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SIGGRAPH 2023 Course

* Neural Fields for Visual Computing

* https://doi.org/10.1145/3587423.3595477

* https://neuralfields.cs.brown.edu/siggraph23.html

* Towaki Takikawa and Shunsuke Saito and James Tompkin and Vincent
Sitzmann and Srinath Sridhar and Or Litany and Alex Yu

* The following slides are a combination of slides from the course above
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NEURAL FIELDS FOR VISUAL COMPUTING

@ SIGGRAPH 2023

Course - Sunday 6" August, 09:00-12:00 PDT

neuralfields.cs.brown.edu

Towaki Takikawa Shunsuke Saito lex Yu Or Litany

James Tompkin Vincent Sizmann  Srinath Sridhar
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Neural Fields for Vision and Graphics

‘ Captured images —_— Processing —> Rendering of real-world place

[Mildenhall et al., Neural Radiance Fields (NeRF), ECCV 2020]
[Wu et al., Scalable Neural Indoor Scene Rendering, SIGGRAPH 2022]

X Neural Fields in
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Neural Fields for Vision and Graphics

[Chan et al., pi-GAN, CVPR 2021]

[Saito et al., PIFu, ICCV 2019]

*Cy 3 Neural Fields in
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The “Cambrian Explosion” of Neural Fields

Number of Neural Field Publications [1998-2022]

DeepSDF,
PIFu

Occupancy Networks,
IM-NET
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Year (a: I'lrs; half, b: se;:ond half) ’

Approximating Reflectance
Functions using Neural
Networks

Visual Computing

2Ol Neural Fields in
SIGGRAPH 2023 ¢ i &
2O

Just at CVPR 2023 two months ago, there were 170 papers on Neural Fields alone.
That’s about as many as the whole SIGGRAPH Technical Papers program.

https://markboss.me/archive_presentations/cvpr23/



The “Cambrian Explosion” of Neural Fields

[Gargan and Neelamkavil 1998]

Approximating Reflectance
Functions using Neural
Networks

Rendering Techniques - old proceedings for Eurographics Symposium on Rendering




What are neural fields?

(xy) —_—

(xy) .
[ ]

) Neural Fields in
- Visual Computing

Neural Network (®)

Eulerian Flow Field of a Fluid
[Koldora CC]




Neural Network (®)

o) Geospatial Data
R N | Field:
@ SIGGRAPH 2023 ‘%}% i 9 [Blumenstock et al. 2015]

Kigali — capital of Rwanda




Geometry with Maths

flz,y) =d

“Signed Distance Field”

[Source: Takikawa et al]
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Geometry with Maths

flz,y,2) =d

Sometimes also referred to more
generally as “Implicit Surfaces”

[Source: Takikawa et al]

11

11



Signed Distance Functions as Geometry

Polygon Mesh

12

[Source: Wikipedia et al]
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Signed Distance Functions as Geometry

Polygon Mesh flz,y,2)= \/$2 +y2+22-1

[Source: Wikipedia et al]
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Definition

Definition 1
A field is a quantity defined for all
spatial and / or temporal coordinates.
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Examples of Fields

[Source: Wikipedia]

Vector Field

Fields
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Examples of Fields

Image Vector Field

[Source: Wikipedia] 16
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Examples of Fields

3D Parabola Image Vector Field

(Explicit Surface) \ /

Fields

[Source: Wikipedia] 17
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Examples of Fields

- W 3D Parabola Image Vector Field
X (Explicit Surface)
3D Signed Distance Fields
(Implicit Surface)

[Source: Wikipedia] 18
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Image Vector Field

3D Parabola

(Explicit Surface)
3D Signed Distance Fields
(Implicit Surface)

- — Fields

[Source: Wikipedia] 19
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Sphere Tracing

[Source: Takikawa et al]
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Sphere Tracing

[Source: Takikawa et al]
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Sphere Tracing

[Source: Takikawa et al]
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Sphere Tracing

[Source: Takikawa et al]
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Sphere Tracing

[Source: Takikawa et al]

24

24



Sphere Tracing

[Source: Takikawa et al]
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Sphere Tracing

[Source: Takikawa et al]
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Sphere Tracing

[Source: Takikawa et al]
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Sphere Tracing

[Source: Takikawa et al]
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Sphere Tracing

[Source: Takikawa et al]
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Sphere Tracing

[Source: Takikawa et al]
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Sphere Tracing

[Source: Takikawa et al]

Yay we found the surface!
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Signed Distance Functions as Geometry

flz,y,2) =22 +9y2 +22 -1

[Source: Wikipedia et al]
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Signed Distance Functions as Geometry

f(xayaz): \/$2+y2+22—1

[Source: Wikipedia et al]

P99???7?7?7?7?7?°7?°7?7?7?
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Boolean Operations

[Source: iquilezles.org]

Finite Repetition

Infinite domain repetition is great, but sometimes you only need a few copies or instances of a given ¢

generate infinite copies and then clip the unwanted an y with a box SDF. This is not ideal becaus

clipping through max() only produces a bound. A much better approach is to clamp the indices of the instan
the truncated/clamped indices. You can s in action here as a 2D shader, although it works in any num

rtoy.com/view/3syGzz. Code:
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Boolean Operations

min(
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Boolean Operations

max(
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Constructive Solid Geometry

[Source: Takikawa et al]

37

37



Constructive Solid Geometry

[Source: Takikawa et al]
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Constructive Solid Geometry

[Source: Takikawa et al]
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Constructive Solid Geometry

[Source: Takikawa et al]
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Constructive Solid Geometry

[Source: Takikawa et al]
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Constructive Solid Geometry

[Source: Takikawa et al]
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Constructive Solid Geometry

[Source: Takikawa et al]
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Constructive Solid Geometry

[Source: Takikawa et al]
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ShaderToy

K Il 1327 23.1fps

zztop '33 ford eliminator

Views: 3885, Tags: simulation, car, zztop, ford, eliminator

w.movin down the road in my V-8 ford,

i had a shine on my boots, | had my sideburns lowered...
use ASDW or cursor keys to drive. +/- to zoom (not much of a simulation for now - just driving/steering)

Comments (34)

U S e it

Created by flockaroo in 2019-12-30

Browse New  SignI

o+ BTN BT °
» Shader Inputs

1 // created by florian berger (flockarco) - 2019

2 // License Creative Attributi al-ShareAlike 3.0 Unported

3

4 // zztop ford eliminator

s

6 //#define RENDERED_REFECTIONS

7 #define SHADOW

& 4#define SCRATCHES

9 //#define STREET

10 #define RENDER_GLASS

11 //#define WET_ASPHALT

12 //#define RENDER_BBOX

13  #define RUMPFW 1.3

14 #define ALLW (RUMPFW*1.3)

15

16 #define Res (iResolution.xy)

17

18 #define RandTex iChannelO

19

20 #ifdef SHADEROO

21 #include Include_A.glsl

22 fendif

23

24 4define BG 0.

25 f#define CARBODY 1.

26 4#define TIRE 2.

27 #define RIM 3.

28 #define HEADLIGHTS 4.

29 #define FLOOR 5.

30 #define GRILL 6.

31 f§define RUMPF 7.

32 4define INTERIOR 8.

33 #define GLASS 9.

34 Adafine MATER 10
P compiled in 0.1 secs 18278 / 24921 chars E9?

[Source: shadertoy.com
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Modeling with SDFs

PAINTING Baar . < sdf(p) = min(terrain  Painting a Landscape with Maths

568K views + 3 months ago
trees(p) = de(w,Te) +

o\ y,
e Inigo Quilez
W y— f(c,¢c,) 0:00 Intro 0:48 Basic Polynomial Surface (Noise) 4:12 Fract

Z=C;
4K

c=2m—1/2+{n~<

n = Vsdf(p)

‘k‘ Intro | Basic Polynomial Surface (Noise) | Fract:

Painting a Character with Maths

335K views + 1 year ago

e Inigo Quilez

0:00 Sculpting basic shape 3:45 Blocking basic lighting 6:2(

g Sculpting basic shape | Blocking basic lighting |

[Source: YouTube]
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Voxel Grids

<
<

[Source: Wikipedia]

flx,y,2)=d

§ " Signed distance, color, density, etc...

ANANAN
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Fields and Signals

| 4

Neural (Fields)

Best of both worlds?

Smooth, compact, complex

f@y,2) =vVa+y?+22 -1

Simple, bulky, fast
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Multi-layer Perceptrons

f@(xaya Z) =d
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Multi-layer Perceptrons

f@(xaya Z) =d

L In practice, can really be any parametric function!
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Multi-layer Perceptrons

How do you obtain the parameters???

f@(xaya Z) =d

L In practice, can really be any parametric function!
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Multi-layer Perceptrons
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Multi-layer Perceptrons

Forward Map (e.g. differentiable rendering)

%;‘x:‘ it 51' 2
OO0 Xy
x .‘c%‘M’Q‘MW.
min F( RIXOFRORROZX ) ——— GE g s
R CATAS & TN, ok
# KK ' 1 )
fe(x>y>Z> _d ‘ N

Baking via solving inverse problems!
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NeRF NeRF uses volume rendering
Innovation (i.e. removes the Dirac assumption

in Kajiya’s rendering equation)

to make things easier to invert!

A

Forward Map (e.g. differentiable rendering)

OANRAO
min F(’ OROBOBOH ) e
z O RS
O—O—0O
f 9(x 5 Vs Z) =d
Baking via solving inverse problems! 54
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NeRF NeRF uses volume rendering

Innovation (i.e. removes the Dirac assumption
in Kajiya’s rendering equation)
to make things easier to invert!

A

Forward Map (e.g. differentiable rendering)

OO0 AR T B
min 7 ORIROKC ¢ ol o ®
)‘ NAANAY — 2 # 2
2 O R R £
SAGAS B .o

f6<x>y>Z> — d = F i \ &

L— Does this really need to be neural?
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Neural Fields General Framework - Example
Neural radiance field with hybrid representation

‘ Captured images —_— Processing —> Rendering of real-world place

[Mildenhall et al., Neural Radiance Fields (NeRF), ECCV 2020]
[Wu et al., Scalable Neural Indoor Scene Rendering, SIGGRAPH 2022]

. Neural Fields in
SEO ivisualtomauting 56




Neural Fields General Framework

What we want to The bridge: What we can
[ Conditioning ] [ Hybrid ] reconstruct: differentiable forward maps measure:
z - P )
’ Radiance + Density Field Volume Rendering RGB Image
z . 1
S|
——y | —
& h‘ ‘l} -
X y —
Signed Distance Field Sphere Tracing Bepth image
t — & e -
[Coordinate Sampling ] [ Neural Network ] [ Reconstruction Domain ] [ Forward Map ] [ Sensor Domain ]

' Optimization via gradient descent '

Visual Computing

@ SIGGRAPH ¥ :( ‘ﬂ/ Neural Fields in
2O

This is a natural place for us to introduce the general framework for using neural
fields to solve inverse problems. We first sample * the coordinate, which are the
inputs of the * neural network. The neural network predicts the * reconstructed
signal. The reconstruction is then rendered * into what we can measure * with real-
world sensors. In inverse problems, we are given sparse, noisy, and dimension-
constrained information from * real-world sensors. However, we want to recover a *
rich underlying representation from these limited observations of the real world. For
example, how can we reconstruct a 3D geometry from sparse 2D images? We need a
differentiable function mapping the reconstructed signal to sensor signals. * This is
the differentiable forward map. In visual computing, this becomes a differentiable
renderer. With that, we can now supervise * the learning of reconstructed signal,
with limited sensor signals.



Strengths and Weaknesses of Neural Fields

In the course, we will highlight both strengths and weaknesses of neural fields, and what is missing for practical
use. Some weaknesses have now been overcome with better understanding and engineering!

Strengths: Weaknesses:

Compactness Computationally expensive

Not easily editable
Self-regularizing  argmin, ||y — F(z)| + AP(z).
Hard to model semantics and discrete data

Domain agnostic —. & Lack of theoretical understanding
nD

XOZM Neural Fields in
@ SIGGRAPH 2023 ;k\% Visual Computing




NeRF

Representing Scenes as Neural Radiance Fields for View Synthesis

59



NeRF

* https://www.matthewtancik.com/nerf

* https://arxiv.org/abs/2003.08934
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Architecture

neural network

st <[}

3D position direction color opacity

Why does direction @

matter?




Why direction matters

Animation from https://pyimagesearch.com/2024/10/28/nerfs-explained-goodbye-
photogrammetry/
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Working principle of NeRF

._(,',v m—

Ray 1

differentiable volume rendering

. Ray 2 /\
N ||

Ray Distance

loss function

M-gt

2

2

2
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Simplified volume rendering in NeRF

O(r) = /ttf T(t)o(r(t))c(r(t),d)dt, where T(t) :exp(— /tt a(r(s))ds)

Problem: It is fast, but not

“real-time fast”

64



Solution: Gaussian splatting

3D Gaussian Splatting for Real-Time Radiance Field Rendering
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Gaussian splatting

* https://repo-sam.inria.fr/fungraph/3d-gaussian-splatting/

* https://doi.org/10.1145/3592433

66
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Computer
Graphics
Charles
University

Principle of 3D Gaussians

1D Gaussian| 2D Gaussian

Image from https://pyimagesearch.com/2024/12/09/3d-gaussian-splatting-vs-nerf-the-end-
game-of-3d-reconstruction/
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Lots of 3D Gaussians next to each other... FL L

Animation from https://pyimagesearch.com/2024/12/09/3d-gaussian-splatting-vs-nerf-the-end-
game-of-3d-reconstruction/

68



Step 1: Initialization

* Gaussian splatting does not do any initialization “by itself”

* Uses a structure from motion (SfM) algorithm such as COLMAP:

Computer
Graphics
Charles
University

Images Correspondence Search Incremental Reconstruction

H --—[ L Initialization -
1

Matching Image Registration Qutlier Filtering

Geometric Verification

Triangulation Bundle Adjustment

Reconstruction

* SfM outputs a point cloud, which is then converted to 3D Gaussians

69


https://colmap.github.io/index.html

Step 2: Rendering

* Gaussian splatting is real-time because Gaussians can be rasterized!

* No need for volume rendering as in NeRF

h /O/O/‘/m

I -
3 = Q
Iqil 7 Splatting
(%= |MLP | —> c&o ‘ 0‘
3|
| -
|
|
|
|

Image Space

(a) NeRF (b) 3D GS

Image from https://arxiv.org/pdf/2401.03890
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Step 2: Rendering

: Graphics
Charles

* Rasterization of Gaussians is easily parallelized

(a) Image Space

3D Gaussians

= —— Replication — Sorted 2D Gaussians —

, Splatting [ Tilel : Depth | [ Tilc1 : Deph |
D [Tic2 : Depth || |[ Tilel : Depih |

[ Tilel : Deptn || || Tile2 : Depth |

(b) 2D Gaussians [ Tile2 : Depth | [ Tile2 : Deprh |
Tilel Tile2 [ Tile3 : Depth || || Tile3 : Deph |

[ Tilea : Depth || || Tile3 : Depth |

Tile3 O Tile4 | Tile3 : Depth | [ Tile4 : Depth |

(d)

Ct{ Cy
Tilel
Cs
Parallel Rendering

Ci=ajcr +ajca(1 - af)
Cy=aje; +aje(1— )
Cs=aley + afep (1 - )

Cy=ajer + ajea (1 = o)

Computer

University

Image from https://arxiv.org/pdf/2401.03890
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Step 3: Optimization

* Rendering Gaussians is trivially differentiable — gradient descent

* However, we should also perform cloning and splitting

Optimization

Under-
Reconstruction

Continues
c
5
K=
T
-
g ‘3 L 3
o8
< Optimization
< .
& Continues

Computer
Graphics
Charles
University

Image from the original Gaussian splatting paper
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What about the directionality?

For efficiency, the directional
dependence is usually represented

using spherical harmonics (SH)

Each Gaussian remembers:

XYZ, opacity o, covariance,

and SH coefficients

Animation from https://pyimagesearch.com/2024/10/28/nerfs-explained-goodbye-
photogrammetry/
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