

Advanced 3D Graphics for Movies and Games

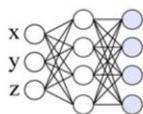
Lecture 11: Neural fields and Gaussian splatting

NPGR010
Winter Semester 2025/2026
Taught by Tomáš Iser

Image licenses:

Title image from *Sprite Fright*, licensed under CC BY 4.0: <https://studio.blender.org/projects/sprite-fright/gallery/?asset=3642>

- **Neural Fields for Visual Computing**
- <https://doi.org/10.1145/3587423.3595477>
- <https://neuralfIELDS.cs.brown.edu/siggraph23.html>
- Towaki Takikawa and Shunsuke Saito and James Tompkin and Vincent Sitzmann and Srinath Sridhar and Or Litany and Alex Yu
- *The following slides are a combination of slides from the course above*



NEURAL FIELDS FOR VISUAL COMPUTING

SIGGRAPH 2023

Course - Sunday 6th August, 09:00-12:00 PDT

neuralfIELDS.cs.brown.edu

Towaki Takikawa

Shunsuke Saito

James Tompkin

Alex Yu

Or Litany

Vincent Sitzmann

Srinath Sridhar

Computer Science
UNIVERSITY OF TORONTO

Meta
Reality Labs Research

LUMA AI

NVIDIA

Neural Fields for Vision and Graphics

Captured images

Processing

Rendering of real-world place

[Mildenhall et al., Neural Radiance Fields (NeRF), ECCV 2020]

[Wu et al., Scalable Neural Indoor Scene Rendering, SIGGRAPH 2022]

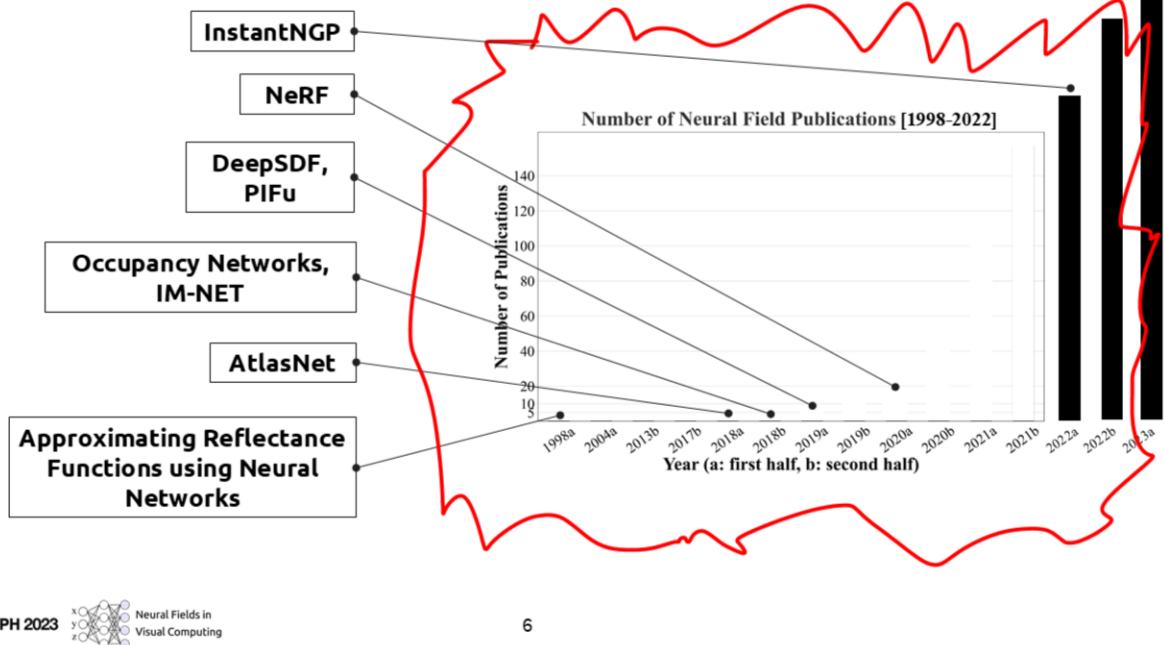
Neural Fields for Vision and Graphics

[Chan et al., pi-GAN, CVPR 2021]

[Saito et al., PIFu, ICCV 2019]

Priors

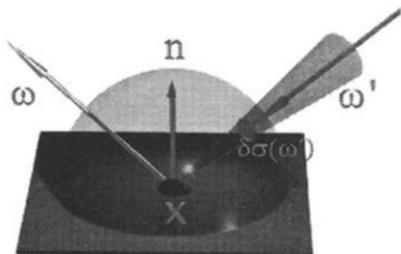
The “Cambrian Explosion” of Neural Fields



Just at CVPR 2023 two months ago, there were 170 papers on Neural Fields alone. That's about as many as the whole SIGGRAPH Technical Papers program.

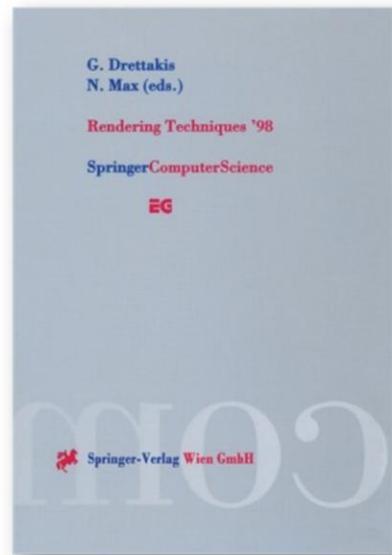
https://markboss.me/archive_presentations/cvpr23/

The “Cambrian Explosion” of Neural Fields



[Gargan and Neelamkavil 1998]

**Approximating Reflectance
Functions using Neural
Networks**



Neural Fields in
Visual Computing

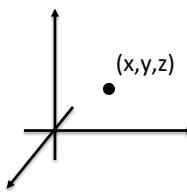
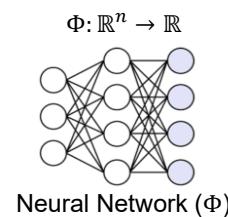
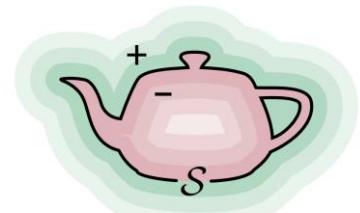
7

Rendering Techniques – old proceedings for Eurographics Symposium on Rendering

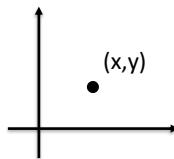
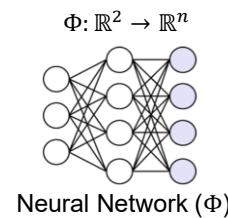
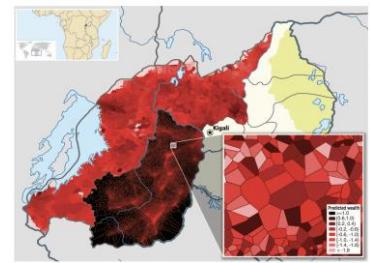
What are neural fields?



What are neural fields?

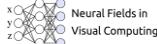


Signed Distance Function (SDF)



Geospatial Data
[Blumenstock et al. 2015]

SIGGRAPH 2023

 Neural Fields in
Visual Computing

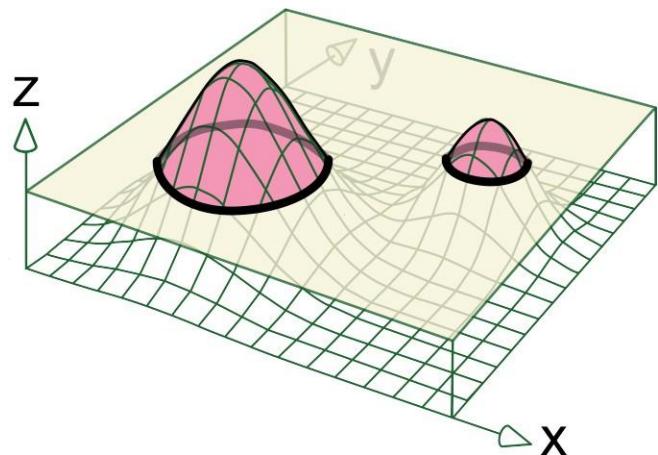
9

Kigali – capital of Rwanda

Geometry with Maths

$$f(x, y) = d$$

“Signed Distance Field”



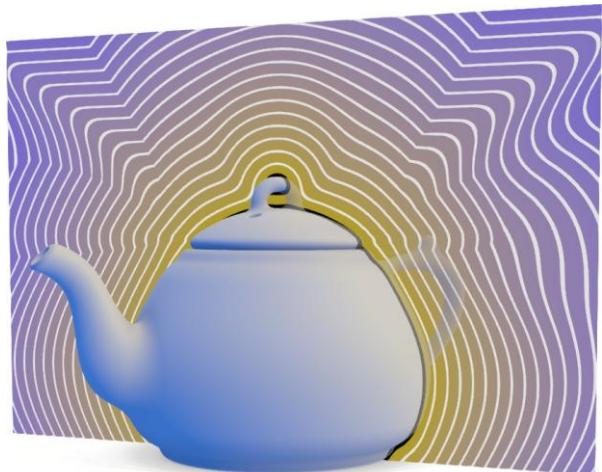
[Source: Takikawa et al]

10

Geometry with Maths

$$f(x, y, z) = d$$

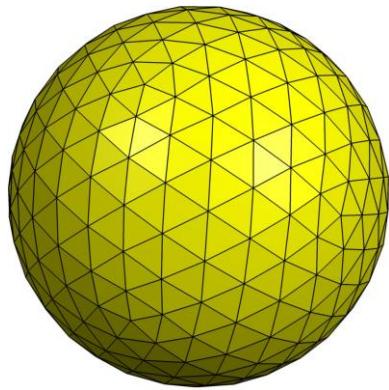
Sometimes also referred to more generally as “Implicit Surfaces”



[Source: Takikawa et al]

11

Signed Distance Functions as Geometry

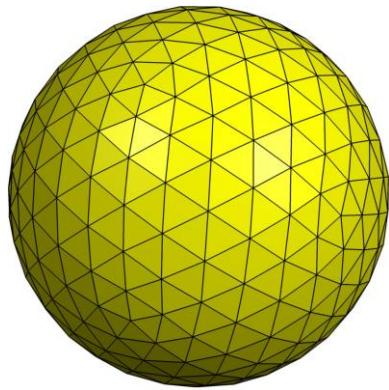


Polygon Mesh

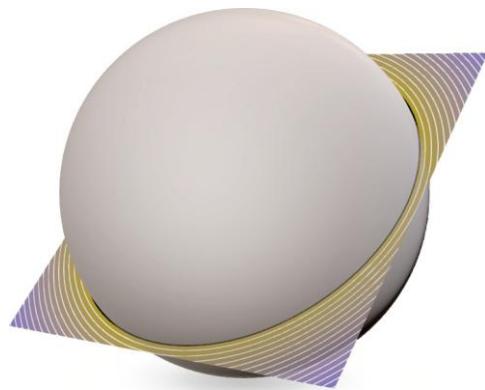
[Source: Wikipedia et al]

12

Signed Distance Functions as Geometry



Polygon Mesh



$$f(x, y, z) = \sqrt{x^2 + y^2 + z^2} - 1$$

[Source: Wikipedia et al]

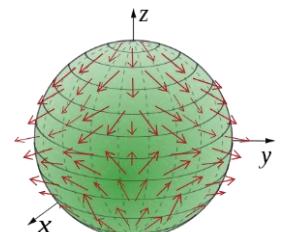
13

Definition

Definition 1

A *field* is a quantity defined for all spatial and / or temporal coordinates.

Examples of Fields



Vector Field

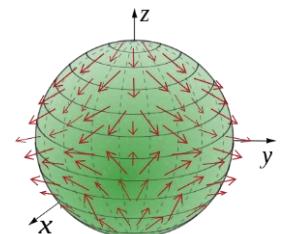
Fields

[Source: Wikipedia]

15

Examples of Fields

Image



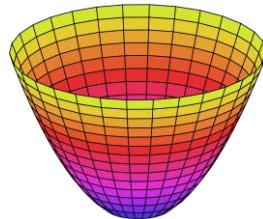
Vector Field

Fields

[Source: Wikipedia]

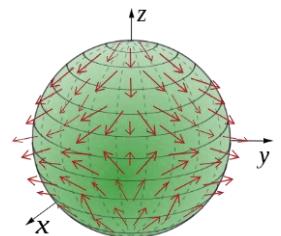
16

Examples of Fields



3D Parabola
(Explicit Surface)

Image



Vector Field

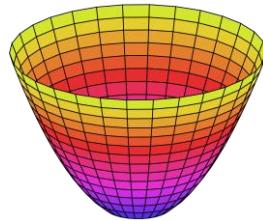
Fields

[Source: Wikipedia]

17

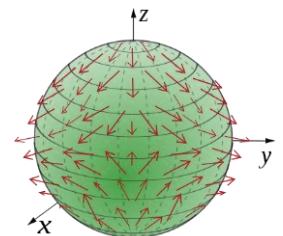
Examples of Fields

3D Signed Distance Fields
(Implicit Surface)



3D Parabola
(Explicit Surface)

Image



Vector Field

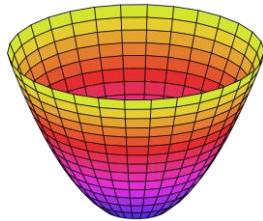
Fields

[Source: Wikipedia]

18

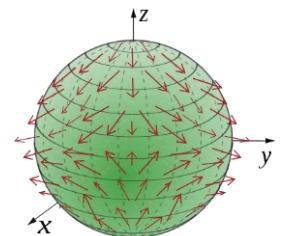
Examples of Fields

3D Signed Distance Fields
(Implicit Surface)

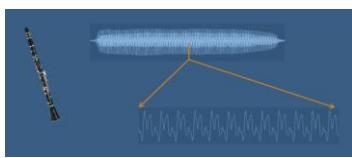


3D Parabola
(Explicit Surface)

Image



Vector Field



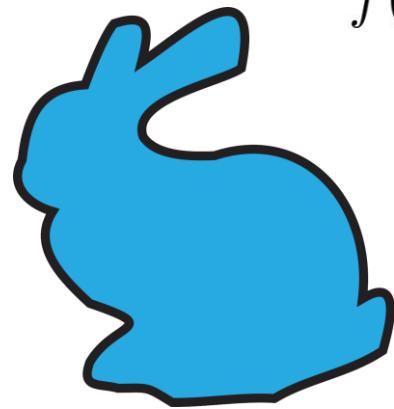
Audio

Fields

[Source: Wikipedia]

Sphere Tracing

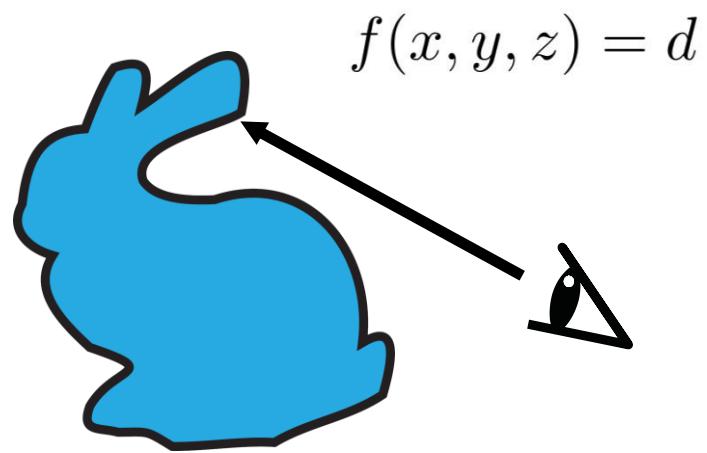
$$f(x, y, z) = d$$



[Source: Takikawa et al]

20

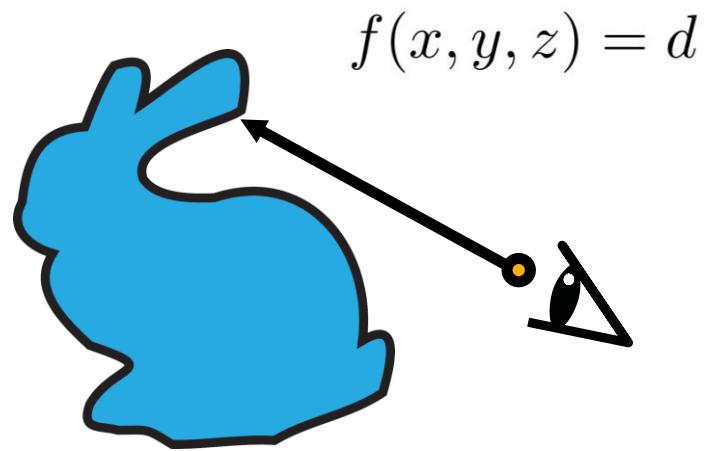
Sphere Tracing



[Source: Takikawa et al]

21

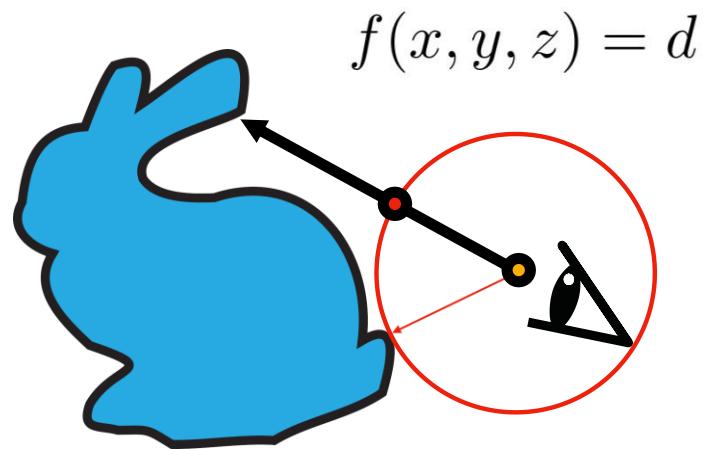
Sphere Tracing



[Source: Takikawa et al]

22

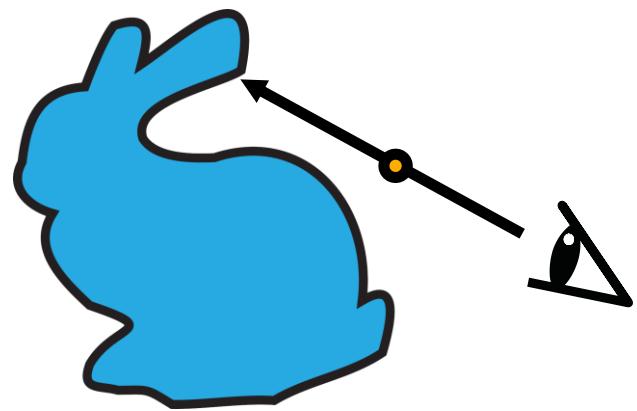
Sphere Tracing



[Source: Takikawa et al]

23

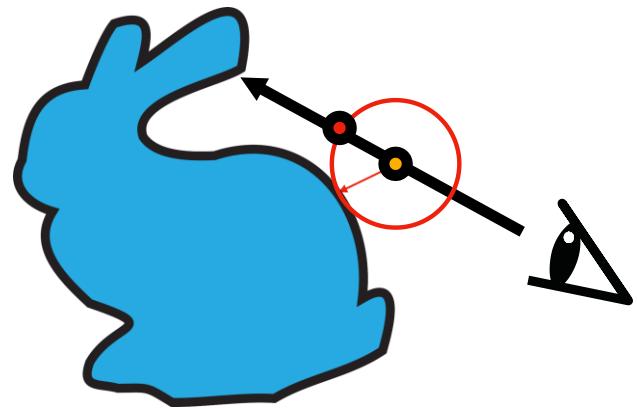
Sphere Tracing



[Source: Takikawa et al]

24

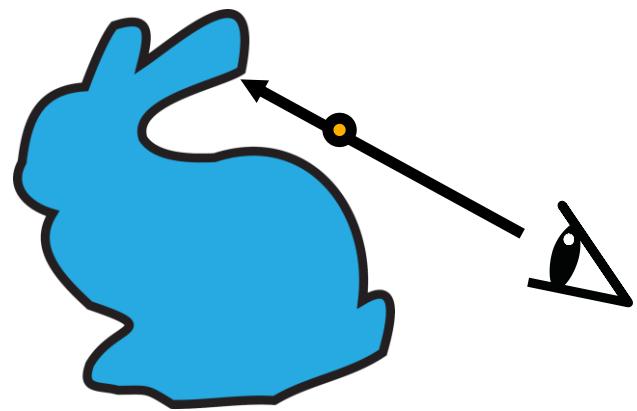
Sphere Tracing



[Source: Takikawa et al]

25

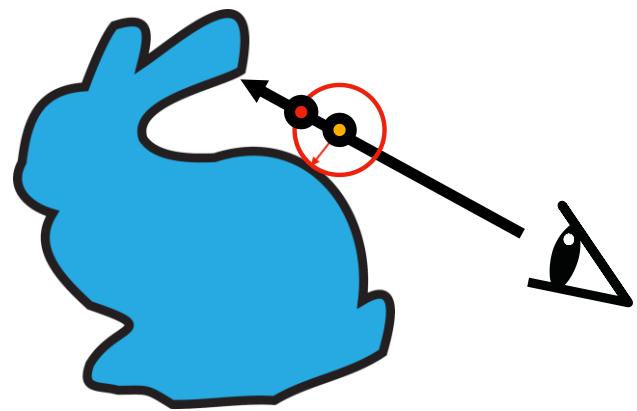
Sphere Tracing



[Source: Takikawa et al]

26

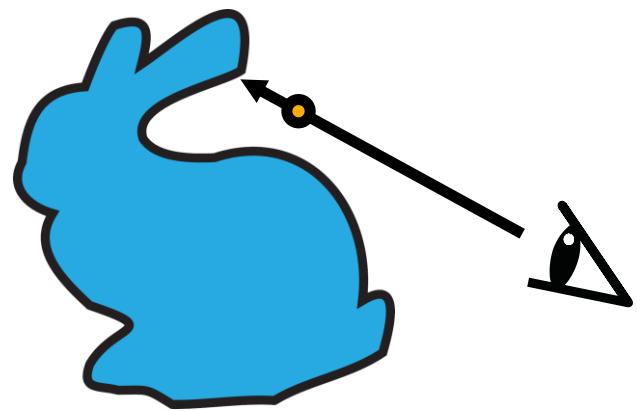
Sphere Tracing



[Source: Takikawa et al]

27

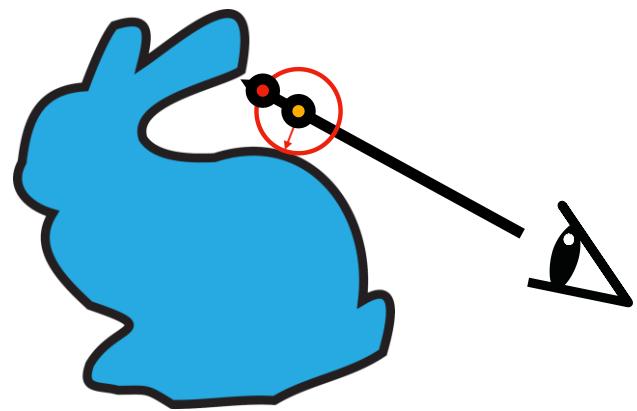
Sphere Tracing



[Source: Takikawa et al]

28

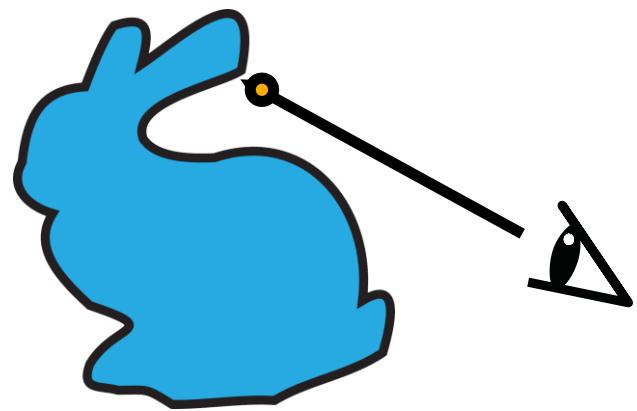
Sphere Tracing



[Source: Takikawa et al]

29

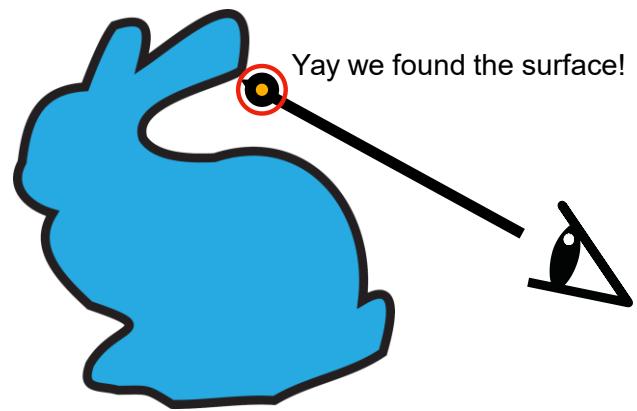
Sphere Tracing



[Source: Takikawa et al]

30

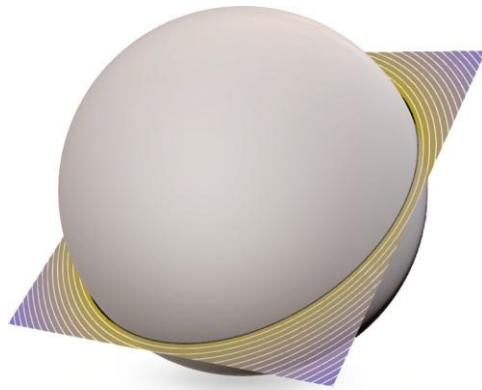
Sphere Tracing



[Source: Takikawa et al]

31

Signed Distance Functions as Geometry

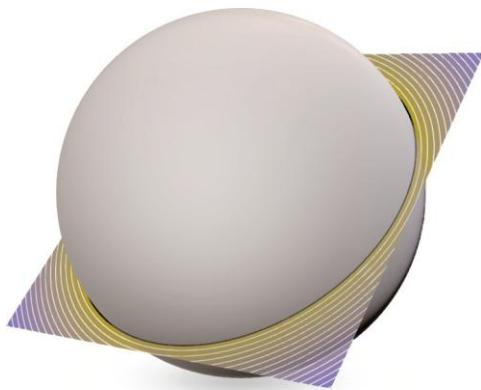
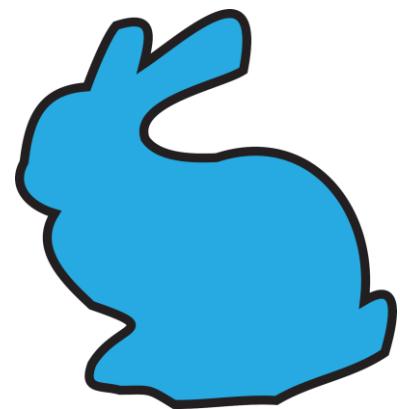


$$f(x, y, z) = \sqrt{x^2 + y^2 + z^2} - 1$$

[Source: Wikipedia et al]

32

Signed Distance Functions as Geometry



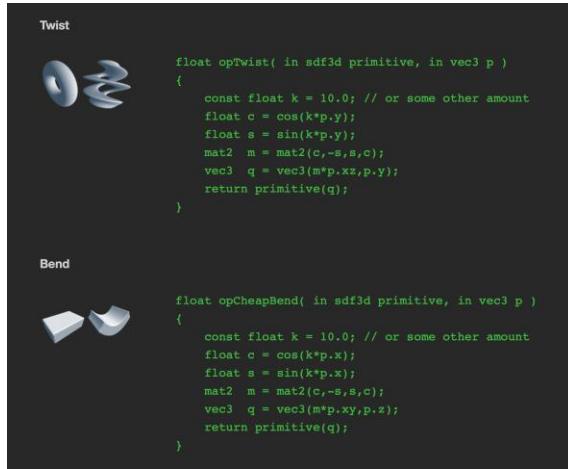
$$f(x, y, z) = \sqrt{x^2 + y^2 + z^2} - 1$$

?????????????????
???

[Source: Wikipedia et al]

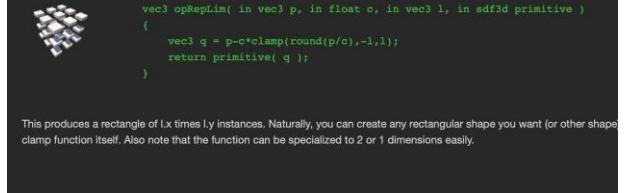
33

Boolean Operations



Finite Repetition

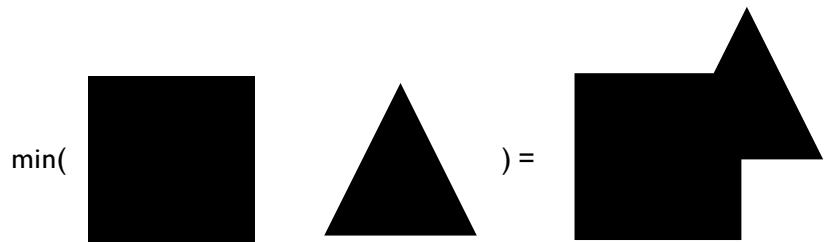
Infinite domain repetition is great, but sometimes you only need a few copies or instances of a given SDF, not infinite. A frequent approach is to generate infinite copies and then clip the unwanted areas away with a box SDF. This is not ideal because the resulting SDF is clipping through max0 only produces a bound. A much better approach is to clamp the indices of the instances instead of the indices themselves. You can see this in action here as a 2D shader, although it works in any number of dimensions. <https://www.shadertoy.com/view/3syGzz>. Code:



[Source: iquilezles.org]

34

Boolean Operations



Boolean Operations

$$\max(\square - \triangle) = \square$$

Constructive Solid Geometry

[Source: Takikawa et al]

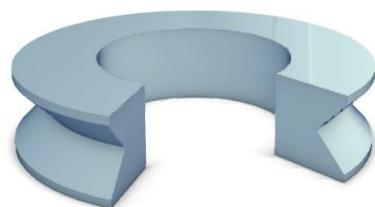
37

Constructive Solid Geometry

[Source: Takikawa et al]

38

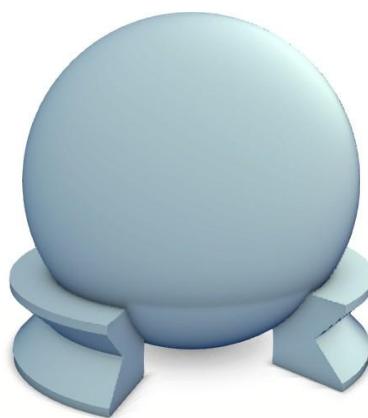
Constructive Solid Geometry



[Source: Takikawa et al]

39

Constructive Solid Geometry



[Source: Takikawa et al]

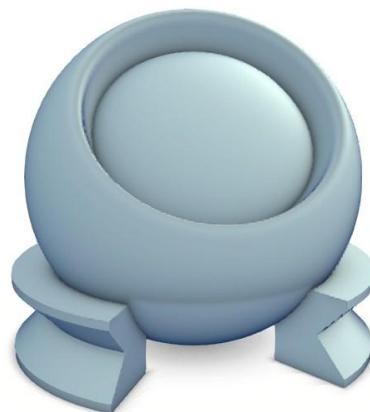
40

Constructive Solid Geometry

[Source: Takikawa et al]

41

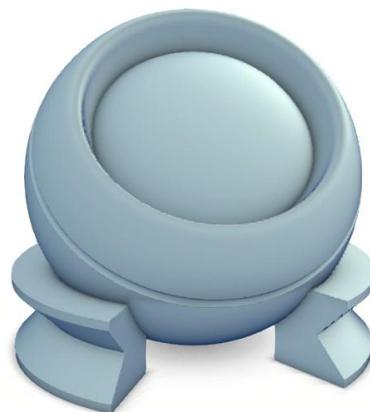
Constructive Solid Geometry



[Source: Takikawa et al]

42

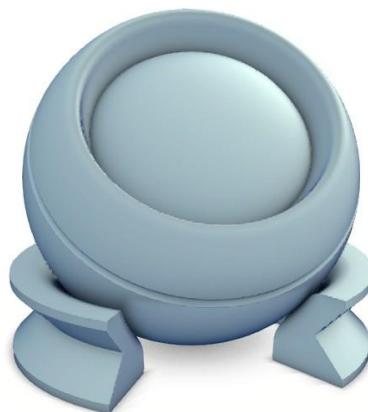
Constructive Solid Geometry



[Source: Takikawa et al]

43

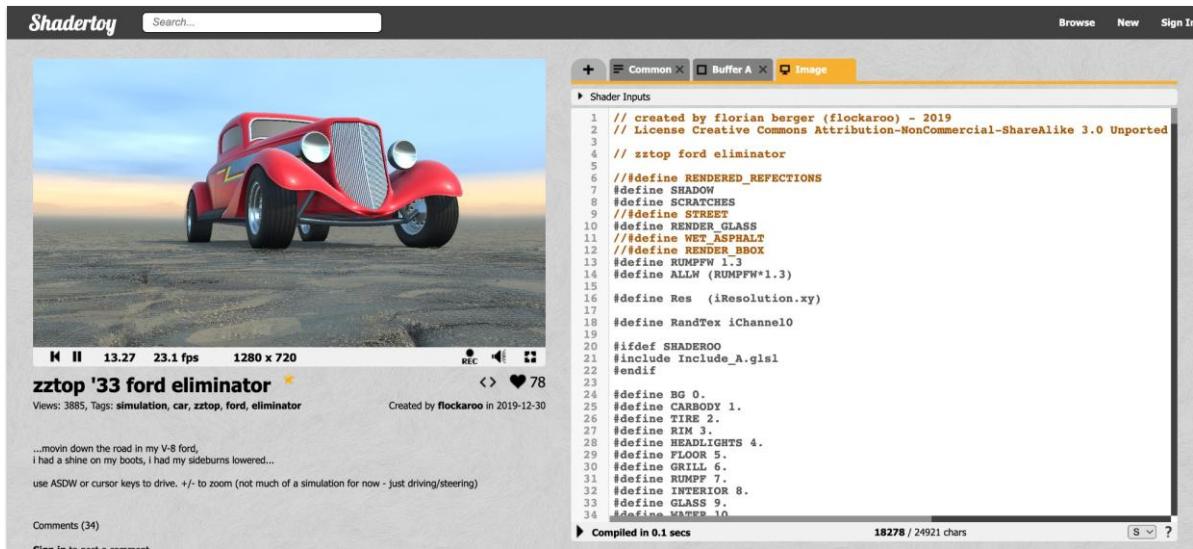
Constructive Solid Geometry



[Source: Takikawa et al]

44

ShaderToy



ShaderToy

Browse New Sign In

z ztop '33 ford eliminator

Views: 3885, Tags: simulation, car, z ztop, ford, eliminator

Created by flockaroo in 2019-12-30

...movin down the road in my V-8 ford,
I had a shine on my boots, I had my sideburns lowered...
use ASDW or cursor keys to drive, +/- to zoom (not much of a simulation for now - just driving/steering)

Comments (34)

1 // created by florian berger (flockaroo) - 2019
2 // License Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported
3
4 // z ztop ford eliminator
5
6 //##define RENDERED_REFLECTIONS
7 //##define SHADOW
8 //##define SCRATCHES
9 //##define SPURTS
10 //##define RENDER_GLASS
11 //##define WET ASPHALT
12 //##define RENDER_BBOX
13 #define RUMPFW 1.3
14 #define ALLW (RUMPFW*1.3)
15
16 #define Res (iResolution.xy)
17
18 #define RandTex iChannel0
19
20 #ifdef SHADEROO
21 #include Include_A.glsl
22 #endif
23
24 #define BG 0.
25 #define CARBODY 1.
26 #define TIRE 2.
27 #define RIM 3.
28 #define HEADLIGHTS 4.
29 #define FLOOR 5.
30 #define WALL 6.
31 #define RUMPF 7.
32 #define INTERIOR 8.
33 #define GLASS 9.
34 #define WATER 10

Compiled in 0.1 secs 18278 / 24921 chars

[Source: shadertoy.com]

45

Modeling with SDFs

$$sdf(\mathbf{p}) = \min(\text{terrain}, \dots)$$
$$trees(\mathbf{p}) = d_e(\mathbf{w}, \mathbf{r}_e) +$$
$$\mathbf{w} = \begin{pmatrix} x - \mathbf{c}_0 \\ y - f(\mathbf{c}_0, \mathbf{c}_1) \\ z - \mathbf{c}_1 \end{pmatrix}$$
$$\mathbf{c} = 2\mathbf{m} - 1/2 + \begin{cases} n \cdot \dots \end{cases}$$
$$\mathbf{n} = \nabla sdf(\mathbf{p})$$

42:00

Painting a Landscape with Maths
568K views • 3 months ago

Inigo Quilez

0:00 Intro 0:48 Basic Polynomial Surface (Noise) 4:12 Fract
4K

Intro | Basic Polynomial Surface (Noise) | Fract

$$0:00 \text{ Sculpting basic shape} 3:45 \text{ Blocking basic lighting} 6:20$$

24:46

Painting a Character with Maths
335K views • 1 year ago

Inigo Quilez

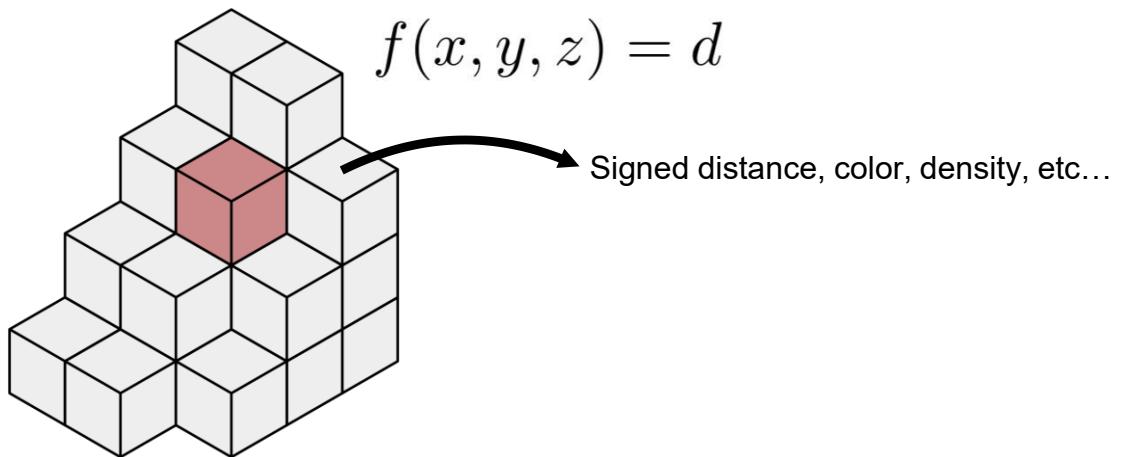
0:00 Sculpting basic shape 3:45 Blocking basic lighting 6:20

Sculpting basic shape | Blocking basic lighting |

[Source: YouTube]

46

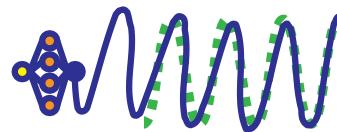
Voxel Grids



[Source: Wikipedia]

47

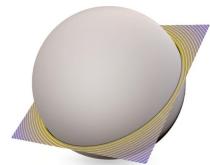
Fields and Signals



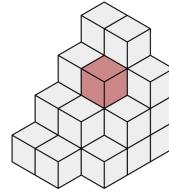
Neural (Fields)

Best of both worlds?

Smooth, compact, complex

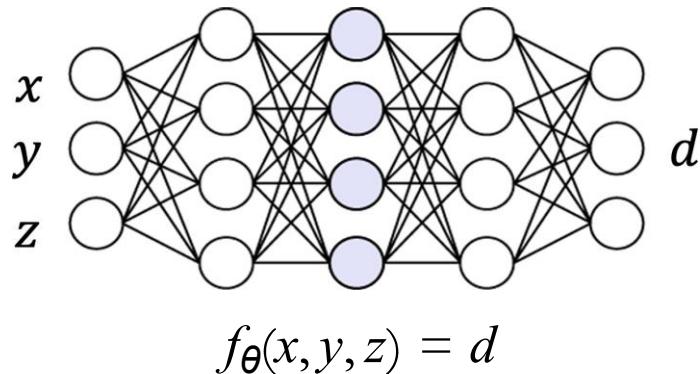


$$f(x, y, z) = \sqrt{x^2 + y^2 + z^2} - 1$$

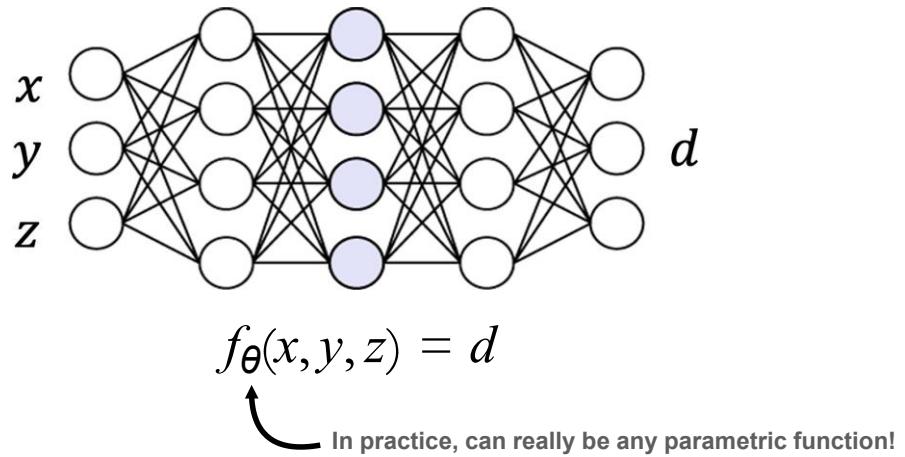


Simple, bulky, fast

Multi-layer Perceptrons

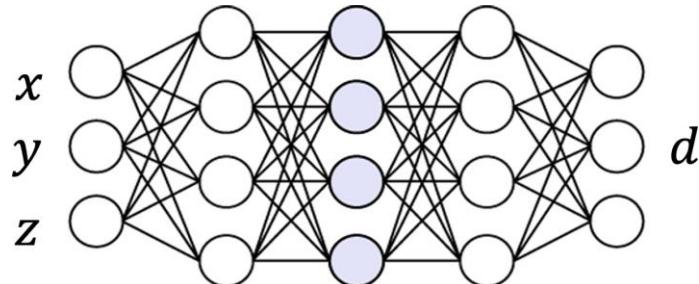


Multi-layer Perceptrons



Multi-layer Perceptrons

How do you obtain the parameters???

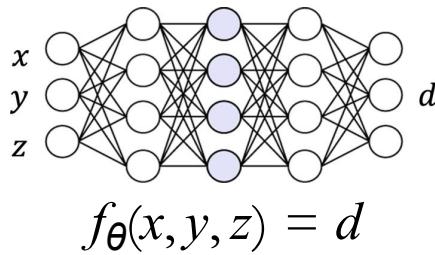
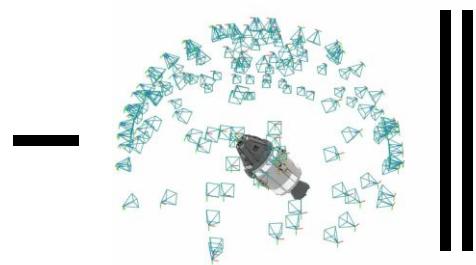


$$f_{\theta}(x, y, z) = d$$

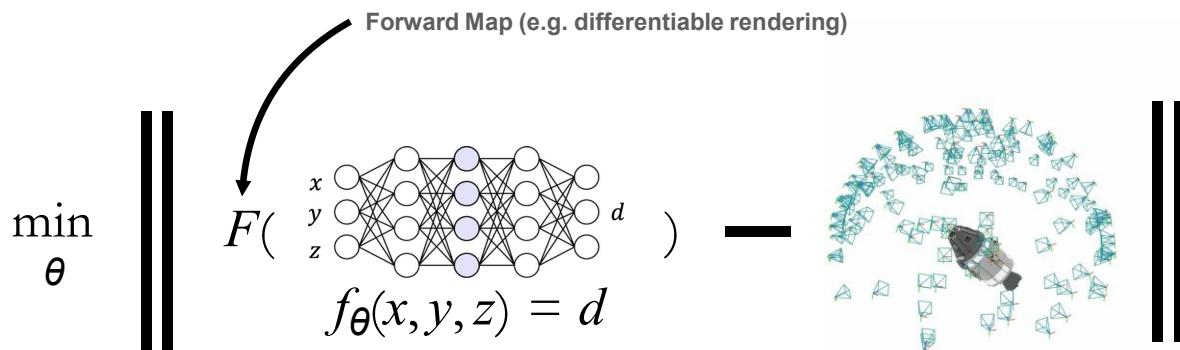
 In practice, can really be any parametric function!

Multi-layer Perceptrons

$$\min_{\theta}$$



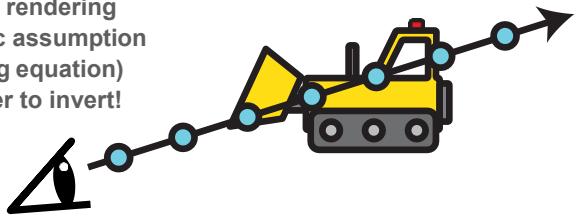
Multi-layer Perceptrons



Baking via solving inverse problems!

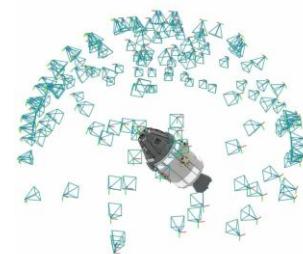
NeRF Innovation

NeRF uses volume rendering
(i.e. removes the Dirac assumption
in Kajiya's rendering equation)
to make things easier to invert!



$$\min_{\theta} \parallel F(\begin{matrix} x \\ y \\ z \end{matrix}, \begin{matrix} d \end{matrix}) - f_{\theta}(x, y, z) = d \parallel$$

Forward Map (e.g. differentiable rendering)

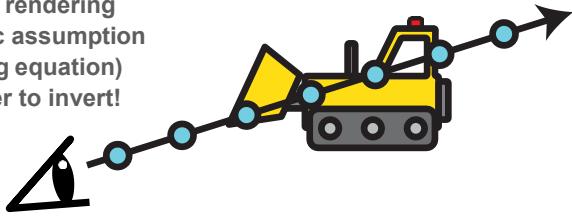
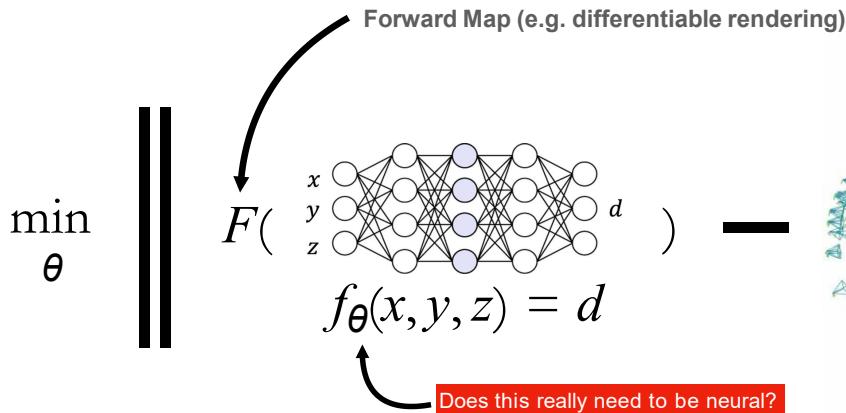


Baking via solving inverse problems!

54

NeRF Innovation

NeRF uses volume rendering
(i.e. removes the Dirac assumption
in Kajiya's rendering equation)
to make things easier to invert!



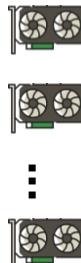
Neural Fields General Framework - Example

Neural radiance field with hybrid representation

Captured images

Processing

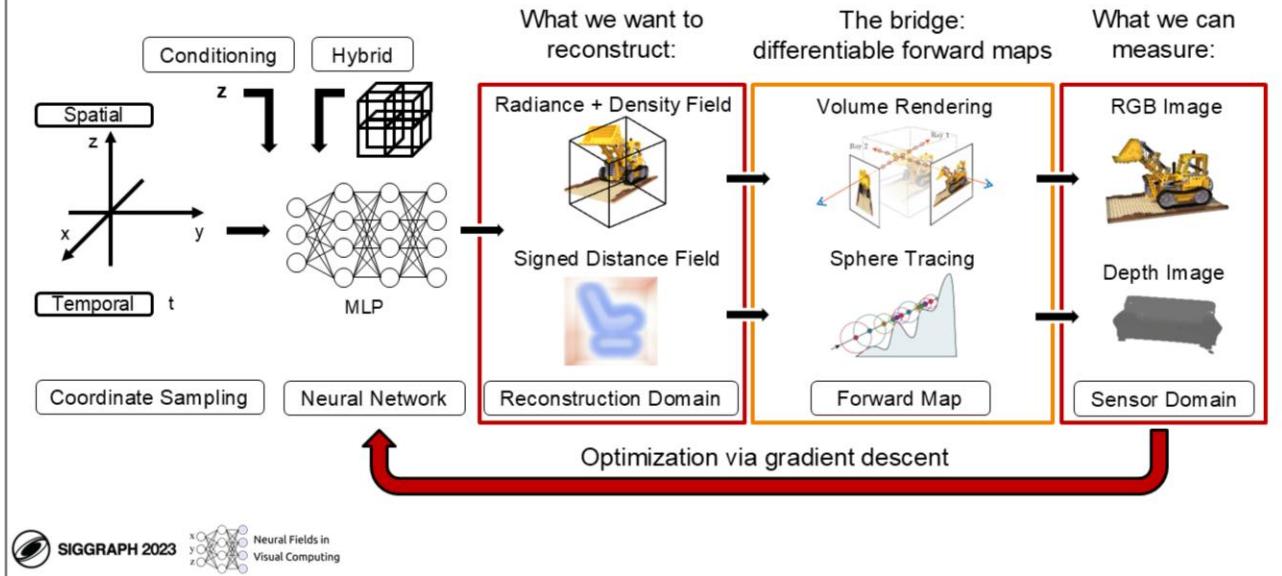
Rendering of real-world place



[Mildenhall et al., Neural Radiance Fields (NeRF), ECCV 2020]

[Wu et al., Scalable Neural Indoor Scene Rendering, SIGGRAPH 2022]

Neural Fields General Framework



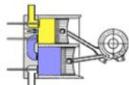
This is a natural place for us to introduce the general framework for using neural fields to solve inverse problems. We first sample * the coordinate, which are the inputs of the * neural network. The neural network predicts the * reconstructed signal. The reconstruction is then rendered * into what we can measure * with real-world sensors. In inverse problems, we are given sparse, noisy, and dimension-constrained information from * real-world sensors. However, we want to recover a * rich underlying representation from these limited observations of the real world. For example, how can we reconstruct a 3D geometry from sparse 2D images? We need a differentiable function mapping the reconstructed signal to sensor signals. * This is the differentiable forward map. In visual computing, this becomes a differentiable renderer. With that, we can now supervise * the learning of reconstructed signal, with limited sensor signals.

Strengths and Weaknesses of Neural Fields

In the course, we will highlight both **strengths** and **weaknesses** of neural fields, and what is missing for practical use. Some weaknesses have now been overcome with better understanding and engineering!

Strengths:

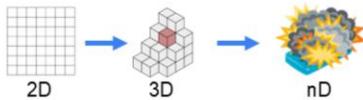
Compactness



Self-regularizing

$$\operatorname{argmin}_x \|y - F(x)\| + \lambda P(x).$$

Domain agnostic



Weaknesses:

Computationally expensive

Not easily editable

Hard to model semantics and discrete data

Lack of theoretical understanding

NeRF

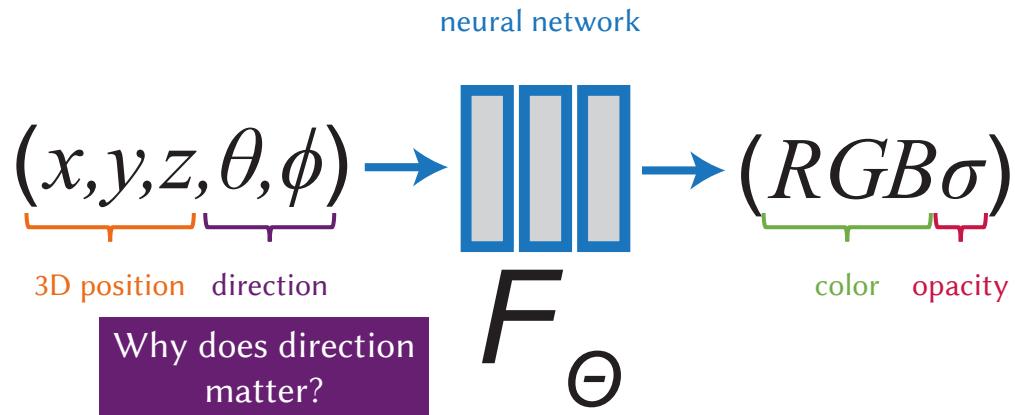
Representing Scenes as Neural Radiance Fields for View Synthesis

NeRF

- <https://www.matthewtancik.com/nerf>
- <https://arxiv.org/abs/2003.08934>

Architecture

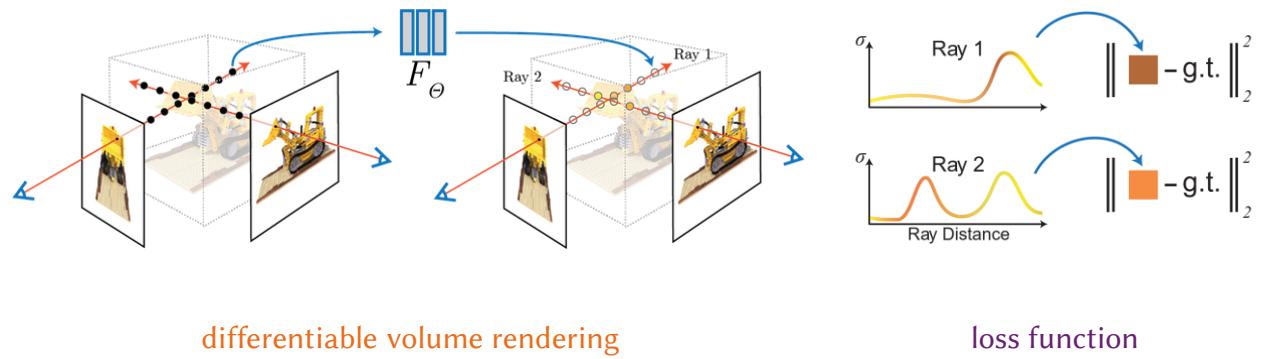
Computer
Graphics
Charles
University



Why direction matters

Animation from <https://pyimagesearch.com/2024/10/28/nerfs-explained-goodbye-photogrammetry/>

Working principle of NeRF



Simplified volume rendering in NeRF

$$C(\mathbf{r}) = \int_{t_n}^{t_f} T(t) \sigma(\mathbf{r}(t)) \mathbf{c}(\mathbf{r}(t), \mathbf{d}) dt, \text{ where } T(t) = \exp\left(-\int_{t_n}^t \sigma(\mathbf{r}(s)) ds\right)$$

Problem: It is fast, but not
“real-time fast”

Solution: Gaussian splatting

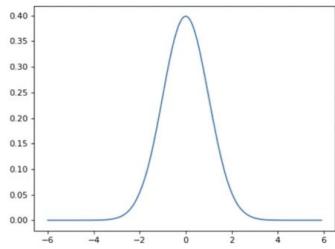
3D Gaussian Splatting for **Real-Time** Radiance Field Rendering

Gaussian splatting

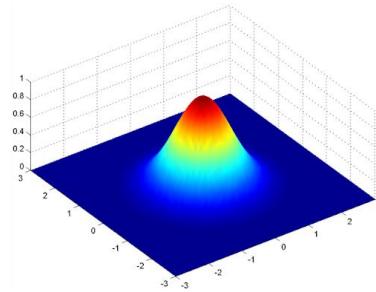
- <https://repo-sam.inria.fr/fungraph/3d-gaussian-splatting/>
- <https://doi.org/10.1145/3592433>

Principle of 3D Gaussians

1D Gaussian



2D Gaussian



3D Gaussian

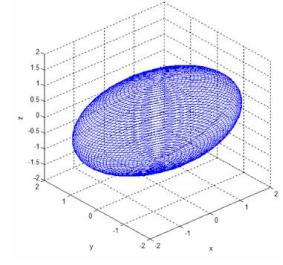


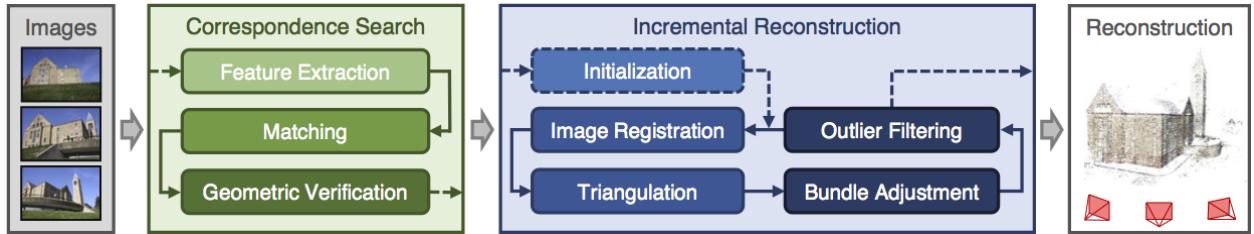
Image from <https://pyimagesearch.com/2024/12/09/3d-gaussian-splatting-vs-nerf-the-end-game-of-3d-reconstruction/>

Lots of 3D Gaussians next to each other...

Animation from <https://pyimagesearch.com/2024/12/09/3d-gaussian-splatting-vs-nerf-the-end-game-of-3d-reconstruction/>

Step 1: Initialization

- Gaussian splatting does not do any initialization “by itself”
- Uses a structure from motion (SfM) algorithm such as [COLMAP](#):



- SfM outputs a **point cloud**, which is then converted to 3D Gaussians

Step 2: Rendering

- Gaussian splatting is real-time because Gaussians can be **rasterized**!
- No need for volume rendering as in NeRF

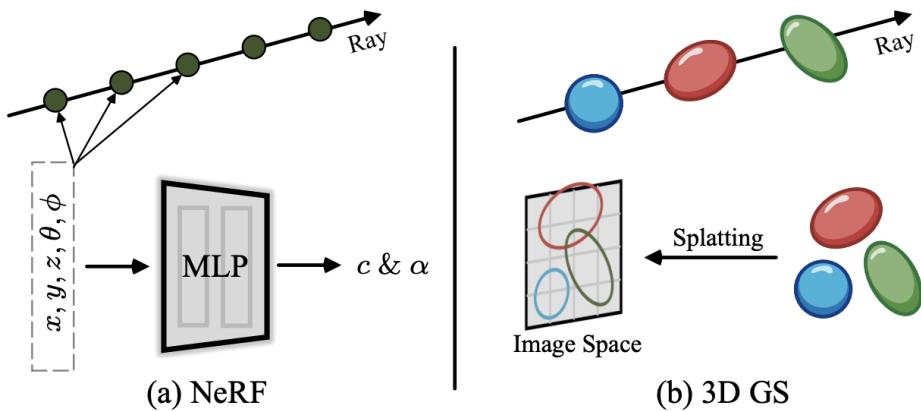


Image from <https://arxiv.org/pdf/2401.03890>

Step 2: Rendering

- Rasterization of Gaussians is easily parallelized

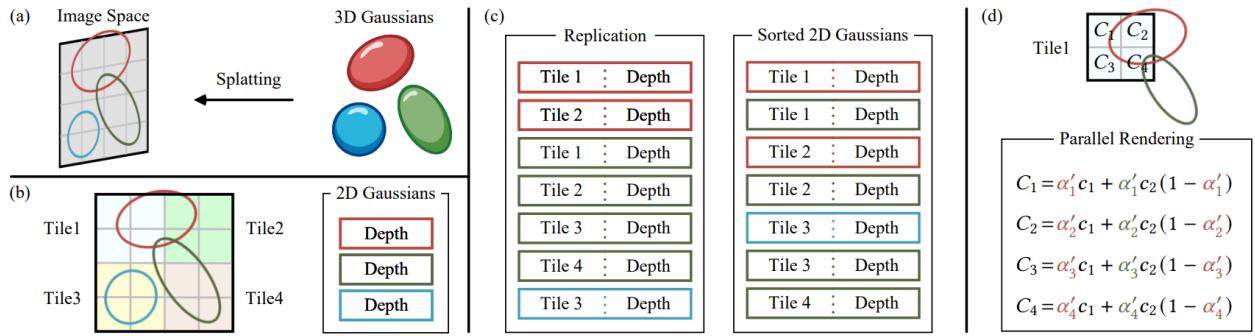


Image from <https://arxiv.org/pdf/2401.03890>

Step 3: Optimization

- Rendering Gaussians is trivially differentiable → gradient descent
- However, we should also perform **cloning** and **splitting**

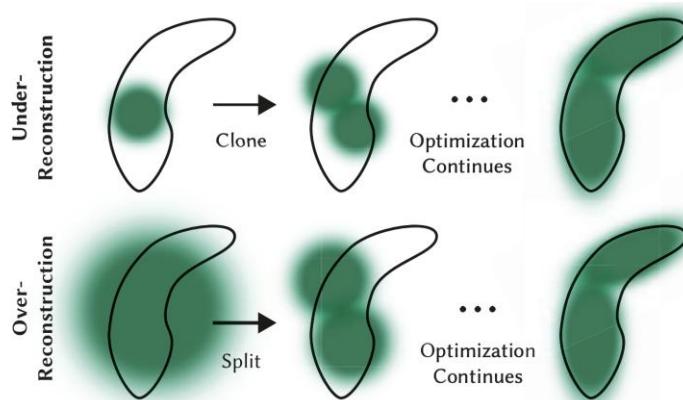
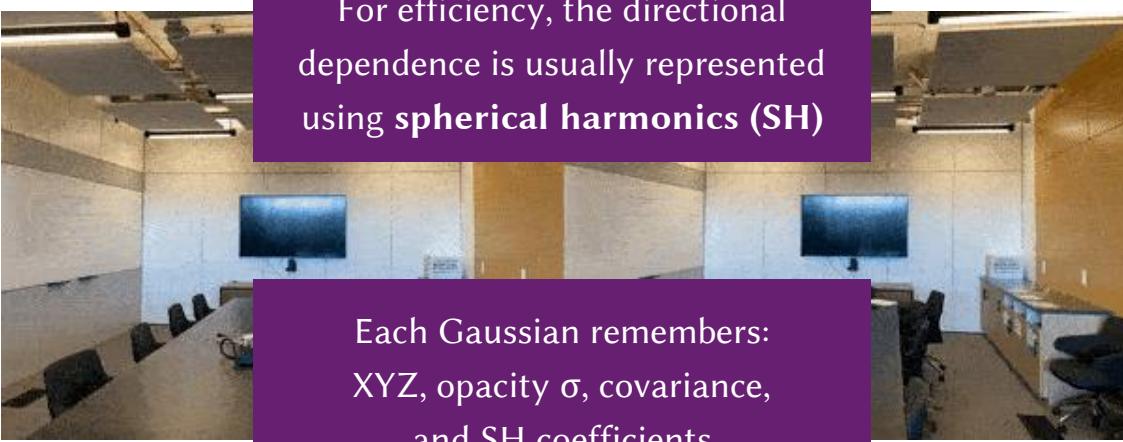


Image from the original Gaussian splatting paper

What about the directionality?



For efficiency, the directional dependence is usually represented using **spherical harmonics (SH)**

Each Gaussian remembers:
XYZ, opacity σ , covariance,
and SH coefficients

Animation from <https://pyimagesearch.com/2024/10/28/nerfs-explained-goodbye-photogrammetry/>

Advanced 3D Graphics for Movies and Games

Lecture 11: Neural fields and Gaussian splatting

NPGR010
Winter Semester 2025/2026
Taught by Tomáš Iser

Image licenses:

Title image from *Sprite Fright*, licensed under CC BY 4.0: <https://studio.blender.org/projects/sprite-fright/gallery/?asset=3642>