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Dwivedi - PoE Dwivedi - Ours

Figure 1: We improve analytical Dwivedi sampling by informing the slab normal selection with the boundary incident illumination informa-
tion. The left side of the image uses the canonical Dwivedi Point of Entry Slab Normal, where paths are guided to exit the volume from the
side of the point of entry. The right shows our data-driven approach, which adapts the guiding direction depending on the energy transport
that arrives at the boundary. In the denser parts of the medium on the face, the paths are mostly guided towards the point of entry, whilst on
the ears, which are backlit, the paths are guided to the back.

Abstract
Path tracing remains the gold standard for high-fidelity subsurface scattering despite requiring numerous paths for noise-
free estimates. We introduce a novel variance-reduction method based on two complementary zero-variance-theory-based
approaches. The first one, analytical Dwivedi sampling, is lightweight but struggles with complex lighting. The second one,
surface path guiding, learns incident illumination at boundaries to guide sampled paths, but it does not reduce variance
from subsurface scattering. In our novel method, we enhance Dwivedi sampling by incorporating the radiance field learned
only at the volume boundary. We use the average normal of points on an illuminated boundary region or directions sampled
from distributions of incident light at the boundary as our analytical Dwivedi slab normals. Unlike previous methods based
on Dwivedi sampling, our method is efficient even in scenes with complex light rigs typical for movie production and under
indirect illumination. We achieve comparable noise reduction and even slightly improved estimates in some scenes compared
to volume path guiding, and our method can be easily added on top of any existing surface path guiding system. Our method
is particularly effective for homogeneous, isotropic media, bypassing the extensive training and caching inside the 3D volume
that volume path guiding requires.

CCS Concepts
• Computing methodologies → Ray tracing;
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1. Introduction

Realistic light transport simulation is now prevalent in visual ef-
fects, architectural visualization, and computer games. The simula-
tion involves sampling random light paths in the virtual scene while
integrating the transport along them using Monte Carlo (MC) inte-
gration. For the realistic appearance of materials like milk, mar-
ble, and human skin, accurate subsurface scattering simulation is
needed when light enters the volume through its boundary and scat-
ters. If not absorbed, light exits at a different boundary point.

Precise Monte Carlo simulation of subsurface scattering is ex-
pensive. The simulation requires tracing many long paths through
the volume to average out the MC estimator noise. Our pri-
mary goal is to reduce subsurface scattering simulation noise via
importance sampling. To that end, we follow the works based
on zero-variance theory [Hoo08], which can be classified into
two lines of work. One line of work on so-called Dwivedi sam-
pling [Dwi82b; Dwi82a; Kd14; MHD16] employs fully analytical
sampling based on a set of simplifying assumptions about the in-
tegrand. The assumptions —a half-infinite homogeneous volume
slab with isotropic scattering and the equal importance of each
point at the boundary —are often violated in practice, which leads
to poor sample contributions.

Works in the other line, known as path guiding, are data-driven
and follow the rules of zero-variance walks while using learned
approximations of the light field in the scene. Surface path guid-
ing usually involves learning the light field distribution on surfaces
in the scene and has become mainstream in production for surface
light transport [VHH*19]. However, to our knowledge, surface path
guiding caches have not been used to guide volumetric paths. Her-
holz et al. propose an adjoint-driven pre-process to learn the volu-
metric radiance field represented by spatially cached 2D directional
distributions [HZE*19]. This involves building an internal spatial
structure and fitting 2D directional distributions within volumes.
We argue that implementing volumetric path guiding is challeng-
ing and requires guiding caches inside volumes. We have found that
volumetric guiding caches can become dense when approximating
optically thick media, even if the media is homogeneous.

Our method uses analytical Dwivedi kernels for path sampling
and surface path guiding caches for Dwivedi slab normal sam-
pling. The goal is to retain Dwivedi sampling’s simplicity while
increasing robustness under complex lighting typical in movie pro-
duction and other applications. It can be implemented on top of
regular surface path guiding, available in many production render-
ers [VHH*19]. If surface path guiding is the baseline, our approach
has negligible memory overhead and may require no additional
training. In theory, based on the application and specifics of the
rendering system, the incident illumination could be represented
differently (e.g., neural networks, light probes, or textures), but this
is left for future work.

Our contributions can be summarized as follows:

• We propose exploiting the learned light field at the surface
boundary to sample the slab normal for Dwivedi kernels.

• We use the Burley diffusion profile to identify regions on the
boundary that contribute energy to some reference point on the
boundary.

xo

xe

xi

Figure 2: The random walk is constructed via volume distance and
directional sampling. We continue path sampling beyond the exit
point xi to find emitter source vertices xe. Our importance sampling
guides the subsurface path towards exit points transmitting high
energy into the volume.

• The Boundary Normal (BONO) technique, which uses the av-
erage normal of some region on the boundary, that contributes
energy to the volume entry point.

• The Boundary Incident Illumination (BILL) technique, which
samples surface path guiding directional distributions for a di-
rection and applies it as a slab normal for analytical Dwivedi
sampling.

Our methods stabilize and improve Dwivedi in complex lighting
scenarios whilst outperforming VPG in some situations.

2. Background and related work

Computing outgoing radiance due to subsurface scattering

Lsss
o (xo,ωo) =

∫
Ω−

ρ⊥(xo,ωo,ω)Li(xo,ω)dω (1)

from the point of entry xo at the volume boundary towards the
direction ωo, corresponds to integrating incoming radiance Li from
the volume multiplied by bidirectional scattering distribution func-
tion (BSDF) ρ⊥ describing material properties and cosine fore-
shortening. The integration domain is the hemisphere of directions
Ω
− at the boundary side oriented towards the volume.

The incoming radiance from the volume at the point x from the
direction ω (pointing away from x) is described by volume render-
ing equation

Li(x,ω) =
∫

t
T (x,x)σs (x)Ls (x,−ω)dt+T (x,xi)Lo(xi,−ω), (2)

which is derived from the radiative transfer equation [Cha60].
Here, the in-scattered radiance Ls, multiplied by the scattering co-
efficient σs and the transmittance

T (x,y) = e−τ(|x−y|), (3)

is integrated over the points x = x + ωt. The optical thickness
τ(l) =

∫ l
s=0 σtds between the two points in a homogeneous volume

depends on the extinction coefficient σt = σa + σs. The inverse
of the extinction coefficient is the mean free path (mfp). The in-
scattered radiance Ls =

∫
S ρph(x,−ω,ωi)Li(x,ωi)dωi integrates

the product of the phase function ρph and the incoming radiance
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(a) PoE (b) CP (c) II (d) BONO (e) BILL

Figure 3: The slab is oriented based on the selected normal, shown in red. Previous methods have used: (a) Point of Entry PoE normal,
(b) Closest Point CP normal, or (c) a direction towards the emitter, called Incident Illumination II. Our methods first require a training
phase to spatially divide the boundary and learn average normals and incident illumination directional distributions. Post-training, when a
path enters the volume, an illuminated region (green box) is sampled and a slab normal from this region is selected. In (d) our first method,
Boundary Normal BONO, the average of the training data point normals is used as the slab normal. Our second method, (e) BILL, uses a
direction from the surface path guiding incident illumination directional distribution as the slab normal.

Li over the sphere of directions at each point x. We also add out-
going radiance Lo from the point of exit xi, which describes both
the radiance transmitted into the volume and the inner reflections.
We name points of entry and exit with respect to the direction of
paths traced from the camera when we estimate Eq. 1. Also note
we assume all light sources are outside of the volume.

Estimating subsurface scattering. To estimate Lsss
o , we incre-

mentally sample volume random walks starting from point of en-
try xo towards the point of exit xi (see Figure 2). We sample from
the camera direction, thus, we continue sampling towards the lights
behind xi. The Classical approach [PJH16] repeatedly samples first
the path segment distance proportional to transmittance T , and then
a new ray direction proportionally to the phase function ρph. Op-
tionally, Russian roulette can be played with survival probability
equal to single scattering albedo or a user-chosen value for an unbi-
ased estimator. The Classical approach’s disadvantage is the local-
term importance sampling without respecting the incoming radi-
ance. This can result in high-variance estimates.

Dwivedi sampling. Dwivedi et al. proposed distance and di-
rectional importance sampling using analytical functions (ker-
nels) derived under simplifying assumptions [Dwi82a]. The vol-
ume is considered a uniformly-lit, homogeneous, isotropic, half-
infinite slab. Heterogeneous volumes composed of finite homo-
geneous slabs were also discussed. Křivánek et al. applied these
variance-reducing kernels to subsurface scattering [Kd14] in com-
puter graphics. They parameterize the kernels by the slab normal
n⃗D at the Point of Entry (PoE) xo. This strategy guides subsurface
chains back towards the boundary, which is considered a uniform
source of importance. However, such sampling can be highly sub-
optimal when the boundary is not illuminated uniformly.

Sampling a direction corresponds to sampling a cosine of the an-
gle θ between the slab normal n⃗D and the sampled direction ω in the
shading space, where the z-axis is the up vector, and therefore cosθ

corresponds to the z component of the sampled direction. Given an
i.i.d. number ξ0, and the diffusion length ν0, we compute

cosθ = ν0 − (ν0 +1) ·
(

ν0 −1
ν0 +1

)ξ0

. (4)

We sample ωz with the density

pD(ωz |⃗nD) =
1

log ν0+1
ν0−1

· 1
ν0 − cos(θ)

. (5)

To find x and y components of the sampled direction, we sample
the azimuth uniformly. Thus, the total probability of sampling the
direction ω in this case is p(ω) = pD(ωz |⃗nD) · 1

2π
. Note, that this

kernel samples the directions around n⃗D with high density.

The diffusion length ν0 can be computed analytically, but it is
a non-trivial task. Nevertheless, D’Eon provides the most accurate
approximation to our knowledge [KGV*20]

ν0 ≈ ℓ
1√

1−α
2.44294−0.0215813α+ 0.578637

α

, (6)

which is computed from the single scattering albedo α = σs/σt and
mean free path ℓ= 1/σt . Obviously, the Dwivedi sampling kernels
are dependent on the volume properties. If the medium has high ab-
sorption and thus low albedo, the sampling is biased more strongly
towards the slab normal n⃗D. On the other hand, no absorption re-
sults in the Dwivedi kernel taking the shape of isotropic scattering.

The distance sampling kernel stretches distances along the rays
sampled in direction ω which form small angle θ between the slab
normal n⃗D and ω. On the other hand, it shortens the sampled dis-
tance when ω points away from n⃗D. Distance t is sampled propor-
tionally to transmittance T within the Classical approach. However,
the distance sampling is parameterized by the modified extinction
coefficient σ

′
t = σt · (1− cos(θ)/ν0) . The actual transmittance is

still calculated with the original σt .

Dwivedi sampling with incident illumination. Meng et al. pro-
pose alternative options for selecting the slab normal n⃗D [MHD16].
They choose a point y either by finding the closest point on the
boundary with respect to the first sampled interaction x1 within the
volume or they sample a point on an emitter. They define the slab
normal n⃗D for the Dwivedi kernels as a direction from x1 to y.
These methods are called Closest Point (CP) and Incident Illumi-
nation (II), respectively. This choice works well in scenes with op-
tically thin volumes that are back lit with one light source which is
a difficult scenario for the Point of Entry sampling. Unfortunately,
the method can struggle in scenes with complex lighting, multiple
emitters, and occlusion because it does not recognize the actual il-
lumination at the volume boundary.

Volume path guiding. This problem is addressed in a fun-
damentally different, fully data-driven approach. Herholz et al.
learn an estimate of the volumetric radiance field in a pre-
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(a) Training using volumetric path tracing

prs�nrs

(b) Fitting and data preparation (c) CDF Construction

(d) Sampling an illuminated region rg (e) BONO subsurface path guiding (f) BILL subsurface path guiding

Figure 4: (a) Random walks using Classical sampling provide training data for the caches. NEE at xo and xi (green paths) and indirect
illumination at xi (orange paths) populate the cache. (b) In each region, we use the training data to fit vMF proportionally to incident
illumination, compute the averaged normal n⃗rs , and the averaged point prs . (c) The CDFs are constructed to allow importance sampling of
illuminated regions. (d) When a path hits the region rs at xo, we sample an illuminated region rg using the CDF stored in rs. (e) To guide
subsurface sampling of the path, BONO uses the average normal n⃗rg from the selected region rg (green arrows) as the Dwivedi slab normal.
(f) Alternatively, in our BILL, we sample the slab normal (green arrows) from the vMF obtained from rg.

training pass[HZE*19]. The direction and distance sampling de-
cisions are guided at every vertex by exploiting the learned radi-
ance field. Furthermore, low-contributing paths are terminated us-
ing adjoint-driven Russian Roulette, while high-contributing paths
split [AK90; VK16; RGH*22]. Herholz’s proposal targets more
general cases than our approach including unbounded volumes,
anisotropic phase function. It is also robust under various lighting
conditions. However, implementing it is non-trivial and requires
training and caching directional distributions inside the whole vol-
ume. Deng et al. propose a similar approach focused only on guid-
ing the scattering direction sampling [DWWH20]. Wu et al. pro-
pose using differentiable regularization to reduce variance, how-
ever, this introduces bias to the estimator [WWH*24]. Leonard
et al. proposed a data-driven approach using Conditional Vari-
ational Auto-encoders (CVAEs) to model photon path distribu-
tions within spherical regions, approximating multiple scattering
events [LHW21]. Their sphere-tracing algorithm efficiently con-
denses long scattering chains into single representative steps, but
introduces statistical bias that deviates from converged solutions in
thin, translucent media and requires substantial memory. In con-
trast, we propose a method that requires caches only at the volume
boundary and can work even without learning directional distribu-
tions. On the other hand, our method is limited to bounded homo-
geneous volumes with (nearly) isotropic scattering.

Surface path guiding. Similar to volume path guiding, paths
can also be guided outside volumes when we learn the approxi-

mation of incident illumination at scene surfaces. This approach
is widespread in industry [VHH*19], with many methods using
different radiance field representations. Possible choices include
photon maps [Jen95], cosine lobes [BDC12], Gaussian Mixture
Models (GMMs) [VKŠ*14; HEV*16],vMF mixtures [RHL20] or
quadtrees [MGN17]. Simon et al. [SHJD18] represent only the
noisiest light field part as full light paths, but this approach is in-
efficient for subsurface scattering with varying path directions and
distances. Other methods are based on neural networks [MMR*19;
HIT*24; DWL23] or formulated as reinforcement learning [DK17].
Our method learns an approximation of the boundary incident illu-
mination to sample the Dwivedi guiding slab normal n⃗D, which
guides subsurface paths towards illuminated boundary regions. We
also show that it is possible to avoid learning directional distribu-
tions, which might be useful for some applications.

BSSRDFs. Subsurface scattering can also be described by the
BSSRDF, modelling complete subsurface light transport integra-
tion between two points at the surface boundary. Assuming a ho-
mogeneous, half-infinite slab with isotropic scattering, the BSS-
RDF can be precisely represented by dipole diffusion [JMLH01;
FHK15] or the quantized-diffusion model [DI11]. Using surface
boundary irradiance estimates to accelerate BSSRDF evaluation
has also been explored [JB02]. Alternative BSSRDF approaches
using neural networks have also been explored [VKJ19; TTJ*24].
We use the Burley diffusion profile [HMB*15; Chr15] to approx-
imate the distribution of energy transported between two volume

© 2025 The Author(s).
Computer Graphics Forum published by Eurographics and John Wiley & Sons Ltd.
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(a) Illuminated region CDF construction
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Figure 5: (a) The CDF weight of rs with respect to rk is parameterized by the length of the segment between the mean boundary point prs and
prk . These CDF weights are cached and reused for all paths at the region sampling the CDF. (b)The CDF weight of some rs with respect to rs
is parametrized by the distance between the first path vertex xo to encounter the region after training and the mean boundary point prs . This
weight is computed at each path entering the medium at some xo at some region rs. (c) A region without the average statistics is considered
to be an unilluminated region, denoted by us. We compute its CDF weights by considering the first xo at us and the mean boundary points of
the other illuminated regions, prk . These CDF weights are cached for all subsequent paths at us.

boundary points. Since we do not directly use the Burley diffusion
profile to evaluate the integrand, our method remains unbiased.

3. A Data-Driven Approach to Dwivedi Guiding

When a path enters the medium at xo, as shown in Figure 2, we need
to sample a subsurface path that transports a significant amount of
energy between an exit xi point and xo. To that end, we importance
sample an illuminated region to select a slab normal for Dwivedi
sampling, thereby guiding the volume path sampling towards this
region. We propose two alternative techniques for slab normal sam-
pling based on the selected region:

1. The boundary average normal of the exit region, which we call
Boundary Normal (BONO). This method samples a region on
the boundary and uses the mean of all the normals associated
with boundary points at that region that receive radiance.

2. The direction from some boundary region’s incident illumina-
tion directional distribution. We call this method Boundary Inci-
dent Illumination (BILL) and can leverage surface path guiding
directional distributions.

In Section 3.1, we describe learning and caching of the inci-
dent illumination at the boundary. In Section 3.2, we use this in-
formation to construct cumulative distribution functions (CDFs)
for sampling boundary regions proportionally to their energy con-
tributions to a given entry point. In Section 3.3, we describe the
situation after sampling of the boundary region and how we use
it to guide the scattering and free-flight sampling roughly towards
the selected region. For clarity of exposition, we will describe our
training and sampling in the context of BONO, followed by the
necessary tweaks required for BILL.

3.1. Training the Boundary Volume Guiding Cache

We spatially discretise the boundary using a sparse grid structure
that partitions the boundary into non-overlapping regions where we
store information about the incident illumination at the boundary.

Thus, our method is independent of the surface representation and
does not require geometric storage.

Figure 4 illustrates the training process and the grid structure. We
adopt a forward-training approach [MGN17], that is, we trace paths
from the camera as in regular path tracing, and we evaluate sub-
paths to learn illumination at specific path vertices. Specifically, at
each xo and xi on the volume boundary, we learn direct illumina-
tion by using next-event estimation to connect them to some point
xe on an emitter. When a path exits the medium at xi, we continue
sampling the path to estimate the indirect illumination at xi. In our
implementation, if a region receives at least 32 samples, then we
consider it to be an illuminated region and is denoted as rs, where s
is the index of the region. Conversely, we refer to regions us that do
not meet this threshold as unilluminated regions. We use the train-
ing data to construct an approximation of the radiance field. Specif-
ically, we estimate the average irradiance Ẽrs for each illuminated
region rs from all direct and indirect illumination samples collected
within rs. Furthermore, we compute the average surface normal n⃗rs

and average point position prs from the training boundary points
(the xo and xi locations) in that region.

3.2. CDF Construction

Given a point xo, we construct a discrete cumulative distribution
function (CDF) over the estimated contribution of each illuminated
region to xo. However, building a CDF at each xo is expensive,
particularly when the number of illuminated regions is large. To
mitigate this cost, we cache a common CDF for the whole region
containing xo. Therefore, the next sample that intersects the region
at x′o, we reuse the previously constructed CDF. We observed that
caching did not increase variance in equal-sample renders.

To compute the CDF weights, we approximate the volume trans-
port between two regions using a diffusion profile, denoted by
Rd(t) and transmittance term, Tr(t), where t is the distance between
the two regions. The distance between two illuminated regions, rs
and rk is approximated by computing the distance between their
respective averaged points prs and prk .

© 2025 The Author(s).
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The diffusion profile captures the multiple and single scattering
terms, whilst the transmittance captures the direct transmission be-
tween the two points. The weighting function requires the reference
point y0 that receives energy and y1 that is considered the source.
The weighting function is defined as:

w(y0, n⃗0,y1, n⃗1, Ẽr) :=
(

Rd(||y0 −y1||)+

Tr(∥y0 −y1∥) · f (⃗n0, n⃗1)

)
· Ẽr. (7)

Here, Ẽr denotes the irradiance of the illuminated region that is
considered the illuminant for y0. We apply f (⃗n0, n⃗1) to control the
transmittance between the 2 points by cutting it off depending on
the orientation of the normals, n⃗y0 and n⃗y1 . The cutoff function is:

f (⃗n0, n⃗1) =

{
0 if n⃗0 · n⃗1 ≥ cos( π

4 )

1, otherwise
(8)

As mentioned, in Equation 7 y0 is the reference point that re-
ceives energy, and y1 is considered the source. More specifically
for its application in this work:

• y0, n⃗0 represent the position and normal characterizing the re-
ceiving point. This can be a specific point of entry xo with its
normal n⃗xo (as used when xo is at an illuminated region rs or an
unilluminated region us), or the average point prs of a receiving
region rs with its average normal n⃗rs (used for building the CDF
for rs based on other regions rk).

• y1, n⃗1 characterize the source of illumination. These are typically
the average point prk (or prs when xo is in rs and rs itself is con-
sidered the source) and average normal n⃗rk (or n⃗rs ) of an illumi-
nated region that acts as the illuminant.

• Ẽr is the average irradiance of this illuminated region that acts as
the source for y0.

This interpretation allows Equation 7 to be applied consistently
in the following scenarios for CDF construction.

The CDF weight for the energy arriving at rs from rk is com-
puted using w(prs , n⃗rs ,prk , n⃗rk , Ẽrk ). Computing this distribution for
all illuminated regions rk (where k is not the index for rs) provides
the mechanism to stochastically select another region rk that most
likely contributes energy to rs. However, when xo is at an illu-
minated region rs, we must decide whether to seed the Dwivedi
sampling by the slab normal from rs or whether we acquire the
slab normal from one of the other illuminated regions rk. To make
this decision, we use the sum of the unnormalized CDF weights
from other regions, trs = ∑k ̸=s w(prs , n⃗rs ,prk , n⃗rk , Ẽrk ), and a weight
b = w(xo, n⃗xo ,prs , n⃗rs , Ẽrs). The probability of acquiring the slab
normal from rs is b

b+trs
. Otherwise, a region rk is sampled from the

CDF constructed for rs, based on weights w(prs , n⃗rs ,prk , n⃗rk , Ẽrk ).

The first time xo lands on an unilluminated region, denoted by us,
the CDF is constructed. The weight of the energy distribution for xo
receiving from each illuminated region rk is w(xo, n⃗xo ,prk , n⃗rk , Ẽrk ).
The CDF is cached and used for all subsequent x′o that land in
the region us. Unlike illuminated regions where there is a decision
step involving b and trs , when xo is at an unilluminated region, an
illuminated region is sampled using only this CDF.

PoE II

BONO BILL

Figure 6: Yellow regions indicate where the point of entry slab nor-
mal matches the slab normal in use. The Point Of Entry (PoE) im-
age is mostly yellow because the normals are equal. In Incident
Illumination (II), the distribution of slab normals is more uniform,
as this technique simply selects one of the illuminants as the slab
normal. In contrast, our method shows that paths interacting with
the ear are guided toward the backlight, while those in the front-lit
region align more closely with the point of entry normal.

We chose the analytical Burley diffusion profile to approximate
volume transport, for its simplicity and efficiency. Although it does
not accurately approximate the volume transport between two non-
coplanar points, we show in Section 4.2 that using a more accurate
diffusion profile in such scenarios did not improve the CDF quality.

3.3. Our Dwivedi Guiding

We now describe how to use the structure to guide our volumetric
paths. When a path hits the medium at xo, we sample a region rg.
We then use rg to acquire the slab normal we will use in the analyt-
ical Dwivedi sampling kernels to guide the path. The slab normal
used depends on the guiding technique used. We discuss BONO,
guiding using the mean of the boundary normals.

BONO (Boundary Normal) Given a sampled region, rg, the
slab normal n⃗D is set to the region’s average boundary normal nrg .
The slab normal is fixed for all scattering and free-flight sampling
decisions until the path exits the volume.

BILL (Boundary Incident Illumination) Inspired by the work
of Meng et al., we propose learning the directional distribution of
the incident illumination at the boundary and use that distribution
as the sample space for the slab normal. Unlike II, our directional
distribution captures both the direct and indirect illumination inci-
dent on the boundary. The training for this method requires incom-
ing directions of incident illumination that can be obtained by the
training method mentioned in Sec. 3.1. When we sample the region,
rg, we subsequently sample the slab normal n⃗D from the incident
illumination directional distribution stored in rg. Once n⃗D has been
selected, the scattering directions and free-flight distance are sam-
pled using the Dwivedi kernels. n⃗D is fixed for all the segments of
the random walk inside the medium until the path exits the volume.
In our implementation, we represented the incident illumination di-
rectional distributions using vMF mixtures.

© 2025 The Author(s).
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relMSE

Envmap Buddha

0.03994 0.02283 0.07039 0.05715 0.02419 0.03172

0.09497 0.04857 0.09511 0.08293 0.0572 0.06319

Reference
relMSE | SPP

Classical
0.02442 | 17

Dwivedi - PoE
0.01406 | 24

Dwivedi - II
0.03764 | 17

VPG
0.03237 | 12

Ours - BONO
0.01579 | 23

Ours - BILL
0.01927 | 23

relMSE

Backlit Buddha

0.12386 0.31956 0.05294 0.04661 0.06193 0.04861

0.07451 0.12405 0.04339 0.03419 0.05126 0.05076

Reference
relMSE | SPP

Classical
0.05372 | 63

Dwivedi - PoE
0.0853 | 69

Dwivedi - II
0.035 | 66

VPG
0.03151 | 54

Ours - BONO
0.03777 | 68

Ours - BILL
0.03471 | 67

Figure 7: Equal-time comparisons of approximately 8 thread minutes each. The crops show the various parts of the medium, requiring
multiple scattering events to exit and find the emitter. The top row shows a dense medium, and uniform lighting which provides the ideal
scenario for PoE. BONO adapts to this quite well, while BILL is also able to reduce variance compared to Classical, but not to the level of
BONO. The bottow row shows a translucent medium with a backlight providing a slight parallax effect, which BONO does not handle as well
as BILL.

3.4. PDF Evaluation for Sampled Slab Normals

A key consideration for BONO and BILL, where the Dwivedi slab
normal n⃗D is sampled rather than deterministic, is the evaluation
of the correct probability density function (PDF) for importance
sampling weights. The true underlying PDF involves integrating
the Dwivedi kernel over the distribution of potential slab normals,
which is generally intractable.

To address this efficiently, we leverage a one-sample es-
timator based on Stochastic Multiple Importance Sampling
(SMIS) [WGGH20] to approximate the required densities. As de-
rived in the supplemental material, this approach yields a practi-
cal simplification: the effective density for the polar angle ωz (or
distance) given a chosen slab normal n⃗D reduces to the standard
Dwivedi PDF conditioned only on that single sampled normal, i.e.,
pD(ωz |⃗nD). This result applies analogously to free-flight distance
sampling and holds for BONO, BILL, and II. The full derivation
can be found in the supplemental.

4. Results and Discussion

We first evaluate the various components of our method. Sec-
tion 4.2 evaluates the Burley diffusion profile as a weight-
generating function for the CDFs. We follow that with a compar-
ison of the performance given various resolutions of the guiding
cache in Section 4.3. We perform the algorithmic performance eval-
uation comparisons in Section 4.4. We compare against Classical

sampling, Dwivedi using the PoE or II slab normal, VPG, and our
proposed BONO and BILL slab normals. When evaluating different
slab normal variants, we assess each technique independently with-
out combining them with Classical sampling through MIS. This
allows us to isolate and directly compare their individual perfor-
mance. VPG is combined with Classical as per the authors’ rec-
ommendation in their work. VPG’s scattering direction sampling
requires combining with Classical using MIS because poorly fit-
ted directional distributions can introduce sampling bias. The final
part of the evaluation examines how our technique combines with
Classical using MIS in Section 4.5.

4.1. Implementation

All our results were rendered on a machine with an AMD Ryzen
3950X 16-Core Processor running at 3.5GHz. We ran our renders
using 32 threads. We implemented our technique in the Mitsuba
renderer [Jak10]. The implementation includes our description of
the volume boundary irradiance approximation. The vMF mixture
fitting implementation is shared between our method and that used
in VPG. For further details on parameter estimation, we refer the
reader to Herholz et al.’s paper and supplemental [HZE*19]. Note
that while our method constructs directional distributions at the
boundary surface, these are not used for surface light transport and
are only used as a sample space for the slab normals during volume
light transport.

© 2025 The Author(s).
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relMSE

David Bust

0.79808 0.67722 0.95727 0.77011 0.59008 0.63423

0.29233 0.37265 0.52293 0.15691 0.11658 0.13562

0.57166 0.52109 0.81564 0.43751 0.34553 0.37325

Reference
relMSE | SPP

Classical
0.39204 | 27

Dwivedi - PoE
0.38634 | 40

Dwivedi - II
0.57059 | 23

VPG
0.31831 | 35

Ours - BONO
0.22622 | 36

Ours - BILL
0.24773 | 31

Figure 8: Equal-time comparisons of about 16 thread minutes each. The low-frequency indirect illumination poses a problem for II, in which
paths are guided to low-contribution regions and directions in volume. Our boundary cache guides the path to exit at a region where the
boundary can connect to the indirect source of illumination.

4.2. Evaluating the Burley Diffusion Profile

We use the Burley diffusion profile to compute the CDF weights to
determine the distribution of energy on the boundary. The Burley
diffusion profile is fitted using surface integration only, neglecting
transport between surface and volume points or points on oppo-
site sides of a volume boundary. It can inadequately represent the
energy transport between points that deviate from the original ge-
ometric configuration. We conducted two experiments to validate
whether the Burley profile remains viable for volume transport dis-
tribution estimation despite its theoretical limitations. The full de-
tails will be provided in the supplemental. To conduct the experi-
ments, we designed a diffusion profile that extends the Burley dif-
fusion profile by providing the diffusion value between a point on
the surface and a point in the volume. We call this a depth-aware
tabulated diffusion profile. Our first experiment measured fluence
distribution at varying depths within a half-infinite slab and a finite
slab, with a homogeneous volume. The depth-aware profile consis-
tently matched reference Monte Carlo solutions, while the standard
Burley profile underestimated fluence. However, all methods pro-
duced similar distribution shapes, differing primarily in magnitude.
The second experiment showed the CDFs for some pixels using
both the tabulated and Burley diffusion profiles. The CDFs were
very similar because the diffusion profiles differ primarily in mag-
nitude rather than shape, and CDF normalization eliminates these
magnitude differences. Hence, the Burley diffusion profile is an ad-
equate heuristic for volume transport distribution estimation.

4.3. Guiding Cache Spatial Resolution

This evaluation examines the performance of our algorithm with
respect to the granularity of the spatial structure over the bound-
ary. While fine caches accurately represent boundary distributions,
dense ones can hurt performance due to CDF construction over-
head; however, performance remains robust across granularities.

At finer resolutions, the CDF size can grow very large, for ex-

ample, in the ENVMAP BUDDHA scene, a 40× 40× 40 cache can
have CDFs with 9000 records. Such a scenario is ideal for reservoir
sampling, however, suboptimal uniform candidate generation and
expensive evaluation (as the sampled normal is used for the whole
path) reduce reservoir sampling’s benefits. We were unable to find
candidate generation techniques that would consider the volume
transport. Our method needs high-quality individual samples due
to costly evaluation.

Finally, caching CDFs is necessary as per-random walk con-
struction is prohibitively complex. The illuminated CDFs in total
require O(n2) time, and the unilluminated regions require O(mn)
time, where m is the number of unilluminated regions. Paying that
cost per random walk is not feasible, and thus, the caching signifi-
cantly improves the performance. Note that we do not fully occupy
the 3D grid. A 40×40×40 grid has a theoretical capacity of 64,000
records. However, our actual allocation requirements are signifi-
cantly reduced since we restrict our coverage to only the boundary
and use sparse-voxel hashing. In the ORC scene, for instance, a
grid of this size ultimately requires only 1,262 illuminated regions,
representing roughly just 2% of the maximum capacity.

4.4. Algorithmic Comparison

We present the comparison of our method with Classical, Dwivedi
Point of Entry, Dwivedi Incident Illumination sampling and Vol-
ume Path Guiding. We present scenes that exemplify the strength
of each method and compare their performance with ours. We note
that we do not combine the Dwivedi strategies with Classical to
ensure an equivalent evaluation of the performance of the sampling
strategy compared with ours. Details on the material properties for
the boundary and volume can be found in the supplemental.

ENVMAP BUDDHA Scene Figure 7 (top) shows the Buddha
scene. The scene is lit with an environment map, and the strongest
emissive part of the environment is the sun shining from the right,
as observed in the highlight on the belly. The statue has a rough
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dielectric boundary and an optically thick medium. This setup suits
PoE, as paths should exit without going deep into the volume. II
struggles as many paths are guided towards the sun. Our method
performs comparably to Classical. By learning the distribution of
energy on the boundary, we are not making uninformed guiding
towards the strongest illumination. Instead, our method infers that
we should steer paths back out from the same side of entry. The op-
tically thick medium results in a very dense volume cache, which
adds additional performance overhead to VPG.

BACKLIT BUDDHA Scene Figure 7 (bottom) shows the BACK-
LIT BUDDHA scene. The statue is backlit with a single source of il-
lumination, similar to the setup presented in Meng et al [MHD16].
A smooth dielectric is used for the boundary, and the lighting setup
requires paths to exit from the backside. Classical and PoE both
perform poorly. Classical’s uniform sampling is uninformed, and
PoE steers the paths to the front, which means most paths will not
exit to find an emission contribution. II correctly steers the path to
the back-lit boundary area by sampling an emitter point. The opti-
cally thin volume in the BUDDHA scene combined with the smooth
dielectric plays to VPG’s strengths. The connection with the emitter
on exit requires a refracted event, which VPG learns and can accu-
rately represent in its internal volume caches. Additionally, VPG’s
guided distance sampling handles no-scatter events directly, thus
reducing variance by directly transmitting through the volume. Our
method correctly learns that the important boundary source is at
the back and guides paths to exit there to connect with the emitter.
BILL slightly outperforms BONO

DAVID BUST Scene In the DAVID BUST scene, the statue is
backlit using only indirect lighting, as shown in Figure 8. The
medium is optically thick, requiring multiple scattering events
to traverse through the nose. The boundary is diffuse transmis-
sive. Classical’s unguided paths either exit at incorrect locations
or bounce deeper into the volume. PoE’s paths, uninformed about
boundary energy, rarely exit on the side allowing an indirect illumi-
nation connection. This is particularly evident in thinner regions of
the medium like the nose. II performs worst because the emission
source is on the opposite side of the incident illumination source,
above the statue, and does not directly light the statue. As a re-
sult, II paths are primarily guided to the top of the head, leading
to low path throughput, and the paths exit on sides that receive no
contribution from indirect lighting or direct lighting. VPG, learn-
ing the illumination’s directional distribution, outperforms Classi-
cal and other Dwivedi methods, but not ours. Notably, it still strug-
gles with thicker medium parts, highlighted in Figure 8’s orange
and pink crops. This medium is optically thinner than the ENVMAP

BUDDHA scene, hence the issue is less exacerbated but still present.
Our method correctly infers that the primary illumination source is
on the opposite side of the face. Steering paths to the other side
increases the likelihood of exiting BSDF-sampled paths landing on
surfaces contributing to the indirect illumination reflector.

ORC Scene The ORC scene features a typical light rig used for
dramatic character lighting in production shots. Two emitters posi-
tioned at the front illuminate the face from the sides, complemented
by strong backlighting. Additionally, a targeted light is directed at
the eye on the left side of the image to create a highlight on the iris
and pupil, a common technique in headshots.

0.25401 0.46306 0.24509 0.46096 0.12113 0.13806

Reference
relMSE | SPP

Classical
0.12456 | 54

Dwivedi - PoE
0.1312 | 68

Dwivedi - II
0.1297 | 51

VPG
0.16299 | 61

Ours - BONO
0.09932 | 61

Ours - BILL
0.10894 | 54

0.00754 0.00511 0.00933 0.01564 0.00574 0.00757

0.19908 0.39579 0.19897 0.37059 0.09011 0.10049

Figure 9: Equal-time comparisons of about 2.5 thread hours each.
The Dwivedi methods guide only the volume transport only. The
crops show the various regions of the medium that require bespoke
slab normal selection. Note how our method reduces variance on
the ears and does not deteriorate on the flatter regions where PoE
performs best.

The volume is very optically thick, requiring multiple scatter-
ing events even in the ear to exit to the other side. The ears are lit
only by the backlighting and any indirect light that bounces off the
face itself. Classical’s unguided paths do not favor any side of the
ear, and paths in flatter, front-lit regions can penetrate deeper. PoE
performs well on flatter face surfaces but poorly on ears as paths
are steered opposite the incident illumination. II does not signifi-
cantly improve ear path distribution, as many guided paths go to
front emitters not directly illuminating ears.

The optically thick volume results in VPG building very dense
internal caches. In our various experiments, we found that this is a
drawback of VPG, especially the extended training time and mem-
ory requirements required to build the volume guiding cache. VPG
needs to learn both the directional distribution and the spatial dis-
tribution means that it requires large amounts of training data, and
these additional degrees of freedom offer more opportunities for er-
ror. The density of the medium adversely affects the performance
of VPG, even though the medium is homogeneous. By limiting
our structure to cover only the boundary, we overcome this limi-
tation. Our methods correctly guide the paths to the regions of the
boundary that receive energy. The ears’ paths are directed back-
ward, while front-lit face paths behave more like the PoE normal.
Our method significantly improves analytical Dwivedi guiding by
providing a slab normal that more accurately describes the most
significant illumination source direction. Figure 6 shows a com-
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0.14888 0.1429 0.13515 0.13081 0.13099

Ours 25% Ours 50% Ours 75% Ours 90% Ours 100%

0.32827 0.01173 0.25527 0.28334 0.01124 0.21508 0.22006 0.01073 0.17223 0.19714 0.01096 0.14499 0.18665 0.01104 0.13972

Figure 10: Orc MIS comparisons show our method is best not combined with Classical sampling.

parison of the distribution of the slab normals depending on the
technique used.

4.5. Multiple Importance Sampling

Previous approaches in Dwivedi sampling [Kd14; MHD16;
KGV*20] typically combine analytical techniques with Classical
sampling via MIS to mitigate fireflies from low-probability path
events. However, our analysis shows that since our method gen-
eralizes other Dwivedi slab normal approaches and outperforms
Classical in most scenarios, combining it with Classical using MIS
deteriorates our results (Figure 10 and supplemental). We ran equal
render samples, increasing the probability of selecting our tech-
nique.

Meng et al. enforce Classical sampling for initial free-flight
distances [MHD16]. However, we observe limitations in this ap-
proach, particularly for optically and geometrically thin, backlit
media. Stretching the initial free-flight distance via the Dwivedi
distribution increases the sampling probability for no-scatter
events, a dominant energy transport component in such configu-
rations.

4.6. Which method to use?

Whilst both methods offer improvements over existing Dwivedi
sampling techniques, BONO demonstrates superior performance
relative to BILL in the majority of evaluated scenarios, with the
exception of the isolated case presented in Figure 7 (bottom row,
top crop). Despite this singular underperformance, BONO main-
tains better robustness across all other evaluated contexts. Based
on these results, BONO may be more suitable for a wider range of
applications. The simpler training methodology and elimination of
directional distribution requirements (along with the associated fit-
ting procedure) result in easier integration into existing rendering
pipelines. On the other hand, renderers with existing surface path
guiding schemes that have directional distributions on the surface
may find BILL to be an easier drop-in method.

5. Limitations and Future Work

Guided Russian Roulette and Splitting. VPG’s Guided RR en-
ables more samples to be evaluated for the same render time. Our
method does not have an adjoint estimate as accurate as that of
VPG; however, we believe some form of Guided RR and Splitting
using the radiance field information at the surface can still lead to

variance reduction. This follows from the ZVT principle, which
states that an approximation of the solution can be enough of a cat-
alyst to reduce variance.

Heterogeneous Media. The Dwivedi sampling kernels are de-
rived from an adjoint solution for homogeneous media, making
them unpredictable when handling complex heterogeneous media
interactions. Solutions for heterogeneous media are only available
under the assumption of homogenization of the medium [Dwi82a].

Anisotropic Phase Functions. Meng et al. demonstrate the
use of Dwivedi with anisotropic phase functions; however, as the
mean cosine gets closer to the endpoints, the results deteriorate
[MHD16]. D’Eon hints at possible analytical solutions [KGV*20]
that can be derived from previous linear transport work [MMN*80].

Refractive Boundaries. VPG effectively resolves the energy
concentration in the volume caused by refraction due to the inter-
nal volumetric adjoint approximation. Our method does not have
this fine-grained information, which leads to less informed sam-
pling decisions. Learning the refracted boundary exit directions
can prove useful to guide volume paths when close to the bound-
ary. There are also existing techniques such as Subdivision Next
Event Estimation [KNK*16] and Manifold Next Event Estima-
tion [HDF15], that can construct paths that connect with emitters
through refractive boundaries.

6. Conclusions

Our core idea is to inform analytical Dwivedi sampling with infor-
mation about boundary illumination to reduce variance under com-
plex lighting and in the context of homogeneous, isotropic media.
We approximate the incident illumination by a sparse grid structure
that stores an averaged normal and directional distribution, per re-
gion. During rendering, we first importance-sample a voxel at the
boundary based on volume transport properties, using an analytical
diffusion profile as an approximation of volume transport. Then we
either use the voxel’s averaged normal from all illuminated train-
ing data points or the direction proportional to the incident illu-
mination at the surface, and interpret it as the slab normal for the
Dwivedi kernels. Under complex lighting scenarios and indirect il-
lumination, our new BONO and BILL methods outperform existing
Dwivedi guiding techniques, Classical Volume Path Tracing, and,
in some cases, even Volume Path Guiding.
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[VHH*19] VORBA, JIŘÍ, HANIKA, JOHANNES, HERHOLZ, SEBASTIAN,
et al. “Path Guiding in Production”. ACM SIGGRAPH 2019 Courses.
SIGGRAPH ’19. event-place: Los Angeles, California. New York, NY,
USA: ACM, 2019, 18:1–18:77. ISBN: 978-1-4503-6307-5. DOI: 10.
1145/3305366.3328091 2, 4.
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