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SIGGRAPH 2023 Course

• Neural Fields for Visual Computing

• https://doi.org/10.1145/3587423.3595477

• https://neuralfields.cs.brown.edu/siggraph23.html

• Towaki Takikawa and Shunsuke Saito and James Tompkin and Vincent 

Sitzmann and Srinath Sridhar and Or Litany and Alex Yu

• The following slides are a combination of slides from the course above
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Neural Fields for Vision and Graphics

Captured images Rendering of real-world place

...

Processing

[Mildenhall et al., Neural Radiance Fields (NeRF), ECCV 2020]

[Wu et al., Scalable Neural Indoor Scene Rendering, SIGGRAPH 2022]
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Neural Fields for Vision and Graphics

[Saito et al., PIFu, ICCV 2019]

[Chan et al., pi-GAN, CVPR 2021]

Priors



Just at CVPR 2023 two months ago, there were 170 papers on Neural Fields alone. 
That’s about as many as the whole SIGGRAPH Technical Papers program.

https://markboss.me/archive_presentations/cvpr23/



Rendering Techniques – old proceedings for Eurographics Symposium on Rendering
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What are neural fields?

Magnetic Field

Neural Network (Φ)

Φ:ℝ2 → ℝ2

(x,y)

Eulerian Flow Field of a Fluid 
[Koldora CC]

Neural Network (Φ)

Φ:ℝ2 → ℝ2

(x,y)
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What are neural fields?

Signed Distance Function (SDF)

Φ:ℝ𝑛 → ℝ

(x,y,z)

Neural Network (Φ)

Geospatial Data
[Blumenstock et al. 2015]

Φ:ℝ2 → ℝ𝑛

(x,y)

Neural Network (Φ)

Kigali – capital of Rwanda



Geometry with Maths

“Signed Distance Field”

[Source: Takikawa et al] 10
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Geometry with Maths
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Sometimes also referred to more 

generally as “Implicit Surfaces”

[Source: Takikawa et al]
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Signed Distance Functions as Geometry

Polygon Mesh

[Source: Wikipedia et al] 12
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Polygon Mesh

Signed Distance Functions as Geometry

[Source: Wikipedia et al] 13
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Definition

Definition 1
A field is a quantity defined for all

spatial and / or temporal coordinates.
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Examples of Fields

Vector Field

Fields
[Source: Wikipedia] 15

15



Examples of Fields

Vector FieldImage

Fields
[Source: Wikipedia] 16
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Examples of Fields

Vector FieldImage3D Parabola 

(Explicit Surface)

Fields
[Source: Wikipedia] 17
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Examples of Fields

Vector FieldImage3D Parabola 

(Explicit Surface)

3D Signed Distance Fields 

(Implicit Surface)

Fields
[Source: Wikipedia] 18
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Examples of Fields

Vector FieldImage3D Parabola 

(Explicit Surface)

3D Signed Distance Fields 

(Implicit Surface)

Fields
Audio

[Source: Wikipedia] 19
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Sphere Tracing

[Source: Takikawa et al] 20
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Sphere Tracing

[Source: Takikawa et al] 21
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Sphere Tracing

[Source: Takikawa et al] 22
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Sphere Tracing

[Source: Takikawa et al] 23
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Sphere Tracing

[Source: Takikawa et al] 24
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Sphere Tracing

[Source: Takikawa et al] 25
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Sphere Tracing

[Source: Takikawa et al] 26
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Sphere Tracing

[Source: Takikawa et al] 27
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Sphere Tracing

[Source: Takikawa et al] 28
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Sphere Tracing

[Source: Takikawa et al] 29
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Sphere Tracing

[Source: Takikawa et al] 30

30



Sphere Tracing

Yay we found the surface!

[Source: Takikawa et al] 31
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Signed Distance Functions as Geometry

[Source: Wikipedia et al] 32
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Signed Distance Functions as Geometry

???????????????

???

[Source: Wikipedia et al] 33
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Boolean Operations

34[Source: iquilezles.org]
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Boolean Operations

min( ) =
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Boolean Operations

max( - ) =

36
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Constructive Solid Geometry

[Source: Takikawa et al] 37
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Constructive Solid Geometry

[Source: Takikawa et al] 38
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Constructive Solid Geometry

[Source: Takikawa et al] 39
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Constructive Solid Geometry

[Source: Takikawa et al] 40
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Constructive Solid Geometry

[Source: Takikawa et al] 41
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Constructive Solid Geometry

[Source: Takikawa et al] 42
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Constructive Solid Geometry

[Source: Takikawa et al] 43
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Constructive Solid Geometry

[Source: Takikawa et al] 44
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ShaderToy

[Source: shadertoy.com] 45
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Modeling with SDFs

[Source: YouTube] 46
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Voxel Grids

Signed distance, color, density, etc…

[Source: Wikipedia] 47
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Fields and Signals

Neural (Fields)

Best of both worlds?

Smooth, compact, complex Simple, bulky, fast
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Multi-layer Perceptrons

fθ(x, y, z) = d
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Multi-layer Perceptrons

fθ(x, y, z) = d

In practice, can really be any parametric function!
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Multi-layer Perceptrons

fθ(x, y, z) = d

In practice, can really be any parametric function!

How do you obtain the parameters???
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Multi-layer Perceptrons

min
θ

fθ(x, y, z) = d

52
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Multi-layer Perceptrons

min
θ

F( )

Forward Map (e.g. differentiable rendering)

fθ(x, y, z) = d

Baking via solving inverse problems!
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NeRF

Innovation

min
θ

F( )

Forward Map (e.g. differentiable rendering)

fθ(x, y, z) = d

Baking via solving inverse problems!

NeRF uses volume rendering 

(i.e. removes the Dirac assumption

in Kajiya’s rendering equation) 

to make things easier to invert!
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NeRF

Innovation

fθ(x, y, z) = d

min
θ

F( )

Forward Map (e.g. differentiable rendering)

NeRF uses volume rendering 

(i.e. removes the Dirac assumption

in Kajiya’s rendering equation) 

to make things easier to invert!

Does this really need to be neural?
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Neural Fields General Framework - Example

Captured images Rendering of real-world place

...

Processing

Neural radiance field with hybrid representation

[Mildenhall et al., Neural Radiance Fields (NeRF), ECCV 2020]

[Wu et al., Scalable Neural Indoor Scene Rendering, SIGGRAPH 2022]



This is a natural place for us to introduce the general framework for using neural 
fields to solve inverse problems. We first sample * the coordinate, which are the 
inputs of the * neural network. The neural network predicts the * reconstructed 
signal. The reconstruction is then rendered * into what we can measure * with real-
world sensors. In inverse problems, we are given sparse, noisy, and dimension-
constrained information from * real-world sensors. However, we want to recover a * 
rich underlying representation from these limited observations of the real world. For 
example, how can we reconstruct a 3D geometry from sparse 2D images? We need a 
differentiable function mapping the reconstructed signal to sensor signals. * This is 
the differentiable forward map. In visual computing, this becomes a differentiable 
renderer. With that, we can now supervise * the learning of reconstructed signal, 
with limited sensor signals.





Representing Scenes as Neural Radiance Fields for View Synthesis

NeRF
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NeRF

• https://www.matthewtancik.com/nerf

• https://arxiv.org/abs/2003.08934
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Architecture

           

 
 

      
3D position direction

neural network

color opacity

Why does direction
matter?
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Why direction matters

Animation from https://pyimagesearch.com/2024/10/28/nerfs-explained-goodbye-
photogrammetry/
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Working principle of NeRF

differentiable volume rendering loss function
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Simplified volume rendering in NeRF

Problem: It is fast, but not 
“real-time fast”
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3D Gaussian Splatting for Real-Time Radiance Field Rendering

Solution: Gaussian splatting
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Gaussian splatting

• https://repo-sam.inria.fr/fungraph/3d-gaussian-splatting/

• https://doi.org/10.1145/3592433
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Principle of 3D Gaussians

Image from https://pyimagesearch.com/2024/12/09/3d-gaussian-splatting-vs-nerf-the-end-
game-of-3d-reconstruction/
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Lots of 3D Gaussians next to each other…

Animation from https://pyimagesearch.com/2024/12/09/3d-gaussian-splatting-vs-nerf-the-end-
game-of-3d-reconstruction/
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Step 1: Initialization

• Gaussian splatting does not do any initialization “by itself”

• Uses a structure from motion (SfM) algorithm such as COLMAP:

• SfM outputs a point cloud, which is then converted to 3D Gaussians
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Step 2: Rendering

• Gaussian splatting is real-time because Gaussians can be rasterized!

• No need for volume rendering as in NeRF

Image from https://arxiv.org/pdf/2401.03890
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Step 2: Rendering

• Rasterization of Gaussians is easily parallelized

Image from https://arxiv.org/pdf/2401.03890
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Step 3: Optimization

• Rendering Gaussians is trivially differentiable → gradient descent

• However, we should also perform cloning and splitting

Image from the original Gaussian splatting paper
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What about the directionality?

For efficiency, the directional 

dependence is usually represented 

using spherical harmonics (SH)

Each Gaussian remembers:

XYZ, opacity σ, covariance,

and SH coefficients

Animation from https://pyimagesearch.com/2024/10/28/nerfs-explained-goodbye-
photogrammetry/
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