaluate the corresponding estimator:

Listing 3.40: Process (method, UPBP.hxx)
1 void Process ( const UPBPLightVertex& aLightVertex )
2 {
3 // We s t o r e a l l l i g h t v e r t i c e s but not a l l can be used f o r merging
4 // ( d e l t a and l i g h t ) .
5 i f ( ! aLightVertex . mConnectable ) re turn ;
6

7 // Reject i f the f u l l path l ength would be above the maximum path length .
8 i f ( aLightVertex . mPathLength + mCameraState . mPathLength >
9 mUPBP. mMaxPathLength)

10 r e turn ;
11

12 // Ret r i eve l i g h t incoming d i r e c t i o n in the world coo rd ina t e s .
13 const Dir l i g h t D i r e c t i o n = aLightVertex .mBSDF. WorldDirFix ( ) ;
14

15 // Evaluate the s c a t t e r i n g func t i on at the camera ver tex .
16 f l o a t cosCamera , cameraBsdfDirPdfW , cameraBsdfRevPdfW , sinTheta ;
17 const Rgb cameraBsdfFactor = mCameraBsdf. Evaluate (
18 l i g h t D i r e c t i o n , cosCamera , &cameraBsdfDirPdfW ,
19 &cameraBsdfRevPdfW , &sinTheta ) ;
20

21 i f ( cameraBsdfFactor . i sBlackOrNegat ive ( ) ) re turn ;
22

23 // Complete the forward path pdf .
24 cameraBsdfDirPdfW ∗= mCameraBsdf . ContinuationProb ( ) ;
25

26 // Complete the r e v e r s e path pdf . Even though t h i s i s pdf from the
27 // camera BSDF, the cont inuat i on p r o b a b i l i t y must come from the l i g h t
28 // BSDF, because that would govern i t i f the l i g h t path a c t u a l l y cont inued .
29 cameraBsdfRevPdfW ∗= aLightVertex .mBSDF. ContinuationProb ( ) ;
30

31 // Compute c o r r e c t MIS weight .
32 f l o a t misWeight = 1 .0 f ;
33 i f (mUPBP. mAlgorithm != kPPM)
34 {
35 . . . SurfPP3DMis . . .
36 }
37

38 // Accumulate c o n t r i b u t i o n .
39 mContrib += misWeight ∗ cameraBsdfFactor ∗ aLightVertex . mThroughput ;
40 }
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At first, the scattering function is evaluated using the mCameraBsdf.Evaluate

method (described in Section 3.2.4). The scattering function at the camera
vertex is used, i.e. the evaluation is carried out for the material/medium at the
camera vertex, the incoming ray direction at the camera vertex (as incoming) and
the incoming direction at the light vertex (as outgoing). The returned pdfs of
sampling the scattering function in the direct (cameraBsdfDirPdfW) and reverse
direction (cameraBsdfRevPdfW) are needed only for computation of the MIS
weight, which comes right after that and is described in Section 3.5. Finally,
weighted contribution is accumulated.

Result. This way the weighted contribution of all photon points stored within
the kernel radius from the query point is accumulated inside the RangeQuery

object. After returning from the Process method this contribution is added
multiplied by the camera subpath throughput and a corresponding normalization
factor including a kernel according to Equations 2.32 and 2.7. Let’s consider one
of the included photon points x̃s. Then

cameraState.mThroughput = Cc(xs . . .xk),

mSurfNormalization =
K2(x̃s,xs)

npaths
,

mPP3DNormalization =
K3(x̃s,xs)

npaths
,

cameraBsdfFactor = ρ(x̃s,xs),

aLightVertex.mThroughput = Cl(x0 . . . x̃s).

If the SURF estimator is being evaluated, then misWeight = ŵSURFs and an
individual contribution of photon point x̃s (as added on line 3 in Listing 3.38) is:

color+=cameraState.mThroughput * mSurfNormalization * misWeight

* cameraBsdfFactor * aLightVertex.mThroughput

=
1

npaths
ŵSURFsCl(x0 . . . x̃s)ρ(x̃s,xs)K2(x̃s,xs)Cc(xs . . .xk)

=
1

npaths
ŵSURFsLe(x0)

T (x0 . . . x̃s)

p(x0 . . . x̃s)
ρ(x̃s,xs)K2(x̃s,xs)

T (xs . . .xk)

p(xs . . .xk)
We(xk).

If the P-P3D estimator is being evaluated, then misWeight = ŵP-P3Ds and an
individual contribution of photon point x̃s (as added on line 3 in Listing 3.39) is:

color+=cameraState.mThroughput * mPP3DNormalization * misWeight

* cameraBsdfFactor * aLightVertex.mThroughput

=
1

npaths
ŵP-P3DsCl(x0 . . . x̃s)ρ(x̃s,xs)K3(x̃s,xs)Cc(xs . . .xk)

=
1

npaths
ŵP-P3DsLe(x0)

T (x0 . . . x̃s)

p(x0 . . . x̃s)
ρ(x̃s,xs)K3(x̃s,xs)

T (xs . . .xk)

p(xs . . .xk)
We(xk).
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Kernel. For these two estimators we use constant kernels in the form Ki(x,y) =
|Si(x)|−1, where Si(x) is the support of Ki(x,y) for a given x. In our implemen-
tation that means

K2(x̃s,xs) =
(
πr2

SURF

)−1

K3(x̃s,xs) =

(
4

3
πr3

P-P3D

)−1

,

where rSURF and rP-P3D are the current radii for the SURF and P-P3D estimators,
respectively. These are the radiusSurf and radiusPP3D values computed at the
beginning of each render iteration (on line 13 in Listing 3.12) according to the
radius reduction scheme described in Section 3.3.2.

Factors. At the beginning of each iteration also the normalization factors
mSurfNormalization and mPP3DNormalization are computed. We left out the
code responsible for it from the initial description of the RunIteration method
in Section 3.3.2 (on line 16 in Listing 3.12). Here it is:

Listing 3.41: ComputeFactors (part of the RunIteration method, UPBP.hxx)
1 const f l o a t e taSur f = mPathCount ∗ PI F ∗ r ad iu sSu r f ∗ r ad iu sSu r f ;
2 const f l o a t etaPP3D = mPathCount ∗ ( 4 . 0 f / 3 .0 f ) ∗ PI F
3 ∗ radiusPP3D ∗ radiusPP3D ∗ radiusPP3D ;
4 const f l o a t etaPB2D = mPathCount ∗ PI F ∗ radiusPB2D ∗ radiusPB2D ;
5 const f l o a t etaBB1D = mPathCount ∗ 0 .5 f ∗ radiusBB1D ;
6

7 mSurfNormalization = 1 . f / e taSur f ;
8 mPP3DNormalization = 1 . f / etaPP3D ;
9 mPB2DNormalization = 1 . f / mPathCount ;

10 mBB1DNormalization = 1 . f / mPathCount ;
11

12 mSurfMisWeightFactor = etaSur f ;
13 mPP3DMisWeightFactor = etaPP3D ;
14 mPB2DMisWeightFactor = etaPB2D ;
15 mBB1DMisWeightFactor = etaBB1D ;

Besides the normalization factors there are MIS weight factors. While the former
ones are used when evaluating the corresponding estimator, i.e. when creating
a path with it, the latter ones are needed when computing MIS weights for
estimators that could also create the path (see Section 3.5 for details).

3.4.2 P-B2D

We continue with the P-B2D estimator (also called the beam radiance estimate,
BRE, as introduced by Jarosz et al. [9]). It evaluates the contribution of stored
photon points distributed from light sources over a scene along query beams
distributed from the camera.

3.4.2.1 Photon points

Same as with the P-P3D estimator, the photon points are the light vertices
stored in media during tracing of light subpaths in the current iteration. For
faster photon point lookup along a beam we do not use the hashed grid built for
the P-P3D estimator, we instead build an additional bounding volume hierarchy
(BVH) over the light vertices. It is implemented in the EmbreeBre class (in the
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Bre.hxx and Bre.cxx files) and internally uses Embree [3] for acceleration of
the building and traversal of the BVH. The EmbreeBre class also encapsulates
evaluation of the P-B2D estimator and is represented by the mPB2DEmbreeBre

object. The build is handled by its build method and takes place right after all
light subpaths have been traced and before tracing camera subpaths (on line 35
in Listing 3.13). It takes light vertices located in a medium, creates a sphere with
radius equal to the kernel radius at each of them (an object of the EmbreePhoton

class from the Bre.cxx file) and lets Embree build its BVH over these spheres.

3.4.2.2 Query beams

The query beams are parts of a traced camera subpath going through a medium,
i.e. the volume segments (described in Section 3.2.3.1) found during tracing of
the subpath. The evaluation of the estimator takes place at each camera vertex
after tracing an outgoing ray (a “query ray”), either when the ray left the scene
or when a surface intersection or medium scattering point was found (on lines 15
in Listing 3.26 and 6 in Listing 3.27). Here is the left out code:

Listing 3.42: EvaluatePB2DIfLeft (part of the RunIterationmethod, UPBP.hxx)
1 AdditionalRayDataForMis data ( . . . ) ;
2 const Rgb cont r i b = mPB2DEmbreeBre. evalBre (
3 mQueryBeamType , ray , mVolumeSegments , mEstimatorTechniques ,
4 originInMedium ? AbstractMedium : : kOriginInMedium : 0 , &data ) ;
5 c o l o r += cameraState . mThroughput ∗ mPB2DNormalization ∗ con t r i b ;

Listing 3.43: EvaluatePB2D (part of the RunIteration method, UPBP.hxx)
1 AdditionalRayDataForMis data ( . . . ) ;
2 Rgb cont r ib ( 0 ) ;
3 i f ( i s e c t . IsOnSurface ( ) | | mQueryBeamType == SHORT BEAM)
4 con t r i b = mPB2DEmbreeBre. evalBre (
5 mQueryBeamType , ray , mVolumeSegments , mEstimatorTechniques ,
6 originInMedium ? AbstractMedium : : kOriginInMedium : 0 , &data ) ;
7 e l s e
8 con t r i b = mPB2DEmbreeBre. evalBre (
9 mQueryBeamType , ray , mLiteVolumeSegments , mEstimatorTechniques ,

10 originInMedium ? AbstractMedium : : kOriginInMedium : 0 , &data ) ;
11 c o l o r += cameraState . mThroughput ∗ mPB2DNormalization ∗ con t r i b ;

The code is almost the same in both cases. Firstly, data needed for MIS weight
computation are stored in an object of the AdditionalRayDataForMis class. This
object is then passed to the evalBre method of the mPB2DEmbreeBre object, which
is responsible for evaluation of the estimator.

Long and short query beams. As we explained in Section 1.2.1, there are two
types of beams – long and short. However, combining the long- and short-beam
variants of the same estimator would not be useful because the long-beam variant
always has less variance (as shown by Křivánek et al. [14]). On the other hand,
evaluating the long-beam estimators is obviously more costly, so a judicious choice
needs to be made. Therefore, our implementation allows users to set the type
of query beams which will be then used during the whole rendering. The user
choice is stored in the mQueryBeamType field (set during construction of the UPBP

renderer, see Section 3.3.1).

77



Segments. If a scattering point in a medium was sampled and long query
beams are used, then the evaluation is carried out for the LiteVolumeSegment

structures; otherwise, for the VolumeSegment structures. In other words, if
no scattering point in a medium was sampled, then the VolumeSegment and
LiteVolumeSegment structures, short and long query beams all denote the same
parts of the query ray. Otherwise, short query beams denote the parts of the
query ray stored as the VolumeSegment structures (they end at a scattering point
in a medium if sampled) and long query beams denote the parts stored as the
LiteVolumeSegment structures. This way the Heaviside step function used in
Equation 1.14 is implemented.

Although designation “(volume) segment” and “(query/photon) beam” both
refer to the same place in the space, we use the former one in the sense “a piece
of a medium” and the latter one in a sense “a (possibly) limited ray”.

Evaluation. Here is the aforementioned evalBre method:

Listing 3.44: evalBre (method, Bre.cxx)
1 Rgb evalBre (
2 BeamType beamType ,
3 const Ray& queryRay ,
4 const VolumeSegments& segments ,
5 const u int est imatorTechniques ,
6 const u int raySamplingFlags ,
7 AdditionalRayDataForMis∗ additionalRayDataForMis )
8 {
9 Rgb r e s u l t ( 0 ) ;

10 Rgb at tenuat ion ( 1 ) ;
11 f l o a t raySamplePdf = 1 .0 f ;
12 f l o a t raySampleRevPdf = 1 .0 f ;
13

14 // For each volume segment do . . .
15 f o r ( VolumeSegments : : c o n s t i t e r a t o r i t = segments . begin ( ) ;
16 i t != segments . end ( ) ; ++i t )
17 {
18 // Get a medium of the volume segment .
19 const AbstractMedium ∗ medium = scene . mMedia [ i t−>mMediumID ] ;
20

21 // Compute c o n t r i b u t i o n along a query beam correspond ing
22 // to the volume segment .
23 Rgb segmentResult ( 0 ) ;
24 i f (medium−>HasScatter ing ( ) )
25 {
26 . . evalBreContrib . .
27 }
28

29 // Update the at t enuat ion .
30 at tenuat ion ∗= beamType == SHORT BEAM ?
31 i t−>mAttenuation / i t−>mRaySamplePdf
32 :
33 i t−>mAttenuation ;
34

35 i f ( ! a t t enuat ion . i s P o s i t i v e ( ) )
36 r e turn r e s u l t ;
37

38 // Update pdfs .
39 raySamplePdf ∗= it−>mRaySamplePdf ;
40 raySampleRevPdf ∗= it−>mRaySampleRevPdf ;
41 }
42

43 r e turn r e s u l t ;
44 }
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Listing 3.45: evalBreContrib (part of the evalBre method, Bre.cxx)
1 i f ( additionalRayDataForMis )
2 {
3 additionalRayDataForMis−>mRaySamplePdf = raySamplePdf ;
4 additionalRayDataForMis−>mRaySampleRevPdf = raySampleRevPdf ;
5

6 // These f l a g s are used when eva lua t ing the e s t imator and r e l a t e
7 // to the part o f the query beam from i t s beg inning to the po int o f
8 // eva lua t i on . Therefore , the end i s always in a medium . The f l a g
9 // f o r the beg inning i s s e t only f o r the f i r s t query beam based on

10 // the g iven f l a g s .
11 additionalRayDataForMis−>mRaySamplingFlags =
12 AbstractMedium : : kEndInMedium ;
13 i f ( i t == segments . begin ( ) )
14 additionalRayDataForMis−>mRaySamplingFlags |= raySamplingFlags ;
15 }
16

17 // Create a query beam f o r the volume segment .
18 embree : : Ray queryBeam (
19 toEmbreeV3f ( queryRay . o r i g i n ) , toEmbreeV3f ( queryRay . d i r e c t i o n ) ,
20 i t−>mDistMin , i t−>mDistMax ) ;
21

22 // Send Embree data needed f o r eva lua t i on o f the e s t imator .
23 queryBeam . setAddi t iona lData (
24 medium , &segmentResult , beamType | est imatorTechniques ,
25 &queryRay , additionalRayDataForMis ) ;
26

27 // I n t e r s e c t the s to r ed photon po int sphere s by the c rea ted
28 // query beam and compute t h e i r c o n t r i b u t i on .
29 embree Inte r sec tor−>intersect (queryBeam) ;
30

31 // Attenuate the c o n t r i b u t i on computed f o r the volume segment
32 // and add i t to the t o t a l r e s u l t .
33 r e s u l t += attenuat ion ∗ segmentResult ;

The method iterates over the given volume segments along the query ray. For
each segment in a medium with scattering it updates additionalRayDataForMis,
creates a query beam, pass it with other necessary data to Embree and use Embree
to find intersections of the beam with the stored photon point spheres and compute
their contribution (see below). Contribution of all photon points in the current
segment is accumulated in the segmentResult field, which is then attenuated by
previous segments along the query ray and added to the total result.

Attenuation of photon point contribution consists of attenuation by a medium
inside the segment of evaluation and of attenuation by media inside the previous
segments along the query ray. The attenuation inside the segment of evaluation
is handled when computing the contribution (see below), the attenuation by the
previous segments is kept in the attenuation field. The attenuation field is
initialized with 1 (Listing 3.44, line 10) and then updated after each segment
(Listing 3.44, line 30). Let there be k segments s1, . . . , sk along the query ray,
let di denote the length of segment si and d′i the length sampled when tracing
the query ray through a medium of segment si (tracing and sampling a ray
is described in Section 3.2). If long query beams are used, contribution of all
photon points along the query ray up to the first active real intersection (or to
infinity if there is none) is computed no matter whether any scattering point in a
medium was sampled or not, i.e. no ray sampling pdf is considered. Therefore,
after segment sj the attenuation field is multiplied simply by T ′r(dj) becoming∏j

i=1 T
′
r(di). However, if short query beams are used, contribution of a photon

point is computed only if the scattering point in a medium was sampled far
enough (or was not sampled at all), i.e. a ray sampling pdf must be considered
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(as explained in Section 1.2.1). In this case, after segment sj the attenuation

field is multiplied by T ′r(dj)/Pr{d′j>dj} becoming
∏j

i=1 T
′
r(di)/Pr{d′i>di}.

When the evalBre method is called with segments as the VolumeSegment

structures, attenuation and pdfs/probabilities are already precomputed and stored
in their mAttenuation, mRaySamplePdf and mRaySampleRevPdf properties. The
mAttenuation property stores T ′r(dj) for all segments sj. The mRaySamplePdf

property stores probability Pr{d′j>dj} for all segments sj, j < k (we know that
a scattering point in a medium was not sampled there, since there would not
be further segments otherwise) and p̄(dk) or Pr{d′k > dk} for the last segment
depending on whether a scattering point was sampled there or not (that may
cause different value of the attenuation field than described above, but it is not
needed after the last segment). The mRaySampleRevPdf property stores similar
pdfs/probabilities but for a query ray going in the opposite direction. Therefore,
it equals Pr{d′j > dj} for all segments sj, j > 1 (we know that beginnings of
these segments are on media boundary, which corresponds to the opposite query
ray leaving them without sampling a scattering point in any of them) and p̄(d1)
or Pr{d′1 > d1} for the first segment depending on whether it begins inside a
medium or on its boundary (beginning inside a medium corresponds to sampling
a scattering point in it while tracing the opposite query ray). When the evalBre

method is called with segments as the LiteVolumeSegment structures, neither the
attenuation nor the pdfs/probabilities are stored in them and have to be computed
using the EvalAttenuation and RaySamplePdf methods (shown in Listing 3.4).

Computing contribution. When Embree is called to intersect the stored
photon point spheres with a given query beam (on line 29 in Listing 3.45), it
traverses its BVH over the spheres and calls the breIntersectFuncHomogeneous2
method of the EmbreePhoton class on encountered spheres. This method tests
whether the photon point is close enough to the query beam and if so, evaluates
the P-B2D estimator for them:

Listing 3.46: breIntersectFuncHomogeneous2 (method, Bre.cxx)
1 void breIntersectFuncHomogeneous2 ( embree : : I n t e r s e c t o r 1 ∗ This , embree : : Ray& ray )
2 {
3 const EmbreePhoton∗ thisPhoton = ( const EmbreePhoton ∗) This ;
4 const UPBPLightVertex∗ l i gh tVe r t ex = thisPhoton−>l i gh tVe r t ex ;
5

6 // Data needed f o r the computation . Contains some g l o b a l r ende re r v a r i a b l e s
7 // and camera subpath s t a t e p r o p e r t i e s .
8 const embree : : AdditionalRayDataForMis∗ data = ray . additionalRayDataForMis ;
9

10 f l o a t photonIsectDis t , i sectRadSqr ;
11

12 // Test whether the query beam i n t e r s e c t s photon d i s c o f t h i s photon po int .
13 i f ( testIntersectionBre (
14 photonIsectDis t , i sectRadSqr , ∗ ray . origRay , ray . tnear , ray . t f a r ,
15 l i ghtVer tex−>mHitpoint , thisPhoton−>rad iusSqr ) )
16 {
17 // Reject i f the f u l l path l ength would be above the maximum path length .
18 i f ( l i ghtVer tex−>mPathLength + data−>mCameraPathLength >
19 data−>mMaxPathLength)
20 r e turn ;
21

22 . . breIntersectPart1 . .
23 . . breIntersectPart2 . .
24 }
25 }
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Listing 3.47: breIntersectPart1 (part of the breIntersectFuncHomogeneous2

method, Bre.cxx)
1 // Compute the i n t e r s e c t i o n .
2 const Pos i s e c t P t = ray . origRay−>o r i g i n
3 + photonI s ec tDi s t ∗ ray . origRay−>d i r e c t i o n ;
4

5 // Compute at t enuat ion along the beam from i t s o r i g i n to the i n t e r s e c t i o n .
6 Rgb at tenuat ion =
7 ray . medium−>EvalAttenuation ( photonI s ec tD i s t − ray . tnear ) ;
8 const f l o a t pdf =
9 at tenuat ion [ ray . medium−>mMinPositiveAttenuationCoefCompIndex ( ) ] ;

10 i f ( ray . f l a g s & SHORT BEAM)
11 at tenuat ion /= pdf ;
12

13 i f ( ! a t t enuat ion . i s P o s i t i v e ( ) )
14 r e turn ;
15

16 // Compute ray sampling pdfs in the segment . The d i r e c t one
17 // does not have to t e s t ray sampling f l a g s s i n c e we know
18 // the end i s in a medium .
19 f l o a t raySamplePdf =
20 ray . medium−>mMinPositiveAttenuationCoefComp ( ) ∗ pdf ;
21 f l o a t raySampleRevPdf =
22 ( data−>mRaySamplingFlags & AbstractMedium : : kOriginInMedium ) ?
23 raySamplePdf : pdf ;
24

25 // Mult ip ly pdfs o f the cur rent segment with pdfs o f prev ious
26 // segments to get o v e r a l l pdfs .
27 raySamplePdf ∗= data−>mRaySamplePdf ;
28 raySampleRevPdf ∗= data−>mRaySampleRevPdf ;
29

30 // Ratio o f a p r o b a b i l i t y that the beam i s sampled long enough
31 // f o r i n t e r s e c t i o n and a pdf o f sampling a s c a t t e r i n g po int at
32 // the i n t e r s e c t i o n . Needed f o r MIS weight computation .
33 f l o a t raySamplePdfsRatio =
34 1 .0 f / ray . medium−>mMinPositiveAttenuationCoefComp ( ) ;
35

36 // Ret r i eve l i g h t incoming d i r e c t i o n in the world coo rd ina t e s .
37 const Dir l i g h t D i r e c t i o n = l ightVer tex−>mBSDF. WorldDirFix ( ) ;
38

39 // Get the s c a t t e r i n g c o e f f i c i e n t .
40 const Rgb& s c a t t e r i n g C o e f f = ray . medium−>GetScatter ingCoef ( ) ;
41

42 // Evaluate the s c a t t e r i n g func t i on .
43 f l o a t cameraBsdfDirPdfW , cameraBsdfRevPdfW , sinTheta ;
44 const Rgb cameraBsdfFactor = s c a t t e r i n g C o e f f ∗ PhaseFunction : : Evaluate (
45 −ray . d i r , l i g h t D i r e c t i o n , ray . medium−>MeanCosine ( ) ,
46 &cameraBsdfDirPdfW , &cameraBsdfRevPdfW , &sinTheta ) ;
47

48 i f ( cameraBsdfFactor . i sBlackOrNegat ive ( ) )
49 r e turn ;
50

51 // Complete the d i r e c t p r o b a b i l i t y .
52 cameraBsdfDirPdfW ∗= ray . medium−>ContinuationProb ( ) ;
53

54 // Complete the r e v e r s e p r o b a b i l i t y . Even though t h i s i s pdf from
55 // the camera BSDF, the cont inuat i on p r o b a b i l i t y must come from
56 // the l i g h t BSDF, because that would govern i t i f the l i g h t path
57 // a c t u a l l y cont inued .
58 cameraBsdfRevPdfW ∗= l ightVer tex−>mBSDF. ContinuationProb ( ) ;
59

60 // Compute the Epanechnikov ke rne l .
61 const f l o a t ke rne l = (1 − i sectRadSqr / thisPhoton−>rad iusSqr )
62 / ( thisPhoton−>rad iusSqr ∗ PI F ∗ 0 .5 f ) ;
63

64 i f ( ! Float : : i s P o s i t i v e ( k e rne l ) )
65 r e turn ;
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Listing 3.48: breIntersectPart2 (part of the breIntersectFuncHomogeneous2

method, Bre.cxx)
1 // Compute an unweighted r e s u l t .
2 const Rgb unweightedResult = l ightVer tex−>mThroughput ∗
3 at tenuat ion ∗
4 cameraBsdfFactor ∗
5 ke rne l ;
6

7 i f ( unweightedResult . i sBlackOrNegat ive ( ) )
8 r e turn ;
9

10 // Compute a c o r r e c t MIS weight .
11 f l o a t misWeight = 1 .0 f ;
12 . . .PB2DMis . . .
13

14 // Weight and accumulate the r e s u l t ( on the beam ) .
15 ∗ s t a t i c c a s t <Rgb∗>( ray . accumResult ) +=
16 misWeight ∗
17 unweightedResult ;

At first, the testIntersectionBre method tests whether the photon point is
close enough to the query beam, i.e. whether the query ray the beam lies on
intersects a “photon disc” of the photon point sphere (planar cut of the sphere
going through its centre perpendicular to the ray) within bounds of the beam. If
it does, the method returns a distance of this intersection from the beam origin
(photonIsectDist) and a squared distance of this intersection from the centre of
the sphere (isectRadSqr). The evaluation then continues.

Attenuation by a medium along the beam (from its origin to the intersection)
is computed, its minimum positive component equals to the probability that
the beam is sampled long enough to intersect the photon disc (as shown in
Section 3.2.2). As explained above, if using short query beams, the attenuation has
to be divided by this probability. After computing ray sampling pdfs/probabilities
(according to formulas in Section 3.2.2), the phase function is evaluated using the
static PhaseFunction::Evaluate method (described in Section 3.2.4). The phase
function along the beam is used, i.e. the evaluation is carried out for the medium
along the beam, the query ray direction (as incoming) and the incoming direction
at the light vertex (as outgoing). The returned pdfs of sampling the phase function
in the direct (cameraBsdfDirPdfW) and reverse direction (cameraBsdfRevPdfW)
are needed only for computation of the MIS weight, which comes at the end of the
method and is described in Section 3.5. But before that, we evaluate the kernel.
Instead of a constant kernel as in the case of the SURF and P-P3D estimators
we use the Epanechnikov kernel. Then an unweighted result is computed, it is
weighted and accumulated.

Result. After returning from the evalBre method the computed contribution
is added multiplied by the camera subpath throughput and a normalization factor
according to Equation 2.9. Let’s consider a photon point at light vertex x̃s
contributing in the j-th segment along a query ray of length ls+1 going from
camera vertex xs+1 creating vertex xs. Let further beginj denote a point on the
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query ray where the j-th segment begins. Then

cameraState.mThroughput = Cc[xs+1 . . .xk),

mPB2DNormalization =
1

npaths
,

lightVertex->mThroughput = Cl(x0 . . . x̃s),

cameraBsdfFactor = ρ(x̃s,xs),

kernel = K2(x̃s,xs).

If long query beams are used, then

misWeight = ŵP-Bl2Ds ,

attenuation =

j−1∏
i=1

(T ′r(di))T
′
r(|beginj − xs|) = Tr(ts+1),

where we used a definition of Tr from Section 3.2.5. An individual contribution of
photon point x̃s (as added on line 5 in Listing 3.42 or on line 11 in Listing 3.43)
is:

color+=cameraState.mThroughput * mPB2DNormalization * misWeight

* lightVertex->mThroughput * attenuation

* cameraBsdfFactor * kernel

=
1

npaths
ŵP-Bl2DsCl(x0 . . . x̃s)ρ(x̃s,xs)K2(x̃s,xs)Tr(ts+1)Cc[xs+1 . . .xk)

=
1

npaths
ŵP-Bl2DsLe(x0)

T (x0 . . . x̃s)

p(x0 . . . x̃s)
ρ(x̃s,xs)K2(x̃s,xs)

Tr(ts+1)
ρ(xs+1)

p(ωxs+1)

T (xs+1 . . .xk)

p(xs+1 . . .xk)
We(xk)

=
1

npaths
ŵP-Bl2DsLe(x0)

T (x0 . . . x̃s)

p(x0 . . . x̃s)
ρ(x̃s,xs)K2(x̃s,xs)

T (xs . . .xk)

G(xs,xs+1)p(ωxs+1)p(xs+1 . . .xk)
We(xk).

If short query beams are used, then

misWeight = ŵP-Bs2Ds ,

attenuation =

j−1∏
i=1

(
T ′r(di)

Pr{d′i>di}

)
T ′r(|beginj − xs|)

Pr{d′j> |beginj − xs|}
=

Tr(ts+1)

Pr{ls+1>ts+1}
,

where we used a definition of Pr{ls+1>ts+1} from Section 3.2.5. An individual
contribution of photon point x̃s (as added on line 5 in Listing 3.42 or on line 11
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in Listing 3.43) is:

color+=cameraState.mThroughput * mPB2DNormalization * misWeight

* lightVertex->mThroughput * attenuation

* cameraBsdfFactor * kernel

=
1

npaths
ŵP-Bs2DsCl(x0 . . . x̃s)ρ(x̃s,xs)K2(x̃s,xs)

Tr(ts+1)

Pr{ls+1>ts+1}
Cc[xs+1 . . .xk)

=
1

npaths
ŵP-Bs2DsLe(x0)

T (x0 . . . x̃s)

p(x0 . . . x̃s)
ρ(x̃s,xs)K2(x̃s,xs)

Tr(ts+1)

Pr{ls+1>ts+1}
ρ(xs+1)

p(ωxs+1)

T (xs+1 . . .xk)

p(xs+1 . . .xk)
We(xk)

=
1

npaths
ŵP-Bs2DsLe(x0)

T (x0 . . . x̃s)

p(x0 . . . x̃s)
ρ(x̃s,xs)K2(x̃s,xs)

T (xs . . .xk)

G(xs,xs+1)Pr{ls+1>ts+1}p(ωxs+1)p(xs+1 . . .xk)
We(xk),

which is in line with Equation 1.14.

Kernel and factors. Note that while we used a constant kernel for evaluation
of the SURF and P-P3D estimators and so it could be included in normalization
factors mSurfNormalization and mPP3DNormalization, we use the Epanechnikov
kernel with the P-B2D estimator, which is dependent on a mutual position of a
query beam and a photon point. Therefore, it is computed during evaluation of the
estimator and cannot be included in normalization factor mPB2DNormalization

(see Listing 3.41). However, now we speak about a kernel used when evaluating
the P-B2D estimator, i.e. when creating a path with it. When we compute MIS
weights for estimators along the path, then the P-B2D estimator is assumed to
use a constant kernel too, since we do not have data to compute the Epanechnikov
kernel there (we have only a vertex there, no beam, no distance from it). That is
why mPB2DMisWeightFactor (in Listing 3.41) includes a constant kernel.

3.4.3 B-B1D

Finally, we describe implementation of the B-B1D estimator. It evaluates the
contribution of stored photon beams distributed from light sources over a scene
along query beams distributed from the camera.

3.4.3.1 Photon beams

The photon beams are parts of a traced light subpath going through a medium,
i.e. the volume segments (described in Section 3.2.3.1) found during tracing of the
subpath. For each of these segments a photon beam is created and stored in a list
using the AddBeams method (of the UPBP class) which is called every time a new
ray of a light subpath (a “photon ray”) is traced (on line 36 in Listing 3.14). Note
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that similarly to photon points, photon beams are not reused among iterations,
i.e. every iteration uses only photon beams created in that iteration.

Long and short photon beams. The distinction between short and long
beams introduced in Section 1.2.1 applies not only to query beams but to photon
beams as well. And for the same reason as in the case of query beams, our
implementation never combines the long and short beams using MIS. Instead, it
uses only one type of photon beams during whole rendering based on user settings,
i.e. based on a value of the mPhotonBeamType field (set in a constructor of the
UPBP renderer, see Section 3.3.1).

Adding beams. Here is the aforementioned AddBeams method creating and
storing photon beams:

Listing 3.49: AddBeams (method, UPBP.hxx)
1 void AddBeams(
2 const Ray &aRay ,
3 const Rgb &aThroughput ,
4 UPBPLightVertex ∗ aLightVertex ,
5 const u int aRaySamplingFlags ,
6 const f l o a t aLastPdfWInv )
7 {
8 Rgb throughput = aThroughput ;
9 f l o a t raySamplePdf = 1 .0 f ;

10 f l o a t raySampleRevPdf = 1 .0 f ;
11

12 i f (mPhotonBeamType == SHORT BEAM)
13 {
14 // Short photon beams are c rea ted from VolumeSegment s t r u c t u r e s .
15 f o r ( VolumeSegments : : c o n s t i t e r a t o r i t = mVolumeSegments . cbeg in ( ) ;
16 i t != mVolumeSegments . cend ( ) ; ++i t )
17 {
18 . .AddShortBeam. .
19

20 // Update throughput .
21 throughput ∗= it−>mAttenuation / i t−>mRaySamplePdf ;
22

23 // Update pdfs .
24 raySamplePdf ∗= it−>mRaySamplePdf ;
25 raySampleRevPdf ∗= it−>mRaySampleRevPdf ;
26 }
27 }
28 e l s e
29 {
30 // Long photon beams are c rea ted from LiteVolumeSegment s t r u c t u r e s .
31 f o r ( LiteVolumeSegments : : c o n s t i t e r a t o r i t = mLiteVolumeSegments . cbeg in ( ) ;
32 i t != mLiteVolumeSegments . cend ( ) ; ++i t )
33 {
34 . .AddLongBeam. .
35

36 // Update throughput .
37 throughput ∗= medium−>EvalAttenuation ( i t−>mDistMax − i t−>mDistMin ) ;
38

39 // Update pdfs .
40 f l o a t segmentRaySampleRevPdf ;
41 f l o a t segmentRaySamplePdf = beam .mMedium−>RaySamplePdf (
42 aRay , i t−>mDistMin , i t−>mDistMax , i t == mLiteVolumeSegments . cbeg in ( )
43 ? aRaySamplingFlags : 0 , &segmentRaySampleRevPdf ) ;
44 raySamplePdf ∗= segmentRaySamplePdf ;
45 raySampleRevPdf ∗= segmentRaySampleRevPdf ;
46 }
47 }
48 }
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Listing 3.50: AddShortBeam (part of the AddBeams method, UPBP.hxx)
1 PhotonBeam beam ;
2 beam .mMedium = mScene . mMedia [ i t−>mMediumID ] ;
3

4 // Only beams in media with s c a t t e r i n g are s to r ed .
5 i f (beam .mMedium−>HasScatter ing ( ) )
6 {
7 // Set the beam d i r e c t i o n ( the d i r e c t i o n o f the ray the segment l i e s
8 // on ) , o r i g i n ( the po int on the ray where the segment beg ins )
9 // and length ( the l ength o f the segment ) .

10 beam .mRay = Ray(
11 aRay . o r i g i n + aRay . d i r e c t i o n ∗ i t−>mDistMin , aRay . d i r e c t i o n ) ;
12 beam . mLength = i t−>mDistMax − i t−>mDistMin ;
13

14 // Set other beam p r o p e r t i e s .
15 beam . mFlags = SHORT BEAM;
16 beam . mRaySamplePdf = raySamplePdf ;
17 beam . mRaySampleRevPdf = raySampleRevPdf ;
18 beam . mLastPdfWInv = aLastPdfWInv ;
19 beam . mThroughputAtOrigin = throughput ;
20 beam . mLightVertex = aLightVertex ;
21

22 // These f l a g s are used when eva lua t ing the e s t imator and r e l a t e
23 // to the part o f the beam from i t s beg inning to the po int o f
24 // eva lua t i on . Therefore , the end i s always in a medium . The f l a g
25 // f o r the beg inning i s s e t only f o r the f i r s t beam based on
26 // the g iven f l a g s .
27 beam . mRaySamplingFlags = AbstractMedium : : kEndInMedium ;
28 i f ( i t == mVolumeSegments . cbeg in ( ) )
29 beam . mRaySamplingFlags |= aRaySamplingFlags ;
30

31 // Store the c rea ted beam .
32 mPhotonBeamsArray . push back (beam ) ;
33 }

Listing 3.51: AddLongBeam (part of the AddBeams method, UPBP.hxx)
1 PhotonBeam beam ;
2 beam .mMedium = mScene . mMedia [ i t−>mMediumID ] ;
3

4 // Only beams in media with s c a t t e r i n g are s to r ed .
5 i f (beam .mMedium−>HasScatter ing ( ) )
6 {
7 // Set the beam d i r e c t i o n ( the d i r e c t i o n o f the ray the segment l i e s
8 // on ) , o r i g i n ( the po int on the ray where the segment beg ins )
9 // and length ( the l ength o f the segment ) .

10 beam .mRay = Ray(
11 aRay . o r i g i n + aRay . d i r e c t i o n ∗ i t−>mDistMin , aRay . d i r e c t i o n ) ;
12 beam . mLength = i t−>mDistMax − i t−>mDistMin ;
13

14 // Set other beam p r o p e r t i e s .
15 beam . mFlags = LONG BEAM;
16 beam . mRaySamplePdf = raySamplePdf ;
17 beam . mRaySampleRevPdf = raySampleRevPdf ;
18 beam . mLastPdfWInv = aLastPdfWInv ;
19 beam . mThroughputAtOrigin = throughput ;
20 beam . mLightVertex = aLightVertex ;
21

22 // These f l a g s are used when eva lua t ing the e s t imator and r e l a t e
23 // to the part o f the beam from i t s beg inning to the po int o f
24 // eva lua t i on . Therefore , the end i s always in a medium . The f l a g
25 // f o r the beg inning i s s e t only f o r the f i r s t beam based on
26 // the g iven f l a g s .
27 beam . mRaySamplingFlags = AbstractMedium : : kEndInMedium ;
28 i f ( i t == mLiteVolumeSegments . cbeg in ( ) )
29 beam . mRaySamplingFlags |= aRaySamplingFlags ;
30

31 // Store the c rea ted beam .
32 mPhotonBeamsArray . push back (beam ) ;
33 }
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The method iterates over segments found when tracing the last photon ray. It
uses segments of the VolumeSegment type for short query beams and of the
LiteVolumeSegment type for long query beams. For each of the segments which
lie in a medium with scattering, the method creates an object of the PhotonBeam

class (in the PhotonBeam.hxx file), sets its properties and stores it in a simple list
(mPhotonBeamsArray). Between the segments it gradually computes throughput
and ray sampling pdfs in a very similar way as the evalBre method does (see
Listing 3.44). The only difference is that while the evalBre method computes
only attenuation caused by the processed segments, the AddBeams method has to
multiply it with throughput of the traced light subpath and store it with beams,
since the value is not kept anywhere else.

Acceleration structure. For a faster photon beams lookup along a query beam
we build a uniform grid over the photon beams. Building of the grid (as well
as evaluation of the estimator) is provided by the mBB1DPhotonBeams object of
the PhotonBeamsEvaluator class (from the PhBeams.hxx and PhBeams.cxx files).
The build is handled by its build method and takes place right after all light
subpaths have been traced and before tracing camera subpaths (on line 42 in
Listing 3.13). It takes the stored photon beams (mPhotonBeamsArray), makes
a cylinder with radius equal to the kernel radius from each of them and builds
a uniform grid over them. The grid itself is implemented in the Grid class (in
the Grid.hxx file) and is composed of cube shaped cells. When it is given the
beams, it divides their axis aligned bounding box (AABB) in a dimension of its
maximum extent according to user defined resolution. This gives the size of the
cells. Resolution in other dimensions is then set to cover the AABB. A pointer to
a beam is stored in each cell the cylinder of the beam intersects.

3.4.3.2 Query beams

Description of query beams is almost identical as in the case of the P-B2D
estimator. The query beams are parts of a traced camera subpath going through
a medium, i.e. the volume segments (described in Section 3.2.3.1) found during
tracing of the subpath. The evaluation of the estimator takes place at each camera
vertex after tracing an outgoing ray (a “query ray”), either when the ray left the
scene or when an “intersection” was found (on lines 12 in Listing 3.27 and 21 in
Listing 3.26). Here is the left out code:

Listing 3.52: EvaluateBB1D (part of the RunIteration method, UPBP.hxx)
1 AdditionalRayDataForMis data ( . . . ) ;
2 Rgb cont r ib ( 0 ) ;
3 i f ( i s e c t . IsOnSurface ( ) | | mQueryBeamType == SHORT BEAM)
4 con t r i b = mBB1DPhotonBeams.evalBeamBeamEstimate(
5 mQueryBeamType , ray , mVolumeSegments , mEstimatorTechniques ,
6 originInMedium ? AbstractMedium : : kOriginInMedium : 0 , &data ) ;
7 e l s e
8 con t r i b = mBB1DPhotonBeams.evalBeamBeamEstimate(
9 mQueryBeamType , ray , mLiteVolumeSegments , mEstimatorTechniques ,

10 originInMedium ? AbstractMedium : : kOriginInMedium : 0 , &data ) ;
11 c o l o r += cameraState . mThroughput ∗ mBB1DNormalization ∗ con t r i b ;
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Listing 3.53: EvaluateBB1DIfLeft (part of the,RunIterationmethod, UPBP.hxx)
1 AdditionalRayDataForMis data ( . . . ) ;
2 const Rgb cont r i b = mBB1DPhotonBeams.evalBeamBeamEstimate(
3 mQueryBeamType , ray , mVolumeSegments , mEstimatorTechniques ,
4 originInMedium ? AbstractMedium : : kOriginInMedium : 0 , &data ) ;
5 c o l o r += cameraState . mThroughput ∗ mBB1DNormalization ∗ con t r i b ;

The code is almost the same as in Listing 3.43 and 3.42. It differs only by using the
mBB1DNormalization factor and the evalBeamBeamEstimate method, the rest is
identical.

Evaluation. The evalBeamBeamEstimate method goes through the given seg-
ments and lets the grid find intersection of corresponding query beams with the
stored photon beams and compute their contribution:

Listing 3.54: evalBeamBeamEstimate (method, PhBeams.cxx)
1 Rgb evalBeamBeamEstimate (
2 BeamType beamType ,
3 const Ray& queryRay ,
4 const VolumeSegments& segments ,
5 const u int est imatorTechniques ,
6 const u int raySamplingFlags ,
7 embree : : AdditionalRayDataForMis∗ additionalRayDataForMis )
8 {
9 Rgb r e s u l t ( 0 ) ;

10 Rgb at tenuat ion ( 1 ) ;
11 f l o a t raySamplePdf = 1 .0 f ;
12 f l o a t raySampleRevPdf = 1 .0 f ;
13

14 // For each volume segment do . . .
15 f o r ( VolumeSegments : : c o n s t i t e r a t o r i t = segments . begin ( ) ;
16 i t != segments . end ( ) ; ++i t )
17 {
18 // Get a medium of the volume segment .
19 const AbstractMedium ∗ medium = scene . mMedia [ i t−>mMediumID ] ;
20

21 // Compute c o n t r i b u t i o n along a query beam correspond ing
22 // to the volume segment .
23 Rgb segmentResult ( 0 ) ;
24 i f (medium−>HasScatter ing ( ) )
25 {
26 . . evalBeamBeamContrib . .
27

28 // Attenuate the c o n t r i b u t i o n computed f o r the volume segment
29 // and add i t to the t o t a l r e s u l t .
30 r e s u l t += attenuat ion ∗ segmentResult ;
31 }
32

33 // Update the at t enuat ion .
34 at tenuat ion ∗= beamType == SHORT BEAM ?
35 i t−>mAttenuation / i t−>mRaySamplePdf
36 :
37 i t−>mAttenuation ;
38

39 i f ( ! a t t enuat ion . i s P o s i t i v e ( ) )
40 r e turn r e s u l t ;
41

42 // Update pdfs .
43 raySamplePdf ∗= it−>mRaySamplePdf ;
44 raySampleRevPdf ∗= it−>mRaySampleRevPdf ;
45 }
46

47 r e turn r e s u l t ;
48 }
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Listing 3.55: evalBeamBeamContrib (part of the evalBeamBeamEstimate method,
PhBeams.cxx)

1 i f ( additionalRayDataForMis )
2 {
3 additionalRayDataForMis−>mRaySamplePdf = raySamplePdf ;
4 additionalRayDataForMis−>mRaySampleRevPdf = raySampleRevPdf ;
5

6 // These f l a g s are used when eva lua t ing the e s t imator and r e l a t e
7 // to the part o f the query beam from i t s beg inning to the po int o f
8 // eva lua t i on . Therefore , the end i s always in a medium . The f l a g
9 // f o r the beg inning i s s e t only f o r the f i r s t query beam based on

10 // the g iven f l a g s .
11 additionalRayDataForMis−>mRaySamplingFlags =
12 AbstractMedium : : kEndInMedium ;
13 i f ( i t == segments . begin ( ) )
14 additionalRayDataForMis−>mRaySamplingFlags |= raySamplingFlags ;
15 }
16 // I n t e r s e c t the s to r ed photon beams by a query beam correspond ing
17 // to the volume segment and compute t h e i r c o n t r i b u t i on .
18 segmentResult = acce lS t ruc t−>evalBeamBeamEstimate (
19 queryRay , beamType | est imatorTechniques , medium ,
20 i t−>mDistMin , i t−>mDistMax , additionalRayDataForMis ) ;

This method is also very similar to the corresponding one evaluating the P-B2D
estimator (see Listing 3.44 and its description). Instead of Embree the method
uses the grid for finding intersections of a query beam with the stored photon
beams and compute their contribution. The grid traces the query beam through
its cells and calls the accumulate2 method of each photon beam found there.
The query beam for the method is specified via the query ray (ray) and distances
on it from its origin to the beginning (mint) and the end (maxt) of the query
beam. The photon beam is besides its ray (mRay) determined only by its length
(mLength) since the ray origin equals the photon beam origin (this ray of the
photon beam should not be confused with the photon ray, which originates at
light vertex and all photon beams lie on it similarly as query beams lie on the
query ray).

Computing contribution. The accumulate2 method tests whether the query
beam intersects the photon beam and if so, evaluates the B-B1D estimator for
them:

Listing 3.56: accumulate2 (method, PhotonBeam.hxx)
1 void accumulate2 (
2 const Ray &ray ,
3 const f l o a t mint ,
4 const f l o a t maxt ,
5 const f l o a t i s ec tmint ,
6 const f l o a t isectmaxt ,
7 Rgb & accumResult ,
8 uint rayFlags ,
9 const HomogeneousMedium ∗ medium ,

10 const AdditionalRayDataForMis∗ addit ionalDataForMis = NULL)
11 {
12 f l o a t beamBeamDistance , sinTheta , que ry I s e c tD i s t , beamIsectDist ;
13

14 i f (mMedium == medium && testIntersect ionBeamBeam (
15 ray . o r i g i n , ray . d i r e c t i o n , i s ec tmint , i sectmaxt , mRay. o r i g i n ,
16 mRay. d i r e c t i o n , 0 , mLength , mMaxRadiusSqr , beamBeamDistance ,
17 sinTheta , que ry I s e c tD i s t , beamIsectDist ) ) {
18 . . accumulatePart1 . .
19 . . accumulatePart2 . .
20 }
21 }
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Listing 3.57: accumulatePart1 (part of the accumulate2method, PhotonBeam.hxx)

1 // Reject i f the f u l l path l ength would be above the maximum path length .
2 i f ( mLightVertex−>mPathLength + 1
3 + addit ionalDataForMis−>mCameraPathLength
4 > addit ionalDataForMis−>mMaxPathLength)
5 r e turn ;
6

7 // Compute at t enuat ion along the query beam .
8 Rgb at tenuat ion = medium−>EvalAttenuation ( q u e r y I s e c t D i s t − mint ) ;
9 const f l o a t pfdQuery =

10 at tenuat ion [ medium−>mMinPositiveAttenuationCoefCompIndex ( ) ] ;
11 i f ( rayFlags & SHORT BEAM)
12 at tenuat ion /= pfdQuery ;
13

14 // Compute at t enuat ion along the photon beam .
15 const Rgb beamAtt = medium−>EvalAttenuation ( beamIsectDist ) ;
16 at tenuat ion ∗= beamAtt ;
17 const f l o a t pfdBeam =
18 beamAtt [ medium−>mMinPositiveAttenuationCoefCompIndex ( ) ] ;
19 i f ( mFlags & SHORT BEAM)
20 at tenuat ion /= pfdBeam ;
21

22 i f ( ! a t t enuat ion . i s P o s i t i v e ( ) )
23 r e turn ;
24

25 // Compute ray sampling pdfs f o r the query and photon beam .
26 // The d i r e c t ones do not have to t e s t ray sampling f l a g s
27 // s i n c e we know the end i s in a medium .
28 f l o a t raySamplePdfQuery =
29 medium−>mMinPositiveAttenuationCoefComp ( ) ∗ pfdQuery ;
30 f l o a t raySampleRevPdfQuery =
31 ( addit ionalDataForMis−>mRaySamplingFlags &
32 AbstractMedium : : kOriginInMedium ) ? raySamplePdfQuery : pfdQuery ;
33 f l o a t raySamplePdfBeam =
34 medium−>mMinPositiveAttenuationCoefComp ( ) ∗ pfdBeam ;
35 f l o a t raySampleRevPdfBeam = ( mRaySamplingFlags &
36 AbstractMedium : : kOriginInMedium ) ? raySamplePdfBeam : pfdBeam ;
37

38 // Mult ip ly pdfs o f the query and photon beam with pdfs
39 // o f prev ious segments along the query a photon ray
40 // to get o v e r a l l pdfs .
41 raySamplePdfQuery ∗= addit ionalDataForMis−>mRaySamplePdf ;
42 raySampleRevPdfQuery ∗= addit ionalDataForMis−>mRaySampleRevPdf ;
43 raySamplePdfBeam ∗= mRaySamplePdf ;
44 raySampleRevPdfBeam ∗= mRaySampleRevPdf ;
45

46 // Ratio o f a p r o b a b i l i t y that the query /photon beam i s sampled
47 // long enough f o r i n t e r s e c t i o n and a pdf o f sampling a s c a t t e r i n g
48 // po int at the i n t e r s e c t i o n . Needed f o r MIS weight computation .
49 f l o a t raySamplePdfsRatioQuery =
50 1 .0 f / medium−>mMinPositiveAttenuationCoefComp ( ) ;
51 f l o a t raySamplePdfsRatioBeam =
52 1 .0 f / medium−>mMinPositiveAttenuationCoefComp ( ) ;
53

54 // Get the s c a t t e r i n g c o e f f i c i e n t .
55 const Rgb& s c a t t e r i n g C o e f f = medium−>GetScatter ingCoef ( ) ;
56

57 // Evaluate the s c a t t e r i n g func t i on .
58 f l o a t bsdfDirPdfW , bsdfRevPdfW ;
59 const Rgb bsdfFactor = s c a t t e r i n g C o e f f ∗ PhaseFunction : : Evaluate (
60 −ray . d i r e c t i o n , −mRay. d i r e c t i o n , medium−>MeanCosine ( ) ,
61 &bsdfDirPdfW , &bsdfRevPdfW ) ;
62

63 i f ( bsd fFactor . i sBlackOrNegat ive ( ) )
64 r e turn ;
65

66 // Complete the p r o b a b i l i t i e s .
67 bsdfDirPdfW ∗= medium−>ContinuationProb ( ) ;
68 bsdfRevPdfW ∗= medium−>ContinuationProb ( ) ;
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Listing 3.58: accumulatePart2 (part of the accumulate2method, PhotonBeam.hxx)

1 // Compute the Epanechnikov ke rne l .
2 const f l o a t ke rne l =
3 (1 − beamBeamDistance ∗ beamBeamDistance / ( mRadius ∗ mRadius ) )
4 ∗ 3 / (4 ∗ mRadius∗ s inTheta ) ;
5

6 // Compute an unweighted r e s u l t .
7 const Rgb unweightedResult =
8 mThroughputAtOrigin ∗
9 at tenuat ion ∗

10 bsdfFactor ∗
11 ke rne l ;
12

13 i f ( unweightedResult . i sBlackOrNegat ive ( ) )
14 r e turn ;
15

16 // Compute a c o r r e c t MIS weight .
17 f l o a t misWeight = 1 .0 f ;
18 . . .BB1DMis . . .
19

20 // Weight and accumulate the r e s u l t .
21 accumResult +=
22 misWeight ∗
23 unweightedResult ;

At first, the testIntersectionBeamBeam method tests whether the query beam
intersects the cylinder of the photon beam. Let lq denote a line the query beam
lies on, lp a line the photon beam lies on, Pq a point on lq which is closest to lp
and Pp a point on lp which is closest lq. The query beam intersects the cylinder
if distance |Pq − Pp| is not greater than the kernel radius, point Pp lies on the
photon beam (i.e. from 0 to mLength on the ray of the photon beam) and point
Pq lies on a part of the query beam inside a grid cell where the photon beam was
found (i.e. from isectmint to isectmaxt on the query ray). If all the conditions
are met, the method returns distance |Pq − Pp| (beamBeamDistance), a distance
along the query ray (i.e. from a camera vertex) to point Pq (queryIsectDist)
and a distance along the photon beam (i.e. from the beam origin) to point Pp
(beamIsectDist). The evaluation then continues.

Attenuation by a medium along the query beam (from its origin to point Pq)
is computed, its minimum positive component equals to the probability the query
beam is sampled long enough to intersect the cylinder (as shown in Section 3.2.2).
As explained above, if using short query beams, the attenuation has to be divided
by this probability. Similarly, attenuation along the photon beam (from its origin
to point Pp) is computed and divided by its minimum positive component if
short photon beams are used. The attenuation along the query beam and the
photon beam are stored multiplied together (in the attenuation field). After
computing ray sampling pdfs/probabilities for both the query beam and photon
beam (according to formulas in Section 3.2.2), the phase function is evaluated
using the static PhaseFunction::Evaluate method (described in Section 3.2.4).
The evaluation is carried out for the medium along the query beam, the query
beam direction (as incoming) and the photon beam direction (as outgoing). The
returned pdfs of sampling the phase function in the direct (bsdfDirPdfW) and
reverse direction (bsdfRevPdfW) are needed only for computation of the MIS
weight, which comes at the end of the method and is described in Section 3.5.
But before that, we evaluate the kernel. As in the case of the P-B2D estimator
we use the Epanechnikov kernel. Then an unweighted result is computed, it is
weighted and accumulated.
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Result. After returning from the testIntersectionBeamBeam method the com-
puted contribution is added multiplied by the camera subpath throughput and a
normalization factor according to Equation 2.12. Let’s consider a query ray of
length ls+1 going from camera vertex xs+1 and a photon ray of length ls−1 going
from light vertex xs−1. Let the j-th query beam on the query ray intersect cylinder
of the k-th photon beam on the photon ray creating vertices xs on the query beam
and x̃s on the photon beam. Let further beginq,j denote a point on the query ray
where the j-th query beam begins and beginp,k a point on the photon ray where
the k-th photon beam begins. Then

cameraState.mThroughput = Cc[xs+1 . . .xk),

mBB1DNormalization =
1

npaths
,

mThroughputAtOrigin = Cl(x0 . . .xs−1],

bsdfFactor = ρ(x̃s,xs),

kernel =
K1(x̃s,xs)

sin θxs−1xs+1

.

If long query and photon beams are used, then

misWeight = ŵBl-Bl1Ds ,

attenuation =

j−1∏
i=1

(T ′r(di))T
′
r(|beginq,j − xs|)

k−1∏
i=1

(T ′r(di))T
′
r(|beginp,k − x̃s|)

=Tr(ts−1)Tr(ts+1),

where we used a definition of Tr from Section 3.2.5. An individual contribution of
this pair of query beam and photon beam (as added on line 5 in Listing 3.53 or
on line 11 in Listing 3.52) is:

color+=cameraState.mThroughput * mBB1DNormalization * misWeight

* mThroughputAtOrigin * attenuation

* bsdfFactor * kernel

=
1

npaths
ŵBl-Bl1DsCl(x0 . . .xs−1]Tr(ts−1)

ρ(x̃s,xs)
K1(x̃s,xs)

sin θxs−1xs+1

Tr(ts+1)Cc[xs+1 . . .xk).
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After expanding we get

=
1

npaths
ŵBl-Bl1DsLe(x0)

T (x0 . . .xs−1)

p(x0 . . .xs−1)

ρ(xs−1)

p(ωxs−1)
Tr(ts−1)

ρ(x̃s,xs)
K1(x̃s,xs)

sin θxs−1xs+1

Tr(ts+1)
ρ(xs+1)

p(ωxs+1)

T (xs+1 . . .xk)

p(xs+1 . . .xk)
We(xk)

=
1

npaths
ŵBl-Bl1DsLe(x0)

T (x0 . . . x̃s)

p(x0 . . .xs−1)p(ωxs−1)G(xs−1, x̃s)

ρ(x̃s,xs)
K1(x̃s,xs)

sin θxs−1xs+1

T (xs . . .xk)

G(xs,xs+1)p(ωxs+1)p(xs+1 . . .xk)
We(xk).

If short query beams and long photon beams are used, then

misWeight = ŵBl-Bs1Ds ,

attenuation =

j−1∏
i=1

(
T ′r(di)

Pr{d′i>di}

)
T ′r(|beginq,j − xs|)

Pr{d′j> |beginq,j − xs|}
k−1∏
i=1

(T ′r(di))T
′
r(|beginp,k − x̃s|)

=
Tr(ts−1)Tr(ts+1)

Pr{ls+1>ts+1}
,

where we used a definition of Pr{ls+1>ts+1} from Section 3.2.5. The individual
contribution is:

color+=cameraState.mThroughput * mBB1DNormalization * misWeight

* mThroughputAtOrigin * attenuation

* bsdfFactor * kernel

=
1

npaths
ŵBl-Bs1DsCl(x0 . . .xs−1]Tr(ts−1)ρ(x̃s,xs)

K1(x̃s,xs)

sin θxs−1xs+1

Tr(ts+1)

Pr{ls+1>ts+1}
Cc[xs+1 . . .xk)

=
1

npaths
ŵBl-Bs1DsLe(x0)

T (x0 . . .xs−1)

p(x0 . . .xs−1)

ρ(xs−1)

p(ωxs−1)
Tr(ts−1)ρ(x̃s,xs)

K1(x̃s,xs)

sin θxs−1xs+1

Tr(ts+1)

Pr{ls+1>ts+1}
ρ(xs+1)

p(ωxs+1)

T (xs+1 . . .xk)

p(xs+1 . . .xk)
We(xk)

=
1

npaths
ŵBl-Bs1DsLe(x0)

T (x0 . . . x̃s)

p(x0 . . .xs−1)p(ωxs−1)G(xs−1, x̃s)
ρ(x̃s,xs)

K1(x̃s,xs)

sin θxs−1xs+1

T (xs . . .xk)

G(xs,xs+1)Pr{ls+1>ts+1}p(ωxs+1)p(xs+1 . . .xk)
We(xk).
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If long query beams and short photon beams are used, then

misWeight = ŵBs-Bl1Ds ,

attenuation =

j−1∏
i=1

(T ′r(di))T
′
r(|beginq,j − xs|)

k−1∏
i=1

(
T ′r(di)

Pr{d′i>di}

)
T ′r(|beginp,k − x̃s|)

Pr{d′k>beginp,k − x̃s|}

=
Tr(ts−1)Tr(ts+1)

Pr{ls−1>ts−1}

where we used a definition of Pr{ls−1>ts−1} from Section 3.2.5. The individual
contribution is:

color+=cameraState.mThroughput * mBB1DNormalization * misWeight

* mThroughputAtOrigin * attenuation

* bsdfFactor * kernel

=
1

npaths
ŵBs-Bl1DsCl(x0 . . .xs−1]

Tr(ts−1)

Pr{ls−1>ts−1}

ρ(x̃s,xs)
K1(x̃s,xs)

sin θxs−1xs+1

Tr(ts+1)Cc[xs+1 . . .xk)

=
1

npaths
ŵBs-Bl1DsLe(x0)

T (x0 . . .xs−1)

p(x0 . . .xs−1)

ρ(xs−1)

p(ωxs−1)

Tr(ts−1)

Pr{ls−1>ts−1}

ρ(x̃s,xs)
K1(x̃s,xs)

sin θxs−1xs+1

Tr(ts+1)
ρ(xs+1)

p(ωxs+1)

T (xs+1 . . .xk)

p(xs+1 . . .xk)
We(xk)

=
1

npaths
ŵBs-Bl1DsLe(x0)

T (x0 . . . x̃s)

p(x0 . . .xs−1)p(ωxs−1)Pr{ls−1>ts−1}G(xs−1, x̃s)

ρ(x̃s,xs)
K1(x̃s,xs)

sin θxs−1xs+1

T (xs . . .xk)

G(xs,xs+1)p(ωxs+1)p(xs+1 . . .xk)
We(xk).

If short query and photon beams are used, then

misWeight = ŵBs-Bs1Ds ,

attenuation =

j−1∏
i=1

(
T ′r(di)

Pr{d′i>di}

)
T ′r(|beginq,j − xs|)

Pr{d′j> |beginq,j − xs|}
k−1∏
i=1

(
T ′r(di)

Pr{d′i>di}

)
T ′r(|beginp,k − x̃s|)

Pr{d′k>beginp,k − x̃s|}

=
Tr(ts−1)Tr(ts+1)

Pr{ls−1>ts−1}Pr{ls+1>ts+1}
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and the individual contribution is:

color+=cameraState.mThroughput * mBB1DNormalization * misWeight

* mThroughputAtOrigin * attenuation

* bsdfFactor * kernel

=
1

npaths
ŵBs-Bs1DsCl(x0 . . .xs−1]

Tr(ts−1)

Pr{ls−1>ts−1}

ρ(x̃s,xs)
K1(x̃s,xs)

sin θxs−1xs+1

Tr(ts+1)

Pr{ls+1>ts+1}
Cc[xs+1 . . .xk)

=
1

npaths
ŵBs-Bs1DsLe(x0)

T (x0 . . .xs−1)

p(x0 . . .xs−1)

ρ(xs−1)

p(ωxs−1)

Tr(ts−1)

Pr{ls−1>ts−1}

ρ(x̃s,xs)
K1(x̃s,xs)

sin θxs−1xs+1

Tr(ts+1)

Pr{ls+1>ts+1}
ρ(xs+1)

p(ωxs+1)

T (xs+1 . . .xk)

p(xs+1 . . .xk)
We(xk)

=
1

npaths
ŵBs-Bs1Ds

Le(x0)
T (x0 . . . x̃s)

p(x0 . . .xs−1)p(ωxs−1)Pr{ls−1>ts−1}G(xs−1, x̃s)

ρ(x̃s,xs)
K1(x̃s,xs)

sin θxs−1xs+1

T (xs . . .xk)

G(xs,xs+1)Pr{ls+1>ts+1}p(ωxs+1)p(xs+1 . . .xk)
We(xk).

These results are in line with Equations 1.15-1.17.

Kernel and factors. Similar to the P-B2D estimator we use the Epanechnikov
kernel with the P-B2D estimator which is dependent on a mutual position of query
and photon beams. Therefore, it is computed during evaluation of the estimator
and cannot be included in normalization factor mBB1DNormalization as in the
case of the SURF and P-P3D estimators (see Listing 3.41). Again this holds for a
kernel used when evaluating the B-B1D estimator, i.e. when creating a path with
it. When we compute MIS weights for estimators along the path, then the B-B1D
estimator is assumed to use a constant kernel too, since we do not have data to
compute the Epanechnikov kernel there (we have only a vertex there, no beams,
no distance between them). That is why mBB1DMisWeightFactor (in Listing 3.41)
includes a constant kernel.

3.4.4 Data structures

We conclude this section with a brief discussion of used acceleration data
structures. For the SURF and P-P3D estimators we needed to quickly find all
light vertices stored within a fixed radius from a given camera vertex. A simple
grid proved to be sufficient for this purpose, we used the more compact hashed
variant already implemented in SmallVCM for the SURF estimator.

For the P-B2D estimator we also needed to query stored light vertices but this
time along a query beam. Although the hashed grid could be used for line queries
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too we rather kept it simple for point queries and chose a different structure for
the P-B2D estimator. Since the search for light vertices within a fixed radius
from a query beam can be viewed as intersecting spheres by a ray, we decided to
take advantage of the Embree ray tracing kernel. This way we can benefit from
its optimized BVH building and ray tracing and only handle intersections with
encountered spheres. The efficiency of this implementation is what motivated us
to include only the P-B2D estimator and not B-P2D for which this approach is
not possible.

Effective implementation of the B-B1D estimator was more problematic as
it requires fast look up of photon beams, i.e. lines instead of points. We tried
using Embree, implementing different types of kd-tree (with or without chopping
beams) and finally ended up with a uniform grid with a photon beam referenced
in all cells it intersects. Although the grid performance was the best, it is still
far from optimal and consequently the B-B1D estimator is much slower than the
others (as shown in Chapter 4). We tried several optimizations, e.g. limiting the
maximum number of photon beams in one cell tested for an intersection, but they
did not bring any significant improvement (at least not for a usable number of
photon beams). Solving this issue is left for future work.

Note that the aforementioned acceleration data structures were implemented
mainly by Iliyan Georgiev (the hashed grid) and Martin Šik (the utilization of
Embree and the uniform grid).

3.4.5 Summary

The previous lines introduced implementation of the volumetric photon density
estimators and described its most important parts in detail. They explained
where the estimators are computed and how and what data structures make it
possible. Now we have a complete picture of evaluation of estimators. The last
thing remaining is to compute their MIS weights.

3.5 MIS weights computation

This section describes one of the key aspects of our work – an algorithm for
the computation of MIS weights in the UPBP algorithm. As stated in Chapter 2
we use the balance heuristic (2.3). The pdfs this formula requires are derived
in Section 2.1, so we have everything necessary for its evaluation. However,
implementing the formula directly, i.e. computing each pdf separately from scratch
and then performing the addition and division, would be very inefficient and
also prone to arithmetic underflow. We therefore use a different algorithm which
overcomes these issues, an extension of the algorithm proposed by Veach [26] for
computation of MIS weights in bidirectional path tracing.

3.5.1 Algorithm

We derive the algorithm on an example. Assume a light transport path
x7 = x0 . . .x7 with its first vertex x0 on a light source, its last vertex x7 on the
camera, and the x1, . . . ,x6 scattering vertices on surfaces or in media. Further
assume that it was created by the BPT technique connecting vertices x3 and x4
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and we want to compute the corresponding MIS weight ŵBPT3,4(x7). The balance
heuristic tells us that we should take the pdf of the technique used to create
(sample) the path and divide it by the sum of pdfs of all techniques that could
possibly create the path. The pdf of the used technique is pBPT3,4 but what are
the other techniques that could create the path? As shown in Section 2.2, each
of the estimators combined in the UPBP algorithm can be applied on different
vertices along a path. It means that path x7 could be created by applying any of
estimators P-P3D, P-Bl2D, P-Bs2D, Bl-Bl1D, Bl-Bs1D, Bs-Bl1D, Bs-Bs1D, SURF
on vertices x1, . . . ,x6 (we do not make any assumption about the location of these
vertices, so we consider both scattering on a surface and in a medium for each of
them), BPT on edges (xi,xi+1), i ∈ {0, . . . , 6} or by sampling entirely from the
camera (sampling the entire path from the light is not possible since we use an
ideal pinhole camera). We get

ŵBPT3,4 =
pBPT3,4

d
, (3.10)

where

d =
6∑
j=1

(
pP-P3Dj+ pP-Bl2Dj+ pP-Bs2Dj+ pBl-Bl1Dj+ pBl-Bs1Dj+ pBs-Bl1Dj+ pBs-Bs1Dj

)
+

6∑
j=1

pSURFj +
6∑
i=0

pBPTi,i+1
+ pBPTdirect

.

The subscript denotes what estimator is applied and on what vertices. For notation
brevity we omit the path argument.

Equation 3.10 is a result of direct application of the balance heuristic formula on
our example path x7. As we explained, it is not suitable for direct implementation.
We rather express the inverted value of the weight and get

1

ŵBPT3,4
=

d

pBPT3,4

= wL + 1 + wC , (3.11)

where wL contains terms for vertices along the light subpath (from x0 to x3):

wL =
3∑
j=1

(
pP-P3Dj

pBPT3,4

+
pP-Bl2Dj

pBPT3,4

+
pP-Bs2Dj

pBPT3,4

+
pBl-Bl1Dj

pBPT3,4

+
pBl-Bs1Dj

pBPT3,4

+
pBs-Bl1Dj

pBPT3,4

+
pBs-Bs1Dj

pBPT3,4

)
+

3∑
j=1

pSURFj

pBPT3,4

+
2∑
i=0

pBPTi,i+1

pBPT3,4

+
pBPTdirect

pBPT3,4

,

the term 1 is for
pBPT3,4

pBPT3,4
and wC contains terms for vertices along the camera

subpath (from x4 to x7):

wC =
6∑
j=4

(
pP-P3Dj

pBPT3,4

+
pP-Bl2Dj

pBPT3,4

+
pP-Bs2Dj

pBPT3,4

+
pBl-Bl1Dj

pBPT3,4

+
pBl-Bs1Dj

pBPT3,4

+
pBs-Bl1Dj

pBPT3,4

+
pBs-Bs1Dj

pBPT3,4

)
+

6∑
j=4

pSURFj

pBPT3,4

+
6∑
i=4

pBPTi,i+1

pBPT3,4

.
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These formulas are much more useful since a lot of factors will actually vanish and
the rest will share a common factor that will gradually change between vertices of
the subpaths. We show it by substituting the pdf expressions from Section 2.1.7.
Again for notation brevity we use a few simplifications. Let i ∈ {0, . . . , 7},
j ∈ {1, . . . , 7}, k ∈ {0, . . . , 6}. For vertices sampled in the direction from the light
we define

→
pi = p(x0, . . . ,xi)
7→
pj = p(xj |xj−1),

7→
p0 =

→
p0.

Similarly for vertices sampled in the direction from the camera we define

←
pi = p(xi, . . . ,x7)
←[
pk = p(xk |xk+1),

←[
p7 =

←
p7.

Note that the following equations hold:

→
pi =

i∏
n=0

7→
pn

←
pi =

7∏
n=i

←[
pn

7→
pj = p(ωxj−1

)p(txj−1
)G(xj−1,xj)

←[
pk = p(ωxk+1

)p(txk+1
)G(xk,xk+1),

so for example:

→
p2
→
p4

=

→
p2

→
p2
7→
p3
7→
p4

=
1
7→
p3
7→
p4

,
G(x4,x5)p(ωx5)

← [
p4

=
1

p(tx5)
.

3.5.1.1 Light subpath

We begin with derivations for terms from wL. For the P-P3D estimator we
get:

pP-P3D3

pBPT3,4

=

→
p3

1
K3(x3,x3)

←
p3

→
p3
←
p4

=
1

K3(x3,x3)

← [
p3

pP-P3D2

pBPT3,4

=

→
p2

1
K3(x2,x2)

←
p2

→
p3
←
p4

=
1

K3(x2,x2)

←[
p2
←[
p3
7→
p3

pP-P3D1

pBPT3,4

=

→
p1

1
K3(x1,x1)

←
p1

→
p3
←
p4

=
1

K3(x1,x1)

←[
p1
←[
p2
←[
p3

7→
p2
7→
p3

.
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For the P-Bl2D estimator we get:

pP-Bl2D3

pBPT3,4

=

→
p3

G(x3,x4)p(ωx4 )

K2(x3,x3)

←
p4

→
p3
←
p4

=
G(x3,x4)p(ωx4)

K2(x3,x3)

=
1

p(tx4)K2(x3,x3)

← [
p3

pP-Bl2D2

pBPT3,4

=

→
p2

G(x2,x3)p(ωx3 )

K2(x2,x2)

←
p3

→
p3
←
p4

=
G(x2,x3)p(ωx3)

K2(x2,x2)

←[
p3
7→
p3

=
1

p(tx3)K2(x2,x2)

←[
p2
←[
p3
7→
p3

pP-Bl2D1

pBPT3,4

=

→
p1

G(x1,x2)p(ωx2 )

K2(x1,x1)

←
p2

→
p3
←
p4

=
G(x1,x2)p(ωx2)

K2(x1,x1)

←[
p2
←[
p3

7→
p2
7→
p3

=
1

p(tx2)K2(x1,x1)

←[
p1
←[
p2
←[
p3

7→
p2
7→
p3

.

The short beam version for i ∈ {1, . . . , 3} satisfies

pP-Bs2Di

pBPT3,4

= Pr{lxi+1
>txi+1

}
pP-Bl2Di

pBPT3,4

.

For the Bl-Bl1D estimator we get:

pBl-Bl1D3

pBPT3,4

=

→
p2

p(ωx2 )G(x2,x3) sin θx2x4G(x3,x4)p(ωx4 )

K1(x3,x3)

←
p4

→
p3
←
p4

=
p(ωx2)G(x2,x3) sin θx2x4G(x3,x4)p(ωx4)

K1(x3,x3)
7→
p3

=
sin θx2x4

p(tx2)p(tx4)K1(x3,x3)

←[
p3

pBl-Bl1D2

pBPT3,4

=

→
p1

p(ωx1 )G(x1,x2) sin θx1x3G(x2,x3)p(ωx3 )

K1(x2,x2)

←
p3

→
p3
←
p4

=
p(ωx1)G(x1,x2) sin θx1x3G(x2,x3)p(ωx3)

K1(x2,x2)
7→
p2

← [
p3
7→
p3

=
sin θx1x3

p(tx1)p(tx3)K1(x2,x2)

←[
p2
←[
p3
7→
p3
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pBl-Bl1D1

pBPT3,4

=

→
p0

p(ωx0 )G(x0,x1) sin θx0x2G(x1,x2)p(ωx2 )

K1(x1,x1)

←
p2

→
p3
←
p4

=
p(ωx0)G(x0,x1) sin θx0x2G(x1,x2)p(ωx2)

K1(x1,x1)
7→
p1

← [
p2
← [
p3

7→
p2
7→
p3

=
sin θx0x2

p(tx0)p(tx2)K1(x1,x1)

←[
p1
←[
p2
←[
p3

7→
p2
7→
p3

.

The short beam versions for i ∈ {1, . . . , 3} satisfy:

pBl-Bs1Di

pBPT3,4

= Pr{lxi+1
>txi+1

}
pBl-Bl1Di

pBPT3,4

pBs-Bl1Di

pBPT3,4

= Pr{lxi−1
>txi−1

}
pBl-Bl1Di

pBPT3,4

pBs-Bs1Di

pBPT3,4

= Pr{lxi−1
>txi−1

}Pr{lxi+1
>txi+1

}
pBl-Bl1Di

pBPT3,4

.

For the SURF estimator we get:

pSURF3

pBPT3,4

=

→
p3

1
K2(x3,x3)

←
p3

→
p3
←
p4

=
1

K2(x3,x3)

← [
p3

pSURF2

pBPT3,4

=

→
p2

1
K2(x2,x2)

←
p2

→
p3
←
p4

=
1

K2(x2,x2)

←[
p2
←[
p3
7→
p3

pSURF1

pBPT3,4

=

→
p1

1
K2(x1,x1)

←
p1

→
p3
←
p4

=
1

K2(x1,x1)

←[
p1
←[
p2
←[
p3

7→
p2
7→
p3

.

And finally for the BPT estimator we get:

pBPT2,3

pBPT3,4

=

→
p2
←
p3

→
p3
←
p4

=
1
7→
p3

←[
p3

pBPT1,2

pBPT3,4

=

→
p1
←
p2

→
p3
←
p4

=
1
7→
p2

←[
p2
←[
p3
7→
p3

pBPT0,1

pBPT3,4

=

→
p0
←
p1

→
p3
←
p4

=
1
7→
p1

←[
p1
←[
p2
← [
p3

7→
p2
7→
p3

pBPTdirect

pBPT3,4

=

←
p0
→
p3
←
p4

=
1
7→
p0

←[
p0
←[
p1
← [
p2
← [
p3

7→
p1
7→
p2
7→
p3

.
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3.5.1.2 Camera subpath

Now we go through very similar derivations for terms from wC . For the P-P3D
estimator we get:

pP-P3D4

pBPT3,4

=

→
p4

1
K3(x4,x4)

←
p4

→
p3
←
p4

=
1

K3(x4,x4)

7→
p4

pP-P3D5

pBPT3,4

=

→
p5

1
K3(x5,x5)

←
p5

→
p3
←
p4

=
1

K3(x5,x5)

7→
p4
7→
p5
←[
p4

pP-P3D6

pBPT3,4

=

→
p6

1
K3(x6,x6)

←
p6

→
p3
←
p4

=
1

K3(x6,x6)

7→
p4
7→
p5
7→
p6

←[
p4
←[
p5

.

For the P-Bl2D estimator we get:

pP-Bl2D4

pBPT3,4

=

→
p4

G(x4,x5)p(ωx5 )

K2(x4,x4)

←
p5

→
p3
←
p4

=
G(x4,x5)p(ωx5)

K2(x4,x4)

7→
p4
←[
p4

=
1

p(tx5)K2(x4,x4)

7→
p4

pP-Bl2D5

pBPT3,4

=

→
p5

G(x5,x6)p(ωx6 )

K2(x5,x5)

←
p6

→
p3
←
p4

=
G(x5,x6)p(ωx6)

K2(x5,x5)

7→
p4
7→
p5

←[
p4
←[
p5

=
1

p(tx6)K2(x5,x5)

7→
p4
7→
p5
←[
p4

pP-Bl2D6

pBPT3,4

=

→
p6

G(x6,x7)p(ωx7 )

K2(x6,x6)

←
p7

→
p3
←
p4

=
G(x6,x7)p(ωx7)

K2(x6,x6)

7→
p4
7→
p5
7→
p6

←[
p4
←[
p5
←[
p6

=
1

p(tx7)K2(x6,x6)

7→
p4
7→
p5
7→
p6

←[
p4
←[
p5

.

The short beam version for i ∈ {4, . . . , 6} satisfies

pP-Bs2Di

pBPT3,4

= Pr{lxi+1
>txi+1

}
pP-Bl2Di

pBPT3,4

.

For the Bl-Bl1D estimator we get:

pBl-Bl1D4

pBPT3,4

=

→
p3

p(ωx3 )G(x3,x4) sin θx3x5G(x4,x5)p(ωx5 )

K1(x4,x4)

←
p5

→
p3
←
p4

=
p(ωx3)G(x3,x4) sin θx3x5G(x4,x5)p(ωx5)

K1(x4,x4)
← [
p4

=
sin θx3x5

p(tx3)p(tx5)K1(x4,x4)

7→
p4
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pBl-Bl1D5

pBPT3,4

=

→
p4

p(ωx4 )G(x4,x5) sin θx4x6G(x5,x6)p(ωx6 )

K1(x5,x5)

←
p6

→
p3
←
p4

=
p(ωx4)G(x4,x5) sin θx4x6G(x5,x6)p(ωx6)

K1(x5,x5)
← [
p5

7→
p4
← [
p4

=
sin θx4x6

p(tx4)p(tx6)K1(x5,x5)

7→
p4
7→
p5
←[
p4

pBl-Bl1D6

pBPT3,4

=

→
p5

p(ωx5 )G(x5,x6) sin θx5x7G(x6,x7)p(ωx7 )

K1(x6,x6)

←
p7

→
p3
←
p4

=
p(ωx5)G(x5,x6) sin θx5x7G(x6,x7)p(ωx7)

K1(x6,x6)
← [
p6

7→
p4
7→
p5

← [
p4
← [
p5

=
sin θx5x7

p(tx5)p(tx7)K1(x6,x6)

7→
p4
7→
p5
7→
p6

←[
p4
←[
p5

.

The short beam versions for i ∈ {4, . . . , 6} satisfy:

pBl-Bs1Di

pBPT3,4

= Pr{lxi+1
>txi+1

}
pBl-Bl1Di

pBPT3,4

pBs-Bl1Di

pBPT3,4

= Pr{lxi−1
>txi−1

}
pBl-Bl1Di

pBPT3,4

pBs-Bs1Di

pBPT3,4

= Pr{lxi−1
>txi−1

}Pr{lxi+1
>txi+1

}
pBl-Bl1Di

pBPT3,4

.

For the SURF estimator we get:

pSURF4

pBPT3,4

=

→
p4

1
K2(x4,x4)

←
p4

→
p3
←
p4

=
1

K2(x4,x4)

7→
p4

pSURF5

pBPT3,4

=

→
p5

1
K2(x5,x5)

←
p5

→
p3
←
p4

=
1

K2(x5,x5)

7→
p4
7→
p5
←[
p4

pSURF6

pBPT3,4

=

→
p6

1
K2(x6,x6)

←
p6

→
p3
←
p4

=
1

K2(x6,x6)

7→
p4
7→
p5
7→
p6

←[
p4
←[
p5

.

And finally for the BPT estimator we get:

pBPT4,5

pBPT3,4

=

→
p4
←
p5

→
p3
←
p4

=
1
← [
p4

7→
p4

pBPT5,6

pBPT3,4

=

→
p5
←
p6

→
p3
←
p4

=
1
← [
p5

7→
p4
7→
p5
←[
p4

pBPT6,7

pBPT3,4

=

→
p6
←
p7

→
p3
←
p4

=
1
← [
p6

7→
p4
7→
p5
7→
p6

←[
p4
←[
p5

.
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3.5.1.3 Formalization

We can see that many factors really vanished and the rest show a common
structure consisting of an estimator specific factor and a common factor shared
among estimators on the same vertex. Also note that the common factor changes
gradually as we move between neighbouring vertices on the same subpath. We
now formalize this fact, it let us derive a preliminary version of the algorithm for
computing the MIS weights.

Let k ∈ N, k ≥ 2, r, s ∈ R, a, j ∈ {1, . . . , k − 1} and b, i ∈ {0, . . . , k − 1} (the
bounds will be discussed later). We define

RL
r,a(i) =


0 if i > a
← [
pi r if i = a
← [
pi
7→
pi+1

RL
r,a(i+ 1) if i < a

RC
s,b(i) =


0 if i < b
7→
pi s if i = b
7→
pi
← [
pi−1

RC
s,b(i− 1) if i > b,

i.e. R denotes the common factor shared among estimators on the same vertex.
RL
r,a(i) is the common factor for vertex xi on the light subpath ending at vertex

xa, R
C
s,b(i) is the common factor for vertex xi on the camera subpath beginning at

vertex xb, numbers r, s serve for initialization and we explain them later. Figure 3.6
illustrates the definition of the R factor.

xc-2 xc-1 xc xc+1 xc+2 xc+3

pcrpcrpcr
pc-1

pc

pc-1

pc

pc-2

pc-1
0 0 0

pc+1spc+1spc+1s
pc+2

pc+1

pc+3

pc+2

pc+2

pc+1
0 0 0

xkx0

0

pcr
pc-1

pc

pc-2

pc-1

p0

p1

...

Figure 3.6: Illustration of the R factor definition. It shows a length-k light
transport path x = x0 . . .xk in the middle. Vertices x0, . . . ,xc were traced from a
light source, i.e. form the light subpath (left, green), vertices xc+1, . . . ,xk were
traced from the camera, i.e. form the camera subpath (right, red). Above each
vertex corresponding value of RL

r,a for a = c is shown, value of RC
s,b for b = c+ 1 is

stated below. Note that neither RL
r,a nor RC

s,b is defined for the xk vertex.
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The estimator specific factors are labelled as follows:

FP-P3D(j) =
1

K3(xj,xj)
,

FP-Bl2D(j) =
1

p(txj+1
)K2(xj,xj)

,

FP-Bs2D(j) =
Pr{lxj+1

>txj+1
}

p(txj+1
)K2(xj,xj)

,

FBl-Bl1D(j) =
sin θxj−1xj+1

p(txj−1
)p(txj+1

)K1(xj,xj)
,

FBl-Bs1D(j) =
Pr{lxj+1

>txj+1
} sin θxj−1xj+1

p(txj−1
)p(txj+1

)K1(xj,xj)
,

FBs-Bl1D(j) =
Pr{lxj−1

>txj−1
} sin θxj−1xj+1

p(txj−1
)p(txj+1

)K1(xj,xj)
,

FBs-Bs1D(j) =
Pr{lxj−1

>txj−1
}Pr{lxj+1

>txj+1
} sin θxj−1xj+1

p(txj−1
)p(txj+1

)K1(xj,xj)
,

FSURF(j) =
1

K2(xj,xj)
,

FL
BPT(j) =

1
7→
pj
,

FC
BPT(j) =

1
← [
pj
.

The whole wL term can be then rewritten as

wL =
1∑

m=3

RL
1,3(m)

(
FP-P3D(m) + FP-Bl2D(m) + FP-Bs2D(m) + FBl-Bl1D(m)

+ FBl-Bs1D(m) + FBs-Bl1D(m) + FBs-Bl1D(m) + FSURF(m)

+ FL
BPT(m)

)
+ FL

BPT(0)RL
1,3(0), (3.12)

and similarly the wC term as

wC =
6∑

m=4

RC
1,4(m)

(
FP-P3D(m) + FP-Bl2D(m) + FP-Bs2D(m) + FBl-Bl1D(m)

+ FBl-Bs1D(m) + FBs-Bl1D(m) + FBs-Bl1D(m) + FSURF(m)

+ FC
BPT(m)

)
. (3.13)
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These formulas already give us a basic idea how the algorithm for computation of
MIS weights can work. It simply makes one pass through light subpath vertices
and camera subpath vertices and at each vertex computes the common factor R
from the previous one and adds terms for the estimators. The following algorithm
computes the ŵBPT3,4(x7) weight:

Listing 3.59: Algorithm computing the ŵBPT3,4(x7) weight
1 wL := 0
2 RL := 1
3 f o r m := 3 downto 0 do

4 RL := RL · ← [
pm

5 i f m 6= 0 then
6 wL := wL+RL · (FP-P3D(m)+FP-Bl2D(m)+FP-Bs2D(m)+FBl-Bl1D(m)+FBl-Bs1D(m)+FBs-Bl1D(m)
7 +FBs-Bl1D(m) + FSURF(m))
8 e n d i f
9 wL := wL +RL · FLBPT(m)

10 RL := RL/
7→
pm

11 endfor
12

13 wC := 0
14 RC := 1
15 f o r m := 4 to 6 do

16 RC := RC · 7→pm
17 wC := wC +RC · (FP-P3D(m) + FP-Bl2D(m) + FP-Bs2D(m) + FBl-Bl1D(m) + FBl-Bs1D(m) + FBs-Bl1D(m)
18 +FBs-Bl1D(m) + FSURF(m) + FCBPT(m))

19 RC := RC/
← [
pm

20 endfor
21

22 ŵBPT3,4 (x7) := 1/(wL + 1 + wC)

3.5.1.4 Generalization

Now we have formulas and an efficient algorithm for computing the MIS weight
for paths of length 7 which were created by the BPT technique connecting the
third and fourth vertex. We need to generalize them for computing an arbitrary
MIS weight. We begin with the wC term:

• We want to support paths of an arbitrary length k ∈ N, k ≥ 2. Note that
k = 0 is meaningless and for k = 1 the path can be created only by a single
technique – sampling entirely from the camera, so there is no MIS weighting.
Therefore we define k to be at least 2. All we need is to change the upper
bound of the sum from 6 to k − 1. The sum does not go to k since we
can never hit the camera while sampling the path from a light, we cannot
evaluate the photon density estimators on it and the BPT connection to the
following vertex would not be defined there (there is no vertex xk+1).

• We want to support paths created by other techniques applied on other
vertices. So we need to allow beginning of the camera subpath also at other
than the fourth vertex. This is accomplished by replacing number 4 with
b ∈ {0, . . . , k − 1}. The path could be sampled entirely from the camera,
that is why b is defined to be at least 0. The reason for b being at most
k − 1 is the upper bound of the sum. The situation when the path was
created by connecting to the camera and therefore b should equal k is solved
independently.
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• Not all estimators can be actually applied on every vertex. The volumetric
photon density estimators can be applied only on vertices in media, the
surface photon density estimator on vertices on surfaces (not purely specular)
and the path integral estimators can connect only vertices which are not on
purely specular (delta) surfaces. We express this using indicator functions
IM(b), IS(b), I!δ(b, b+ 1) ∈ {0, 1} satisfying:

IM(b) = 1⇔ xb is in a medium,

IS(b) = 1⇔ xb is on a surface (not purely specular),

I!δ(b, b+ 1) = 1⇔ neither xb nor xb+1 are on a purely specular surface.

Note that while BPT can connect a vertex on the camera or a light source,
the photon density estimators can be applied only on inner path vertices.

The generalized wC term has the following form:

wCk,s,b =
k−1∑
m=b

RC
s,b(m)

(
IM(m)

[
FP-P3D(m) + FP-Bl2D(m) + FP-Bs2D(m)

+ FBl-Bl1D(m) + FBl-Bs1D(m) + FBs-Bl1D(m) + FBs-Bl1D(m)
]

+ IS(m)FSURF(m) + I!δ(m,m+ 1)FC
BPT(m)

)
, (3.14)

and can be computed by the following algorithm:

Listing 3.60: Algorithm computing the wCk,s,b term
1 ComputeWC(k, s, b)
2 {
3 w := 0
4 R := s
5 f o r m := b to k − 1 do

6 R := R · 7→pm
7 w := w+R·IM (m)·(FP-P3D(m)+FP-Bl2D(m)+FP-Bs2D(m)+FBl-Bl1D(m)+FBl-Bs1D(m)+FBs-Bl1D(m)
8 +FBs-Bl1D(m))
9 w := w +R · IS(m) · FSURF(m)

10 w := w +R · I!δ(m,m+ 1) · FCBPT(m)

11 R := R/
← [
pm

12 endfor
13 r e turn w
14 }

Now we generalize the wL formula. We perform similar steps as with the camera
subpath:

• To support also other ends of the light subpath than the third vertex we
replace number 3 with a ∈ {1, . . . , k − 1}. The sum then runs from a
down to 1, therefore a ≥ 1. It does not go to 0, since the photon density
estimators cannot be applied on a light source, BPT connection would not
be defined there and the case of sampling the entire path from the camera
is expressed by the last term outside the sum. The situation when the path
was created by connecting the light and therefore a should equal 0 is solved
independently. The reason for a being at most k − 1 is that we can never
hit the camera while sampling the path from a light.
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• The same indicator functions as in the wC formula are used but there are
two more:

I!δL(b) = 1⇔xb is on a light source that can be hit (is not delta),

IV (b) = 1⇔xb is not the last vertex of the light subpath or the path

was created by path integral estimators.

The first indicator is used to eliminate contribution of sampling the entire
path from the camera for lights that cannot be hit. The second indicator is
necessary to avoid computing contribution of photon density estimators on
the last light subpath vertex twice. That could otherwise happen because
in the case of creating the path by applying one of the photon density
estimators, the last light subpath vertex is also the first camera subpath
vertex and the contribution of photon density estimators on this vertex is
already computed in wCk,s,b.

The generalized wL term has the following form:

wLk,r,a =
1∑

m=a

RL
r,a(m)

(
IV (m)

{
IM(m)

[
FP-P3D(m) + FP-Bl2D(m) + FP-Bs2D(m)

+ FBl-Bl1D(m) + FBl-Bs1D(m) + FBs-Bl1D(m) + FBs-Bl1D(m)
]

+ IS(m)FSURF(m)
}

+ I!δ(m− 1,m)FL
BPT(m)

)
+ I!δL(0)FL

BPT(0)RL
r,a(0). (3.15)

and can be computed by the following algorithm:

Listing 3.61: Algorithm computing the wLk,r,a term
1 ComputeWL(k, r, a)
2 {
3 w := 0
4 R := r
5 f o r m := a downto 0 do

6 R := R · 7→pm
7 i f m 6= 0 then
8 i f IV (m) = 1 then
9 w := w +R · IM (m) · (FP-P3D(m) + FP-Bl2D(m) + FP-Bs2D(m) + FBl-Bl1D(m) + FBl-Bs1D(m)

10 +FBs-Bl1D(m) + FBs-Bl1D(m))
11 w := w +R · IS(m) · FSURF(m)
12 e n d i f
13 w := w +R · I!δ(m,m+ 1) · FLBPT(m)
14 e n d i f
15 e l s e
16 w := w +R · I!δL(m) · FLBPT(m)
17 ende l s e

18 R := R/
← [
pm

19 endfor
20 r e turn w
21 }

Having the generalized terms we now have to figure out how to use them for
different techniques of creating path xk of length k. For the BPT technique con-
necting vertices xc, xc+1, c ∈ {1, . . . , k−2} (case handled by the ConnectVertices
method 3.36) we already know this. The corresponding weight satisfies

1

ŵBPTc,c+1

= wLk,1,c + 1 + wCk,1,c+1. (3.16)
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If connecting vertices x0, x1 (the DirectIllumination method 3.34), the light
subpath contains only the x0 vertex and there is only one technique associated
with it – sampling the entire path from the camera. Instead of the wL term we
therefore have only

pBPTdirect

pBPT0,1

=

←
p0
→
p0
←
p1

=

←[
p0
7→
p0

and the corresponding weight satisfies

1

ŵBPT0,1
= I!δL(0)FL

BPT(0)RL
1,0(0) + 1 + wCk,1,1. (3.17)

On the other hand, if connecting vertices xk−1, xk (the ConnectToCamera method
3.22), the camera subpath contains only the xk vertex and there is no technique
associated with it (we cannot sample the entire path from the light since we
cannot hit our ideal pinhole camera). Therefore there is no wC term and the
corresponding weight satisfies

1

ŵBPTk−1,k

= wLk,1,k−1 + 1. (3.18)

If the entire path was sampled from the camera (the GetLightRadiance method
3.33), then there is simply no wL term and the corresponding weight satisfies

1

ŵBPTdirect

= 1 + wCk,1,0. (3.19)

Finally, let the path be created by applying any of the photon density estimators on
vertex xe, e ∈ {1, . . . , k− 1}. In contrast to the path integral estimators, the light
subpath and camera subpath now have a common vertex – the xe vertex. We have
to ensure that the terms of the photon density estimators on this vertex are not
computed twice. As already mentioned, we accomplish this using the IV indicator
in the wL term. Note that it does not apply to the terms of the path integral
estimator as they are computed for edges which are not shared. If we went through
the same derivation process for each of the photon density estimators as we did for
the path integral estimator, we would see that estimator specific factors are still
the same, as well as the way the common factor changes. The only difference is how
the common factor is initialized. It is initialized exactly the way needed to produce
1 on the xe vertex when computing the term of the photon density estimator
which created the path (on both subpaths no matter whether or not it is actually
computed). Let pde denote the photon density estimator which created the path,
i.e. pde ∈ {P-P3D,P-Bl2D,P-Bs2D,Bl-Bl1D,Bl-Bs1D,Bs-Bl1D,Bs-Bs1D, SURF},
and define initialization factors:

IFL
pde(e) =

1
←[
pe Fpde(e)

IFC
pde(e) =

1
7→
pe Fpde(e)

.
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Then the resulting weight has the form:

1

ŵpdee
= wLk,r,e + wCk,s,e, r = IFL

pde(e), s = IFC
pde(e). (3.20)

Let’s check if it works. Indeed, for a given pde the corresponding terms in the
sums in wLk,r,e and wCk,s,e satisfy:

RL
r,e(e)Fpde(e) =

←[
pe rFpde(e) =

←[
pe IF

L
pde(e)Fpde(e) =

← [
pe

1
←[
pe Fpde(e)

Fpde(e) = 1

RC
s,e(e)Fpde(e) =

7→
pe sFpde(e) =

7→
pe IF

C
pde(e)Fpde(e) =

7→
pe

1
7→
pe Fpde(e)

Fpde(e) = 1.

Summary. The final algorithm is then simple: based on the estimator that
created the path, pick one of Equations 3.16-3.20 and evaluate it using the
algorithms 3.60 and 3.61. This algorithm is very efficient, it performs only one
pass over path vertices and only a constant time operation for each vertex, i.e. it
runs in O(k) for a k-length path. Furthermore, since it computes with quotients
of pdfs, it does not suffer from the arithmetic underflow.

Previous work. As we mentioned at the beginning, our algorithm is an exten-
sion of the algorithm proposed by Veach [26] for computation of MIS weights in
bidirectional path tracing. His version is limited to scenes without media and
paths created only by BPT techniques, but the basic algorithm is the same. We
extended it with pdfs of sampling through media and terms for photon density
estimators. See Section 10.2 in [26], mainly Equation 10.9.

3.5.2 Implementation

Now we describe how the algorithm for computation of MIS weights derived
above is implemented. We begin with data the algorithm requires. Most of the
data are stored in the MisData structures:

Listing 3.62: MisData (struct, UPBPLightVertex.hxx)
1 s t r u c t MisData
2 {
3 f l o a t mPdfInv ;
4 f l o a t mRevPdf ;
5 f l o a t mRevPdfWithoutBsdf ;
6 f l o a t mRaySamplePdfInv ;
7 f l o a t mRaySampleRevPdfInv ;
8 f l o a t mRaySamplePdfsRatio ;
9 f l o a t mRaySampleRevPdfsRatio ;

10 f l o a t mSinTheta ;
11 f l o a t mCosThetaOut ;
12 f l o a t mSurfMisWeightFactor ;
13 f l o a t mPP3DMisWeightFactor ;
14 f l o a t mPB2DMisWeightFactor ;
15 f l o a t mBB1DMisWeightFactor ;
16 bool mIsDelta ;
17 bool mIsOnLightSource ;
18 bool mIsSpecular ;
19 }
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In order to compute the MIS weight of a path, we need these data for its
every vertex. We therefore store one MisData structure with every light vertex
of every light subpath (inside its UPBPLightVertex object, see Listing 3.18) and
one for every camera vertex on a currently traced camera subpath (inside the
static mCameraVerticesMisData array). This asymmetry is caused by the fact
that while almost any light vertex can be used for estimator evaluation, camera
vertices of previously traced camera subpaths are never needed again.

3.5.2.1 Light vertices MIS data

Consider light subpath x0 . . .xs and one of its vertices xi. Fields of the MisData
structure stored with xi have the following values:

mPdfInv Equals 1
7→
pi

.

mRevPdf If i = 0, it equals:

0 for point and directional light sources

D(xi→)2 for area and background light sources if s = i

D(xi→)
p(txi+1xi )

3

|xi−xi+1|2

for area and background light sources if s = i+ 1
and the scattering function of vertex xi+1 was not
sampled

←[
pi otherwise.

If i > 0, it equals:

1
if s = i and the scattering function of vertex xi
was not sampled

D(xi→)
if s = i and the scattering function of vertex xi
was sampled

D(xi→)
p(txi+1xi )

|xi−xi+1|2
if s = i+ 1 and the scattering function
of vertex xi+1 was not sampled

←[
pi otherwise.

mRevPdfWithoutBsdf Almost the same as the mRevPdf field but lacks probability
of sampling the scattering function. That means, if i = 0, it equals:

0 for point and directional light sources

D(xi→) for area and background light sources if s = i

D(xi→)
p(txi+1xi )

|xi−xi+1|2 for area and background light sources if s > i.

If i > 0, it equals:

1
if s = i and the scattering function of vertex xi
was not sampled

D(xi→)
if s = i and the scattering function of vertex xi
was sampled

D(xi→)
p(txi+1xi )

|xi−xi+1|2 otherwise.
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mRaySamplePdfInv Equals 1
p(txi−1xi )

if i > 0. Otherwise, it is zero.

mRaySampleRevPdfInv Equals 1
p(txi+1xi )

if i < s. Otherwise, it is one.

mRaySamplePdfsRatio Equals
Pr{t>txi−1xi}
p(txi−1xi )

if i > 0 and xi is in a medium. Other-

wise, it is zero.

mRaySampleRevPdfsRatio Equals
Pr{t>txi+1xi}
p(txi+1xi )

if i > 0 and xi is in a medium

(condition i < s is not required to be satisfied since the ratio can be
computed anyway). Otherwise, it is zero.

mSinTheta Equals sin θxi if i > 0, the vertex is located in a medium and its phase
function was sampled. Otherwise, it is zero.

mCosThetaOut If i > 0 and the scattering function of the vertex was sampled or
if i = 0, then it equals D(xi→). Otherwise, it is zero.

mSurfMisWeightFactor Equals
npaths

K2(x̃i,xi)
if i > 0 and the vertex is located on a

surface. Otherwise, it is zero.

mPP3DMisWeightFactor Equals
npaths

K3(x̃i,xi)
if i > 0 and the vertex is located in a

medium. Otherwise, it is zero.

mPB2DMisWeightFactor Equals
npaths

K2(x̃i,xi)
if i > 0 and the vertex is located in a

medium. Otherwise, it is zero.

mBB1DMisWeightFactor Equals
npaths

K1(x̃i,xi)
if i > 0 and the vertex is located in a

medium. Otherwise, it is zero.

mIsDelta Equals true if i = 0 and the light source that generated the vertex is
point or directional. It is also true if i > 0 and the vertex is located on a
purely specular surface. Otherwise, it is false.

mIsOnLightSource Equals true if i = 0. Otherwise, it is false.

mIsSpecular Equals true if i > 0, the vertex is located on a surface and a
specular component of its material BSDF was sampled. Otherwise, it is
false.

These values are gathered and computed during tracing the light subpath on
several places. Firstly, when the first light vertex is created (i.e. x0, i = s = 0)
in the GenerateLightSample method (on line 9 in Listing 3.19). The code is
presented in the following Listing 3.63. Note that directPdfA is a pdf of sampling
a light source, i.e. exactly p(x0) =

7→
p0 as needed, and cosLight equals D(xi→)

(these values are computed earlier in the GenerateLightSample method, see
Listing 3.17). The IsDelta method returns true only for point and directional
light sources, the IsFinite method returns true only for point and area light
sources.

2D(xi→) = |nxi
· ωxi→|, see Section 3.2.1

3txi+1xi
is a distance between the vertices xi+1 and xi, considered as sampled in the direction

from the camera, see Section 1.2
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Listing 3.63: SetFirstLightVertexMisData (part of the GenerateLightSample

method, UPBP.hxx)
1 // Set pdfs .
2 l i gh tVe r t ex . mMisData . mPdfInv = 1 .0 f / directPdfA ;
3 l i gh tVe r t ex . mMisData . mRevPdf = l i g h t−>I sDe l t a ( ) ?
4 0 .0 f : ( l i g h t−>I s F i n i t e ( ) ? cosL ight : 1 . f ) ;
5 l i gh tVe r t ex . mMisData . mRevPdfWithoutBsdf = l i gh tVe r t ex . mMisData . mRevPdf ;
6 l i gh tVe r t ex . mMisData . mRaySamplePdfInv = 0 .0 f ;
7 l i gh tVe r t ex . mMisData . mRaySampleRevPdfInv = 1 .0 f ;
8 l i gh tVe r t ex . mMisData . mRaySamplePdfsRatio = 0 .0 f ;
9 l i gh tVe r t ex . mMisData . mRaySampleRevPdfsRatio = 0 .0 f ;

10 // Set ang l e s .
11 l i gh tVe r t ex . mMisData . mSinTheta = 0 .0 f ;
12 l i gh tVe r t ex . mMisData . mCosThetaOut = ( ! l i g h t−>I sDe l t a ( ) && l i g h t−>I s F i n i t e ( ) ) ?
13 cosL ight : 1 . f ;
14 // Set MIS weight f a c t o r s .
15 l i gh tVe r t ex . mMisData . mSurfMisWeightFactor = 0 .0 f ;
16 l i gh tVe r t ex . mMisData . mPP3DMisWeightFactor = 0 .0 f ;
17 l i gh tVe r t ex . mMisData . mPB2DMisWeightFactor = 0 .0 f ;
18 l i gh tVe r t ex . mMisData . mBB1DMisWeightFactor = 0 .0 f ;
19 // Set f l a g s .
20 l i gh tVe r t ex . mMisData . mIsDelta = l i g h t−>I sDe l t a ( ) ;
21 l i gh tVe r t ex . mMisData . mIsOnLightSource = true ;
22 l i gh tVe r t ex . mMisData . mIsSpecular = f a l s e ;

Listing 3.64: SetLightVertexMisData (part of the RunIteration method,
UPBP.hxx)

1 // I n f i n i t e l i g h t s use MIS handled v ia s o l i d ang le i n t e g r a t i o n , so we do not
2 // d iv id e by the d i s t ance f o r such l i g h t s .
3 const f l o a t d i s tSq =
4 ( l i g h t S t a t e . mPathLength > 1 | | l i g h t S t a t e . mIsF in i teL ight == 1) ?
5 U t i l s : : sqr ( i s e c t . mDist ) : 1 . 0 f ;
6 const f l o a t raySamplePdfInv = 1 .0 f / raySamplePdf ;
7 // Set pdfs .
8 l i gh tVe r t ex . mMisData . mPdfInv =
9 l i g h t S t a t e . mLastPdfWInv ∗ d i s tSq ∗ raySamplePdfInv

10 / std : : abs ( bsdf . CosThetaFix ( ) ) ;
11 l i gh tVe r t ex . mMisData . mRevPdf = 1 .0 f ;
12 l i gh tVe r t ex . mMisData . mRevPdfWithoutBsdf = l i gh tVe r t ex . mMisData . mRevPdf ;
13 l i gh tVe r t ex . mMisData . mRaySamplePdfInv = raySamplePdfInv ;
14 l i gh tVe r t ex . mMisData . mRaySampleRevPdfInv = 1 .0 f ;
15 l i gh tVe r t ex . mMisData . mRaySamplePdfsRatio = bsdf . IsInMedium ( ) ? 1 .0 f /
16 bsdf . GetMedium()−>mMinPositiveAttenuationCoefComp ( ) : 0 . 0 f ;
17 l i gh tVe r t ex . mMisData . mRaySampleRevPdfsRatio =
18 l i gh tVe r t ex . mMisData . mRaySamplePdfsRatio ;
19 // Set ang l e s .
20 l i gh tVe r t ex . mMisData . mSinTheta = 0 .0 f ;
21 l i gh tVe r t ex . mMisData . mCosThetaOut = 0 .0 f ;
22 // Set MIS weight f a c t o r s .
23 l i gh tVe r t ex . mMisData . mSurfMisWeightFactor =
24 bsdf . IsOnSurface ( ) ? mSurfMisWeightFactor : 0 ;
25 l i gh tVe r t ex . mMisData . mPP3DMisWeightFactor =
26 bsdf . IsOnSurface ( ) ? 0 : mPP3DMisWeightFactor ;
27 l i gh tVe r t ex . mMisData . mPB2DMisWeightFactor =
28 bsdf . IsOnSurface ( ) ? 0 : mPB2DMisWeightFactor ;
29 l i gh tVe r t ex . mMisData . mBB1DMisWeightFactor =
30 bsdf . IsOnSurface ( ) ? 0 : mBB1DMisWeightFactor ;
31 // Set f l a g s .
32 l i gh tVe r t ex . mMisData . mIsDelta = bsdf . I sDe l t a ( ) ;
33 l i gh tVe r t ex . mMisData . mIsOnLightSource = f a l s e ;
34 l i gh tVe r t ex . mMisData . mIsSpecular = f a l s e ;
35 // Update r e v e r s e pdfs o f the prev ious ver tex .
36 mLightVert ices . back ( ) . mMisData . mRevPdf ∗= raySampleRevPdf / d i s tSq ;
37 mLightVert ices . back ( ) . mMisData . mRevPdfWithoutBsdf =
38 mLightVert ices . back ( ) . mMisData . mRevPdf ;
39 mLightVert ices . back ( ) . mMisData . mRaySampleRevPdfInv =
40 1 .0 f / raySampleRevPdf ;
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MisData are also computed when a new light vertex of the subpath is created
(i.e. xi, i = s > 0) after tracing a ray in the RunIteration method (on line 10
in Listing 3.21). The code is presented in the Listing 3.64 above. Again we
briefly describe it. The raySamplePdf field contains p(txi−1xi) and is computed
earlier in the RunIteration method when attenuating the subpath throughput by
intersected media (see Listing 3.20). The absolute value of bsdf.CosThetaFix()
equals D(xi → xi−1) and lightState.mLastPdfWInv equals 1/p̂(ωxi−1xi) (it is
computed at the previous vertex either in method GenerateLightSample or
SampleScattering, see Listing 3.17 or Listing 3.24, respectively). Therefore:

mPdfInv =lightState.mLastPdfWInv * distSq * raySamplePdfInv

/ std::abs(bsdf.CosThetaFix())

=
|xi−1 − xi|2

p̂(ωxi−1xi)p(txi−1xi)D(xi → xi−1)

=
|xi−1 − xi|2

p(ωxi−1xi)p(txi−1xi)D(xi → xi−1)D(xi−1 → xi)

=
1

p(xi |xi−1)
=

1
7→
pi
.

Pdfs in the reverse direction as well as sin θxi and D(xi→) cannot be computed
yet since the subpath does not continue yet. The mRaySamplePdfsRatio value is
computed using the formula

Pr{t>txi−1xi}
p(txi−1xi)

=

∏n
j=1 Pr{d′j>dj}(∏n−1

j=1 Pr{d′j>dj}
)
p̄(dn)

=
Pr{d′n>dn}

p̄(dn)

=
T ′r,m(dn)

σt,mT ′r,m(dn)
=

1

σt,m

,

where we used definitions from Section 3.2.5. Since the result is always a constant
independent on a direction, mRaySampleRevPdfsRatio has the same value.

The MIS weight factors are used when we evaluate an estimator, i.e. create
a path, and need to compute MIS weights for estimators that could also create
it. Then we assume that all estimators use a constant kernel because it has to
be computed only using vertices along the path. The MIS weight factors are
consequently constant and can be computed at the beginning of each iteration
(see Listing 3.41).

Once we have the new light vertex we can update reverse pdfs of the previous
one with a length and ray sampling pdf of the connecting edge between them (the
last lines in Listing 3.64).

Finally, the data are updated when sampling the scattering function at the
vertex in the SampleScattering method (on line 53 in Listing 3.24):

Listing 3.65: SampleScatteringMis (part of the SampleScattering method,
UPBP.hxx)

1 aoCurrentMisData . mRevPdf ∗= cosThetaOut ;
2 aoCurrentMisData . mRevPdfWithoutBsdf = aoCurrentMisData . mRevPdfA ;
3 aoCurrentMisData . mIsSpecular = specu l a r ;
4 aoCurrentMisData . mSinTheta = sinTheta ;
5 aoCurrentMisData . mCosThetaOut = cosThetaOut ;
6 aoPreviousMisData . mRevPdf ∗= bsdfRevPdfW ;
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Data of the current vertex are updated by the newly obtained angles, sinTheta
equals sin θxi for vertices in media, 0 otherwise, cosThetaOut equals D(xi→).
The reverse pdf of the previous vertex is completed with p̂(ωxixi−1

).

3.5.2.2 Camera vertices MIS data

Data for camera vertices are analogous. Assume camera subpath xs . . .xk and
one of its vertices xi, i < k (although the data are stored for the camera vertex
too, they are never used). Fields of the MisData structure stored for xi have the
following values:

mPdfInv Equals 1
← [
pi

.

mRevPdf Equals:

1
if s = i and the scattering function of vertex xi
was not sampled

D(←xi)
4 if s = i and the scattering function of vertex xi

was sampled

D(←xi)
p(txi−1xi )

5

|xi−xi−1|2
if s = i− 1 and the scattering function
of vertex xi−1 was not sampled

7→
pi otherwise.

mRevPdfWithoutBsdf Almost the same as the mRevPdf field but lacks probability
of sampling the scattering function. That means, it equals:

1
if s = i and the scattering function of vertex xi
was not sampled

D(←xi)
if s = i and the scattering function of vertex xi
was sampled

D(←xi)
p(txi−1xi )

|xi−xi−1|2 otherwise.

mRaySamplePdfInv Equals 1
p(txi+1xi )

.

mRaySampleRevPdfInv Equals 1
p(txi−1xi )

if i > s. Otherwise, it is one.

mRaySamplePdfsRatio Equals
Pr{t>txi+1xi}
p(txi+1xi )

if xi is in a medium. Otherwise, it is
zero.

mRaySampleRevPdfsRatio Equals
Pr{t>txi−1xi}
p(txi−1xi )

if xi is in a medium (condition

i > s is not required to be satisfied since the ratio can be computed anyway).
Otherwise, it is zero.

mSinTheta Equals sin θxi if i > 0, the vertex is located in a medium and its phase
function was sampled. Otherwise, it is zero.

mCosThetaOut If the scattering function of the vertex was sampled, then it equals
D(←xi). Otherwise, it is zero.

4D(←xi) = |nxi
· ω←xi

|, see Section 3.2.1
5txi−1xi is a distance between the vertices xi−1 and xi, considered as sampled in the direction

from the light, see Section 1.2
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mSurfMisWeightFactor Equals
npaths

K2(x̃i,xi)
if the vertex is located on a surface but

not on a light source. Otherwise, it is zero.

mPP3DMisWeightFactor Equals
npaths

K3(x̃i,xi)
if the vertex is located in a medium.

Otherwise, it is zero.

mPB2DMisWeightFactor Equals
npaths

K2(x̃i,xi)
if the vertex is located in a medium.

Otherwise, it is zero.

mBB1DMisWeightFactor Equals
npaths

K1(x̃i,xi)
if the vertex is located in a medium.

Otherwise, it is zero.

mIsDelta Equals true if the vertex is located on a purely specular surface but
not on a light source. Otherwise, it is false.

mIsOnLightSource Equals true if the vertex is located on a light source. Other-
wise, it is false.

mIsSpecular Equals true if the vertex is located on a surface and a specular
component of its material BSDF was sampled. Otherwise, it is false.

As in the case of light subpaths, we now describe where the values are gathered
and computed during tracing the camera subpath. In contrast to the first light
vertex, data for the first camera vertex are never used and therefore are not
computed. Update of data after sampling the scattering function is the same
as for light vertices (performed by the same code from Listing 3.65) but for the
opposite direction. So the only code missing is that handling MIS data of newly
created camera vertex (i.e. xi, i = s < k) after tracing a ray in the RunIteration

method (on line 40 in Listing 3.26):

Listing 3.66: SetCameraVertexMisData (part of the RunIteration method,
UPBP.hxx)

1 const f l o a t d i s tSq = U t i l s : : sqr ( i s e c t . mDist ) ;
2 const f l o a t raySamplePdfInv = 1 .0 f / raySamplePdf ;
3 MisData& cameraVertexMis = mCameraVerticesMisData [ cameraState . mPathLength ] ;
4

5 // Set pdfs .
6 cameraVertexMis . mPdfInv = cameraState . mLastPdfWInv ∗ d i s tSq ∗ raySamplePdfInv /
7 std : : abs ( bsdf . CosThetaFix ( ) ) ;
8 cameraVertexMis . mRevPdf = 1 .0 f ;
9 cameraVertexMis . mRevPdfWithoutBsdf = cameraVertexMis . mRevPdf ;

10 cameraVertexMis . mRaySamplePdfInv = raySamplePdfInv ;
11 cameraVertexMis . mRaySampleRevPdfInv = 1 .0 f ;
12 cameraVertexMis . mRaySamplePdfsRatio = bsdf . IsInMedium ( ) ?
13 1 .0 f / bsdf . GetMedium()−>mMinPositiveAttenuationCoefComp ( ) : 0 . 0 f ;
14 cameraVertexMis . mRaySampleRevPdfsRatio = cameraVertexMis . mRaySamplePdfsRatio ;
15

16 // Set ang l e s .
17 cameraVertexMis . mSinTheta = 0 .0 f ;
18 cameraVertexMis . mCosThetaOut = 0 .0 f ;
19

20 // Set MIS weight f a c t o r s .
21 cameraVertexMis . mSurfMisWeightFactor = bsdf . IsOnSurface ( ) ?
22 ( i s e c t . mLightID >= 0 ? 0 .0 f : mSurfMisWeightFactor ) : 0 . 0 f ;
23 cameraVertexMis . mPP3DMisWeightFactor = bsdf . IsOnSurface ( ) ?
24 0 .0 f : mPP3DMisWeightFactor ;
25 cameraVertexMis . mPB2DMisWeightFactor = bsdf . IsOnSurface ( ) ?
26 0 .0 f : mPB2DMisWeightFactor ;
27 cameraVertexMis . mBB1DMisWeightFactor = bsdf . IsOnSurface ( ) ?
28 0 .0 f : mBB1DMisWeightFactor ;
29

30 . . SetCameraVertexMisDataPart2 . .
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Listing 3.67: SetCameraVertexMisDataPart2 (part of the RunIteration method,
UPBP.hxx)

1 // Set f l a g s .
2 cameraVertexMis . mIsDelta = i s e c t . mLightID >= 0 ? f a l s e : bsdf . I sDe l t a ( ) ;
3 cameraVertexMis . mIsOnLightSource = i s e c t . mLightID >= 0 ;
4 cameraVertexMis . mIsSpecular = f a l s e ;
5

6 // Update r e v e r s e pdfs o f the prev ious ver tex .
7 mCameraVerticesMisData [ cameraState . mPathLength − 1 ] . mRevPdf ∗=
8 raySampleRevPdf / d i s tSq ;
9 mCameraVerticesMisData [ cameraState . mPathLength − 1 ] . mRevPdfWithoutBsdf =

10 mCameraVerticesMisData [ cameraState . mPathLength − 1 ] . mRevPdf
11 mCameraVerticesMisData [ cameraState . mPathLength − 1 ] . mRaySampleRevPdfInv =
12 1 .0 f / raySampleRevPdf ;

The code performs the same operations as in the case of light vertices, but for the
opposite direction. It is therefore not necessary to repeat its description. However,
new camera vertices are not created only when an “intersection” with a scene is
found, but also in case when a ray leaves the scene. Such a vertex represents a
point on the background light at infinity. Its MIS data are computed the following
way (on line 52 in Listing 3.26):

Listing 3.68: SetCameraVertexMisDataIfLeft (part of the RunIteration

method, UPBP.hxx)
1 const f l o a t raySamplePdfInv = 1 .0 f / raySamplePdf
2 MisData& cameraVertexMis = mCameraVerticesMisData [ cameraState . mPathLength ] ;
3

4 // Set pdfs .
5 cameraVertexMis . mPdfInv = cameraState . mLastPdfWInv ∗ raySamplePdfInv ;
6 cameraVertexMis . mRevPdf = 1 .0 f ;
7 cameraVertexMis . mRevPdfWithoutBsdf = cameraVertexMis . mRevPdf ;
8 cameraVertexMis . mRaySamplePdfInv = raySamplePdfInv ;
9 cameraVertexMis . mRaySampleRevPdfInv = 1 .0 f ;

10 cameraVertexMis . mRaySamplePdfsRatio = 0 .0 f ;
11 cameraVertexMis . mRaySampleRevPdfsRatio = cameraVertexMis . mRaySamplePdfsRatio ;
12

13 // Set ang l e s .
14 cameraVertexMis . mSinTheta = 0 .0 f ;
15 cameraVertexMis . mCosThetaOut = 0 .0 f ;
16

17 // Set MIS weight f a c t o r s .
18 cameraVertexMis . mSurfMisWeightFactor = 0 .0 f ;
19 cameraVertexMis . mPP3DMisWeightFactor = 0 .0 f ;
20 cameraVertexMis . mPB2DMisWeightFactor = 0 .0 f ;
21 cameraVertexMis . mBB1DMisWeightFactor = 0 .0 f ;
22

23 // Set f l a g s .
24 cameraVertexMis . mIsDelta = f a l s e ;
25 cameraVertexMis . mIsOnLightSource = true ;
26 cameraVertexMis . mIsSpecular = f a l s e ;
27

28 // Update r e v e r s e pdfs o f the prev ious ver tex .
29 mCameraVerticesMisData [ cameraState . mPathLength − 1 ] . mRevPdf ∗=
30 raySampleRevPdf ;
31 mCameraVerticesMisData [ cameraState . mPathLength − 1 ] . mRevPdfWithoutBsdf =
32 mCameraVerticesMisData [ cameraState . mPathLength − 1 ] . mRevPdf
33 mCameraVerticesMisData [ cameraState . mPathLength − 1 ] . mRaySampleRevPdfInv =
34 1 .0 f / raySampleRevPdf ;

This computation is simpler. Since the background light source is in infinity, the
distance and cosine vanish.
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3.5.2.3 Camera subpath MIS weight

Once we have all necessary data ready we can proceed to the computation
of MIS weights. The crucial task is to evaluate the wCk,s,b (3.14) and wLk,r,a (3.15)
terms. In Section 3.5.1.4 we theoretically derived effective algorithms 3.60 and
3.61 for this purpose. Now we show how they are actually implemented.

We begin with algorithm 3.60 for computing the wCk,s,b term. Recall that b
is an index of the last camera vertex on the complete path of length k, s is an
initialization factor for the algorithm (see Section 3.5.1.4). Note that b is counted
in direction from a light, but we speak about the camera vertices in the order
they were sampled, i.e. we call vertex xb the last vertex of the camera subpath
and xk the first vertex of the camera subpath. The algorithm is implemented in
the AccumulateCameraPathWeight method:

Listing 3.69: AccumulateCameraPathWeight (method, PathWeight.hxx)
1 s t a t i c f l o a t AccumulateCameraPathWeight (
2 const i n t aPathLength ,
3 const f l o a t aLastRevPdf ,
4 const f l o a t aLastSinTheta ,
5 const f l o a t aLastRaySampleRevPdfInv ,
6 const f l o a t aLastRaySampleRevPdfsRatio ,
7 const f l o a t aNextToLastPartialRevPdfW ,
8 const u int aQueryBeamType ,
9 const u int aPhotonBeamType ,

10 const u int aEstimatorTechniques ,
11 const MisData ∗aCameraVerticesMisData )
12 {
13 // The r e s u l t i n g weight .
14 f l o a t weight = 0 ;
15

16 // The common f a c t o r .
17 f l o a t product = 1 .0 f ;
18

19 // An index count ing v e r t i c e s in the order in which they are proce s s ed
20 // ( oppos i t e to the sampling order ) .
21 i n t index = 0 ;
22

23 // The f i r s t camera ver tex i s ignored . Therefore , the c y c l e s tops be f o r e
24 // index = PathLength .
25 whi le ( index < aPathLength )
26 {
27 // Get data f o r the ver tex to proce s s .
28 const MisData& cur rent = aCameraVerticesMisData [ aPathLength − index ] ;
29

30 // Get s p e c u l a r i t y o f the next ver tex to proce s s . The f i r s t camera ver tex
31 // i s never spe cu l a r .
32 bool nex t I sSpecu la r = index < aPathLength − 1 ?
33 aCameraVerticesMisData [ aPathLength − index − 1 ] . mIsSpecular : f a l s e ;
34

35 // Get v a l i d r e v e r s e data .
36 f l o a t rev = cur rent . mRevPdf ;
37 f l o a t s inTheta = cur rent . mSinTheta ;
38 f l o a t rayRev = current . mRaySampleRevPdfInv ;
39 f l o a t rayRevRatio = cur rent . mRaySampleRevPdfsRatio ;
40 i f ( index == 0) {
41 rev = aLastRevPdf ;
42 s inTheta = aLastSinTheta ;
43 rayRev = aLastRaySampleRevPdfInv ;
44 rayRevRatio = aLastRaySampleRevPdfsRatio ;
45 }
46 e l s e i f ( index == 1) rev ∗= aNextToLastPartialRevPdfW ;
47

48 . .AccumCamPart2. .
49 }
50 r e turn weight ;
51 }
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Listing 3.70: AccumCamPart2 (part of the AccumulateCameraPathWeight method,
PathWeight.hxx)

1 // Update the common f a c t o r .
2 product ∗= rev ;
3

4 // Ignore s p e c u l a r i t y o f sampled event f o r the l a s t camera ver tex .
5 // The l a s t camera ver tex i s never d e l t a here ( the method would not
6 // be c a l l e d ) and sampling a spe cu l a r event i s a th ing o f path
7 // cont inuat i on not r e l e v a n t f o r the l a s t camera ver tex .
8 bool currentUsab le = index == 0 | | ! cu r r ent . mIsSpecular ;
9

10 // Add weight c o n t r i b u t i o n o f the SURF est imator i f used
11 // and the ver tex was not sampled spe cu l a r .
12 i f ( ( aEstimatorTechniques & SURF) && currentUsab le )
13 weight += product ∗ cur rent . mSurfMisWeightFactor ;
14

15 // Add weight c o n t r i b u t i o n o f the PP3D est imator i f used .
16 i f ( aEstimatorTechniques & PP3D)
17 weight += product ∗ cur rent . mPP3DMisWeightFactor ;
18

19 // Add weight c o n t r i b u t i o n o f the PB2D est imator i f used .
20 i f ( aEstimatorTechniques & PB2D)
21 {
22 i f ( aQueryBeamType & LONG BEAM)
23 weight += product ∗ cur rent . mPB2DMisWeightFactor
24 ∗ cur rent . mRaySamplePdfInv ;
25 e l s e
26 weight += product ∗ cur rent . mPB2DMisWeightFactor
27 ∗ cur rent . mRaySamplePdfsRatio ;
28 }
29

30 // Add weight c o n t r i b u t i o n o f the BB1D est imator i f used .
31 i f ( aEstimatorTechniques & BB1D)
32 {
33 i f ( aQueryBeamType & LONG BEAM)
34 {
35 i f ( aPhotonBeamType & LONG BEAM)
36 weight += product ∗ cur rent . mBB1DMisWeightFactor
37 ∗ cur rent . mRaySamplePdfInv ∗ s inTheta ∗ rayRev ;
38 e l s e
39 weight += product ∗ cur rent . mBB1DMisWeightFactor
40 ∗ cur rent . mRaySamplePdfInv ∗ s inTheta ∗ rayRevRatio ;
41 }
42 e l s e
43 {
44 i f ( aPhotonBeamType & LONG BEAM)
45 weight += product ∗ cur rent . mBB1DMisWeightFactor
46 ∗ cur rent . mRaySamplePdfsRatio ∗ s inTheta ∗ rayRev ;
47 e l s e
48 weight += product ∗ cur rent . mBB1DMisWeightFactor
49 ∗ cur rent . mRaySamplePdfsRatio ∗ s inTheta ∗ rayRevRatio ;
50 }
51 }
52

53 // Get i n v e r s e o f the forward pdf .
54 f l o a t fwdInv = current . mPdfInv ;
55

56 // Update the common f a c t o r .
57 product ∗= fwdInv ;
58

59 // Add weight c o n t r i b u t i on o f the BPT est imator i f used and none
60 // o f the two v e r t i c e s were sampled specu l a r .
61 i f ( ( aEstimatorTechniques & BPT) && currentUsab le && ! next I sSpecu la r )
62 weight += product ;
63

64 ++index ;
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Method arguments. First, we explain arguments of the method:

aPathLength A length of the camera subpath, i.e. k − b.

aLastRevPdf Equals s
7→
pb.

aLastSinTheta Equals sin θxb if b > 0 and xb is in a medium. Otherwise, it is 0.

aLastRaySampleRevPdfInv Equals 1
p(txb−1xb

)
if b > 0. Otherwise, it is 0.

aLastRaySampleRevPdfsRatio Equals
Pr{t>txb−1xb

}
p(txb−1xb

)
if b > 0 and xb is in a medium.

Otherwise, it is 0.

aNextToLastPartialRevPdfW Equals p̂(ωxbxb+1
).

aQueryBeamType A type of query beams.

aPhotonBeamType A type of photon beams.

aEstimatorTechniques Flags of used estimator techniques.

*aCameraVerticesMisData MisData structures for the camera subpath.

The necessary MisData structures with data for camera vertices xb,xb+1, . . . ,xk
are stored in the given aCameraVerticesMisData array at indices aPathLength,
aPathLength − 1, . . . , 0 (in this order). They however cannot provide all data
for the last and next-to-last vertex on the camera subpath (i.e. for xb and xb+1)
since the reverse pdfs and angle θ at xb depend on a connecting edge with xb−1,
i.e. on the light subpath. They are therefore supplied separately via arguments
(aLastRevPdf - aNextToLastPartialRevPdfW).

Method body. Now we go through the body of the method. Let xm denote
a vertex to be processed, m ∈ {b, . . . , k − 1} (we do not process xk as explained
in Section 3.5.1.4). A partially computed term wCk,s,b is kept in the weight field
(corresponds to w in algorithm 3.60), the product field stores common factor
RC
s,b(m) (corresponds to R in algorithm 3.60). The method cycles over the camera

vertices from xb to xk−1 (the index field corresponds to m− b) and for each of
them performs:

1. Gets the MisData structure for vertex xm and stores it in the current field.
It will be needed for evaluation of all the estimators.

2. Gets valid “reverse” data for vertex xm:

rev If m = b, equals s
7→
pm. Otherwise,

7→
pm.

sinTheta Equals sin θxm if m > 0 and xm is in a medium. Otherwise, it is
0.

rayRev Equals 1
p(txm−1xm )

if m > 0. Otherwise, it is 0.

rayRevRatio Equals
Pr{t>txm−1xm}
p(txm−1xm )

if m > 0 and xm is in a medium. Other-

wise, it is 0.
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For m = b these values have to be taken from the method arguments, for
m > b current data are used. For m = b + 1 current.mRevPdf lacks
the pdf of sampling the scattering function at vertex xb (see its defini-
tion in Section 3.5.2.2) and is therefore completed using method argument
aNextToLastPartialRevPdfW.

3. Updates the product common factor by rev so it equals RC
s,b(m) (as on

line 6 in algorithm 3.60). Note that initialization factor s is for m = b
included in rev.

4. Computes weight contribution of the SURF estimator (as on line 9 in
algorithm 3.60):

weight+= product * current.mSurfMisWeightFactor

=RC
s,b(m)IS(m)

npaths
K2(x̃m,xm)

=RC
s,b(m)IS(m)FSURF(m).

The computation is carried out only when vertex xm was not sampled
specular. This condition together with the fact mSurfMisWeightFactor is
zero for all but vertices on surfaces realizes the IS(m) indicator function.

5. Computes weight contribution of the P-P3D estimator (as on line 7 in
algorithm 3.60):

weight+=product * current.mPP3DMisWeightFactor

=RC
s,b(m)IM(m)

npaths
K3(x̃m,xm)

=RC
s,b(m)IM(m)FP-P3D(m).

The fact mPP3DMisWeightFactor is zero for all but vertices in media realizes
the IM(m) indicator function.

6. Computes weight contribution of the P-Bl2D estimator (as on line 7 in
algorithm 3.60):

weight+=product * current.mPB2DMisWeightFactor

* current.mRaySamplePdfInv

=RC
s,b(m)IM(m)

npaths
K2(x̃m,xm)

1

p(txm+1xm)

=RC
s,b(m)IM(m)FP-Bl2D(m)

or of the P-Bs2D estimator:

weight+=product * current.mPB2DMisWeightFactor

* current.mRaySamplePdfsRatio

=RC
s,b(m)IM(m)

npaths
K2(x̃m,xm)

Pr{t > txm+1xm}
p(txm+1xm)

=RC
s,b(m)IM(m)FP-Bs2D(m).

The fact mPB2DMisWeightFactor is zero for all but vertices in media realizes
the IM(m) indicator function.
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7. Computes weight contribution of the Bl-Bl1D estimator (as on line 7 in
algorithm 3.60):

weight+=product * current.mBB1DMisWeightFactor

* current.mRaySamplePdfInv * sinTheta * rayRev

=RC
s,b(m)IM(m)

npaths
K1(x̃m,xm)

1

p(txm+1xm)
sin θxm

1

p(txm−1xm)

=RC
s,b(m)IM(m)FBl-Bl1D(m)

or of the Bs-Bl1D estimator:

weight+=product * current.mBB1DMisWeightFactor

* current.mRaySamplePdfInv * sinTheta * rayRevRatio

=RC
s,b(m)IM(m)

npaths
K1(x̃m,xm)

1

p(txm+1xm)
sin θxm

Pr{t > txm−1xm}
p(txm−1xm)

=RC
s,b(m)IM(m)FBs-Bl1D(m)

or of the Bl-Bs1D estimator:

weight+=product * current.mBB1DMisWeightFactor

* current.mRaySamplePdfsRatio * sinTheta * rayRev

=RC
s,b(m)IM(m)

npaths
K1(x̃m,xm)

Pr{t > txm+1xm}
p(txm+1xm)

sin θxm
1

p(txm−1xm)

=RC
s,b(m)IM(m)FBl-Bs1D(m)

or of the Bs-Bs1D estimator:

weight+=product * current.mBB1DMisWeightFactor

* current.mRaySamplePdfsRatio * sinTheta

* rayRevRatio

=RC
s,b(m)IM(m)

npaths
K1(x̃m,xm)

Pr{t > txm+1xm}
p(txm+1xm)

sin θxm

Pr{t > txm−1xm}
p(txm−1xm)

=RC
s,b(m)IM(m)FBs-Bs1D(m).

The fact mBB1DMisWeightFactor is zero for all but vertices in media realizes
the IM(m) indicator function.

8. Updates the product common factor by fwdInv = 1
← [
pm

(as on line 11 in

algorithm 3.60).

9. Computes weight contribution of the BPT estimator (as on line 10 in
algorithm 3.60):

weight+= product

=RC
s,b(m)I!δ(m,m+ 1)

1
←[
pm

=RC
s,b(m)I!δ(m,m+ 1)FBPT(m).
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The computation is carried out only when neither vertex xm nor xm+1 were
sampled specular which realizes the I!δ(m,m+ 1) indicator function.

This way the MIS weight for the camera subpath is computed. As we can
see, if method AccumulateCameraPathWeight is given the arguments it expects,
it computes the correct wCk,s,b term.

3.5.2.4 Light subpath MIS weight

After the camera subpath we similarly describe implementation of algo-
rithm 3.61 computing MIS weight of the light subpath, i.e. the wLk,r,a term. Recall
that a is an index of the last light vertex on the complete path of length k, r is an
initialization factor for the algorithm (see Section 3.5.1.4). Note that in contrast
to the camera subpath, a is counted in direction from a light, the same direction
in which we speak about the light vertices, i.e. we call vertex x0 the first vertex of
the light subpath and xa the last vertex of the camera subpath. The algorithm is
implemented in the AccumulateLightPathWeight method:

Listing 3.71: AccumulateLightPathWeight (method, PathWeight.hxx)
1 s t a t i c f l o a t AccumulateLightPathWeight (
2 const i n t aPathIndex ,
3 const i n t aPathLength ,
4 const f l o a t aLastRevPdf ,
5 const f l o a t aLastSinTheta ,
6 const f l o a t aLastRaySampleRevPdfInv ,
7 const f l o a t aLastRaySampleRevPdfsRatio ,
8 const f l o a t aNextToLastPartialRevPdfW ,
9 const u int aCurrentlyEvaluatedTechnique ,

10 const u int aQueryBeamType ,
11 const u int aPhotonBeamType ,
12 const u int aEstimatorTechniques ,
13 const std : : vector<int> ∗aPathEnds ,
14 const std : : vector<UPBPLightVertex> ∗ aL ightVert i ce s ,
15 const MisData ∗aBeamLightVertexMisData = NULL)
16 {
17 // The r e s u l t i n g weight .
18 f l o a t weight = 0 ;
19

20 // The common f a c t o r .
21 f l o a t product = 1 .0 f ;
22

23 // An index o f the l a s t l i g h t ver tex .
24 i n t l a s t I n d e x = ( aPathIndex == 0) ?
25 aPathLength : aPathEnds−>at ( aPathIndex − 1) + aPathLength ;
26

27 // An index count ing v e r t i c e s in the order in which they are proce s s ed .
28 i n t index = 0 ;
29

30 // We proce s s the f i r s t l i g h t ver tex too .
31 whi le ( index <= aPathLength )
32 {
33 // Get data f o r the ver tex to proce s s .
34 const MisData& cur rent =
35 ( aCurrentlyEvaluatedTechnique == BB1D && index == 0) ?
36 ∗aBeamLightVertexMisData
37 :
38 aL ightVert i ce s−>at ( l a s t I n d e x − index ) . mMisData ;
39

40 . . AccumLightPart2 . .
41 }
42

43 r e turn weight ;
44 }
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Listing 3.72: AccumLightPart2 (part of the AccumulateLightPathWeight

method, PathWeight.hxx)
1 // Get s p e c u l a r i t y o f the next ver tex to proce s s . The f i r s t l i g h t ver tex
2 // i s never spe cu l a r .
3 bool nex t I sSpecu la r = index < aPathLength ?
4 aL ightVert i ce s−>at ( l a s t I n d e x − index − 1 ) . mMisData . mIsSpecular : f a l s e ;
5

6 // Get v a l i d r e v e r s e data .
7 f l o a t rev = cur rent . mRevPdf ;
8 f l o a t s inTheta = cur rent . mSinTheta ;
9 f l o a t rayRev = current . mRaySampleRevPdfInv ;

10 f l o a t rayRevRatio = cur rent . mRaySampleRevPdfsRatio ;
11 i f ( index == 0)
12 {
13 rev = aLastRevPdf ;
14 s inTheta = aLastSinTheta ;
15 rayRev = aLastRaySampleRevPdfInv ;
16 rayRevRatio = aLastRaySampleRevPdfsRatio ;
17 }
18 e l s e i f ( index == 1)
19 {
20 i f ( aCurrentlyEvaluatedTechnique == BB1D)
21 rev = aNextToLastPartialRevPdfW ;
22 e l s e
23 rev = cur rent . mRevPdfAWithoutBsdf ∗ aNextToLastPartialRevPdfW ;
24 }
25

26 // Reverse p r o b a b i l i t y i s never zero u n l e s s we are on d e l t a l i g h t
27 // ( such ver tex i s never the l a s t s i n c e the re i s no merging ,
28 // connect ion or camera sampling f o r on−l i g h t v e r t i c e s
29 // and l i g h t sampling does not c a l l t h i s method ) .
30 i f ( rev == 0) break ;
31

32 // Update the common f a c t o r .
33 product ∗= rev ;
34

35 // Ignore s p e c u l a r i t y o f sampled event f o r the l a s t l i g h t ver tex .
36 // The l a s t l i g h t ver tex i s never de l t a here ( the method would not
37 // be c a l l e d ) and sampling a spe cu l a r event i s a th ing o f path
38 // cont inuat i on not r e l e v a n t f o r the l a s t l i g h t ver tex .
39 bool currentUsab le = index == 0 | | ! cu r r ent . mIsSpecular ;
40

41 // For photon dens i ty e s t imat i on techn iques (SURF, PP3D, PB2D, BB1D)
42 // weight c o n t r i b u t i o n o f the l a s t ver tex i s computed on the camera
43 // subpath .
44 i f ( index != 0 | | aCurrentlyEvaluatedTechnique == BPT)
45 {
46 . . AccumLightPart3 . .
47 }
48

49 // Get i n v e r s e o f the forward pdf .
50 f l o a t fwdInv = current . mPdfInv ;
51

52 // Update the common f a c t o r .
53 product ∗= fwdInv ;
54

55 // Add weight c o n t r i b u t i o n o f the BPT est imator i f used and none
56 // o f the two v e r t i c e s were sampled spe cu l a r .
57 i f ( ( aEstimatorTechniques & BPT) && currentUsab le && ! next I sSpecu la r )
58 weight += product ;
59

60 ++index ;
61

62 // I f in prev ious mode , a path can be c rea ted only by apply ing BPT
63 // or any o f the vo lumetr i c photon dens i ty e s t imato r s at the f i r s t
64 // ver tex from camera in a medium . Weight c o n t r i b u t i o n o f the vo lumetr i c
65 // photon dens i ty e s t imato r s i s computed on the camera subpath ,
66 // weight c o n t r i b u t i o n o f BPT ( connect ion to a l i g h t source or a l i g h t
67 // ver tex ) i s computed here in the f i r s t i t e r a t i o n and the method
68 // then ends .
69 i f ( aEstimatorTechniques & PREVIOUS) break ;
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Listing 3.73: AccumLightPart3 (part of the AccumulateLightPathWeight

method, PathWeight.hxx)
1 // Add weight c o n t r i b u t i o n o f the SURF est imator i f used
2 // and the ver tex was not sampled spe cu l a r .
3 i f ( ( aEstimatorTechniques & SURF) && currentUsab le )
4 weight += product ∗ cur rent . mSurfMisWeightFactor ;
5

6 // Add weight c o n t r i b u t i o n o f the PP3D est imator i f used .
7 i f ( aEstimatorTechniques & PP3D)
8 weight += product ∗ cur rent . mPP3DMisWeightFactor ;
9

10 // Add weight c o n t r i b u t i o n o f the PB2D est imator i f used .
11 i f ( aEstimatorTechniques & PB2D)
12 {
13 i f ( aQueryBeamType & LONG BEAM)
14 weight += product ∗ cur rent . mPB2DMisWeightFactor
15 ∗ rayRev ;
16 e l s e
17 weight += product ∗ cur rent . mPB2DMisWeightFactor
18 ∗ rayRevRatio ;
19 }
20 // Add weight c o n t r i b u t i o n o f the BB1D est imator i f used .
21 i f ( aEstimatorTechniques & BB1D)
22 {
23 i f ( aQueryBeamType & LONG BEAM)
24 {
25 i f ( aPhotonBeamType & LONG BEAM)
26 weight += product ∗ cur rent . mBB1DMisWeightFactor
27 ∗ rayRev ∗ s inTheta ∗ cur rent . mRaySamplePdfInv ;
28 e l s e
29 weight += product ∗ cur rent . mBB1DMisWeightFactor
30 ∗ rayRev ∗ s inTheta ∗ cur rent . mRaySamplePdfsRatio ;
31 }
32 e l s e
33 {
34 i f ( aPhotonBeamType & LONG BEAM)
35 weight += product ∗ cur rent . mBB1DMisWeightFactor
36 ∗ rayRevRatio ∗ s inTheta ∗ cur rent . mRaySamplePdfInv ;
37 e l s e
38 weight += product ∗ cur rent . mBB1DMisWeightFactor
39 ∗ rayRevRatio ∗ s inTheta ∗ cur rent . mRaySamplePdfsRatio ;
40 }
41 }

Method arguments. First, we explain arguments of the method:

aPathIndex An index of a stored light subpath with vertices to process. This
light subpath can be longer than the one actually evaluated (e.g. if the
camera subpath was connected to other than its last vertex).

aPathLength A length of the light subpath, i.e. a. It is a length of the actually
evaluated part of the corresponding stored light subpath.

aLastRevPdf Equals r
←[
pa.

aLastSinTheta If the complete path was created by evaluating any of the photon
density estimators, the value of aLastSinTheta is not used, since it is needed
only for computing weight contribution of the B-B1D estimator at the last
vertex and that is handled on the camera subpath (a zero is typically passed
then). Otherwise, this method is run only when the path was created by
BPT techniques connecting camera and light subpaths or connecting a light
subpath to the camera. Then aLastSinTheta equals sin θxa for vertices in
media and 0 for vertices on surfaces.
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aLastRaySampleRevPdfInv Similarly to aLastSinTheta it equals 0 if the com-
plete path was created by evaluating any of the photon density estimators.
Otherwise, it equals 1

p(txa+1xa )
.

aLastRaySampleRevPdfsRatio Similarly to aLastSinTheta it equals 0 if the
complete path was created by evaluating any of the photon density estimators.

Otherwise, it equals
Pr{t>txa+1xa}
p(txa+1xa )

for vertices in media and 0 for vertices on

surfaces.

aNextToLastPartialRevPdfW Equals
←[
pa−1 if the complete path was created by

the B-B1D estimator. Otherwise, it equals p̂(ωxaxa−1).

aCurrentlyEvaluatedTechnique An identifier of the estimator technique which
created the complete path. It is needed because for the photon density
estimators only BPT weight contribution must be evaluated for the last
light vertex, the rest is handled on the camera subpath.

aQueryBeamType A type of query beams.

aPhotonBeamType A type of photon beams.

aEstimatorTechniques Flags of used estimator techniques.

aPathEnds Indices of path ends in the aLightVertices array (aPathEnds[i]
points on a vertex right after the last vertex of the i-th traced light subpath).

aLightVertices All stored light vertices (stored in the order they were created).

aBeamLightVertexMisData Points to the MisData structure for the last light
vertex if the B-B1D estimator created the complete path. Otherwise, it is
NULL.

While there is always only one camera subpath stored and it ends exactly at
the vertex where estimators are currently evaluated, all light subpaths traced
in the current rendering iteration are stored and typically only a subpath of
one of them is the light subpath the method is called to compute MIS weight
contribution for. The method therefore needs more arguments to properly identify
the necessary data than AccumulateCameraPathWeight. And there is one more
related difference. When evaluating estimators with beams (P-B2D or B-B1D)
the vertex emerging on a query/photon beam is not actually created but its data
are needed anyway. While they can be set in the static mCameraVerticesMisData
array freely since they will be overwritten when the subpath continues, we can
neither add to the aLightVertices list nor modify data of any of the stored
vertices, since they can be still needed. MisData structure for the vertex emerging
on a photon beam when evaluating the B-B1D estimator is therefore supplied
separately in the aBeamLightVertexMisData method argument.

Method body. Now we go through the body of the method. Let xm denote a
vertex to be processed, m ∈ {0, . . . , a}. A partially computed term wLk,r,a is kept
in the weight field (corresponds to w in algorithm 3.61), the product field stores
common factor RL

r,a(m) (corresponds to R in algorithm 3.61). The method cycles
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over the light vertices from xa to x0 (the index field corresponds to a−m) and
for each of them performs:

1. Gets the MisData structure for vertex xm and stores it in the current field.
It will be needed for evaluation of all the estimators. If the complete path
was created by the B-B1D estimator and m = a, then the separately passed
aBeamLightVertexMisData structure is used.

2. Gets valid “reverse” data for vertex xm:

rev If m = a, equals r
←[
pm. Otherwise,

←[
pm.

sinTheta Equals 0 if m = a and the complete path was not created by
BPT. Otherwise, 0 for vertices on surfaces and sin θxm for vertices in
media.

rayRev Equals 0 if m = a and the complete path was not created by BPT.
Otherwise, 1

p(txm+1xm )
.

rayRevRatio Equals 0 if m = a and the complete path was not created by

BPT. Otherwise,
Pr{t>txm+1xm}
p(txm+1xm )

for vertices in media and 0 for vertices

on surfaces..

For m = a these values have to be taken from the method arguments, for
m < a current data are used. For m = a−1 current.mRevPdf may contain
a pdf dependent on the outgoing direction the stored light subpath originally
continued in from xa (this could not happen on the camera subpath).
For other than the B-B1D estimator the current.mRevPdfWithoutBsdf

value is therefore taken instead and completed using method argument
aNextToLastPartialRevPdfW. For the B-B1D estimator complete

← [
pa−1 is

already passed in aNextToLastPartialRevPdfW.

3. Updates the product common factor by rev so it equals RL
r,a(m) (as on

line 6 in algorithm 3.61). Note that initialization factor r is for m = a
included in rev.

4. If m < a or the complete path was created by the BPT estimator, evaluates
weight contribution of photon density estimators (this condition realizes the
IV (m) indicator function):

(a) Computes weight contribution of the SURF estimator (as on line 11 in
algorithm 3.61):

weight+= product * current.mSurfMisWeightFactor

=RL
r,a(m)IS(m)

npaths
K2(x̃m,xm)

=RL
r,a(m)IS(m)FSURF(m).

The computation is carried out only when vertex xm was not sampled
specular. This condition together with the fact mSurfMisWeightFactor
is zero for all but vertices on surfaces realizes the IS(m) indicator
function.
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(b) Computes weight contribution of the P-P3D estimator (as on line 9 in
algorithm 3.61):

weight+=product * current.mPP3DMisWeightFactor

=RL
r,a(m)IM(m)

npaths
K3(x̃m,xm)

=RL
r,a(m)IM(m)FP-P3D(m).

The fact mPP3DMisWeightFactor is zero for all but vertices in media
realizes the IM(m) indicator function.

(c) Computes weight contribution of the P-Bl2D estimator (as on line 9 in
algorithm 3.61):

weight+=product * current.mPB2DMisWeightFactor

* rayRev

=RL
r,a(m)IM(m)

npaths
K2(x̃m,xm)

1

p(txm+1xm)

=RL
r,a(m)IM(m)FP-Bl2D(m)

or of the P-Bs2D estimator:

weight+=product * current.mPB2DMisWeightFactor

* rayRevRatio

=RL
r,a(m)IM(m)

npaths
K2(x̃m,xm)

Pr{t > txm+1xm}
p(txm+1xm)

=RL
r,a(m)IM(m)FP-Bs2D(m).

The fact mPB2DMisWeightFactor is zero for all but vertices in media
realizes the IM (m) indicator function. Note that in contrast to camera
subpaths reverse pdfs are used here instead of direct ones.

(d) Computes weight contribution of the Bl-Bl1D estimator (as on line 9
in algorithm 3.61):

weight+=product * current.mBB1DMisWeightFactor

* rayRev * sinTheta * current.mRaySamplePdfInv

=RL
r,a(m)IM(m)

npaths
K1(x̃m,xm)

1

p(txm+1xm)
sin θxm

1

p(txm−1xm)

=RL
r,a(m)IM(m)FBl-Bl1D(m)

or of the Bs-Bl1D estimator:

weight+=product * current.mBB1DMisWeightFactor

* rayRev * sinTheta

* current.mRaySamplePdfsRatio

=RL
r,a(m)IM(m)

npaths
K1(x̃m,xm)

1

p(txm+1xm)
sin θxm

Pr{t > txm−1xm}
p(txm−1xm)

=RL
r,a(m)IM(m)FBs-Bl1D(m)
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or of the Bl-Bs1D estimator:

weight+=product * current.mBB1DMisWeightFactor

* rayRevRatio * sinTheta

* current.mRaySamplePdfInv

=RL
r,a(m)IM(m)

npaths
K1(x̃m,xm)

Pr{t > txm+1xm}
p(txm+1xm)

sin θxm

1

p(txm−1xm)

=RL
r,a(m)IM(m)FBl-Bs1D(m)

or of the Bs-Bs1D estimator:

weight+=product * current.mBB1DMisWeightFactor

* rayRevRatio * sinTheta

* current.mRaySamplePdfsRatio

=RL
r,a(m)IM(m)

npaths
K1(x̃m,xm)

Pr{t > txm+1xm}
p(txm+1xm)

sin θxm

Pr{t > txm−1xm}
p(txm−1xm)

=RL
r,a(m)IM(m)FBs-Bs1D(m).

The fact mBB1DMisWeightFactor is zero for all but vertices in media
realizes the IM (m) indicator function. Note that in contrast to camera
subpaths the usage of reverse and forward pdfs is swapped here.

5. Updates the product common factor by fwdInv = 1
7→
pm

(as on line 18 in

algorithm 3.61).

6. Computes weight contribution of the BPT estimator (as on line 13 in
algorithm 3.61):

weight+= product

=RL
r,a(m)I!δ(m− 1,m)

1
7→
pm

=RL
r,a(m)I!δ(m− 1,m)FBPT(m).

The computation is carried out only when neither vertex xm nor xm−1 were
sampled specular which realizes the I!δ(m− 1,m) indicator function. For
m = 0 the I!δL(m) indicator function is realized by terminating the method
on line 30 if the reverse probability is zero (happens only for delta light
sources). If it is not terminated only BPT can contribute to the weight since
the MIS weight factors of photon density estimators are all zero on light
sources.

This way the MIS weight for the light subpath is computed. As we can see,
if method AccumulateLightPathWeight is given the arguments it expects, it
computes the correct wLk,r,a term.
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3.5.2.5 Complete path MIS weight

In the two previous sections we show how to implement computation of MIS
weights for light and camera subpaths. Now it is time to put these two parts
together and compute the MIS weight of a complete path. Section 3.5.1.4 lists
formulas how to accomplish this for each of the estimators, here we present their
programming code. In the following text k denotes a length of the complete path,
k ∈ N, k ≥ 2.

To improve readability we place description of implementation of each estimator
on a new page.

BPT: connecting vertices. Recall that the MIS weight for the BPT technique
connecting vertices xc, xc+1, c ∈ {1, . . . , k − 2} satisfies Equation 3.16:

1

ŵBPTc,c+1

= wLk,1,c + 1 + wCk,1,c+1.

This equation is implemented in the ConnectVertices method (on line 24 in
Listing 3.37):

Listing 3.74: ConnectToVertexMis (part of the ConnectVertices method,
UPBP.hxx)

1 // Camera part .
2 const f l o a t wCamera = AccumulateCameraPathWeight (
3 aCameraState . mPathLength ,
4 raySampleRevPdf ∗ l ightBsdfDirPdfA ,
5 sinThetaCamera ,
6 1 .0 f / raySampleRevPdf ,
7 mCameraVerticesMisData [ aCameraState . mPathLength ] . mRaySamplePdfsRatio ,
8 cameraBsdfRevPdfW ,
9 mQueryBeamType ,

10 mPhotonBeamType ,
11 mEstimatorTechniques ,
12 mCameraVerticesMisData ) ;
13

14 // Light part .
15 const f l o a t wLight = AccumulateLightPathWeight (
16 aLightVertex . mPathIdx ,
17 aLightVertex . mPathLength ,
18 raySamplePdf ∗ cameraBsdfDirPdfA ,
19 s inThetaLight ,
20 1 .0 f / raySamplePdf ,
21 aLightVertex . mMisData . mRaySamplePdfsRatio ,
22 lightBsdfRevPdfW ,
23 BPT,
24 mQueryBeamType ,
25 mPhotonBeamType ,
26 mEstimatorTechniques ,
27 &mPathEnds ,
28 &mLightVert ices ,
29 NULL) ;
30

31 // Complete weight .
32 const f l o a t misWeight = 1 .0 f / ( wLight + 1 .0 f + wCamera ) ;

We begin with the MIS weight of the camera subpath. Most of the arguments
passed to the AccumulateCameraPathWeight are obvious, we discuss only these:

2nd (aLastRevPdf) It is given raySampleRevPdf * lightBsdfDirPdfA. The
factors are computed earlier in the method and their product equals:

p(txcxc+1)p̂(ωxcxc+1)
D(xc+1→xc)

|xc − xc+1|2
=

7→
pc+1
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i.e. the required value of the aLastRevPdf argument for s = 1.

3rd (aLastSinTheta) It is given the sinThetaCamera value computed earlier
in the method. It equals 0 if xc+1 is on a surface and sin θxc+1 if it is in a
medium, i.e. it equals the required value of the aLastSinTheta argument.

4th (aLastRaySampleRevPdfInv) It is given 1.0f / raySampleRevPdf. The
denominator is computed earlier in the method and equals p(txcxc+1), i.e.
the fraction equals the required value of the aLastRaySampleRevPdfInv

argument.

5th (aLastRaySampleRevPdfsRatio) It is given the mRaySamplePdfsRatio pro-
perty of xc+1 since it depends neither on a direction nor on xc. It equals 0

if xc+1 is on a surface and
Pr{t>txcxc+1}
p(txcxc+1 )

if it is in a medium, i.e. it equals the

required value of the aLastRaySampleRevPdfsRatio argument.

6th (aNextToLastPartialRevPdfW) It is given the cameraBsdfRevPdfW value
computed earlier in the method. It equals p̂(ωxc+1xc+2), i.e. the required
value of the aNextToLastPartialRevPdfW argument.

Computation of the MIS weight of the light subpath is very similar. Arguments
of the AccumulateLightPathWeight method are analogous but for the xc vertex
and the opposite direction.

We can see that both methods are given the right arguments, so they return
the correct wCk,1,c+1 and wLk,1,c terms and we get

misWeight = 1.0f / (wLight + 1.0f + wCamera)

=
1

wLk,1,c + 1 + wCk,1,c+1

= ŵBPTc,c+1 .
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BPT: connecting to a light. For for the BPT technique connecting vertices
x0 and x1 we have Equation 3.17:

1

ŵBPT0,1
= I!δL(0)FL

BPT(0)RL
1,0(0) + 1 + wCk,1,1.

This equation is implemented in the DirectIllumination method (on line 44 in
Listing 3.35):

Listing 3.75: ConnectToLightMis (part of the DirectIllumination method,
UPBP.hxx)

1 f l o a t misWeight = 1 . f ;
2 // Fu l l BPT.
3 i f ( mConnectToLightVertices )
4 {
5 // Camera path .
6 const f l o a t wCamera = AccumulateCameraPathWeight (
7 aCameraState . mPathLength ,
8 raySampleRevPdf ∗ emissionPdfW ∗ cosToLight / ( directPdfW ∗ cosAtLight ) ,
9 sinTheta ,

10 1 .0 f / raySampleRevPdf ,
11 mCameraVerticesMisData [ aCameraState . mPathLength ] . mRaySamplePdfsRatio ,
12 bsdfRevPdfW
13 mQueryBeamType ,
14 mPhotonBeamType ,
15 mEstimatorTechniques ,
16 mCameraVerticesMisData ) ;
17

18 // Light part .
19 const f l o a t wLight = l i g h t−>I sDe l t a ( ) ?
20 0 : ( raySamplePdf ∗ bsdfDirPdfW ) / ( directPdfW ∗ l i ghtPickProb ) ;
21

22 // Complete weight .
23 misWeight = 1 .0 f / ( wLight + 1 .0 f + wCamera ) ;
24 }
25 // Only PT with e x p l i c i t l i g h t sampling and accumulation o f emis s ion
26 // o f d i r e c t l y h i t l i g h t sou r c e s
27 e l s e i f ( mAlgorithm != kPTls && ! l i g h t−>I sDe l t a ( ) )
28 misWeight = 1 .0 f /
29 ( ( raySamplePdf ∗ bsdfDirPdfW ) / ( directPdfW ∗ l i ghtPickProb ) + 1 .0 f ) ;

This time only the AccumulateCameraPathWeight method is used. Some of its
arguments are again worth noting:

2nd (aLastRevPdf) It is given raySampleRevPdf*emissionPdfW*cosToLight

/ (directPdfW*cosAtLight). The factors are computed earlier in the
method and their product equals:

p(tx0x1)p(x0)p̂(ωx0x1)D(x1→x0)

p(x0) |x0−x1|2
D(x0→x1)

D(x0→x1)
= p(tx0x1)p̂(ωx0x1)

D(x1→x0)

|x0 − x1|2
=
7→
p1,

i.e. the required value of the aLastRevPdf argument for s = 1.

3rd (aLastSinTheta) It is given the sinTheta value computed earlier in the
method. It equals 0 if x1 is on a surface and sin θx1 if it is in a medium, i.e.
it equals the required value of the aLastSinTheta argument.

4th (aLastRaySampleRevPdfInv) It is given 1.0f / raySampleRevPdf. The
denominator is computed earlier in the method and equals p(tx0x1), i.e.
the fraction equals the required value of the aLastRaySampleRevPdfInv

argument.
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5th (aLastRaySampleRevPdfsRatio) It is given the mRaySamplePdfsRatio pro-
perty of x1 since it depends neither on a direction nor on x0. It equals 0

if x1 is on a surface and
Pr{t>tx0x1}
p(tx0x1 )

if it is in a medium, i.e. it equals the

required value of the aLastRaySampleRevPdfsRatio argument.

6th (aNextToLastPartialRevPdfW) It is given the bsdfRevPdfW value computed
earlier in the method. It equals p̂(ωx1x2), i.e. the required value of the
aNextToLastPartialRevPdfW argument.

Receiving these arguments the method returns the correct wCk,1,1 term.
The MIS weight of the light subpath is computed directly as (raySamplePdf *

bsdfDirPdfW) / (directPdfW * lightPickProb). The factors are computed
earlier in the method and their product equals:

p(tx1x0)p̂(ωx1x0)

p(x0) |x0−x1|2
D(x0→x1)

=
p(tx0x1)p̂(ωx0x1)

D(x1→x0)
|x0−x1|2

p(x0)
=

1
7→
p0

← [
p0 = FL

BPT(0)RL
1,0(0).

The I!δL(0) indicator function is realized by performing this computation only if
x0 is not on a delta light source.

Using the computed results for the subpaths we get the MIS weight of the
complete path:

misWeight = 1.0f / (wLight + 1.0f + wCamera)

=
1

I!δL(0)FL
BPT(0)RL

1,0(0) + 1 + wCk,1,1
= ŵBPT0,1 .

Note that the DirectIllumination method is called in three distinct cases
depending on estimators the renderer is configured to combine. If it uses full
BPT (i.e. if mConnectToLightVertices is set, see Section 3.3.1), then the MIS
weight is computed as presented. However, if it is allowed to use only path tracing
with explicit light sampling and accumulation of emission of directly hit light
sources (mAlgorithm is kPTmis) and the light source is not delta, then there is
only one technique besides the evaluated one that could create the path – sampling
the entire path from the camera. It is the same technique as considered when
computing the wLight term, i.e. the resulting weight is also the same up to the
missing mCamera term. Finally, if the renderer cannot accumulate emission of
directly hit light sources (mAlgorithm is kPTmis) or if the light source is delta,
then the path could not be created by any other technique and weighting is not
needed (the weight is 1).
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BPT: connecting to the camera. If connecting vertices xk−1, xk, there is no
wC term and the corresponding weight satisfies Equation 3.18:

1

ŵBPTk−1,k

= wLk,1,k−1 + 1.

This equation is implemented in the ConnectToCamera method (on line 24 in
Listing 3.23):

Listing 3.76: ConnectToCameraMis (part of the ConnectToCamera method,
UPBP.hxx)

1 // Light part .
2 const f l o a t wLight = AccumulateLightPathWeight (
3 aLightPathIdx ,
4 aLightState . mPathLength ,
5 raySampleRevPdf ∗ cameraPdfA ,
6 sinTheta ,
7 1 .0 f / raySampleRevPdf ,
8 aRaySampleRevPdfsRatio ,
9 bsdfRevPdfW ,

10 BPT,
11 mQueryBeamType ,
12 mPhotonBeamType ,
13 mEstimatorTechniques ,
14 aCameraConnection ,
15 &mPathEnds ,
16 &mLightVert ices ,
17 NULL)
18 / mPathCount ;
19

20 // Complete weight .
21 misWeight = 1 .0 f / ( wLight + 1 .0 f ) ;

We again point out only a few of arguments of the AccumulateCameraPathWeight
called to compute the MIS weight of the light subpath:

2nd (aLastRevPdf) It is given raySampleRevPdf * cameraPdfA. The factors
are computed earlier in the method and their product equals:

p(txkxk−1
)p̂(ωxkxk−1

)
D(xk−1→xk)

|xk−1 − xk|2
=

←[
pk−1

i.e. the required value of the aLastRevPdf argument for s = 1.

3rd (aLastSinTheta) It is given the sinTheta value computed earlier in the
method. It equals 0 if xk−1 is on a surface and sin θxk−1

if it is in a medium,
i.e. it equals the required value of the aLastSinTheta argument.

4th (aLastRaySampleRevPdfInv) It is given 1.0f / raySampleRevPdf. The
denominator is computed earlier in the method and equals p(txkxk−1

), i.e.
the fraction equals the required value of the aLastRaySampleRevPdfInv

argument.

5th (aLastRaySampleRevPdfsRatio) It is given the mRaySamplePdfsRatio pro-
perty of xk−1 (passed via aRaySampleRevPdfsRatio argument of method
ConnectToCamera) since it depends neither on a direction nor on xk. It

equals 0 if xk−1 is on a surface and
Pr{t>txkxk−1

}
p(txkxk−1

)
if it is in a medium, i.e. it

equals the required value of the aLastRaySampleRevPdfsRatio argument.
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6th (aNextToLastPartialRevPdfW) It is given the bsdfRevPdfW value computed
earlier in the method. It equals p̂(ωxk−1xk−2

), i.e. the required value of the
aNextToLastPartialRevPdfW argument.

We can see that the method is given the right arguments, so it returns the
correct wLk,1,k−1 term and we get

misWeight = 1.0f / (wLight + 1.0f)

=
1

wLk,1,k−1 + 1
= ŵBPTk−1,k

.
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BPT: hitting a light. On the other hand, if the entire path is sampled from
the camera, then there is no wL term and the corresponding weight satisfies
Equation 3.19:

1

ŵBPTdirect

= 1 + wCk,1,0.

This equation is implemented in the GetLightRadiance method (on line 39 in
Listing 3.33):

Listing 3.77: DirectlyHitLightMis (part of the GetLightRadiance method,
UPBP.hxx)

1 f l o a t misWeight = 1 . f ;
2 i f ( mConnectToLightVertices )
3 {
4 const f l o a t wCamera = AccumulateCameraPathWeight (
5 aCameraState . mPathLength ,
6 directPdfA ,
7 0 ,
8 0 ,
9 0 ,

10 emissionPdfW / directPdfA
11 mQueryBeamType ,
12 mPhotonBeamType ,
13 mEstimatorTechniques ,
14 mCameraVerticesMisData ) ;
15

16 misWeight = 1 .0 f / ( 1 . 0 f + wCamera ) ;
17 }
18 e l s e i f ( mAlgorithm == kPTmis && ! aCameraState . mLastSpecular )
19 {
20 const f l o a t wCamera = directPdfA ∗
21 mCameraVerticesMisData [ aCameraState . mPathLength ] . mPdfAInv ;
22

23 misWeight = 1 .0 f / ( 1 . 0 f + wCamera ) ;
24 }

As before, the AccumulateCameraPathWeight method is used to compute the
MIS weight of the camera subpath. Its interesting arguments are:

2nd (aLastRevPdf) It is given the directPdfA value computed earlier in the

method. It equals
7→
p0, i.e. the required value of the aLastRevPdf argument

for s = 1.

3rd - 5th The last vertex of the camera subpath is on a light source, therefore
there is no sine or reverse ray sampling pdfs.

6th (aNextToLastPartialRevPdfW) It is given emissionPdfW / directPdfA.
The factors are computed earlier in the method and their product equals:

p(x0)p̂(ωx0x1)

p(x0)
= p̂(ωx0x1),

i.e. the required value of the aNextToLastPartialRevPdfW argument.

The method is given the right arguments, so it returns the correct wCk,1,0 term
and we get

misWeight = 1.0f / (1.0f + wCamera)

=
1

1 + wCk,1,0
= ŵBPTdirect

.
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Note that the GetLightRadiance method is also called in three distinct cases
depending on estimators the renderer is configured to combine. If it uses full BPT
(i.e. if mConnectToLightVertices is set, see Section 3.3.1), then the MIS weight
is computed as presented. However, if it is allowed to use only path tracing with
explicit light sampling and accumulation of emission of directly hit light sources
(mAlgorithm is kPTmis) and x1 was not sampled specular, then there is only one
technique besides the evaluated one that could create the path – connecting to
the light. It is a complementary case to what the DirectIllumination method
handles. To compute the corresponding MIS weight, we need to compute the ratio
of pdfs of creating the path by connecting to the light and by sampling it entirely
from the camera. It satisfies →

p0
←
p1
←
p0

=

7→
p0
← [
p0

and is implemented on line 20. Finally, if the renderer cannot sample light sources
(mAlgorithm is kPTdir) or if x1 was sampled specular and therefore does not
allow connecting to the light, then the path could not be created by any other
technique and weighting is not needed (the weight is 1).
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SURF and P-P3D. Let the path be created by applying the SURF or P-P3D
estimator on vertex xe, e ∈ {1, . . . , k− 1}. Then the resulting MIS weight satisfies
Equation 3.20:

1

ŵpdee
= wLk,r,e + wCk,s,e, r = IFL

pde(e), s = IFC
pde(e),

where pde ∈ {SURF,P-P3D}. The initialization factors equals (according to
Section 3.5.1.4):

IFL
SURF(e) =

1
←[
pe FSURF(e)

=
K2(xe,xe)

←[
pe

,

IFC
SURF(e) =

1
7→
pe FSURF(e)

=
K2(xe,xe)

7→
pe

,

IFL
P-P3D(e) =

1
←[
pe FP-P3D(e)

=
K3(xe,xe)

←[
pe

,

IFC
P-P3D(e) =

1
7→
pe FP-P3D(e)

=
K3(xe,xe)

7→
pe

.

These equations are implemented in the Process method (on line 35 in List-
ing 3.40):

Listing 3.78: SurfPP3DMis (part of the Process method, UPBP.hxx)
1 // ( Part o f ) the i n i t i a l i z a t i o n f a c t o r .
2 const f l o a t misWeightFactorInv = 1 .0 f /
3 ( aLightVertex . mInMedium ?
4 aLightVertex . mMisData . mPP3DMisWeightFactor
5 :
6 aLightVertex . mMisData . mSurfMisWeightFactor ) ;
7

8 // Camera part .
9 const f l o a t wCamera = mUPBP. AccumulateCameraPathWeight (

10 mCameraState . mPathLength ,
11 misWeightFactorInv ,
12 sinTheta ,
13 aLightVertex . mMisData . mRaySamplePdfInv ,
14 aLightVertex . mMisData . mRaySamplePdfsRatio ,
15 cameraBsdfRevPdfW
16 mQueryBeamType ,
17 mPhotonBeamType ,
18 mEstimatorTechniques ,
19 mCameraVerticesMisData ) ;
20

21 // Light part .
22 const f l o a t wLight = mUPBP. AccumulateLightPathWeight (
23 aLightVertex . mPathIdx ,
24 aLightVertex . mPathLength ,
25 misWeightFactorInv ,
26 0 ,
27 0 ,
28 0 ,
29 cameraBsdfDirPdfW ,
30 aLightVertex . mInMedium ? PP3D : SURF
31 mQueryBeamType ,
32 mPhotonBeamType ,
33 mEstimatorTechniques ,
34 &mPathEnds ,
35 &mLightVert ices ,
36 NULL) ;
37

38 // Complete weight .
39 misWeight = 1 . f / ( wLight + wCamera ) ;
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We begin with the MIS weight of the camera subpath. The non-trivial arguments
passed to the AccumulateCameraPathWeight method are:

2nd (aLastRevPdf) It is given the misWeightFactorInv value. For the SURF
estimator it equals:

K2(xe,xe) =
K2(xe,xe)

7→
pe

7→
pe = IFC

SURF(e)
7→
pe,

i.e. the required value of the aLastRevPdf argument for s = IFC
SURF(e). The

case of the P-P3D estimator differs only in the kernel dimension.

3rd (aLastSinTheta) It is given the sinTheta value computed earlier in the
method. It equals sin θxe , i.e. the required value of the aLastSinTheta

argument.

4th (aLastRaySampleRevPdfInv) It is given the mRaySamplePdfInv property
of the x̃e light vertex. It equals 1

p(txe−1x̃e
)
, i.e. the required value of the

aLastRaySampleRevPdfInv argument.

5th (aLastRaySampleRevPdfsRatio) It is given the mRaySamplePdfsRatio pro-

perty of the x̃e light vertex. It equals
Pr{t>txe−1x̃e

}
p(txe−1x̃e

)
, i.e. the required value of

the aLastRaySampleRevPdfsRatio argument.

6th (aNextToLastPartialRevPdfW) It is given the cameraBsdfRevPdfW value
computed earlier in the method. It equals p̂(ωxexe+1), i.e. the required value
of the aNextToLastPartialRevPdfW argument.

Computation of the MIS weight of the light subpath is very similar. It uses
the same value for the aLastRevPdf argument since IFL

pde(e)
←[
pe = IFC

pde(e)
7→
pe for

pde ∈ {SURF,P-P3D}. The other “last” arguments are zero, as they are used
only for evaluation of MIS weight contribution of photon density estimators on
the last light vertex which is handled on the camera subpath.

We can see that both methods are given the right arguments, so they return
the correct wCk,s,e and wLk,r,e terms and we get

misWeight = 1.0f / (wLight + wCamera)

=
1

wLk,r,e + wCk,s,e
= ŵpdee

for r = IFL
pde(e), s = IFC

pde(e) and pde ∈ {SURF,P-P3D}.
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P-B2D. If the path is created by applying the P-B2D estimator on vertex xe,
e ∈ {1, . . . , k − 1}, the resulting MIS weight satisfies the same Equation 3.20 but
for different initialization factors

r = IFL
P-Bl2D(e) =

1
←[
pe FP-Bl2D(e)

=
p(txe+1xe)K2(xe,xe)

←[
pe

,

s = IFC
P-Bl2D(e) =

1
7→
pe FP-Bl2D(e)

=
p(txe+1xe)K2(xe,xe)

7→
pe

,

for long query beams and

r = IFL
P-Bs2D(e) =

1
←[
pe FP-Bs2D(e)

=
p(txe+1xe)K2(xe,xe)

Pr{t > txe+1xe}
←[
pe

,

s = IFC
P-Bs2D(e) =

1
7→
pe FP-Bs2D(e)

=
p(txe+1xe)K2(xe,xe)

Pr{t > txe+1xe}
7→
pe

,

for short query beams. An implementation of these equations is contained in the
breIntersectFuncHomogeneous2 method (on line 12 in Listing 3.48):

Listing 3.79: PB2DMis (part of the breIntersectFuncHomogeneous2 method,
Bre.cxx)

1 // Create temporary camera ver tex on the query beam .
2 const f l o a t d i s tSq = U t i l s : : sqr ( photonI s ec tDi s t ) ;
3 const f l o a t raySamplePdfInv = 1 .0 f / raySamplePdf ;
4

5 MisData∗ cameraVerticesMisData =
6 s t a t i c c a s t <MisData∗>(data−>mCameraVerticesMisData ) ;
7 MisData& cameraVertexMisData =
8 cameraVerticesMisData [ data−>mCameraPathLength ] .
9

10 cameraVertexMisData . mPdfAInv = data−>mLastPdfWInv ∗ d i s tSq ∗ raySamplePdfInv ;
11 cameraVertexMisData . mRaySamplePdfInv = raySamplePdfInv ;
12 cameraVertexMisData . mRaySamplePdfsRatio = raySamplePdfsRatio ;
13 cameraVertexMisData . mSurfMisWeightFactor = 0 ;
14 cameraVertexMisData . mPP3DMisWeightFactor = data−>mPP3DMisWeightFactor ;
15 cameraVertexMisData . mPB2DMisWeightFactor = data−>mPB2DMisWeightFactor ;
16 cameraVertexMisData . mBB1DMisWeightFactor = data−>mBB1DMisWeightFactor ;
17 cameraVertexMisData . mIsDelta = f a l s e ;
18 cameraVertexMisData . mIsOnLightSource = f a l s e ;
19 cameraVertexMisData . mIsSpecular = f a l s e ;
20

21 cameraVerticesMisData [ data−>mCameraPathLength − 1 ] . mRaySampleRevPdfInv =
22 1 .0 f / raySampleRevPdf ;
23

24 // ( Part o f ) the i n i t i a l i z a t i o n f a c t o r .
25 const f l o a t l a s t = ( ray . f l a g s & SHORT BEAM) ?
26 1 .0 / ( raySamplePdfsRatio ∗ cameraVertexMisData . mPB2DMisWeightFactor ) :
27 raySamplePdf / cameraVertexMisData . mPB2DMisWeightFactor ;
28

29 // Camera part .
30 const f l o a t wCamera = AccumulateCameraPathWeight (
31 data−>mCameraPathLength ,
32 l a s t ,
33 sinTheta ,
34 l i ghtVer tex−>mMisData . mRaySamplePdfInv ,
35 l i ghtVer tex−>mMisData . mRaySamplePdfsRatio ,
36 cameraBsdfRevPdfW ∗ raySampleRevPdf / distSq ,
37 data−>mQueryBeamType ,
38 data−>mPhotonBeamType ,
39 ray . f l a g s ,
40 cameraVert icesMis ) ;
41

42 . .PB2DMisPart2 . .
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Listing 3.80: PB2DMisPart2 (part of the breIntersectFuncHomogeneous2

method, Bre.cxx)
1 // Light part .
2 const f l o a t wLight = AccumulateLightPathWeight (
3 l i ghtVer tex−>mPathIdx ,
4 l i ghtVer tex−>mPathLength ,
5 l a s t ,
6 0 ,
7 0 ,
8 0 ,
9 cameraBsdfDirPdfW ,

10 PB2D,
11 data−>mQueryBeamType ,
12 data−>mPhotonBeamType ,
13 ray . f l a g s ,
14 s t a t i c c a s t <std : : vector<int>∗>(data−>mPathEnds ) ,
15 s t a t i c c a s t <std : : vector<UPBPLightVertex>∗>(data−>mLightVert ices )
16 NULL) ;
17

18 // Complete weight .
19 const f l o a t misWeight = 1 . f / ( wLight + wCamera ) ;

To compute the MIS weight of the camera subpath we need MisData for the xe
camera vertex. However, we do not have these data as the last camera vertex
created during tracing of the camera subpath is xe+1. We therefore compute
them and set them temporarily in the mCameraVerticesMisData array. After this
method is finished, they are overwritten by every subsequent P-B2D (and B-B1D)
estimator evaluation along the same query ray and then, finally, when the camera
subpath continues. This applies to the modification of the reverse pdf of xe+1 too.

Properties of the MisData structure for xe are computed in a very similar
way to creating a new camera vertex during tracing the camera subpath, see
Listing 3.66. Setting of some of them is missing but those are passed separately
via arguments of the AccumulateCameraPathWeight method. These are:

2nd (aLastRevPdf) It is given the last value. For long query beams it equals:

raySamplePdf / cameraVertexMisData.mPB2DMisWeightFactor

= p(txe+1xe)K2(xe,xe) =
p(txe+1xe)K2(xe,xe)

7→
pe

7→
pe = IFC

P-Bl2D(e)
7→
pe,

i.e. the required value of the aLastRevPdf argument for s = IFC
P-Bl2D(e).

For short query beams it equals:

raySamplePdfsRatio / cameraVertexMisData.mPB2DMisWeightFactor

=
p(txe+1xe)

Pr{t > txe+1xe}
K2(xe,xe) =

p(txe+1xe)K2(xe,xe)

Pr{t > txe+1xe}
7→
pe

7→
pe = IFC

P-Bl2D(e)
7→
pe,

i.e. the required value of the aLastRevPdf argument for s = IFC
P-Bs2D(e).

3rd (aLastSinTheta) It is given the sinTheta value computed earlier in the
method. It equals sin θxe , i.e. the required value of the aLastSinTheta

argument.

4th (aLastRaySampleRevPdfInv) It is given the mRaySamplePdfInv property
of the x̃e light vertex. It equals 1

p(txe−1x̃e
)
, i.e. the required value of the

aLastRaySampleRevPdfInv argument.
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5th (aLastRaySampleRevPdfsRatio) It is given the mRaySamplePdfsRatio pro-

perty of the x̃e light vertex. It equals
Pr{t>txe−1x̃e

}
p(txe−1x̃e

)
, i.e. the required value of

the aLastRaySampleRevPdfsRatio argument.

6th (aNextToLastPartialRevPdfW) It is given

cameraBsdfRevPdfW * raySampleRevPdf / distSq

= p̂(ωxexe+1)
p(txexe+1)

|xe − xe+1|2
.

In case of the previous estimators the aNextToLastPartialRevPdfW argu-
ment is given only the pdf of sampling the scattering function. However, the
xe+1 vertex there has already included factor p(txexe+1)/|xe − xe+1|2 in its
mRevPdf property, since the xe vertex is not temporary. Here we therefore
have to include it in the method argument.

Computation of the MIS weight of the light subpath is very similar. It uses
the same value for the aLastRevPdf argument since IFL

pde(e)
←[
pe = IFC

pde(e)
7→
pe for

pde ∈ {P-Bl2D,P-Bs2D}. The other “last” arguments are zero, as they are used
only for evaluation of MIS weight contribution of photon density estimators on
the last light vertex which is handled on the camera subpath.

We can see that both methods are given the right arguments, so they return
the correct wCk,s,e and wLk,r,e terms and we get

misWeight = 1.0f / (wLight + wCamera)

=
1

wLk,r,e + wCk,s,e
= ŵpdee

for r = IFL
pde(e), s = IFC

pde(e) and pde ∈ {P-Bl2D,P-Bs2D}.

141



B-B1D. And finally, if the path is created by applying the B-B1D estimator on
vertex xe, e ∈ {1, . . . , k − 1}, the resulting MIS weight satisfies the Equation 3.20
with initialization factors

IFL
Bl-Bl1D(e) =

1
← [
pe FBl-Bl1D(e)

=
p(txe−1x̃e)p(txe+1xe)K1(xe,xe)

sin θxe−1xe+1

←[
pe

,

IFC
Bl-Bl1D(e) =

1
7→
pe FBl-Bl1D(e)

=
p(txe−1x̃e)p(txe+1xe)K1(xe,xe)

sin θxe−1xe+1

7→
pe

,

IFL
Bl-Bs1D(e) =

1
← [
pe FBl-Bs1D(e)

=
p(txe−1x̃e)p(txe+1xe)K1(xe,xe)

Pr{t > txe+1xe} sin θxe−1xe+1

←[
pe
,

IFC
Bl-Bs1D(e) =

1
7→
pe FBl-Bs1D(e)

=
p(txe−1x̃e)p(txe+1xe)K1(xe,xe)

Pr{t > txe+1xe} sin θxe−1xe+1

7→
pe
,

IFL
Bs-Bl1D(e) =

1
← [
pe FBs-Bl1D(e)

=
p(txe−1x̃e)p(txe+1xe)K1(xe,xe)

Pr{t > txe−1x̃e} sin θxe−1xe+1

←[
pe
,

IFC
Bs-Bl1D(e) =

1
7→
pe FBs-Bl1D(e)

=
p(txe−1x̃e)p(txe+1xe)K1(xe,xe)

Pr{t > txe−1x̃e} sin θxe−1xe+1

7→
pe
,

IFL
Bs-Bs1D(e) =

1
← [
pe FBs-Bs1D(e)

=
p(txe−1x̃e)p(txe+1xe)K1(xe,xe)

Pr{t > txe−1x̃e}Pr{t > txe+1xe} sin θxe−1xe+1

←[
pe
,

IFC
Bs-Bs1D(e) =

1
7→
pe FBs-Bs1D(e)

=
p(txe−1x̃e)p(txe+1xe)K1(xe,xe)

Pr{t > txe−1x̃e}Pr{t > txe+1xe} sin θxe−1xe+1

7→
pe
.

An implementation of these equations is contained in the accumulate2 method
(on line 18 in Listing 3.58):

Listing 3.81: BB1DMis (part of the accumulate2 method, PhotonBeam.hxx)
1 // Create temporary camera ver tex on the query beam .
2

3 const f l o a t distSqQuery = U t i l s : : sqr ( q u e r y I s e c t D i s t ) ;
4 const f l o a t raySamplePdfInvQuery = 1 .0 f / raySamplePdfQuery ;
5 MisData∗ cameraVerticesMisData =
6 s t a t i c c a s t <MisData∗>(addit ionalDataForMis−>mCameraVerticesMisData ) ;
7 MisData& cameraVertexMisData =
8 cameraVerticesMisData [ addit ionalDataForMis−>mCameraPathLength ] ;
9 const AdditionalRayDataForMis∗ data = addit ionalDataForMis ;

10

11 cameraVertexMisData . mPdfAInv =
12 data−>mLastPdfWInv ∗ distSqQuery ∗ raySamplePdfInvQuery ;
13 cameraVertexMisData . mRaySamplePdfInv = raySamplePdfInvQuery ;
14 cameraVertexMisData . mRaySamplePdfsRatio = raySamplePdfsRatioQuery ;
15 cameraVertexMisData . mSurfMisWeightFactor = 0 ;
16 cameraVertexMisData . mPP3DMisWeightFactor = data−>mPP3DMisWeightFactor ;
17 cameraVertexMisData . mPB2DMisWeightFactor = data−>mPB2DMisWeightFactor ;
18 cameraVertexMisData . mBB1DMisWeightFactor = data−>mBB1DMisWeightFactor ;
19 cameraVertexMisData . mIsDelta = f a l s e ;
20 cameraVertexMisData . mIsOnLightSource = f a l s e ;
21 cameraVertexMisData . mIsSpecular = f a l s e ;
22

23 cameraVerticesMisData [ data−>mCameraPathLength − 1 ] . mRaySampleRevPdfInv =
24 1 .0 f / raySampleRevPdfQuery ;
25

26 . .BB1DMisPart2 . .
27 . .BB1DMisPart3 . .
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Listing 3.82: BB1DMisPart2 (part of the accumulate2 method, PhotonBeam.hxx)
1 // Create temporary l i g h t ver tex on the photon beam .
2

3 const f l o a t distSqBeam = mLightVertex−>mIsFin i te ?
4 U t i l s : : sqr ( beamIsectDist ) : 1 . 0 f ;
5 const f l o a t raySamplePdfInvBeam = 1.0 f / raySamplePdfBeam ;
6 MisData beamLightVertexMisData ;
7

8 beamLightVertexMisData . mPdfAInv =
9 mLastPdfWInv ∗ distSqBeam ∗ raySamplePdfInvBeam ;

10 beamLightVertexMisData . mRaySamplePdfInv = raySamplePdfInvBeam ;
11 beamLightVertexMisData . mRaySamplePdfsRatio = raySamplePdfsRatioBeam ;
12 beamLightVertexMisData . mSurfMisWeightFactor = 0 ;
13 beamLightVertexMisData . mPP3DMisWeightFactor = data−>mPP3DMisWeightFactor ;
14 beamLightVertexMisData . mPB2DMisWeightFactor = data−>mPB2DMisWeightFactor ;
15 beamLightVertexMisData . mBB1DMisWeightFactor = data−>mBB1DMisWeightFactor ;
16 beamLightVertexMisData . mIsDelta = f a l s e ;
17 beamLightVertexMisData . mIsOnLightSource = f a l s e ;
18 beamLightVertexMisData . mIsSpecular = f a l s e ;
19

20 // We need to modify va lue o f the prev ious l i g h t ver tex pdf but
21 // i t may be s t i l l needed . We t h e r e f o r e back i t up , modify ,
22 // use and then , at the end , r e s t o r e from the backup .
23 const f l o a t originRaySampleRevPdfInvBackup =
24 mLightVertex−>mMisData . mRaySampleRevPdfInv ;
25 mLightVertex−>mMisData . mRaySampleRevPdfInv = 1 .0 f / raySampleRevPdfBeam ;
26

27 // ( Part o f ) the i n i t i a l i z a t i o n f a c t o r .
28 const f l o a t l a s t = ( rayFlags & SHORT BEAM) ?
29 (
30 ( mFlags & SHORT BEAM) ?
31 1 .0 / ( raySamplePdfsRatioQuery ∗ raySamplePdfsRatioBeam
32 ∗ cameraVertexMisData . mBB1DMisWeightFactor ∗ s inTheta )
33 :
34 raySamplePdfBeam / ( raySamplePdfsRatioQuery
35 ∗ cameraVertexMisData . mBB1DMisWeightFactor ∗ s inTheta )
36 )
37 :
38 (
39 ( mFlags & SHORT BEAM) ?
40 raySamplePdfQuery / ( raySamplePdfsRatioBeam
41 ∗ cameraVertexMisData . mBB1DMisWeightFactor ∗ s inTheta )
42 :
43 raySamplePdfQuery ∗ raySamplePdfBeam
44 / ( cameraVertexMisData . mBB1DMisWeightFactor ∗ s inTheta )
45 ) ;
46

47 // Camera part .
48 const f l o a t wCamera = AccumulateCameraPathWeight (
49 data−>mCameraPathLength ,
50 l a s t ,
51 sinTheta ,
52 raySamplePdfInvBeam ,
53 raySamplePdfsRatioBeam ,
54 bsdfRevPdfW ∗ raySampleRevPdfQuery / distSqQuery ,
55 data−>mQueryBeamType ,
56 data−>mPhotonBeamType ,
57 rayFlags ,
58 cameraVerticesMisData ) ;
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Listing 3.83: BB1DMisPart3 (part of the accumulate2 method, PhotonBeam.hxx)
1 // Light part .
2 const f l o a t wLight = AccumulateLightPathWeight (
3 mLightVertex−>mPathIdx ,
4 mLightVertex−>mPathLength + 1 ,
5 l a s t ,
6 0 ,
7 0 ,
8 0 ,
9 ( mLightVertex−>mMisData . mIsOnLightSource && mLightVertex−>mMisData . mIsDelta )

10 ? 0 :
11 bsdfDirPdfW ∗ raySampleRevPdfBeam
12 ∗ std : : abs ( mLightVertex−>mMisData . mCosThetaOut ) / distSqBeam ,
13 BB1D,
14 data−>mQueryBeamType ,
15 data−>mPhotonBeamType ,
16 rayFlags ,
17 s t a t i c c a s t <std : : vector<int>∗>(data−>mPathEnds ) ,
18 s t a t i c c a s t <std : : vector<UPBPLightVertex>∗>(data−>mLightVert ices ) ,
19 &beamLightVertexMisData ) ;
20

21 // Complete weight .
22 const f l o a t misWeight = 1 . f / ( wLight + wCamera ) ;
23

24 // Restore the modi f i ed value o f the prev ious l i g h t ver tex pdf .
25 mLightVertex−>mMisData . mRaySampleRevPdfInv = originRaySampleRevPdfInvBackup ;

To compute the MIS weight of the camera subpath we need MisData for the xe
camera vertex. However, we do not have these data as the last camera vertex
created during tracing of the camera subpath is xe+1. We therefore compute
them and set them temporarily in the mCameraVerticesMisData array. After this
method is finished, they are overwritten by every subsequent B-B1D estimator
evaluation along the same query ray and then, finally, when the camera subpath
continues. This applies to the modification of the reverse pdf of xe+1 too.

Properties of the MisData structure for xe are computed in a very similar
way to creating a new camera vertex during tracing the camera subpath, see
Listing 3.66. Setting of some of them is missing but those are passed separately
via arguments of the AccumulateCameraPathWeight method. These are:

2nd (aLastRevPdf) It is given the last value. Depending on the query and
photon beam types it equals:

LB-LB:
p(txe−1xe)p(txe+1x̃e)K1(xe,xe)

sin θxe−1xe+1

= IFC
Bl-Bl1D(e)

7→
pe,

LB-SB:
p(txe−1xe)p(txe+1x̃e)K1(xe,xe)

Pr{t > txe+1xe} sin θxe−1xe+1

= IFC
Bl-Bs1D(e)

7→
pe,

SB-LB:
p(txe−1xe)p(txe+1x̃e)K1(xe,xe)

Pr{t > txe−1xe} sin θxe−1xe+1

= IFC
Bs-Bl1D(e)

7→
pe,

SB-SB:
p(txe−1xe)p(txe+1x̃e)K1(xe,xe)

Pr{t > txe−1xe}Pr{t > txe+1xe} sin θxe−1xe+1

= IFC
Bs-Bs1D(e)

7→
pe,

i.e. the required value of the aLastRevPdf argument for s = IFC
pde(e) where

pde ∈ {Bl-Bl1D,Bl-Bs1D,Bs-Bl1D,Bs-Bs1D}.

3rd (aLastSinTheta) It is given the sinTheta value computed earlier in the
method. It equals sin θxe , i.e. the required value of the aLastSinTheta

argument.
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4th (aLastRaySampleRevPdfInv) It is given the raySamplePdfInvBeam value
computed earlier in the method. It equals 1

p(txe−1x̃e
)
, i.e. the required value

of the aLastRaySampleRevPdfInv argument.

5th (aLastRaySampleRevPdfsRatio) It is given the raySamplePdfsRatioBeam

value computed earlier in the method. It equals
Pr{t>txe−1x̃e

}
p(txe−1x̃e

)
, i.e. the required

value of the aLastRaySampleRevPdfsRatio argument.

6th (aNextToLastPartialRevPdfW) It is given

bsdfRevPdfW * raySampleRevPdfQuery / distSqQuery

= p̂(ωxexe+1)
p(txexe+1)

|xe − xe+1|2
.

In case of the previous estimators the aNextToLastPartialRevPdfW argu-
ment is given only the pdf of sampling the scattering function. However, the
xe+1 vertex there has already included factor p(txexe+1)/|xe − xe+1|2 in its
mRevPdf property, since the xe vertex is not temporary. Here we therefore
have to include it in the method argument.

Computation of the MIS weight of the light subpath is very similar. It uses
the same value for the aLastRevPdf argument since IFL

pde(e)
← [
pe = IFC

pde(e)
7→
pe

for pde ∈ {Bl-Bl1D,Bl-Bs1D,Bs-Bl1D,Bs-Bs1D}. The other “last” arguments
are zero, as they are used only for evaluation of MIS weight contribution of
photon density estimators on the last light vertex which is handled on the camera
subpath. We also have to create a temporary MisData structure for the x̃e
light vertex (beamLightVertexMisData). Because we cannot modify data of
stored light vertices, the structure is sent as a separate argument. And there is
one more special value expected by the AccumulateLightPathWeight method.
The aNextToLastPartialRevPdfW argument is given the whole

←[
pe−1 pdf (zero of

course, if e = 1 and xe−1 is on a delta light source, since there is no chance hitting
it).

We can see that both methods are given the right arguments, so they return
the correct wCk,s,e and wLk,r,e terms and we get

misWeight = 1.0f / (wLight + wCamera)

=
1

wLk,r,e + wCk,s,e
= ŵpdee

for r = IFL
pde(e), s = IFC

pde(e), pde ∈ {Bl-Bl1D,Bl-Bs1D,Bs-Bl1D,Bs-Bs1D}.

3.5.3 Summary

The aim of the Section 3.5 was to carefully explain all aspects of the computa-
tion of MIS weights. It began with theoretical derivation of the algorithm and
then proceeded to its implementation. First, necessary data were introduced, what
we need to store and how it is obtained. Then the methods realizing the algorithm
itself were presented closely. Finally, the section listed how these methods are
called to compute MIS weights for each estimator. We made this part more
detailed than the others as we believe that the computation of MIS weights is
crucial.
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4. Results

This chapter presents results our implementation of the UPBP algorithm
produces. It mainly contains modified and extended text of Section 9 in [14].

Since the main motivation for development of the UPBP algorithm was simu-
lation of light transport in participating media, we test performance of the UPBP
algorithm by comparing it to the individual volumetric photon density estimators
(P-P3D, P-B2D, B-B1D) and to bidirectional path tracing (BPT). The SURF
estimator is not included in the comparison (neither individually nor as a part of
UPBP) because its contribution in our tests targeted on media would be negligible.

4.1 Comparison setup

We begin with an overview of our comparison setup. We explain what query
and photon beams were used, which rendering modes were compared or how we
set the number of subpaths for generating photon beams.

Long and short beams. As we already mentioned in Section 3.4, combining
the long- and short-beam variants of the same estimators (i.e. all six variants of
P-B2D and B-B1D as listed in Section 1.2.1) would not be useful because the
long-beam variant always has less variance (as shown by Křivánek et al. [14]).
On the other hand, evaluating the long-beam estimators is obviously more costly,
so a judicious choice needs to be made. In our tests, the use of short photon
beams and long query beams provided the best performance for a given time
budget. Therefore, we set the UPBP algorithm to use only long query beams and
short photon beams and compare it only to the P-Bl2D and Bs-Bl1D estimator
variants. Opting for short photon beams is important for the overall performance,
because long photon beams have much higher cost of queries and construction
of an acceleration data structure, and this overhead is rarely compensated by a
corresponding variance reduction.

Compatible UPBP. Because the volumetric photon density estimators are
designed to capture only medium transport, we perform the comparison for the
UPBP algorithm set in “compatible” rendering mode (described in Section 3.3.1.1).
In this mode it simulates only a subset of light transport paths corresponding to
what these estimators are able to capture while preserving extended possibilities
of sampling the paths.

The individual estimators. To produce results of the individual volumetric
photon density estimators and BPT for the comparison we did not use any separate
implementation of these estimators. We instead utilized the flexibility of our
implementation and set it to evaluate only a desired estimator. Moreover, BPT is
run in “compatible” mode to calculate only medium transport (for the same reason
as UPBP) and the volumetric photon density estimators are run in “previous”
mode (described in Section 3.3.1.1) to emulate the previous work [13, 9, 10]. Note
that this emulation affects only traced camera subpaths. Our P-P3D estimator
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does not use ray marching as suggested by Jensen and Christensen [13], so that
the implementation is consistent with the derived theory. Ray marching would
correspond to evaluating more P-P3D than P-Bl2D and Bs-Bl1D estimators (one
evaluation per ray-marching step), which would complicate the interpretation of
the results.

Photon beams count. We sample fewer light subpaths for generating photon
beams than for generating photon points (see Table 4.1). We set the number
of subpaths such that the total rendering time spent on evaluating the Bs-Bl1D
estimator is about the same as the time spent on the other estimators. While this
simple heuristic works well in our scenes, a more systematic analysis of estimator
efficiency is an important avenue for future work.

Reference images. Besides running the UPBP algorithm in “compatible” mode
we also rendered reference images capturing full light transport. The purpose of
these images is to present the employed scenes and demonstrate capabilities of
the algorithm. They should not be compared with other images neither by their
content nor rendering time (their rendering ran until convergence). Apart from
rendering mode and time there is one more difference in rendering configuration
of the reference images. They are the only case in which evaluation of the SURF
estimator is included and as such also the only case when radius reduction is
applied. The radius for the SURF estimator is reduced according to Equation 3.7
with α = 0.75 (as recommended in [4]), other radii are constant.

PC configuration. All the tests were run on a Windows 7 PC with a 4-core
Intel i7-2600K CPU and 16GB of RAM using 8 threads.

4.2 Scenes

To demonstrate the robustness of the UPBP method, we render three scenes
containing media with a wide range of parameters, featuring complex specular-
medium-specular transport. The scenes are called Still life, Mirror balls and
Bathroom, the rendering settings are shown in Table 4.1, parameters of the media
in these scenes are listed in Table 4.2. For each scene we present one reference
image capturing full light transport and a series of images comparing contributions
of the individual volumetric estimators and BPT to our method.

Still life. The Still life scene in Figure 4.1 features different kinds of media (from
left to right: wax candle, glycerin soap bar on top of a block of a back-scattering
medium, diluted wine, apple juice, and olive oil). Figure 4.1 compares the result
of our UPBP algorithm to the previous methods, implemented as described above.
These results are in line with the observation Křivánek et al. [14] made in his
canonical variance analysis, that beams (Bs-Bl1D) are not necessarily more efficient
than the point-based estimators P-P3D and P-Bl2D. For instance, P-Bl2D renders
a less noisy image than Bs-Bl1D for the dense wax, while the opposite is true for
the thinner glycerin soap. The unbiased BPT techniques efficiently capture the
light transport in the thin diluted wine and the apple juice. No single technique is
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able to efficiently render all the media in this scene, while our combined algorithm
performs well.

Mirror balls. The Mirror balls scene in Figure 4.2 shows the good performance
of photon beams at rendering (reflected) caustics in thin media. The number
of photon beams per iteration is only 0.63% of the number of photons. Despite
this significant difference in the numbers of samples, the variance of Bs-Bl1D in
the thin medium that fills the space is very low. Although BPT is efficient at
rendering volumetric caustics, their reflections are more efficiently captured by
Bs-Bl1D. P-Bl2D and P-P3D produce good results in the two spheres with a
dense medium. However, the variance of P-P3D in the thin medium is enormous,
while P-Bl2D performs nearly as well as Bs-Bl1D. Our combined algorithm is able
to take the best of all these estimators to produce a superior result.

Bathroom. The Bathroom scene in Figure 4.3 has similar settings to the Mirror
balls scene and the various estimators show similar performance. The Bs-Bl1D
estimator excels at capturing the focused light around the complex light fixture,
while having high variance in the thick media of the flask contents and the
washbasin. Our combined algorithm still has an edge over P-Bl2D, the best-
performing previous method, though the advantage of the combined estimator is
nearly offset by the overhead of evaluating many techniques.
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Still life Mirror balls Bathroom

Image resolution 1600 × 700 800 × 800 672 × 896
# light subpaths 1,120,000 640,000 602,112
# photon beam subpaths 23,000 (2.05%) 4,000 (0.63%) 3,000 (0.50%)
Maximum path length 80 12 20
Rendering time 25 min 60 min 60 min
# iterations UPBP 752 665 497
# iterations BPT 1315 1962 973
# iterations P-P3D 2319 2367 2493
# iterations B-P2D 2096 1931 2018
# iterations B-B1D 2218 1331 1372

Table 4.1: Rendering settings and statistics.

Medium
Scattering coefficient σs Absorption coefficient σa

R G B R G B

Wax candle 1.5000 1.5000 1.5000 0.0300 0.1000 0.2000
Glycerin soap (top) 0.0201 0.0202 0.0221 0.0020 0.0040 0.0002
Block (bottom) 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100
Diluted wine 0.0150 0.0130 0.0111 0.1220 0.3510 0.4020
Apple juice 0.0201 0.0243 0.0323 0.1014 0.1862 0.4084
Olive oil 0.0410 0.0390 0.0120 0.0620 0.0470 0.3530

Global medium (fog) 0.0002 0.0002 0.0001 0.0001 0.0001 0.0001
Green glass sphere 0.0004 0.0001 0.0004 0.0200 0.0010 0.0200
Orange sphere 0.1000 0.1000 0.1000 0.0050 0.0600 0.2600
Dark amethyst 0.0600 0.1000 0.1000 0.0001 0.0100 0.0100

Medium
Single-scattering albedo

Mean free path g
R G B

Wax candle 0.9803 0.9615 0.7500 0.032 0.8
Glycerin soap (top) 0.9090 0.8347 0.9910 2.300 0.6
Block (bottom) 0.5000 0.5000 0.5000 2.500 -0.9
Diluted wine 0.1094 0.0357 0.0268 0.365 0.9
Apple juice 0.1654 0.1154 0.0732 0.412 0.9
Olive oil 0.0042 0.4535 0.0995 0.581 0.9

Global medium (fog) 0.6667 0.600 0.5000 5.000 0.5
Green glass sphere 0.0196 0.0909 0.0196 12.62 0.0
Orange sphere 0.6250 0.9523 0.2777 0.043 -0.9
Dark amethyst 0.5964 0.0909 0.0909 0.100 -0.3

Table 4.2: Medium parameters for the Still life (top parts) and the Mirror balls
scenes (bottom parts). Media are listed in the order in which they appear in the
respective scenes from left to right. The mean free path value of the media is
given here as a multiple of the largest side of the enclosing object’s bounding box.
The last column gives the mean cosine of the Henyey-Greenstein phase function.
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UPBP (full transport)

UPBP

BPT

P-P3D

P-Bl2D

Bs-Bl1D

Figure 4.1: Results for the Still life scene.
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UPBP (full transport) UPBP

BPT P-P3D

P-Bl2D Bs-Bl1D

Figure 4.2: Results for the Mirror balls scene.
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UPBP (full transport) UPBP BPT

P-P3D P-Bl2D Bs-Bl1D

Figure 4.3: Results for the Bathroom scene.
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Conclusion

Our goal was to implement the UPBP algorithm. Although we did not have
to start from scratch, it was still a challenging task. We implemented media
representation and phase function evaluation, rewrote the ray-scene intersection
function and figured out how to track what the current medium is. We incorporated
query and photon beams handling and, above all, provided a fast and stable
algorithm for the computation of MIS weights.

The resulting renderer empirically proved that the UPBP algorithm is working.
We could see that it automatically exploits the complementary benefits of each of
the included techniques to provide a combination more robust to scene variations
and lighting scenarios than any single previous technique alone. We decided
to release it for public so as to everybody could take advantage of it. Mainly
computer graphics researchers are expected to work with it but commercial usage
is allowed as well.

We have several suggestions for future work. Media support could be extended
for heterogeneous and emissive media to broaden the area of application, photon
beams data structure should be revised to improve performance of the B-B1D
estimator. Except for the SURF estimator, a constant kernel radius is now used.
A comprehensive asymptotic analysis of the trade-off between variance and bias
would yield the appropriate radius reduction scheme and make the combined
algorithm consistent.

We were given a chance to collaborate on development of the UPBP algorithm,
a new state of the art rendering algorithm in realistic image synthesis. We
managed to create its implementation but that is only a beginning. There is a
plenty of room for further research, improvements and extensions and anybody
can experiment with it. This thesis provides knowledge needed to start.
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org/.

[24] SmallUPBP [online]. [cit. 15. 6. 2014]. Dostupné z: http://www.smallupbp.
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T (x) throughput of path x
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camera”)
ω←x direction sampled from camera vertex x (“towards the

light”)
ωxy direction from x to y
tx distance sampled from x (orientation is determined by

context)
txy distance sampled along the ray (x, ωxy)
tx→ distance sampled along the ray (x, ωx→)
t←x distance sampled along the ray (x, ω←x)
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D(←x) equals |nx · ω←x| if x is an inner path vertex located on
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segments between vertices xi and xi+1 long enough for
vertex xi+1 to contribute

Cl(x0 . . .xi) light subpath contribution
Cl(x0 . . .xi] light subpath contribution including scattering at xi
Cc(xj . . .xk) camera subpath contribution
Cc[xj . . .xk) camera subpath contribution including scattering at xj
P-P3D volumetric photon mapping estimator
P-B2D generally denotes the P-Bl2D and P-Bs2D estimators
P-Bl2D beam radiance estimator using long query beams
P-Bs2D beam radiance estimator using short query beams
B-B1D generally denotes the Bl-Bl1D, Bl-Bs1D, Bs-Bl1D and

Bs-Bs1D estimators
Bl-Bl1D photon beams estimator using long photon and query

beams
Bl-Bs1D photon beams estimator using long photon beams and

short query beams
Bs-Bl1D photon beams estimator using short photon beams and

long query beams
Bs-Bs1D photon beams estimator using short photon beams and

short query beams
BPTxixi+1

bidirectional path tracing estimator connecting vertices
xi and xi+1

BPTdirect bidirectional path tracing estimator sampling the whole
light transport path entirely from the camera

SURF surface photon mapping estimator
〈I〉e estimator e expression
K3 normalized 3D kernel
K2 normalized 2D kernel
K1 normalized 1D kernel
sin θxi−1xi+1

sine of angle between ωxi−1→ and ω←xi+1
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H Heaviside step function
ŵi MIS weighting function for technique i using balance

heuristic
g mean cosine
pC continuation probability
npaths number of light/camera subpaths traced
→
pi denotes p(x0, . . . ,xi)
←
pi denotes p(xi, . . . ,xk)
7→
pj denotes p(xj |xj−1),

7→
p0 =

→
p0

← [
pk denotes p(xk |xk+1),

←[
p7 =

←
p7

wL part of inverted MIS weight corresponding to a light
subpath

wLk,r,a part of inverted MIS weight corresponding to a light
subpath of complete path of length k ending at vertex
xb initialized with r

wC part of inverted MIS weight corresponding to a camera
subpath

wCk,s,b part of inverted MIS weight corresponding to a camera
subpath of complete path of length k starting at vertex
xb initialized with s

RL
r,a(i) common factor for vertex xi on the light subpath ending

at vertex xa initialized with r
RC
s,b(i) common factor for vertex xi on the camera subpath

beginning at vertex xb initialized with s
Fe factor specific for estimator e
IFL

e initialization factor for estimator e and light subpath
IFC

e initialization factor for estimator e and camera subpath
IM(b) indicator IM(b) = 1⇔ xb is in a medium
IS(b) indicator IS(b) = 1 ⇔ xb is on a surface (not purely

specular)
I!δ(b, b+ 1) indicator I!δ(b, b + 1) = 1⇔ neither xb nor xb+1 are on

a purely specular surface
I!δL(b) indicator I!δL(b) = 1⇔ xb is on a light source that can

be hit (is not delta)
IV (b) indicator IV (b) = 1 ⇔ xb is not the last vertex of the

light subpath or the path was created by path integral
estimators
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Attachments

1 User documentation

While the previous chapters focus on the UPBP algorithm, its theoretical
background and implementation, the main subject of this chapter is the resulting
SmallUPBP computer program and its description from the user’s point of view.

The program can be found on the attached DVD both as an executable file and
as a source code. The latest version of the source code can be also downloaded
from the SmallUPBP project site [24].

We begin with an explanation of how the program can be run and controlled,
then we add a few notes related to its modification.

1.1 Running the program

1.1.1 Requirements

Partly because it is characteristic for all rendering software and partly because
the program is experimental and its optimization was not our priority, the program
is very hardware demanding. Since it is CPU-oriented, its performance is highly
dependent on CPU power, number of threads and available operating memory.
Results presented in Chapter 4 were all computed on a PC with a 4-core Intel
i7-2600K CPU and 16GB of RAM using 8 threads and rendering a single image
took from minutes (for the “compatible” and “previous” images) to days (for the
full transport reference images). Although a worse configuration can be used,
it may increase rendering times and limit the maximum image resolution or a
number of traced light paths and stored photon beams.

In terms of software requirements, we targeted the program on 64-bit Microsoft
Windows platform (it may work on others but we have not tested it). The
supplied executable file has to be run under Microsoft Windows 7 operating
system or newer with either Microsoft Visual Studio 2013 or Visual C++ 2013
Redistributable installed, all in 64-bit versions. In order to run the program in
a different environment, it has to be newly compiled from the source code (see
Section 1.2.3).

1.1.2 Installation

If the requirements are met, the supplied executable file can be run directly
without any installation. It is the SmallUPBP.exe file located on the attached
DVD in the folder Implementation\Executable. It is independent of any other
files and can be moved and renamed freely (however, the example batch files
mentioned in Section 1.1.8 expect it in the original location and with the original
name). If executed directly, it should (after a short computation) output the
same image as the one shown in Section 1.1.8. If there is neither Microsoft Visual
Studio 2013 nor Visual C++ 2013 Redistributable installed on the computer, the
program will not run and Windows will probably display an error message about
a missing dynamic library. To solve this, one of the two mentioned software must
be installed. Visual C++ 2013 Redistributable x64 is supplied on the attached
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DVD in the folder Implementation\Install. If the program still does not work,
compiling from the source code can help, see Section 1.2.3 for instructions.

1.1.3 Run

The program has no graphical user interface, it is a command line program.
Its configuration, i.e. what will be rendered and how, is set via arguments the
program is run with. By using the -h or -hf arguments, the program always
displays (no matter whether any other arguments are used or not) a short or full
help, respectively. The short help contains only the most important arguments
whereas the full version lists all arguments the program knows.

1.1.4 Scenes

What can the program render? There are 41 predefined scenes available.
To select one, argument -s <sceneID> is used, where <sceneID> represents the
number of the desired scene. The predefined scenes are listed and briefly described
in the full help (-hf). More detailed description is given in Attachment 2.

Moreover, a user can specify his or her own scene to render. The rest of this
section describes its format. A user scene has to be defined in three files sharing
the same <name>:

<name>.obj A file with geometry of the scene in the OBJ file format [18]. Can
be obtained via export from 3ds max or other 3D modelling software. The
program recognizes records v for vertices, vn for normals, vt for texture
coordinates and f for faces (in formats v, v/vt, v/vt/vn, v//vn). Materials
of (group of) faces are specified using usemtl followed by a name of a
material in the <name>.mtl file referenced using mtllib. All faces have to
have materials, exactly one mtllib reference is expected (to the <name>.mtl
file).

<name>.mtl A file with materials of the scene geometry in the MTL file format [17].
Can be obtained via export from 3ds max or other 3D modelling software
(while exporting to OBJ). Must contain all materials used in the <name>.obj
file. The program recognizes records Kd for diffuse reflectance, Ke for emission
(for area light sources), Ks for phong reflectance and Ns for phong exponent
(see Section 3.2 for description of materials and light sources). Other material
properties can be specified in the <name>.obj.aux file.

<name>.obj.aux A file with definition of the camera, media, additional material
properties and lights. It is a manually created ASCII file in our own format.

Camera definition is exactly in a format which can be obtained via export
from 3ds max (while exporting to ASCII). The program recognizes records
TM ROW1 for the camera roll, TM ROW2 for the camera (backward) direction,
TM ROW3 for the camera position, CAMERA FOV for the camera horizontal field
of view and CAMERA TDIST for the camera focal distance. In addition to
the 3ds max export, there can be one more record. If the camera is not
in the global medium (note that there is always a global medium, clear by
default), it is enclosed by a geometry with a material. This material must
be explicitly specified by CAMERA MATERIAL.
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A medium is defined by typing medium <mediumID>, where <mediumID>

represents an identifier of the medium. The definition is then followed
by properties of the medium, each property record on a new line. The
program recognizes records absorption, emission, scattering, g and
continuation probability (they correspond to the mAbsorptionCoef,
mEmissionCoef, mScatteringCoef, mMeanCosine and mContinuationProb

properties of the HomogeneousMedium class described in Section 3.2.2). To
place the medium in the scene, it is either made the global medium by typing
globalMediumID <mediumID> anywhere bellow its definition or associated
with a material.

Additional properties of a material are introduced by typing material

<materialID>, where <materialID> represents an identifier of the material
in the <name>.mtl file. Then its properties can be set, each property
record on a new line. The program recognizes records geometryType for the
material type (real vs. imaginary), ior for the index of refraction, Ke for
emission (overrides the emission in the <name>.mtl file if specified), mirror
for mirror reflectance and priority for the material priority (see Section 3.2
for description of materials).

Furthermore, a medium can be associated with a material (recall that media
are associated with geometry not materials, so it is internally associated with
all geometry with this material). This is accomplished by adding mediumID

<mediumID> to properties of the material, where <mediumID> represents an
identifier of the medium to be associated with. Crossing boundary of such
a material may then mean entering or leaving the specified medium (see
Section 3.2.2).

Finally, the <name>.obj.aux file can define lights. An area light source is
defined simply by setting emission of materials associated with its geometry.
Similarly to the camera, if it is not in the global medium, it is enclosed by a
geometry with a material and this material must be explicitly specified by
enclosingMatId. Light sources of other types (point, direction, background)
are defined by their own records: <light point>, <light directional>,
<light background constant> and <light background em>. The last one
defines a background light source with its emission controlled by an envi-
ronment map. It needs a path (absolute or relative to <name>.obj) to an
OpenEXR file containing the environment map. The map is assumed to be
designed for the latitude-longitude mapping (i.e. its height maps to latitude,
width to longitude). The record also contains a factor (positive) for scaling
colors of the map (uniformly) and a factor (non-negative multiple of the
map width) for rotating the map about the vertical axis (clockwise).

An example of the <name>.obj.aux file is given in Listing 4.1. For further
details see the supplied scene files (described in Section 1.1.8) and the
ObjReader.hxx and ObjReader.cxx source files. Note that the user scenes
also have to comply with assumptions made in Section 3.2.3.1.

That is all about the format of user scenes. To select a user scene, argument -s
-1 <path> is used, where <path> represents a path to the <name>.obj file. If no
scene is selected at all (neither predefined, nor user), argument -s 0 is assumed.
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Listing 4.1: An example of the sample scene.obj.aux scene file.
1 # CAMERA
2

3 TM ROW0 0.6291 0 .7773 0 .0091
4 TM ROW1 −0.0088 −0.0046 1 .0000
5 TM ROW2 0.7773 −0.6292 0 .0040
6 TM ROW3 105.5772 −163.5308 151.8657
7 CAMERA FOV 0.6981
8 CAMERA TDIST 1.0000
9 CAMERA MATERIAL MaterialWine

10

11 # MEDIA
12

13 medium MediumWine
14 absorpt ion 0 .122 0 .351 0 .402
15 emis s ion 0 .0 0 .0 0 .0
16 s c a t t e r i n g 0 .015 0 .013 0 .011
17 g 0 .9
18

19 medium MediumGlass
20 absorpt ion 0 .05 0 .05 0 .05
21 emis s ion 0 .0 0 .0 0 .0
22 s c a t t e r i n g 0 .0 0 .0 0 .0
23 g 0 .0
24

25 medium MediumGlobal
26 absorpt ion 0 .0001 0 .0001 0 .0001
27 emis s ion 0 .0 0 .0 0 .0
28 s c a t t e r i n g 0 .0016 0 .0016 0 .0016
29 g 0 .4
30 c o n t i n u a t i o n p r o b a b i l i t y 0 .8
31

32 globalMediumID MediumGlobal
33

34 # MATERIALS
35

36 mate r i a l MaterialWine
37 mirror 1 .0 1 .0 1 .0
38 i o r 1 .333
39 mediumId MediumWine
40 p r i o r i t y 1
41

42 mate r i a l Mater ia lGlas s
43 mirror 1 . 0 1 .0 1 .0
44 i o r 1 .520
45 mediumId MediumGlass
46 p r i o r i t y 5
47 geometryType r e a l
48

49 # LIGHTS
50

51 mate r i a l Mater ia lL ight
52 Ke 800 790 780
53 enc los ingMatId MaterialWine
54

55 #l i g h t p o i n t <posX> <posY> <posZ> <emissionR> <emissionG> <emissionB>
56 #l i g h t d i r e c t i o n a l <dirX> <dirY> <dirZ> <emissionR> <emissionG> <emissionB>
57 #l ight backg round cons tant <emissionR> <emissionG> <emissionB>
58

59 l ight background em 0 .6 0 .96 room . exr

1.1.5 Algorithms

Now we know what the program can render. The next question is what
algorithms it can use for the rendering. As we stated in Section 3.3, there are
seven renderers to choose from and some of them are further configurable to
render images using only a subset of all estimators they otherwise combine. To
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specify which renderer and in what configuration should render an image, argu-
ment -a <algorithmID> is used, where <algorithmID> represents the identifier
(acronym) of the desired combination. The full help lists all algorithms the
program offers, here we give a more detailed description of them:

ID Renderer Algorithm
el EyeLight A visualization of the dot product of a surface

normal and the camera ray direction. Ignores
media.

pt PathTracer Path tracing with contributions of light sam-
pling and directly hit light sources combined
by MIS [21]. Ignores media.

ppm VertexCM Progressive photon mapping [6]. Ignores me-
dia.

bpm VertexCM Bidirectional photon mapping [29]. Ignores
media.

lt VertexCM Light tracing. Ignores media.
bpt VertexCM Bidirectional path tracing [26]. Ignores me-

dia.
vcm VertexCM Vertex connection and merging [4, 7]. Ignores

media.
vptd VolPathTracer The simplest volumetric path tracing, no light

sampling, waits for a direct hit of a light
source. Handles media. Supports light emis-
sion by media.

vpts VolPathTracer Path tracing of purely specular paths only,
i.e. no light sampling, waits for a direct hit of
a light source, terminates a path on the first
vertex in a medium or with the first sampled
non-specular surface interaction. Handles me-
dia (attenuates a path by them but places no
vertices in them). Supports light emission by
media.

vptls VolPathTracer Path tracing with explicit light sampling only,
does not accumulate emission of directly hit
light sources. Handles media. Supports light
emission by media (but does not sample them
as light sources).

vptmis VolPathTracer Path tracing with contributions of light sam-
pling and directly hit light sources combined
by MIS. Handles media. Supports light emis-
sion by media (but does not sample them as
light sources).

vlt VolLightTracer Light tracing. Handles media.
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pb2d VolLightTracer P-B2D (or the beam radiance estimate [9])
for primary camera rays (there is no camera
subpath tracing). Primary camera rays ignore
a background medium if present. Handles
media (obviously).

bb1d VolLightTracer B-B1D (or the photon beams [11]) for prima-
ry camera rays (there is no camera subpath
tracing). Primary camera rays ignore a back-
ground medium if present. Handles media
(obviously).

vbpt lt VolBidirPT Light tracing. Handles media.
vbpt ptd VolBidirPT The simplest path tracing, no light sampling,

waits for a direct hit of a light source. Handles
media.

vbpt ptls VolBidirPT Path tracing with explicit light sampling only,
does not accumulate emission of directly hit
light sources. Handles media.

vbpt ptmis VolBidirPT Path tracing with contributions of light sam-
pling and directly hit light sources combined
by MIS. Handles media.

vbpt VolBidirPT Bidirectional path tracing. Handles media.
upbp lt UPBP Light tracing. Handles media.
upbp ptd UPBP The simplest path tracing, no light sampling,

waits for a direct hit of a light source. Handles
media.

upbp ptls UPBP Path tracing with explicit light sampling only,
does not accumulate emission of directly hit
light sources. Handles media.

upbp ptmis UPBP Path tracing with contributions of light sam-
pling and directly hit light sources combined
by MIS. Handles media.

upbp bpt UPBP Bidirectional path tracing. Handles media.
upbp ppm UPBP Progressive photon mapping. Handles me-

dia. Corresponds to evaluating SURF on the
first non-specular surface from camera and
terminating the traced path.

upbp bpm UPBP Bidirectional photon mapping. Handles me-
dia. Actually SURF.

upbp vcm UPBP Vertex connection and merging. Handles me-
dia. Actually a combination of BPT and
SURF.

upbp all UPBP Complete UPBP algorithm. Handles media
(obviously).

Table 4.5: List of algorithms offered by SmallUPBP.
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Besides the listed algorithms a user is allowed to pick his own combination of
techniques from UPBP. The argument is in a form -a upbp <tech>[+<tech>]∗

where <tech>∈ {bpt, surf, pp3d, pb2d, bb1d}. For example:

• -a upbp pp3d evaluates P-P3D only,

• -a upbp pb2d+bb1d evaluates a combination of P-B2D and B-B1D,

• -a upbp bpt+surf+pp3d+pb2d+bb1d evaluates complete UPBP.

If no algorithm is selected, argument -a upbp all is assumed.

1.1.6 Other options

The way a selected scene is rendered is not determined solely by the selected
algorithm. There are many other options that influence the result. The full help
(-hf) lists all of them, here we give a more detailed description:

Basic options

-l <length>

Sets: Maximum length of light transport paths (and so the maximum
length of traced subpaths). Setting -l n means that no complete
light transport path has more than n path segments. For -l 1 only
area light sources directly visible from the camera are rendered.
For -l 2 only direct illumination is computed.

Value: <length> ∈ N
Default: -l 10

-t <sec>

Sets: Target number of seconds the rendering should run for. If specified
together with the target number of iterations, the time takes prece-
dence. Typing -t 0 has no effect (as if the argument was not used
at all).

Value: <sec> ∈ R, <sec> ≥ 0
Default: None, the argument is not effective if not explicitly specified (target

number of iterations is used).

-i <iter>

Sets: Target number of rendering iterations. If specified together with the
target number of seconds (-t, see above), the time takes precedence.

Value: <iter> ∈ N
Default: -i 1

-o <name>

Sets: Name of the resulting image file.
Value: <name> is a valid file name, with extension .bmp or .exr. If specified

without an extension, .exr is assumed. The name can be prefixed
with relative or absolute path but the path must exist.
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Default: None, the argument is not effective if not explicitly specified (name
of the resulting image file is constructed from the rendering config-
uration).

-r <res>

Sets: Resolution of the rendered image.
Value: <res> in format <width>x<height>, where <width>, <height>

∈ N
Default: -r 256x256

-s <seed>

Sets: Base seed for the random number generator.
Value: <seed> ∈ N ∪ {0}
Default: -s 1234

Performance options

-th <threads>

Sets: Number of threads used for rendering. Typing -th 0 is equivalent
to typing -th <threads> with <threads> equal to the number of
cores of the installed CPU.

Value: <threads> ∈ N ∪ {0}
Default: -th 0

-maxMemPerThread <memory>

Sets: Maximum MB of memory allowed for light vertex array per each
thread. If exceeded, the program terminates. Works only for
algorithms from the UPBP renderer. Memory consumption can be
reduced by lowering resolution (-r), tracing shorter paths (-l) or
tracing fewer light subpaths (-pcpi).

Value: <memory> ∈ N
Default: -maxMemPerThread 500

Radius options

-r alpha <alpha>

Sets: Same radius reduction parameter for techniques SURF, P-P3D,
P-B2D and B-B1D. If both r alpha and r alpha <tech> are spec-
ified, r alpha <tech> takes precedence (but for techniques other
than <tech> argument r alpha applies). Works for all relevant
renderers.

Value: <alpha> ∈ R, <alpha> > 0
Default: None, the argument is not effective if not explicitly specified (radius

reduction parameter has for different techniques different defaults).
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-r alpha <tech> <alpha>

Sets: Radius reduction parameter for one of techniques SURF, P-P3D,
P-B2D and B-B1D. If both r alpha and r alpha <tech> are spec-
ified, r alpha <tech> takes precedence (but for techniques other
than <tech> argument r alpha applies). Works for all relevant
renderers.

Value: <tech> ∈ { surf, pp3d, pb2d, bb1d }, <alpha> ∈ R, <alpha> > 0
Default: -r alpha surf 0.75, -r alpha pp3d 1.0, -r alpha pb2d 1.0,

-r alpha bb1d 1.0

-r initial <init>

Sets: Same initial radius for techniques SURF, P-P3D, P-B2D and B-
B1D. If <init> is positive, it denotes absolute radius value. If
<init> is negative, it denotes a value relative to the scene size
(the actual radius is computed as its opposite value multiplied
by the scene size). If both r initial and r initial <tech> are
specified, r initial <tech> takes precedence (but for techniques
other than <tech> argument r initial applies). Works for all
relevant renderers.

Value: <init> ∈ R, <init> 6= 0
Default: None, the argument is not effective if not explicitly specified (initial

radius has for different techniques different defaults).

-r initial <tech> <init>

Sets: Initial radius for one of techniques SURF, P-P3D, P-B2D and B-
B1D. If <init> is positive, it denotes absolute radius value. If
<init> is negative, it denotes a value relative to the scene size
(the actual radius is computed as its opposite value multiplied
by the scene size). If both r initial and r initial <tech> are
specified, r initial <tech> takes precedence (but for techniques
other than <tech> argument r initial applies). Works for all
relevant renderers.

Value: <tech> ∈ { surf, pp3d, pb2d, bb1d }, <init> ∈ R, <init> 6= 0
Default: -r initial surf -0.0015, -r initial pp3d -0.001,

-r initial pb2d -0.001, -r initial bb1d -0.001

-r initial pb2d knn <const> <knn>

Sets: Radius of a photon to the distance to its <knn>th nearest neighbour
photon. The radius is multiplied by <const>. Undergoes no radius
reduction. Takes precedence over r initial and r initial pb2d if
those arguments are also specified. Works for all relevant renderers.

Value: <const> ∈ R, <const> > 0, <knn> ∈ N
Default: None, the argument is not effective if not explicitly specified (the

photon radius is determined by the initial radius and radius reduc-
tion parameter specified by the corresponding arguments).
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-r initial bb1d knn <const> <knn>

Sets: Radius at each end of a photon beam to the distance between
the beam end and the <knn>th closest beam vertex multiplied
by <const>. Makes photon beams conic. Undergoes no radius
reduction. Takes precedence if r initial or r initial bb1d are
also specified. Works for all relevant renderers.

Value: <const> ∈ R, <const> > 0, <knn> ∈ N
Default: None, the argument is not effective if not explicitly specified (the

beam radius is constant along its length and determined by the
initial radius and radius reduction parameter specified by the cor-
responding arguments).

Light transport options

-previous

Sets: “Previous” rendering mode (see Section 3.3.1.1). Works only for
algorithms from the UPBP renderer.

Value: -
Default: None, the argument is not effective if not explicitly specified.

-previous bb1d

Sets: “Previous” rendering mode (see Section 3.3.1.1), but for the B-
B1D estimator only, other estimators are evaluated along all light
transport paths. Works only for algorithms from the UPBP renderer.

Value: -
Default: None, the argument is not effective if not explicitly specified.

-compatible

Sets: “Compatible” rendering mode (see Section 3.3.1.1). Works only for
algorithms from the UPBP renderer.

Value: -
Default: None, the argument is not effective if not explicitly specified.

-speconly

Sets: Only purely specular paths to be traced. Works only for algorithms
from the UPBP renderer.

Value: -
Default: None, the argument is not effective if not explicitly specified.

-ignorespec <option>

Sets: Whether purely specular subpaths from the camera will be ig-
nored (-ignorespec 1) or not (-ignorespec 0). Works only for
algorithms from the UPBP renderer.

Value: <option> ∈ {0, 1}
Default: -ignorespec 0
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Beams options

-gridres <res>

Sets: Resolution of the photon beams grid in the dimension of the max-
imum extent of the grid’s bounding box. Resolution in other
dimensions is set to give cube shaped grid cells. Works for all
relevant renderers.

Value: <res> ∈ N
Default: -gridres 256

-gridmax <max>

Sets: Maximum number of photon beams tested for an intersection in one
grid cell (0 means unlimited). The way this reduction is achieved is
specified by the gridred argument. Works only if -a bb1d is used
(i.e. for the VolLightTracer renderer, not UPBP). Implemented to
increase performance of the B-B1D estimator, but it did not bring
any significant improvement in our tests.

Value: <max> ∈ N ∪ {0}
Default: -gridmax 0

-gridred <red>

Sets: Type of reduction of number of photon beams tested for intersection
in one grid cell. Applied when actual number of beams na in a
given grid cell exceeds maximum number nm set by the gridmax

argument. There are four types:

• <red> = 0 (presample): all stored beams are randomly shuf-
fled, first nm beams are tested

• <red> = 1 (offset): all stored beams are randomly shuffled,
nm beams are tested starting from a random index (and
continuing from the first if necessary)

• <red> = 2 (fixed resampling): nm randomly chosen beams
(not necessarily distinct) are tested

• <red> = 3 (resampling): for each beam decides with proba-
bility nm/na whether to test it or skip

Works only if -a bb1d is used (i.e. for the VolLightTracer renderer,
not UPBP). Implemented to increase performance of the B-B1D
estimator, but it did not bring any significant improvement in our
tests.

Value: <res> ∈ {0, 1, 2, 3}
Default: -gridred 0
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-beamdens <type> <max>

Sets: Whether to output image(s) of statistics of type <type> of intersect-
ed photon beams grid cells and photon beams tested for intersection
normalized to the given <max> or not. There are 6 types:

• <type> = 0: outputs nothing

• <type> = 1: outputs a false color image of a number of
photon beams tested for an intersection with a primary ray
relative to <max>

• <type> = 2: outputs a false color image of an average number
of photon beams tested for an intersection with a primary ray
relative to <max>

• <type> = 3: outputs a false color image of a number of
photon beams grid cells intersected by a primary ray relative
to <max>

• <type> = 4: outputs a false color image of a number of
photon beams grid cells with more stored beams than set by
the gridmax argument relative to <max>

• <type> = 5: outputs all four images

If <max> = −1, then the maximum in data is used; otherwise,
the <max> value itself. Works only if -a bb1d is used (i.e. for the
VolLightTracer renderer, not UPBP). Implemented for debugging
of the grid.

Value: <type> ∈ {0, 1, 2, 3, 4, 5}, <max> ∈ N ∪ {−1}
Default: -beamdens 0 -1

-beamstore <factor>

Sets: Multiple of photon beams radius used for decision whether to store
photon beams or not. If <factor> = 0, all beams are stored.
Otherwise, beams are stored only in media with mean free path
greater than 0.5π <factor> radiusBB1D, where radiusBB1D is the
radius of photon beams (undergoes reduction). Works only if -a
bb1d is used (i.e. for the VolLightTracer renderer, not UPBP).
Implemented to increase performance of the B-B1D estimator (not
using beams in media where P-B2D is better), but it did not bring
any significant improvement in our tests.

Value: <factor> ∈ R, <factor> ≥ 0
Default: -beamstore 0

-qbt <type>

Sets: Type of query beams. -qbt S sets short query beams, -qbt L sets
long query beams. Works for all relevant renderers.

Value: <type> ∈ {S, L}
Default: -qbt L
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-pbt <type>

Sets: Type of photon beams. -pbt S sets short photon beams, -pbt L

sets long photon beams. Works for all relevant renderers.
Value: <type> ∈ {S, L}
Default: -pbt L

-pbc <count>

Sets: Number of traced light subpaths that will generate photon beams. If
<count> is positive, it denotes an absolute number of light subpaths
used for beam generation (the closest integer value is used). If
<count> is negative, it denotes a number relative to the number of
pixels (the actual number is computed as the closest integer value
less than or equal to the absolute <count> value multiplied by the
number of pixels). This argument influences only if a light subpath
generates photon beams or not, the path is always traced. Works
for all relevant renderers.

Value: <count> ∈ R, <count> 6= 0
Default: -pbc -1

-nosin

Sets: sin θ to use only in computation of B-B1D contribution not MIS
weights. Works for all relevant renderers. This was used during the
development to test the importance of including the sin theta term
in the MIS weight calculation. This should not be used in practice,
as excluding the sin theta term increases variance.

Value: -
Default: None, the argument is not effective if not explicitly specified.

Debug options

-debugimg option <option>

Sets: Whether or not to a output debug image. Possibilities are:

• option=none: outputs nothing

• option=simple pyramid: outputs images of contributions for
all possible lengths of light and camera subpaths (they form
a pyramid, see the Readme.txt file on the attached DVD in
the folder Implementation\Tools)

• option=per technique: outputs images of individual contri-
bution of each of combined techniques

• option=pyramid per technique: outputs images of individ-
ual contribution of each of combined techniques for all possible
lengths of light and camera subpaths

Works only for algorithms from the UPBP renderer.
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Value: <option> ∈ {none, simple pyramid, per technique,
pyramid per technique}

Default: -debugimg option none

-debugimg multbyweight <option>

Sets: Whether or not the output debug images should contain contribu-
tions multiplied by MIS weight or not. Possibilities are:

• option=no: the contributions are unweighted

• option=yes: the contributions are weighted

• option=output both: images for both weighted and un-
weighted contributions are generated

Works only for algorithms from the UPBP renderer.
Value: <option> ∈ {no, yes, output both}
Default: -debugimg multbyweight yes

-debugimg output weights <option>

Sets: Whether or not to output images of MIS weights for each of com-
bined techniques. Works only for algorithms from the UPBP renderer.

Value: <option> ∈ {no, yes}
Default: -debugimg output weights no

Other options

-continuous output <iter count>

Sets: Whether or not an image accumulated so far should be output
continuously every <iter count> iterations. If <iter count> = 0,
then no images before finishing rendering are output.

Value: <iter count> ∈ N ∪ {0}
Default: -continuous output 0

-em <filepath>

Sets: Environment map in scenes with a background light source. If the
rendered scene has not a background light source, this argument
has no effect. If it has a background light, it is set to use the given
environment map regardless of what it originally used.

Value: <filepath> is an absolute path an OpenEXR file containing the
environment map. The map is assumed to be designed for the
latitude-longitude mapping (i.e. its height maps to latitude, width
to longitude).

Default: None, the argument is not effective if not explicitly specified.
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-min dist2med <distance>

Sets: Minimum distance from the camera at which a contribution of a
medium can be computed (no path with the last vertex before
the camera in a medium closer to the camera than <distance>

contributes to the result). If <distance> is positive, it denotes
absolute distance value. If it is negative, it denotes a value relative
to the scene size (the actual distance is computed as its absolute
value multiplied by the scene size). If <distance> is zero, all paths
contribute without restriction. Works only for algorithms from the
UPBP renderer.

Value: <distance> ∈ R
Default: -min dist2med 0

-rpcpi <path count>

Sets: Reference light subpath count traced per iteration. If <path count>

is positive, it denotes an absolute reference number of light subpaths
traced per iteration (the closest integer value is used). If it is
negative, it denotes a number relative to the number of pixels (the
actual reference number is computed as the closest integer value
less than or equal to the absolute <path count> value multiplied
by the number of pixels).

Value: <path count> ∈ R, <path count> 6= 0
Default: -rpcpi -1

-pcpi <path count>

Sets: Light subpath count traced per iteration. If <path count> is pos-
itive, it denotes an absolute number of light subpaths traced per
iteration (the closest integer value is used). If it is negative, it de-
notes a number relative to the number of pixels (the actual number
is computed as the closest integer value less than or equal to the
absolute <path count> value multiplied by the number of pixels).

Value: <path count> ∈ R, <path count> 6= 0
Default: -pcpi -1

-sn <option>

Sets: Whether to use shading (i.e. interpolated) normals (-sn 1) or not
(-sn 0). When -sn 0 is specified, all shading calculations use the
geometric normals.

Value: <option> ∈ {0, 1}
Default: -sn 1

-time

Sets: The program to append the rendering time to the name of the
output image file.

Value: -
Default: None, the argument is not effective if not explicitly specified.

Table 4.11: List of all arguments the SmallUPBP program recognizes.
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1.1.7 Output

When the rendering is finished, an image with the accumulated result is output.
The image is either LDR stored in the BMP format or, by default, HDR stored in
OpenEXR format [19].

OpenEXR images can be converted to PNG using batch file topng.bat pro-
vided on the attached DVD in the folder Implementation\Tools (if PCG HDR
Image Tools [8] are installed on the computer). The same folder also contains two
scripts creating convenient html pages from debug images output when using the
debugimg arguments. See the supplied Readme.txt file for details.

1.1.8 Examples

Let’s take a look at a few examples of running the program. We assume that
the executable file the program is run from (either the given one or compiled from
the source code) is called SmallUPBP.exe. The we can execute

• SmallUPBP.exe

If no arguments are given to the program, a default configuration is rendered.
It corresponds to running the program with all arguments set to their default
values. The default values are listed in Table 4.11. Figure 4.4 shows the
result. Comparing with it is a fast and simple way how to check whether
the program is correctly installed/compiled.

Figure 4.4: An image produced by the SmallUPBP program in its default
configuration.

• SmallUPBP.exe -s 3 -a vptmis -i 10000 -r 100x100

The program renders the predefined scene number 3 (-s 3) using the volu-
metric path tracer with MIS (-a vptmis) for 10000 iterations (-i 10000)
at a resolution of 100x100 pixels (-r 100x100).

This is how we produced the image for scene 3 in the list of predefined
scenes in Attachment 2. Images for scenes 4, 9 and 10 were also obtained
by running the program with the same arguments only varying the scene
number. Arguments for the rest of scenes differs only in the algorithm,
-a upbp all is used.
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• "..\..\..\Executable\SmallUPBP.exe" -s -1 "..\mirrorballs.obj"
-a upbp all -l 12 -i 1000000 -r 800x600 -pbc 4000

-maxMemPerThread 2000 -continuous output 100

The program renders the given user scene (-s -1 "..\mirrorballs.obj")
using the complete UPBP algorithm (-a upbp all) at a resolution of
800x600 pixels (-r 800x600) with maximum path length limited to 12
(-l 12). Only 4000 light subpaths (out of 800.600 = 480000) is allowed to
generate photon beams (-pbc 4000) and memory consumption must not
exceeds 2000 MB per thread (-maxMemPerThread 2000). We want a con-
verged result but we do not know how many iterations it will take. Therefore
we set the number of iterations to a random sufficiently large number (-i
1000000), let the program output every 100 iterations image accumulated so
far (-continuous output 100) and terminate the program manually when
the difference between two successive images is small enough.

This is how we can reproduce the full transport reference image for the
Mirror balls scene as shown in Figure 4.2 or in the UPBP paper [14]. We
supplied scene files (.obj, .mtl, .obj.aux, see Section 1.1.4) for the Still life,
Mirror balls, Bathroom and Candle scenes on the attached DVD in the
folder Implementation\scenes as well as batch files needed to render all
images presented in the UPBP paper and consequently in Chapter 4 (they
can be also downloaded from the SmallUPBP project site [24]). The argu-
ment list above comes from one of them, namely run reference.bat from
the Implementation\scenes\mirrorballs\batches folder. It assumes the
SmallUPBP.exe file in the folder Implementation\Executable and files of
the Mirrorballs scene in the folder Implementation\scenes\mirrorballs
sharing name mirrorballs. If any of these assumptions does not hold,
the paths in the batch file have to updated. For example, if an executable
file obtained by compiling the source code should be used (from its orig-
inal location), then the path to the executable file has to be changed to
..\..\..\Build\SmallUPBP\x64\Release\SmallUPBP.exe. If the paths
are set correctly, then rendering the image is started simply by executing
the batch file. The same applies to the other batch files. We refer to them
and the supplied Readme.txt files for more information about how the other
images are rendered.

We finished description of the program from the outside, now we proceed to
its source code.

1.2 Modifying the program

The implementation is intended mainly for research purposes and as such it is
expected to be often modified. The following text presents basic information a
programmer needs about structure of the source code, licensing and compilation.

1.2.1 Structure

The implementation can be found on the attached DVD in the Implementation
folder, which has the following content.
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embree-2.0 Folder with source code of the Embree library.
Executable Folder with a precompiled program executable.
Install Folder with Visual C++ 2013 Redistributable x64.
OpenEXR Folder with source code of the OpenEXR library.
scenes Folder with scene and batch files used to render images

shown in Chapter 4 and in the UPBP paper.
SmallUPBP Folder with source code of the SmallUPBP program.
Tools Folder with a few scripts for displaying and comparing

rendered images.

If the implementation is downloaded from the SmallUPBP project site [24], it has
exactly the same folder structure, only the Executable folder is missing.

1.2.2 License

SmallUPBP is released under the following license:

• most of the supplied code, scenes and associated files are subject to the MIT
license [16]

• Embree is distributed under the Apache 2.0 license [1]

• OpenEXR uses the modified BSD licence [2]

1.2.3 Compilation

The source code is divided into two Microsoft Visual Studio 2013 solutions.
The first one, OpenEXR.sln in the Implementation\OpenEXR\src folder, con-
tains single project of the same name with the OpenEXR library. The second
one, SmallUPBP.sln in the Implementation\SmallUPBP folder, contains three
projects: embree, sys and SmallUPBP. The first two are parts of Embree and
need to be compiled with the OpenEXR project as static libraries and linked
with the main SmallUPBP project. The easiest way to do this is to use the pro-
vided solutions. The OpenEXR.sln solution is built first. It creates the static
library OpenEXR.lib (or OpenEXR-dbg.lib depending on the selected configura-
tion) in Implementation\OpenEXR. Then the SmallUPBP.sln is built. It creates
the remaining embree.lib and sys.lib static libraries as well as the executable
SmallUPBP.exe file in Implementation\Build\SmallUPBP\x64\Release (or in
Implementation\Build\SmallUPBP\x64\Debug depending on the selected con-
figuration). Note that the build configurations of both solutions must match. The
SmallUPBP.exe file is completely independent of any other files and can be moved
and run freely.

1.2.4 Code description

By describing compilation we got to the code itself. For more information
about the third-party code of OpenEXR and Embree we refer to [19] and [3],
respectively. Explanation of the UPBP implementation, how classes and methods
cooperate, what data structures are used, which algorithms are employed – that
is the goal of this thesis, mainly Chapter 3.
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2 Predefined scenes

In this attachment we list all scenes predefined in the SmallUPBP program.
But before we do so, we first describe basic components the scenes are composed
of.

2.1 Materials

We begin with materials. There are 9 materials with different parameters used
in the scenes. Default parameters of a material are:

diffuse reflectance = (0, 0, 0),
phong reflectance = (0, 0, 0),
phong exponent = 1,
mirror reflectance = (0, 0, 0),
IOR = -1,
priority = -1,
type = real.

We list the 9 materials (sorted ascending by the resulting priority) with parameters
in which they differ from the defaults:

Name Parameters
Water mirror reflectance = (0.7, 0.7, 0.7),

IOR = 1.33
Ice mirror reflectance = (0.5, 0.5, 0.5),

IOR = 1.31
Glass mirror reflectance = (1.0, 1.0, 1.0),

IOR = 1.6
DiffuseRed diffuse reflectance = (0.803922, 0.152941, 0.152941)
DiffuseGreen diffuse reflectance = (0.156863, 0.803922, 0.172549)
DiffuseBlue diffuse reflectance = (0.156863, 0.172549, 0.803922)
DiffuseWhite diffuse reflectance = (0.803922, 0.803922, 0.803922)
GlossyWhite diffuse reflectance = (0.1, 0.1, 0.1),

phong reflectance = (0.7, 0.7, 0.7),
phong exponent = 90.0

Mirror mirror reflectance = (1.0, 1.0, 1.0)

2.2 Media

Then there are 13 media used in the scenes. First, there is the Clear medium:

absorption = (0.0, 0.0, 0.0),
emission = (0.0, 0.0, 0.0),
scattering = (0.0, 0.0, 0.0),
continuation probability = 1,
mean cosine = 0.

The other media all have continuation probability set to 0.8. We list them (sorted
ascending by the resulting priority) with the rest of parameters in which they
differ from Clear:
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Name Parameters
Water absorption = (0.7, 0.6, 0.0)
WhiteIsoScat scattering = (0.9, 0.9, 0.9)
WhiteAnisoScat scattering = (0.9, 0.9, 0.9),

mean cosine = 0.6
WeakWhiteIsoScat scattering = (0.1, 0.1, 0.1)
WeakYellowIsoScat scattering = (0.1, 0.1, 0.0)
WeakWhiteAnisoScat scattering = (0.1, 0.1, 0.1),

mean cosine = 0.6
RedAbs absorption = (0.0, 1.0, 1.0)
YellowEmit emission = (0.7, 0.7, 0.0)
YellowGreen absorption = (0.5, 0.0, 0.5),

emission = (1.0, 1.0, 0.0),
scattering = (0.1, 0.1, 0.0)

BlueAbsEmit absorption = (0.1, 0.1, 0.0),
emission = (0.0, 0.0, 1.0)

AbsAnisoScat absorption = (0.0, 0.2, 0.0),
scattering = (0.002, 0.002, 0.0),
mean cosine = 0.6

RedAbsAnisoScat absorption = (0.02, 2.0, 2.0),
scattering = (12.0, 20.0, 20.0),
mean cosine = -0.3

2.3 Background

A large part of the scenes is situated inside the (empty) Cornell box. We use
three versions which differ in materials of their walls:

BoxDiffuseFloor BoxGlossyFloor BoxWhiteBack

Ceiling DiffuseWhite DiffuseWhite DiffuseWhite

Left wall DiffuseGreen DiffuseGreen DiffuseGreen

Right wall DiffuseRed DiffuseRed DiffuseRed

Back wall DiffuseBlue DiffuseBlue DiffuseWhite

Floor DiffuseWhite GlossyWhite DiffuseWhite

Note that the walls have no media associated.

2.4 Foreground

There are 8 pieces of geometry that can be used in the scenes besides the
Cornell box. We say that they form the scene foreground while the box forms the
scene background. We describe their positions in relation to the box, but these
are fixed no matter whether the box is actually used or not. The foreground can
be formed by:

LargeSphereMiddle A large sphere placed on the box floor in its centre.

SmallSphereLeft A small sphere placed on the box floor on the left. Fits in the
box together with SmallSphereRight without overlapping.
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SmallSphereRight A small sphere placed on the box floor on the right. Fits in
the box together with SmallSphereLeft without overlapping.

SmallSphereBottomLeft A small sphere floating in the box slightly below and
to the left from its centre.

SmallSphereBottomRight A small sphere floating in the box slightly below and
to the right from its centre.

SmallSphereTop A small sphere floating in the box slightly above its centre.

VeryLargeSphere A sphere floating in the centre of the box large enough to encom-
pass all three spheres SmallSphereBottomLeft, SmallSphereBottomRight
and SmallSphereTop without any intersection.

VeryLargeBox A box of the same size and position as the Cornell box (but with
all six faces).

Each piece can be associated with any of the aforementioned materials and
any of the aforementioned media. We denote the associated material and medium
by writing them in parenthesis after the name of the geometry. For example we
have:

• SmallSphereLeft(Glass, RedAbs) is the small sphere made of the Glass

material and filled with the RedAbs medium.

• SmallSphereLeft(Glass, -) is the small sphere made of the Glass ma-
terial and filled with the Clear medium (recall that there is always some
medium, at least clear).

• SmallSphereLeft(-, RedAbs) is the small sphere made of an imaginary
material and filled with the RedAbs medium.

Case SmallSphereLeft(-, -) has no sense and is therefore not allowed.
Upon creation, priorities of materials associated with geometry are recalculated

so as to meet the following:

1. If geometry GA and GB are associated with different materials MatA and
MatB, then geometry GA has a lower priority than GB if and only if
material MatA is listed in Section 2.1 sooner than MatB.

2. If geometry GA is associated with an imaginary material while GB with a
real one, then geometry GA has a lower priority.

3. If geometry GA and GB are both associated with the same material (real or
imaginary), then the result depends on media. If geometry GA and GB are
associated with different media MedA and MedB, then geometry GA has a
lower priority than GB if and only if medium MedA is listed in Section 2.2
sooner than MedB.
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2.5 Light sources

Each scene has at most one light source. There are 8 different light sources
available. We again describe their positions in relation to the Cornell box forming
the scene background. However, same as in the case of the foreground, their
positions are fixed no matter whether the box is actually used or not. The available
light sources are:

CeilingAreaBig A white area light source covering the whole ceiling of the box.

CeilingAreaSmall A white area light source placed in the centre of the box
ceiling covering only a small part of it.

CeilingAreaSmallDistant Same as CeilingAreaSmall but placed along the y
axis slightly before the box.

CeilingPoint A white point light source placed in the centre of the box ceiling.

FacingAreaSmall Same as CeilingAreaSmall but floating in the centre of the
box facing the camera.

FacingPoint A point light source placed in the centre of the box.

Sun An orange directional light source in infinity.

Background A constant light blue background light source.

2.6 Scenes

Now we can proceed to the scene list. There are 41 scenes, which differ in
their background (one of the three boxes or none), global medium, light source
and foreground (various configurations of spheres and/or boxes):

Scene 0
Background BoxDiffuseFloor

Global medium Clear

Light CeilingAreaBig

Foreground LargeSphereMiddle(-, RedAbs)

Scene 1
Background BoxDiffuseFloor

Global medium Clear

Light CeilingAreaSmall

Foreground LargeSphereMiddle(-, WhiteIsoScat)

Scene 2
Background BoxGlossyFloor

Global medium WeakWhiteIsoScat

Light CeilingAreaSmall

Foreground LargeSphereMiddle(Mirror, -)

183



Scene 3
Background BoxDiffuseFloor

Global medium WeakWhiteIsoScat

Light CeilingAreaSmall

Foreground SmallSphereLeft(-, BlueAbsEmit),
SmallSphereRight(-, YellowGreen)

Scene 4
Background BoxDiffuseFloor

Global medium WeakWhiteAnisoScat

Light CeilingAreaSmall

Foreground SmallSphereLeft(-, BlueAbsEmit),
SmallSphereRight(-, YellowGreen)

Scene 5
Background BoxGlossyFloor

Global medium Clear

Light Sun

Foreground SmallSphereLeft(Mirror, -),
SmallSphereRight(Glass, -)

Scene 6
Background BoxGlossyFloor

Global medium Clear

Light CeilingPoint

Foreground SmallSphereLeft(Mirror, -),
SmallSphereRight(Glass, -)

Scene 7
Background BoxGlossyFloor

Global medium Clear

Light Background

Foreground SmallSphereLeft(Mirror, -),
SmallSphereRight(Glass, -)

Scene 8
Background BoxGlossyFloor

Global medium Clear

Light CeilingAreaSmall

Foreground LargeSphereMiddle(Mirror, -)

Scene 9
Background BoxDiffuseFloor

Global medium Clear

Light CeilingAreaSmall

Foreground LargeSphereMiddle(-, YellowEmit)
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Scene 10
Background BoxDiffuseFloor

Global medium Clear

Light none
Foreground LargeSphereMiddle(Glass, YellowEmit)

Scene 11
Background none
Global medium WhiteIsoScat

Light CeilingAreaBig

Foreground none

Scene 12
Background none
Global medium WhiteIsoScat

Light CeilingAreaSmall

Foreground none

Scene 13
Background none
Global medium WhiteIsoScat

Light CeilingPoint

Foreground none

Scene 14
Background none
Global medium WhiteAnisoScat

Light CeilingAreaBig

Foreground none

Scene 15
Background none
Global medium WhiteAnisoScat

Light CeilingAreaSmall

Foreground none

Scene 16
Background none
Global medium WhiteAnisoScat

Light CeilingPoint

Foreground none

Scene 17
Background none
Global medium WhiteIsoScat

Light FacingAreaSmall

Foreground none
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Scene 18
Background none
Global medium WhiteIsoScat

Light FacingPoint

Foreground none

Scene 19
Background none
Global medium WhiteAnisoScat

Light FacingAreaSmall

Foreground none

Scene 20
Background none
Global medium WhiteAnisoScat

Light FacingPoint

Foreground none

Scene 21
Background BoxWhiteBack

Global medium Clear

Light CeilingAreaBig

Foreground SmallSphereBottomLeft(Glass, -),
SmallSphereBottomRight(Water, Water),
SmallSphereTop(Ice, -)

Scene 22
Background BoxWhiteBack

Global medium Clear

Light CeilingAreaBig

Foreground SmallSphereBottomLeft(Glass, -),
SmallSphereBottomRight(Water, Water),
SmallSphereTop(Ice, -),
VeryLargeSphere(-, RedAbs)

Scene 23
Background BoxWhiteBack

Global medium Clear

Light CeilingAreaBig

Foreground SmallSphereBottomLeft(Glass, -),
SmallSphereBottomRight(Water, Water),
SmallSphereTop(Ice, -),
VeryLargeSphere(Water, Water)
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Scene 24
Background BoxWhiteBack

Global medium Clear

Light CeilingAreaBig

Foreground SmallSphereBottomLeft(Glass, -),
SmallSphereBottomRight(Water, Water),
SmallSphereTop(Ice, -),
VeryLargeSphere(Ice, -)

Scene 25
Background BoxWhiteBack

Global medium Clear

Light CeilingAreaBig

Foreground SmallSphereBottomLeft(Glass, -),
SmallSphereBottomRight(Water, Water),
SmallSphereTop(Ice, -),
VeryLargeSphere(Glass, -)

Scene 26
Background BoxWhiteBack

Global medium Clear

Light CeilingAreaBig

Foreground SmallSphereBottomLeft(Glass, -),
SmallSphereBottomRight(Water, Water),
SmallSphereTop(Ice, -),
VeryLargeSphere(Mirror, -)

Scene 27
Background BoxWhiteBack

Global medium WeakWhiteAnisoScat

Light CeilingAreaSmall

Foreground SmallSphereBottomLeft(Glass, -),
SmallSphereBottomRight(Water, Water),
SmallSphereTop(Ice, -)

Scene 28
Background BoxWhiteBack

Global medium Clear

Light CeilingAreaBig

Foreground SmallSphereBottomLeft(Glass,

WhiteIsoScat),
SmallSphereBottomRight(Glass, Water),
SmallSphereTop(Glass, RedAbs)
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Scene 29
Background none
Global medium WeakWhiteIsoScat

Light CeilingAreaBig,
Foreground SmallSphereBottomLeft(-,

WhiteIsoScat),
SmallSphereBottomRight(-, Water),
SmallSphereTop(-, RedAbs)

Scene 30
Background BoxWhiteBack

Global medium Clear

Light Background

Foreground SmallSphereBottomLeft(-,

WhiteIsoScat),
SmallSphereBottomRight(-, Water),
SmallSphereTop(-, RedAbs),
VeryLargeSphere(Water, Water)

Scene 31
Background none
Global medium AbsAnisoScat

Light Background

Foreground none

Scene 32
Background none
Global medium Clear

Light Background

Foreground VeryLargeSphere(-, RedAbs)

Scene 33
Background none
Global medium Clear

Light Background

Foreground VeryLargeSphere(-, WhiteIsoScat)

Scene 34
Background none
Global medium Clear

Light CeilingAreaBig

Foreground VeryLargeSphere(-, WhiteIsoScat)
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Scene 35
Background none
Global medium Clear

Light CeilingAreaSmallDistant

Foreground VeryLargeBox(-, WeakYellowIsoScat)

Scene 36
Background BoxGlossyFloor

Global medium WeakWhiteIsoScat

Light Sun

Foreground SmallSphereLeft(Mirror, -),
SmallSphereRight(Glass, -)

Scene 37
Background BoxGlossyFloor

Global medium WeakWhiteIsoScat

Light CeilingPoint

Foreground SmallSphereLeft(Mirror, -),
SmallSphereRight(Glass, -)

Scene 38
Background BoxGlossyFloor

Global medium WeakWhiteIsoScat

Light Background

Foreground SmallSphereLeft(Mirror, -),
SmallSphereRight(Glass, -)

Scene 39
Background BoxGlossyFloor

Global medium Clear

Light Background

Foreground LargeSphereMiddle(Glass,

RedAbsAnisoScat)

Scene 40
Background BoxGlossyFloor

Global medium Clear

Light CeilingAreaBig

Foreground LargeSphereMiddle(Glass,

RedAbsAnisoScat)

Most of the images of the scenes presented above were rendered using the
complete UPBP algorithm. However, images for scenes 3, 4, 9, 10 were rendered
by path tracing from the VolPathTracer renderer, because they include emissive
media, which only the VolPathTracer renderer can handle. Note, that images
for scenes 31, 36, 38 are black because they have a light source in infinity and a
global attenuating medium. There is therefore no light that could get from a light
source to the camera.
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2.7 Modification

To modify the predefined scenes, the code of the SmallUPBP program has
to be changed. Materials, media, geometry and lights are all created in the
LoadCornellBox method of the Scene class from the Scene.hxx file. There their
parameters can be modified. Assembling of the Cornell boxes and scenes is done
in the global initSceneConfigs method from the Config.hxx file. There the
scenes can be removed, added or modified (in terms of what the scenes include
and where).

3 DVD contents

The attached DVD has the following contents:

Implementation\embree-2.0
Folder with source code of the Embree library.

Implementation\Executable
Folder with a precompiled program executable.

Implementation\Install
Folder with Visual C++ 2013 Redistributable x64.

Implementation\OpenEXR
Folder with source code of the OpenEXR library.

Implementation\scenes
Folder with scene and batch files used to render images
shown in Chapter 4 and in the UPBP paper.

Implementation\SmallUPBP
Folder with source code of the SmallUPBP program.

Implementation\Tools
Folder with a few scripts for displaying and comparing
rendered images.

Thesis

This thesis.
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