
Volume xx(200y), Number z, pp. 1–11

Procedural Modelling of Urban Road Networks

Jan Beneš1 Alexander Wilkie1 Jaroslav Ǩrivánek1
1Faculty of Mathematics and Physics, Charles University in Prague, Czech Republic

Abstract

We present a model for growing procedural road networks in and close to cities. The main idea of our paper is that
a city cannot be meaningfully simulated without taking its neighbourhood into account. A simple traffic simulation
that considers this neighbourhood is then used to grow new major roads and to influence the locations of minor
road growth. Waterways are introduced and used to help position the city nuclei on the map. The resulting cities
are formed by allowing several smaller settlements to grow together and to form a rich road structure, much like
in real world, and require only minimal per-city input, allowing for batch generation.

Categories and Subject Descriptors(according to ACM CCS): I.3.5 [Computer Graphics]: Computational Geometry
and Object Modeling—Geometric algorithms, languages, and systems

1. Introduction

Procedural modelling techniques have long been a point of
interest in computer graphics. They allow for creation of real-
istic models of many types of natural environments, such as
terrains [MKM89], water-bodies [ŠBBK08], plants [PL96],
and clouds [MYDN01]. Typically, these techniques permit
the generation of models of these phenomena on a level of
detail that would be hard to achieve in terms of both quantity
and quality if they were produced by hand. Relatively re-
cently, an additional circumstance has arisen that further in-
creases the use of procedural techniques in computer graph-
ics. With the rising levels of quality expected from enter-
tainment productions, the demand for high-quality graphical
content of all kinds has sharply risen, and will continue to
do so. As a consequence, to compensate for both the rising
costs for graphical content production and for the lack of
skilled artists, the video-game industry, movie studios, TV
productions, and others are increasingly employing procedu-
ral modelling.

Furthermore, cities are, in a sense, at the core of modern
societies. It is therefore not surprising that many movies
and video-games involve various real or fictional cities in
their story-lines, which creates an increasing demand for
city-related graphical content.

We present a model for growing procedural road networks
in urban areas that has two main goals. First, the current
methods for cities require various maps [PM01, VABW09]
or a growth centre distribution and are more interaction ori-

ented [WMWG09, VABW09]. We, on the other hand, wish
to develop a method that has minimal requiredper-cityinput
and only has a small, well defined set of user parameters—
a “historical context”—that can be reused by different cities
that share the same traits. Unlike existing methods, such a
method could then be used by end-user applications that re-
quire the generation of city assets at run-time. Second, we
want to develop a method that can simulate the development
of cities in an urban landscape, that is in the neighbourhood
of other cities and smaller settlements, over time. This would
allow for a simulation that is based more on first-principles
in which smaller settlements grow together to form larger set-
tlements and for a richer major road structure. As we show in
the results section, our method allows for both these goals.

There are several topics that we consider to be outside
of the scope of this paper. First, we only generate the road
network of a city, but no buildings or other geometry. Those

(a) (b)

Figure 1:(a)The proposed structure of a garden city [Bee02].
(b) The plan of Brasilia, the capital of Brazil - inscribed in
the outline of a bird with spread wings [Cos57].

submitted to COMPUTER GRAPHICSForum(1/2014).

2 J. Beneš & A. Wilkie & J. Křivánek / Procedural Modelling of Urban Road Networks

can be generated by e.g. [MWH∗06, GPMG10]. We also
do not attempt to replicate any cultural influence on roads
patterns, such as those seen in Figure1, as we consider
them to be a non-simulatable artifact that could perhaps be
replicated on a per-culture basis, but is unlikely to emerge
from any simulation.

2. Previous Work
The 2001 paper by Parish and Müller [PM01] is probably
the first published effort to generate realistic cities for use
in computer graphics. It uses a hierarchical, L-system-like
method to generate both major and minor roads that fol-
low one of the predefined road pattern styles (grid, radial,
least-elevation) over a given population density and road
pattern map. In Weber et al. [WMWG09], this approach
was augmented with a custom traffic simulation and ex-
tended by a highly configurable land use simulation gener-
ating cities that evolve over time. In another work, Vane-
gas et al. [VABW09] proposed an interactive city design
method based on geometrical and behavioural modelling
that also generates a road network and supports grid and ra-
dial patterns. An early attempt at agent based modelling of
cities is described in Lechner et al. [LWW03] and an inter-
esting method where minor and major roads are traced in
a sketched tensor field is given in Chen et al. [CEW∗08].
Recently, Yang et al. [YWVW13] proposed a new hybrid
streamline tracing and template matching method for gen-
erating high-quality, neighbourhood scale urban layouts by
means of hierarchical domain splitting, aimed primarily at
urban design. Also, methods for example-based synthesis
of road networks [AVB08, YS12], and for interpolation of
given historical urban road networks [KMK12] have been
suggested. To the best of our knowledge, Groenewegen
[GSdKB09] is the first author to point out the differences
between various land use models, using two of them in deter-
mining land use for Western European and North American
cities. In 2012, Emilien et al [EBP∗12] described a method
for generating various types of villages. Of all these methods,
only [WMWG09,KMK12] and perhaps [EBP∗12] model the
evolutionof a city over time, while the other generate cities
and their respective road networks at afixed point in time.
Recently, Vanegas et al. [VGDA∗12] proposed a method for
“inverse design” of cities, an intuitive high-level method of
controlling existing urban procedural models. Finally, two
works by Galin et al. concerning the generation of roads
over terrain have been published. The first one [GPMG10]
proposes a method for generating single roads and their ge-
ometry over terrains using a discretization scheme, while the
latter [GPGB11] extends it to allow for generation of plau-
sible major road networks that connect (unsimulated) cities
and other settlements. For completeness, a comparison of the
main features of closely related methods is given in Table 1
of the supplementary materials.

Our contribution to previous work is: 1) Water transporta-
tion and its implications on settlement positioning, 2) Sim-
ulation that accounts for neighboring cities, 3) having settle-

ments grow together to form an urban landscape, 4) chang-
ing minor road patterns with time, and 5) minimal per-city
input. A thorough discussion of our contribution, its novelty,
and its implications can be found in Sections4 and4.1.

3. Our Method

In accordance with previous work, we call the results of our
algorithmcities and also understand the word city the way
it is commonly used. However, the notion of a city is vague,
as discussed by e.g. Frey [FZ01], and we therefore some-
times use the wordsettlementto describe a populated place,
perhaps connected to other settlements by roads. When we
want to emphasize that a city is the result of several settle-
ments growing together, we might refer to it as aconurba-
tion. We also use the phraseurban landscapeto denote all
the settlements that are the result of our method, stressing
that there are possibly many of them and of various sizes.
For convenience, a list of used symbols is provided in the
supplementary materials.

3.1. Overview

At a coarse level of detail, as can be seen in Algorithm1,
our method consists of an initialization phase and a main
loop. In the initialization phase, we use the positions of the
neighbouring cities (as mentioned in Section1) to generate
an initial road network on which our city will grow. In the
main loop, we then let the city develop by building new mi-
nor roads, simulating traffic, and building new major roads,
in that order, repeating for as long as desired.

Algorithm 1: High-level pseudo-code of our algorithm.

INITIALIZATION (); // see Section3.2
while t < tmax do

GROWM INORROADS(); // see Section3.3
TRAFFICSIMULATION (); // see Section3.4.2
GROWMAJORROADS(); // see Section3.4.2
INCREASE(t);

end

More precisely, our algorithm takes as its input 1) a terrain el-
evation mapm, classified into land, water, and forbidden ar-
eas, 2) a list of neighbouring citiesnc, which we do not simu-
late except for their contributions to the traffic simulation, 3)
a set of control functionst(t),G(t),R(t) that determine the
level of traffic, rate of city growth, and major road construc-
tion parameters with respect to simulation timet, 4) a time-
dependent sequence of minor road pattern definitionsK(t),
and 5) time-independent coefficientsO1, . . . ,O4 that will be
explained later. While the terrainm, the traffic functiont(t),
and the list of neighbouring citiesnc are required for each
new city (lower-case bold font), we provide a way of gener-
ating them automatically, see Section3.5. The growth and
major road construction parameters functionsG(t) andR(t),
coefficientsO1, . . . ,O4, and the sequence of minor road pat-
ternsK(t) form a “historical context” (upper-case bold font)

submitted to COMPUTER GRAPHICSForum(1/2014).

J. Beneš & A. Wilkie & J. Křivánek / Procedural Modelling of Urban Road Networks 3

(a) (b) (c)

(d) (e) (f)

Figure 2: A typical progression of our algorithm. On an
empty map(a), an initial road network(b) is grown and
nuclei are identified. Initially, the city consists of several
smaller settlements(c). As it grows and traffic increases,
new major roads (yellow) are built(d) and a conurbation is
formed(e). Eventually, even new major roads are absorbed
(f).

which several different cities can share. With the historical
context and per-city input, we proceed as follows:

1. Initialization. One by one, the algorithm builds major
roads that connect pairs of neighbouring cities innc, re-
sulting in an initial road network (see Figure2b). In this
initial road network, we find all intersections and use them
as the initial nuclei of city growth.

2. Growing minor roads. With the positions of nuclei of
city growth in mind, we select positions out of which new
minor roads can grow. We then grow these new minor
roads using the appropriate minor road pattern (“street pat-
tern”) K(t).

3. Traffic simulation. For each pair of neighbouring cities,
we keep track of the total traffic between them. This traffic
can flow across one or more different trade routes, which
are paths running entirely over major roads. If the avail-
able traffic capacity between a pair of neighbouring cities
is greater or equal to the increaset(t)− t(t − 1) in traf-
fic, no new major road is required and we only increase
the traffic. Otherwise, a new major road might have to be
created.

4. Growing major roads. If there is not enough available
capacity to accommodate the increase in traffic, a new ma-
jor road might have to be built. We therefore propose 1) a
new major road that is subject to the major road construc-
tion parametersR(t). This road might consist entirely of
new major roads, reuse existing minor and major roads,
or both, and 2) as an alternative, we consider re-routing
the surplus traffic over already existing major roads. Out
of these two options, we choose the better one and add a
new trade route that runs along it, thus accommodating for
the increase in traffic. Finally, we increase the simulation
time t and go back to step2.

3.2. Initialization and the Initial Road Network

3.2.1. Rationale and Overview

According to Johnson [Joh67], cities can be classified into
four generic types based on the reason for their existence:
1) Resource cities.Generate a resource, for example by min-
ing, crop growing, or fishing. Their position is determined
by the location of the resource and they are likely to be di-
rectly connected to several other cities, as they need to trade
their products.2) Processing cities.Handle a resource (in-
cluding people) by providing services such as raw resource
processing, assembly of goods from parts, changing mode
of transportation, splitting trade routes, or providing hous-
ing for travellers. Thus, they grow on intersections of pre-
existing routes.3) Market cities. Provide local access to an
(imported) resource. They are therefore cities with very high
accessibility and can be thought of as being located at the
intersection of roads connecting several neighbouring cities.
4) Other cities.Such as fortresses or artificial capitals. Here,
the existence of a city is not implied by the road network’s
structure. However, even these cities eventually develop con-
nections to other settlements or cease to exist.

As explained, virtually all cities are to be thought of as
being located on an intersection of trade routes and have a
moderate or higher degree of connectivity. For these reasons,
our simulation does not start on an empty map. It instead
starts by constructing an initial road network. On this road
network, roads connect the notional, unsimulated neighbour-
ing cities (see Figure3a), providing a road network structure
on which to start our simulation, mimicking the situation at
a very early point in the city’s history, with the neighbouring
cities already in existence and the road network connecting
them in place. This road network contains a small number
of intersections that will be the nuclei of the city’s future
growth.

3.2.2. Technique

We now discuss how the initial road network is constructed.
Galin et al. [GPMG10] suggested the use of a pathfinding
graph to generate roads over complex terrains. Below, we
extend their algorithm so as to allow for paths over land
(roads) andalso water. Our pathfinding graphG = (L,E)
is defined over a regular latticeL spaced atℓ = 20m, which
we classify into three mutually exclusive setsLL, LW, and
LF for lattice vertices over land, water, and forbidden ar-
eas respectively (see Figure3b). First, we construct the land
graphGL = (LL,EL), where the edges connect vertices in
LL for which their distances along both axes of the lattice
are less than or equal to a radiusr (we user = 8), see
Figure 3c. For each (undirected) edgee ∈ EL, its weight
WEIGHT(e) represents the difficulty of getting from one of
its ends to the other. We calculate this weight by marching
along the edge and keeping track of the presence of wa-
ter, forbidden areas and maximum edge slopeEL,max. If an
edge runs over water, forbidden areas, or hasEL,maxgreater

submitted to COMPUTER GRAPHICSForum(1/2014).

4 J. Beneš & A. Wilkie & J. Křivánek / Procedural Modelling of Urban Road Networks

(a) (b) (c)

Figure 3: (a) The map m (inner border) with a river
(blue), initial road network (thick black), neighbouring cities
nc beyond the map’s border (red); the gray roads are a
schematic, non-simulated continuation of the map’s road net-
work. (b) Schematic depiction of the pathfinding graphG,
with land verticesLL and edgesEL (black dots), water ver-
ticesLW (black and blue) and edgesEW (between vertices
∈ LW), forbidden vertices (brown-black) in forbidden area
(brown), bridge edgesEB (orange arcs), and harbour edges
EH (red).(c) The way edges (black) connect a vertex (white)
on the lattice with the nearest other vertex for each direction
(dashed line), here shown for a radius ofr = 3.

than a cut-off constantEL,cut, we discard it. For all non-
discarded edges, their weight is computed as WEIGHT(e) =
LENGTH(e) ·max(1,O1 ·EL,max), whereO1 is a scalar con-
stant. This heuristic works well in practice. We then con-
struct the water graphGW in a similar fashion, requiring the
edges not to pass over land or forbidden areas. In our im-
plementation, water elevation is constant and no edge slope
cut-off constant is used.

As we want the land graph(LL,EL) and the water graph
(LW,EW) to be connected, we “stitch” them together us-
ing harbour edgesEH and bridge edgesEB. The harbour
edges connect adjacent land and water vertices, allowing
for a change of transportation mode, whereas the bridge
edges (see [GPMG10] for details of bridge edge generation)
connect not necessarily adjacent land vertices and have at
least one point located over water. For vertices in forbid-
den areas, no edges are generated. The complete pathfinding
graphG is therefore given as the union of the land compo-
nent(LL,EL), the water component(LW,EW), the harbour
edgesEH and the bridge edgesEB, gettingG = (L,E), where
L= LL ∪LW ∪LF andE = EL ∪EW ∪EH ∪EB.

Next, we describe the construction of the roads that con-
nect neighbouring cities. With each neighbouring city repre-
sented by a distinct vertex on the edge of either the water
or the land lattice (LL ∪LW; see Figure3b), we are given
(that is we generate, see Section3.5 for description) an or-
dered listy’ of neighbouring city pairspi . Then, for each
pair pi ∈ y’, we use Dijkstra’s algorithm to find a minimum
weight pathPi in G that connects the neighbouring cities in
the pairpi and multiply the edge weights alongPi by a reuse
coefficientu (a constant in(0,1〉 that can be randomly gen-
erated at the algorithm’s start or optionally set by the user)
to stimulate edge reuse by subsequent paths.

Each pathPi is a sequence of edges in the pathfinding
graphG. We, however, represent the built roads in a separate
planar graphG = (J,S), where each straight edges∈ S is
called asegmentand the points where two or more segments
meet are callednodes j∈ J. Therefore, as a next step, we
need to convert each found pathPi of edges inG into a se-
quencePi,1 of land, water, bridge, and harbour segments—a
trade route—where i denotes that the trade route runs be-
tween the cities of the neighbouring cities pairpi and the
index 1 means that it is the first of potentially many trade
routes for that pair (see Section3.4). During the conversion
fromPi to Pi,1, we add new segments and nodes toG where
necessary andreuseexisting segments and nodes where pos-
sible, keeping the graph planar. Once the initial road network
is built by adding roads between the pairs in the ordered list
y’ of neighbouring city pairs, we still have to find (as op-
posed to build) the trade routesPi,1 in the segment graphG
for all the remaining pairs, i.e.,y\ y’, so that there is a trade
routePi,1 for every pair of distinct cities in the list of neigh-
boring citiesnc.

We continue the initialization step by finding all the nodes
in the segment graphG with a degree≥ 2 and all the nodes
from which bridges and harbours emanate. We then add
them to a set ofcity growth nuclei Q. The role of nuclei
in our algorithm is discussed in more detail in Section3.3.
Finally, we set the current simulation timet = 0.

3.3. Growing Minor Roads

In the previous section, we have described the algorithm’s
initialization step, namely the construction of the pathfinding
graphG, the initial road network, and the set of city nucleiQ.
We continue by describing how our algorithm grows minor
roads, the first step of the simulation’s main loop.

3.3.1. Rationale

As can be seen from looking at the maps of various old—
especially European—cities (see Figure4) there is a strong
dependency between historical period and the exhibited mi-
nor road pattern, although other dependencies, both impor-
tant (use of land) and less pronounced (majority culture), can
be observed. We make the simplifying assumption that time
is the only important quantity and, by means of the control
functionK(t), assign to each simulation timet a specific mi-
nor road pattern to be used when growing new minor roads.

(a) (b) (c)

Figure 4: Various minor road patterns found in the histori-
cal centre(a) and in newer parts(b), (c) of Avignon, France.
Images reproduced from OpenStreetMap and contributors.

submitted to COMPUTER GRAPHICSForum(1/2014).

J. Beneš & A. Wilkie & J. Křivánek / Procedural Modelling of Urban Road Networks 5

3.3.2. Technique

The location of new minor roads is heavily influenced by
the position of nuclei of city growthq ∈ Q. These rep-
resent places that attract city growth, such as intersec-
tions, workplaces, or public amenities (see Section3.4.1).
The stimulus that each nucleusq provides is expressed by
STRENGTH(q) ∈ 〈0,1〉.

The nodes from which new minor roads may be grown
form a setZ. This set consists of nodesj ∈ J that have
not spawned new streets yet. Additionally, for each segment
s∈Swhose LENGTH(s)≥ 2·ℓ, whereℓ is the spacing of ver-
tices in the pathfinding graphG, we add⌊LENGTH(s)/(1.25·
ℓ)⌋ equidistant temporary nodes along each such seg-
ment. To actually grow new minor streets, we order the
nodesz ∈ Z into a list Z′ by the value of RANK(z) =
EUCLIDEANDIST(qN,z) · (1−STRENGTH(qN)), whereqN
is the nucleus nearest to the nodez. We then select the
first G(t) nodes from the ordered listZ′ as the nodes from
which new minor roads will be grown. In our implementa-
tion, we use the algorithm presented in [PM01] and extended
in [WMWG09] to generate minor road patterns, but other al-
gorithms, such as [AVB08,YS12], might conceivably be .

To prevent artifacts near map borders, we select the nu-
cleusqC corresponding to the initial road network intersec-
tion with the highest degree as the centre of the city that we
are growing, let its STRENGTH(qC) = 1, and attenuate the
strength of other nuclei as they approach the map’s borders.

As mentioned in3.2.2, the first nuclei are added at the
intersections of the initial road network. Later, when nuclei
of city growth corresponding to intersections of the new ma-
jor roads are built, additional nuclei are placed at positions
randomly selected fromZ to account for chance.

3.4. Traffic Simulation and Growing Major Roads

3.4.1. Rationale

For automated major road growing, if any, current city
growth simulations, e.g. [WMWG09], usually depend on
local traffic simulations. These simulations in turn depend
on land use simulations. However, current land use simu-
lations, such as [LRW∗06], as well as other popular city
models—such as the concentric, sector, and multiple nuclei
models [Joh67]—are results of analyses of then-current city
growths. In these time contexts, these can be readily applied,
as demonstrated by Groenewegen et al. [GSdKB09]. The
land use in the concentric model has, for example, been
shown to be inverted in pre-industrial [Sjo60] and 20th cen-
tury cities [Bur08]. We therefore argue that models involving
land use simulations are not easily applicable to simulations
over longer periods of time or to different cultures [KP06],
motivating the development of our method. Further complex-
ity is added by the changing understanding of cities [FZ01],
with new urban structures such as megacities, edge cities, or
outer cities appearing relatively recently [Soj00].

Figure 5: Time progression of settled areas within the
Chicago metropolitan region between 1857 and 1936. A
tentacle-like sprawl along traffic (railway) routes is clearly
apparent. The dot-like pattern reflects the positions of train
stations. Reproduced from [Hoy39].

We attempt to overcome these problems by identifying
trade and the resulting traffic as the most important, stable
and simulatable factor for determining the shape and growth
rate of a city across virtually all cultures. In addition to the
discussion in Section3.2.1, the importance of traffic and
trading is also addressed by classic literature, e.g. [Chi50].
Next, the importance of transportation route configuration
on city shape is treated by Hoyt [Hoy39], see Figure5,
who shows that city growth is related to accessibility and
therefore, the presence of transportation routes. Similar ob-
servations in the context of highways have later been made
for example in [TT95,Gar92]. Overall, accessibility attracts
growth and increases near intersections. We therefore use
a simple traffic simulation between the neighbouring cities
to simulate the need for new major roads, which we use to
drive the shape of our cities by placing additional growth
nuclei at the newly created major road intersections and
nearby (see Section3.3.2).

3.4.2. Technique

When building new major roads at simulation timet, we opti-
mize their length and cost with respect to the major road con-
struction parametersR : (t,α) → R

8, an umbrella function
mentioned above. For each(t,α), the user-defined function
R(t) = (P(t,α),A(t),C1(t), . . . ,C6(t)) gives 1) a function
P(t,α), see Figure7a, that relates angleα between consecu-
tive segments to a cost penalty, 2) a tabulated functionA(t)

(a) (b) (c)

Figure 6: Traffic simulation overview.(a)There can be more
than one trade route (green) between two neighbouring cities.
When they cannot accommodate the increase in traffic be-
tween the cities, an alternative trade route (red) over existing
major roads only(b) and a trade route (blue) that can build
new roads (gray) are proposed(c) and the better one is built.
Only major roads (black) are shown.

submitted to COMPUTER GRAPHICSForum(1/2014).

6 J. Beneš & A. Wilkie & J. Křivánek / Procedural Modelling of Urban Road Networks

0 Sc(t)

Sw(t)Sp(t)

π
(a)

0 1

1

(b)

Figure 7: (a) The turn angle penalty functionP(t,α) at a
fixed timet is a scaled version of the function SMOOTHSTEP,
where Sc(t), Sw(t), and Sp(t) are the centre, width, and
height of the step function. The angleα between two con-
secutive segments is on thex-axis, ranging from 0 (turn
back) toπ (no turn).(b) The function SMOOTHSTEP(x) =
3x2−2x3 [CR08].

that defines the recommended traffic capacity for newly built
major roads, and 3) six cost coefficientsC1(t), . . . ,C6(t),
which will be detailed later and which influence edge costs
when new major roads are being proposed. UsingR(t), we
can control the shape of new major roads, allowing histori-
cal roads to be more curvy and to reuse existing minor roads
more easily, while forcing newer roads to be smoother and
stay clear of built-up areas.

For the purposes of the traffic simulation, we keep a list
of trade routesPi = (Pi,1, . . . ,Pi,|Pi |) for each pairpi ∈ y of
neighbouring cities. The first trade routePi,1 for each pair
has been described and found in Section3.2.2. We denote
the traffic over a trade routePi, j asT(Pi, j) and always ini-
tially set it to 0. Since a trade route is basically a list of seg-
ments in the segment graphG, each segment can be shared
by several trade routes (see Section3.2.1, Figure6a). We
therefore also have to keep track of traffic on a per-segment
basis, with the trafficT(s) over a segments∈ S being the
sum of traffic over all trade routes the segment is a part of.
The available traffic capacityTA(s) over a segments∈ S is
given asTA(s) = O2 ·WIDTH(s)−T(s), whereO2 is a scalar
constant. Using this, we can define the available traffic ca-
pacity over a trade routePi, j as TA(Pi, j) = mins∈Pi, j TA(s).
Finally, due to the possibility of several trade routes sharing
a segment and therefore also available capacity, saturating
(making tA(Pi, j) = 0) a trade routePi, j might change avail-
able capacitytA of other trade routes. Therefore, the avail-
able capacitytA(Pi) for a listPi of trade routes is determined
by saturating, one-by-one, the trade routesPi, j ∈ Pi and sum-
ming the traffic required to saturate all of them. The traffic
values are then restored to their previous values. .

With the above definitions, we can proceed to describe
the traffic simulation itself; see Algorithm2 for pseudo-code.
We use the historical context’s functiont(t) to determine the
new amount of traffic flowing between a pairpi of cities.
We then reset the traffic for all trade routes inPi to zero
and check whether there is enough available capacityTA(Pi)
along all trade routes inPi to accommodate the new traffic
t(t). If there is enough available traffic capacity, we greedily
(with respect to trade route length) redistribute it among all
trade routes inPi and no new trade routes are created. If, how-

ever, there is not enough available traffic capacity, we need
to find a completely new trade route. We do this by evalu-
ating two possibilities: 1) a new trade routePA (see below)
over existing major roads, or 2) a trade routePB that uses
existing minor roads or requires new major roads (see be-
low). We pick the better candidate by choosing the one with
the smallerO3 · LENGTH(Pk) +O4 · COST(Pk), k ∈ {A,B}
and add it to the listPi of trade routes for thei-th neighbour-
ing city pair, adding and upgrading segments in the segment
graphG as necessary. Finally, we again redistribute the traf-
fic t(t) between all trade routes inPi greedily.

Algorithm 2: Traffic simulation and major road grow-
ing.

foreach (pi ,Pi) do
T(Pi) := 0; // traffic for all trade routes∈ Pi to 0
if TA(Pi)< t(t) ; // is the new traffic too high?
then

PA := PROPOSEFROMMAJOR(); // see Sec.3.4.2
PB := PROPOSEFROMNEW(); // see Sec.3.4.2
PW := WINNER(PA,PB); // choose the winner
Pi := Pi ∪PW; // add the winner
TRADEROUTETOSEGMENTGRAPH(PW,G(S,J));

end
GREEDILYREDISTRIBUTE(t(t),Pi);

end

Trade route over existing major roads. Finding a new
trade routePA over existing roads is simple. We construct
a temporary graph from all existing segments that represent
major roads. To segments that cannot accommodate the in-
crease in traffic, we assign infinite weight. To other segments,
we assign a weight as described in Section3.2.2. In this
temporary graph, we then find the minimum weight path.

Trade route over new major roads. Proposing a trade
route PB that requires an upgrade of existing minor roads
or construction of new major roads is more complex. We
start by defining the built-up area of a city and then use it
construct a new, auxiliary path-finding graphG′.

The segment graphG cuts up the map into pieces (faces of
theplanar segment graphG) that we call blocks. These are
classified into 1) built-up blocksBB,i , and 2) terrain blocks
BT,i . The first kind of blocks represents areas that do con-
tain buildings, while the second represents larger undevel-
oped areas, such as fields or forests. We distinguish between
them using a simple block-area classifier, which in our ex-
periments has performed on par with more computationally
demanding, e.g. shape-aware, classifiers. Next, we also de-
fine the city shellS to be the “outer block” (the outline ofG;
see Figure8e). Using these, we give the built-up areaB as

B=
(

FILL(S)\
⋃

i FILL(BT,i)
)

∪NB(S)∪
(⋃

i NB(BT,i)
)

(1)

where theFILL operator represents the inside of a block or
the shell and theNB operator the neighbourhood of a block’s
or the shell’s outline. The reasoning is detailed in Figure8.

submitted to COMPUTER GRAPHICSForum(1/2014).

J. Beneš & A. Wilkie & J. Křivánek / Procedural Modelling of Urban Road Networks 7

\ \

FILL(S)
⋃

i FILL(BT,i) NB(S)(a) (b) (c) (d)
⋃

i NB(BT,i)

G,BB,i

S,BT,i
B(e) (f) (g) (h)

Figure 8: Illustration of Eq.1. First, we realize that the in-
side of the city shellS (a) contains all of the city’s blocks,
both built-up and terrain, as shown in(e). Since we are only
interested in the built-up areas, we subtract the inside of the
terrain blocks(b), yielding the built-up blocks(f). Next, we
want to add the neighbourhood of all roads. The neighbour-
hood of most is already contained in the intermediate re-
sult (f). Those still partially missing are the ones on the city
shell(c) and the ones on terrain blocks(d). Adding these first
yields (g) and then(h), which is our definition of the built-
up areaB. In (e), city shellS (thick line), built-up blocks
BB,i (blue), terrain block(s)BT,i (red), and segment network
G (gray) are shown. Shell and outlines are shown for clarity.

With a definition of the built-up areaB in place, we
proceed to construct, as illustrated in Figure9, a pathfinding
graphG′ that will allow us to find paths over both segments
and terrain. Since the built-up areaB can only expand and
can never shrink, we first take the pathfinding graphG
and permanently remove from it all land edgese∈ EL that
traverse the built-up areaB. Next, we create a temporary
copy G′ of the pathfinding graphG and add to it all seg-
ments and nodes from the segment graphG. We continue
by “stitching” these two components together by taking
nodes along the city shellS together with all nodes along all
terrain blocksBT,i . We then connect them to nearby vertices
in the setLL of land vertices, provided that the new edge
does not intersect or get too close to existing segments inG.
Additionally, “stitches” connecting points the shellS alone
are generated to allow for smoother roads in some cases
(not shown in Figure8). Using these “stitches”, we connect
the disconnected components (copies of the pathfinding and
segment graphsG, G) in G′.

In order to control the characteristics of new major roads,
such as the tendency to reuse existing major and minor
roads, we multiply weights of edges inG′ by coefficients
C1(t), . . . ,C6(t). In addition to edges representing major
roads (C1(t)), minor roads (C2(t)), unbuilt harbours (C3(t)),
built harbours (C4(t)), and (unbuilt) bridges (C5(t)), we
also define an additional edge type—extendible edges
(C6(t))—which are not surrounded by built up blocks and
can therefore be easily widened to allow for more traffic.
This way, one can for example ask that a new major road

reuses existing major roads heavily (by settingC1(t) to a
small value) and minor roads be avoided if possible (C2(t)
to a high value).

We propose a new trade route by using the resulting
pathfinding graphG′ as input to a modified Dijkstra’s algo-
rithm [Vol08] which penalizes turns in paths usingP(t,α).
After the new major road is constructed, its extendible
pieces are widened to the recommended widthA(t) of a new
major road.

3.5. User Input and Automation

So far, the ways the user can intervene in our simulation and
its input have been left largely unmentioned. As has been
described in Section3.1, our algorithm’s input can be di-
vided into two sets: a historical context that is common to
a larger group of cities, and per-city input that needs to be
generated to keep our method automatic within the scope of
a historical context. In contrast to previous methods that con-
centrated mostly on user-aided generation [VABW09] or re-
quired per-city datasets [WMWG09, PM01], this allows us
to generate batches of cities with similar traits. Below, we
detail automatic generation of per-city data, that is 1) the
traffic function t(t), 2) the neighbouring city listnc, and 3)
the neighbouring city sety and its sublisty’. As all of these
are input for the algorithm itself, they need to be generated
before the algorithm begins. Lastly, we discuss how the user
can manipulate the segment graphG and list of nucleiQ.

(a) graphG (b) seg. graphG (c) “stitches”

(d) built-up areaB (e)G “minus” B (f) result. graphG′

Figure 9: We start by generating the built-up areaB (d) from
the segment graphG (b), as described in Section3.4.2and
Figure8. We take the pathfinding graphG (a)—for clarity,
only the vertices ofG are shown—and update it by remov-
ing all edges and vertices that intersect the built-up areaB,
resulting in(e). Then we generate the edges—“stitches”(b);
shell to shell “stitches” not shown—that connect the updated
pathfinding graphG (e)and the segment graphG (b). Finally,
we combine the “stitches” with the segment graphG (b) and
the updated pathfinding graphG (e) to yield the resulting-
graphG′. Input has a blue border, result a green one.

submitted to COMPUTER GRAPHICSForum(1/2014).

8 J. Beneš & A. Wilkie & J. Křivánek / Procedural Modelling of Urban Road Networks

(a) (b)

Figure 10: (a) Initial road networks corresponding to var-
ious automatically generated sublistsy’ of the set of all
neighbouring city pairsy. (b) Demonstration of the interven-
tion capabilities of our method. Nuclei (coloured dots) and
their strengths were manipulated to influence the locations
of growth and the city’s shape, and minor roads were added.

Traffic function. There are many sensible choices for gen-
erating the traffic functiont(t). Since growth and trade are
intertwined, as discussed in Section3.4.1, we choose the
function to be a slightly randomized copy oft(t) = b ·G(t),
whereb is uniformly selected from〈0.7,1.3〉.

Neighbouring cities. We generate the set of neighbouring
citiesnc using a heuristic. First, we generate the numberc =
|nc| of neighbouring cities. Withcmin = 4< µ< cmax= 10,
we choose the numberc of neighbouring cities from a bi-
nomial distribution withn = cmax− cmin tries and a given
expected valueµ= 7− cmin. Next, we generate the vertices
on the edges of the latticeL that represent the neighbouring
cities. We do this by generatingc equally spaced rays ema-
nating from the centre of the mapX at anglesi 2π

c +φ+θi
where φ ∈ 〈0,2π) and θi ∈ 〈− π

2c ,
π
2c 〉 are uniformly dis-

tributed global angular offset and per-ray perturbations.

List of pairs of neighbouring cities. Using a fixednc, we
sort all pairsy = {(Cu,Cv) | u< v andCu,Cv ∈ nc} of neigh-
bouring cities by the angleCuXCv, whereX is the centre of
the map, removing pairs (smallest angles first) until the re-
moval of a further pair would result in a disconnected initial
road network. We then permute the remaining pairs, yielding
a list of neighbouring city pairsy’. As a result, we get a vari-
ety of initial road networks, as shown in Figure10a. Further
variation is achieved by adding or substituting the removed
pairs into the listy’.

Historical Context. Before automatic generation can start,
the user is required to provide a set of values representing
a historical context. In our experience, the system is stable
and minor changes in parameter values cause only minor
changes to the result’s generic appearance. The result itself,
however, might change significantly due to e.g., a major road
being built in a different place and influencing the position
of growth centersQ. Most of the values constituting the his-
torical context have a well defined meaning. For example,
the built harbour edge coefficientC4(t) expresses how ex-
pensive changing the mode of transportation between land
and sea would be. For some, such as the turn angle penalty

functionP(t,α), a reasonable amount of experimentation is
required.

Direct manipulation. We optionally let the user intervene
in the algorithm by letting her/him add or remove nuclei
of city growth during the simulation and also by allowing
her/him to change their strengths. This, combined with the
possibility of manipulating the growth and traffic functions
G(t), t(t), and the segment graphG, allows the user to modu-
late the locality and strength of city growth. The user is also
allowed to paint new roads directly (see Figure10b).

Summary. We described methods for fully automatic gen-
eration of all per-city input, with the exception of terrain
m, which can be generated by published methods, e.g.
[MKM89]. The definition of minor road patternsK(t) de-
pends on the method used. In our case, the method of
[PM01,WMWG09], a L-system equivalent, is used.

4. Results and Discussion
The algorithm was implemented in C# and uses CUDA to
compute theinitial pathfinding graphG. The generation
times for 8× 8km maps for a latticeL with a spacing of
ℓ = 20m were between 2.5 and 4.5 minutes running on a
single core of an Intel i7-2600K 3.4GHz CPU, with the con-
struction of the pathfinding graphG run on a GeForce 480
GTX card.

For reproducibility, the parameter values for all presented
results, together with images of all simulation steps, are
available in the supplementary materials. Below, we discuss
the results in the context of our contribution (in bold).

Positioning of settlements and water transportation.Un-
like previous work, we put a strong emphasis on the place-
ment of both initial and later settlements on the provided
map. We place those settlements (“nuclei of city growth”) at
the intersections of roads and back this approach by avail-
able literature; see Section3.2.1. The results of this strategy
can be seen in the positioning of the initial settlements in
Figure12a,(i) and in the isolated settlements generated later,
as seen in Figures11a, 11c, and11e. The positioning of nu-
clei of city growth is an important aspect of city development
that is strongly influenced by tradebetweencities, something
that has not been addressed by previous work. We further ex-
tend this approach by being the first to consider anewmode
of transportation:water. By treating places where waterways
turn into roads as intersections [Joh67], we allow the simu-
lation to automatically create and position ports (e.g. New
York, Hong Kong). This is shown in Figure12a,(i) by gen-
erating a settlement on the coast and in Figure12d, where a
further port is generated to ease the pressure on the first port.
Additional ports are also generated in Figures11dand11e.

Neighboring cities and traffic simulation. Our approach
is the first to consider the influence of trade between neigh-
boring cities. Here, our contribution is not in using a traffic
simulation, but in using it to simulatetrade between cities

submitted to COMPUTER GRAPHICSForum(1/2014).

J. Beneš & A. Wilkie & J. Křivánek / Procedural Modelling of Urban Road Networks 9

Figure 11: An eccentric city(a), a normal city(b), a city with a more classic major road structure(c), a coastal city spanning sev-
eral pieces of land(d), a city with two isolated satellite suburbs(e), and a city in a difficult, mountainous region(f). Each quanti-
zation level represents a 60m vertical difference. Block colour indicates age. Major and minor roads are yellow and grey, respec-
tively. For a discussion of the results, see Section4. Minor roads that do not enclose a block are not shown in the visualization.

and identifying its impact on major road and city shape;
see Section3.4.1 for a thorough discussion. While previ-
ous work either requires the user to sketch major roads
[VABW09] or determines their shape usingpredefinedpat-
terns [WMWG09,PM01], our trade simulation grows major
roadsautomatically, without patterns, andin a meaningful
way. Depending on historical era, major roads either need
to navigate (Figure11b) or circum-navigate (Figures11and
12) the built-up areas over large portions of terrain. This in-
fluences major road shape. In turn, with each new major road
(waterway), new intersections, and with them, nuclei of city
growth, are generated, influencing the city shape (kidney like
shape in Figure11a, rugged city edges in Figure11c, posi-
tion close to water in Figures12, 11d, and11f). This results
in a relatively non-deterministic, but plausible major road
structure with ring-roads (Figures11b, 12d, 12e) and by-
passes (Figure11a). In the inset of Figure12e, the develop-
ment of major roads close to the second harbour is shown. In-
sets in Fig.12f show the progression of a suburb, itself orig-
inally a few isolated blocks (i), to a compact settlement (ii),
to when it’s about to grow together with the city itself (iii).

Settlements growing together and urban landscape.Due
to our way of positioning settlements (see above), we grow
cities over time in the same way (see Figure12) real cities
are formed, that is by having several settlements (cities)
grow together (e.g. LA or mostly any city); see Section3.4.
This is an original contribution, not found in previous work.
The spectrum of urban forms (smaller and larger isolated
suburbs, see Figure11e, larger gaps within the cities, see
Figure11b) increases realism for applications where the city
is seen as a whole (flight simulators, tycoon games, some
RPGs) or where the user can navigate through the generated
city (driving simulations, open world games), transitioning
from outside of the city, through sparser areas and gaps, up
into the inner city. The way the urban landscape transforms
(sparser areas become dense, suburbs form conurbations)
over time adds further realism to games that take place over
long periods of time (open world games, tycoon games).
Previous methods were unable to generates such cities
without chance or user intervention.

Changing minor road patterns with time. We observe
that the minor road patterns have a tendency to change with

submitted to COMPUTER GRAPHICSForum(1/2014).

10 J. Beneš & A. Wilkie & J. Křivánek / Procedural Modelling of Urban Road Networks

Figure 12: Evolution of a lake-side city with a harbour. Water trade-routesare dashed and in blue. See Section4 for a discussion.

time and use this observation to grow our minor roads. The
change is visible in both Figure11 and Figure12, with the
older parts of the city being darker and the newer parts be-
ing lighter. This approach is a new alternative to the existing
methods where the spatial distribution of minor road patterns
was either user-defined [PM01] or where a land-use like sim-
ulation was used [VABW09, WMWG09]. Our results show
that even non-land-use based minor road growth is possible.

Minimal per-city input. Whereas recent previous work
[VABW09,WMWG09] is geared towards user-aided gener-
ation, our method is designed to require minimal input. This
means it is maximally automatic, allowing for unsupervised
generation of cities with similar traits. As a result, replay
values in increased in games where content regeneration (ty-
coon games, MMORPG, open world games) is desirable.

Conclusions. We present a novel, maximally automatic
method with several original contributions that generates
cities with an rich urban structure (suburbs, gaps) and au-
tomatically generated and meaningful major roads over time
by means of a trade simulation between neighboring cities.

4.1. Limitations and Future Work

While we hope to have provided an impulse to the field of
procedural city modelling, we admit to the limitations of our

method. First, our prototype implementation is not real-time.
This is less of a problem where cities can be generated in
the background as game-time progresses or where multiple
cities are generated at once on several cores. For games
that require developed cities quickly, a more production
ready implementation would be necessary. Second, since
our method does not simulate land-use (see Section3.4.1),
it has to be approximated using one of the existing methods
before different types of buildings and other geometry can
be generated. Also, if differing minor road patterns were to
be generated for different land uses as in [VABW09], a land
use simulation would have to be incorporated as a sub-step
in each step of our algorithm. Next, the traffict(t) is cur-
rently equal for all city pairs without significantly impairing
the results. Differentt(t) for each city pair could provide
further improvements, but is outside of the scope of our
paper. We also believe our method could benefit from also
considering an intra-city traffic simulation such as the one
in [WMWG09] while generating major roads. Furthermore,
no current city simulation that develops cities over time has
investigated the possibility of redevelopment within cities,
including the change in road structure over time. Such rede-
velopments, as demonstrated by the Hausmann’s renovation
of Paris, are a non-trivial matter that remains largely un-
explored. Lastly, including further modes of transportation

submitted to COMPUTER GRAPHICSForum(1/2014).

J. Beneš & A. Wilkie & J. Křivánek / Procedural Modelling of Urban Road Networks 11

and their “intersections”, e.g. subway, train, and bus stops,
as well as airports, could further enhance future results.

This work was supported by the Charles University in
Prague, project GA UK No. 581412.

References

[AVB08] A LIAGA D. G., VANEGAS C. A., BENEŠ B.: Interac-
tive example-based urban layout synthesis.ACM Trans. Graph.
27, 5 (2008).2, 5

[Bee02] BEEVERSR.: The Garden City Utopia: A Critical Biog-
raphy of Ebenezer Howard. Olivia Press, 2002.1

[Bur08] BURGESSE. W.: The growth of a city: An introduction
to a research project. InUrban Ecology: An International Per-
spective on the Interaction Between Humans and Nature, Mar-
zluff J. M., (Ed.). Springer, 2008.5

[CEW∗08] CHEN G., ESCH G., WONKA P., MÜLLER P.,
ZHANG E.: Interactive procedural street modeling.ACM Trans.
Graph. 27, 3 (Aug. 2008), 103:1–103:10.2

[Chi50] CHILDE V. G.: The urban revolution.The Town Planning
Review 21, 1 (4 1950).5

[Cos57] COSTA L.: Report of the pilot plan of Brasilia. Competi-
tion Entry, 1957.1

[CR08] CORTESR., RAGHAVACHARY S.: The RenderMan Shad-
ing Language Guide. Thomson Course Technology, 2008.6

[EBP∗12] EMILIEN A., BERNHARDT A., PEYTAVIE A., CANI

M.-P., GALIN E.: Procedural Generation of Villages on Arbi-
trary Terrains.The Visual Computer(2012).2

[FZ01] FREY W. H., , ZIMMER Z.: Defining the city and urban-
ization. InHandbook of Urban Studies, Paddison R., Lever W.,
(Eds.). Sage Publications, 2001.2, 5

[Gar92] GARREAU J.: Edge City: Life on the New Frontier. An-
chor, 1992.5

[GPGB11] GALIN E., PEYTAVIE A., GUÉRIN E., BENEŠ B.:
Authoring Hierarchical Road Networks.CG Forum 30, 7 (2011).
2

[GPMG10] GALIN E., PEYTAVIE A., MARÉCHAL N., GUÉRIN

E.: Procedural Generation of Roads.CG Forum 29, 2 (2010).2,
3, 4

[GSdKB09] GROENEWEGEN S. A., SMELIK R. M.,
DE KRAKER K. J., BIDARRA R.: Procedural City Layout
Generation Based on Urban Land Use Models. InEG Short
Papers(2009).2, 5

[Hoy39] HOYT H.: The structure and growth of residential neigh-
borhoods in American cities. Washington, DC. US Gov’t Printing
Office, Washington, D.C., 1939.5

[Joh67] JOHNSON J. H.: Urban Geography, An Introductory
Analysis. Pergamon Press, London, UK, 1967.3, 5, 8

[KMK12] K RECKLAU L., MANTHEI C., KOBBELT L.: Proce-
dural interpolation of historical city maps. InEG 2012(2012),
Eurographics Association.2

[KP06] KNOX P., PINCH S.: Urban Social Geography, An Intro-
duction. Pearson Education, United Kingdom, 2006.5

[LRW∗06] LECHNER T., REN P., WATSON B., BROZEFSKI C.,
WILENSKI U.: Procedural modeling of urban land use. InSIG-
GRAPH ’06 posters(2006).5

[LWW03] L ECHNER T., WATSON B., WILENSKY U.: Proce-
dural city modeling. In1st Midwestern Graphics Conference
(2003).2

[MKM89] M USGRAVE F. K., KOLB C. E., MACE R. S.: The
synthesis and rendering of eroded fractal terrains.SIGGRAPH
’89 (1989).1, 8

[MWH∗06] MUELLER P., WONKA P., HAEGLER S., ULMER A.,
GOOL L. V.: Procedural modeling of buildings.ACM Trans.
Graph. 25, 3 (2006).2

[MYDN01] M IYAZAKI R., YOSHIDA S., DOBASHI Y., NISHITA

T.: A method for modeling clouds based on atmospheric fluid
dynamics. InProc. Pacific Graphics 2001(2001), pp. 363–372.
1

[PL96] PRUSINKIEWICZ P., LINDENMAYER A.: The algorithmic
beauty of plants. Springer, 1996.1

[PM01] PARISH Y. I. H., MÜLLER P.: Procedural modeling of
cities. InACM SIGGRAPH 2001(2001), ACM Press.1, 2, 5, 7,
8, 9, 10

[ŠBBK08] ŠŤAVA O., BENEŠ B., BRISBIN M., K ŘIVÁNEK J.:
Interactive terrain modeling using hydraulic erosion. InEuro-
graphics Symposium on Computer Animation(2008).1

[Sjo60] SJOBERGG.: The Preindustrial City: Past and Present.
The Free Press, New York, 1960.5

[Soj00] SOJA E. W.: Postmetropolis, Critical Studies of Cities
and Regions. Blackwell Publishers, Malden, MA, USA, 2000.5

[TT95] TOLLEY R., TURTON B.: Transport Systems, Policy and
Planning: A Geographical Approach. Longman, 1995.5

[VABW09] VANEGAS C. A., ALIAGA D. G., BENEŠ B., WAD-
DELL P. A.: Interactive design of urban spaces using geometrical
and behavioral modeling. InSIGGRAPH Asia ’09(2009). 1, 2,
7, 9, 10

[VGDA∗12] VANEGAS C. A., GARCIA-DORADO I., ALIAGA

D., BENES B., WADDELL P.: Inverse design of urban proce-
dural models.ACM Trans. Graph.(2012).2

[Vol08] VOLKER L.: Route Planning in Road Networks with Turn
Costs. Tech. rep., Universität Karlsruhe, 2008.7

[WMWG09] WEBER B., MÜLLER P., WONKA P., GROSS M.:
Interactive geometric simulation of 4D cities.CG Forum 28, 1
(2009).1, 2, 5, 7, 8, 9, 10

[YS12] YU Q., STEED A.: Example-based road network synthe-
sis. InEG 2012 - Short Papers(2012), Eurographics Association.
2, 5

[YWVW13] YANG Y.-L., WANG J., VOUGA E., WONKA P.: Ur-
ban pattern: Layout design by hierarchical domain splitting. ACM
Trans. Graph. 32(2013).2

submitted to COMPUTER GRAPHICSForum(1/2014).

