
Flying Samurai – Programming documentation

Jan Beneš, Oskár Elek, Marek Hanes, Ján Zahornadský

June 3, 2010

“We make war that we may live in peace.” — Aristotle

Contents

1 Introduction 1

2 About the project 2

2.1 Team . 2

2.2 Externists . 3

2.3 Review of specification . 5

2.4 Hardware requirements . 6

2.5 Comparison with similar software . 6

2.6 Timeline . 7

2.7 Future of the project . 8

2.8 Known bugs . 9

2.9 Some statistics . 10

3 Building the project 11

3.1 Setting up the environment . 11

3.2 Building from sources . 11

4 Programming documentation 12

4.1 Architecture . 13

4.2 Multi-threading model . 15

4.2.1 Threads and their purpose . 15

4.2.2 Synchronization . 15

4.2.3 Messages and heartbeat . 16

4.2.4 Reader and Writer . 16

4.2.5 Structures . 17

4.2.6 Swap and swap chain . 18

4.2.7 Messages in detail . 19

4.3 Menu . 21

4.3.1 Concepts . 21

4.3.2 Implementation . 21

4.3.3 Handlers and actions . 21

4.4 Game logic . 23

4.4.1 Logical entities . 23

4.4.2 Mission . 24

4.4.3 Career . 26

4.5 Graphics . 27

4.5.1 Scene graph . 28

4.5.2 Airplane meshes . 29

4.5.3 Terrain . 33

4.5.4 Static terrain geometry . 36

4.5.5 HUD and debugging graphics . 38

4.5.6 Special effects . 39

4.5.7 Camera . 40

4.5.8 GUID . 40

4.6 Physics . 41

4.6.1 Introduction . 41

4.6.2 Model overview . 41

4.6.3 Model parameters . 42

4.6.4 Core formulae . 46

4.6.5 Input processing . 48

4.6.6 Visualization . 48

4.6.7 Damage model . 49

4.6.8 Collision reaction . 51

4.7 AI . 53

4.7.1 Overview . 53

4.7.2 Environment knowledge . 54

4.7.3 Agent states . 56

4.7.4 Agent role . 57

4.7.5 Decision making . 59

4.7.6 Inverse motion . 60

4.8 Input . 62

4.8.1 Abstraction layer . 62

4.9 Sound . 64

4.9.1 Requirements . 64

4.9.2 Resources and usage . 64

4.9.3 Integration . 64

4.9.4 Interface . 64

4.10 Miscellaneous . 65

4.10.1 Consoles . 65

4.10.2 SettingsFile . 65

4.10.3 Command line parameters . 66

4.10.4 Helper code . 66

4.10.5 Code sharing foundation . 66

4.10.6 Multi-platform support . 67

5 Conclusions 68

6 Acknowledgements 69

7 References 70

A Startup 72

B Game parameters definition file (”entities file”) 73

B.1 MOD . 73

B.2 Period . 73

B.3 Map . 74

B.4 Front . 74

B.5 Nations, Sides . 75

B.6 Airfields, Squadrons . 75

B.7 Airplanes . 76

B.8 Pilots . 76

B.9 Ranks . 77

B.10 Awards . 77

B.11 News . 77

B.12 Physics, Gun . 78

B.13 AIParams, NeuralParams . 78

C Media directory 80

D Terrain preparation workflow 81

D.1 Terrain elevation maps . 81

D.2 Splatting maps . 82

D.3 Forest and city data . 84

E Adding new models into the game 86

F Modelling and texturing conventions 87

G Graphical subsystem settings 90

H TileCombiner application 92

I CityGen application 95

I.1 Generation of road network . 95

I.2 Generation of cities . 96

I.3 Generation of buildings . 97

I.4 Generation of fields, forests, and occluders . 98

I.5 Output . 98

I.6 Configuration file . 98

J PathGen 101

1 Introduction

This is the non-user documentation of the Flying Samurai project, which has been developed at the Faculty
of Mathematics and Physics of the Charles University, Prague in order to fulfil the requirements of the
NPRG023 - Software project course.

We put a lot of effort in making the document what we ourselves would want it to be. We hope the level of
detail is high enough to provide the crucial information that would be hard to gather without any kind of
documentation, yet low enough not to flood the user with specifics that would make this document way too
bloated and hard to maintain – that’s what source code is for.

The document is divided into sections. After this introduction chapter, there is a chapter giving an overview
of the project’s whereabouts. The interested programmer should definitely take a look at the second and
third chapters; the second chapter will tell you all you need to know to about setting up an environment
for the project and getting it to build; the third chapter then contains the programming documentation,
where an overview of the project as a whole, as well as of all the subsystem, can be found. In the next two
chapters, our thoughts on the project as a whole have been summed up and people who have helped us with
the project are mentioned. After that, the references are given. The document ends with several appendices
containing auxiliary information and documentation of the project’s tools.

1

2 About the project

This section will try to convey the whereabouts of our project. Special focus will be on the history and on
the key decisions we had to make.

2.1 Team

The project started with five people – Jan Beneš, Filip Bureš, Oskár Elek, Marek Hanes, and Ján Zahor-
nadský. Before the project was officially started, but after the specification was handed in, we have, by
mutual consent, terminated our cooperation with Filip Bureš. Despite our efforts, we were unable to find
anybody else with the required skills and decided to finish the project in just four people.

Initially, the work was divided as follows:

Jan Beneš Team leadership, game logic programming, misc. programming.

Filip Bureš Physics programming.

Oskár Elek Team leadership, graphics programming.

Marek Hanes Network programming, menu programming, misc. programming.

Ján Zahornadský AI programming.

In the end, the responsibilities were distributed a little bit differently, namely:

Jan Beneš Team leadership, externist (we use the probably incorrect recruitment, researchers and beta-
tester management, game logic programming, menu programming

Oskár Elek Team leadership, artist management, graphics programming.

Marek Hanes core programming, menu programming, bug hunting, configuration management.

Ján Zahornadský AI programming, physics programming

The workload was rather evenly distributed amongst all team members and in the long run, it cannot be
said that anybody leeched off the work of others.

We imposed a weak hierarchy on the team. The team leaders’ role was mainly to keep track of where the
project is, what needs to be done, and what needs to be fixed. Also, since the rather large amount of
externists, the team leaders split the management responsibilities based on the areas their worked on in the
game. In the end, everybody found a role in the team that he is good at.

We met every week once the design document was ready. The meetings usually lasted between 1.5 and 2.5
hours and kept everybody up to date with the project’s progress. The fact that those meetings could be held
in Faculty’s projector equipped Lab Room was a big plus and made our work a lot easier. We also tried to
establish a mailing list and a forum. The mailing list was meant to inform people, especially the externists,
about the project’s progress, but never caught on and was abandoned after about two months. Later, one
of the externists got us a hosting for an Internet forum; it too got abandoned after a few months.

Finally, we list all the people who have shown interest in working on the project and the amount of work
they did, and the reason they quit. We only list the people who never contributed to the project by their

2

initials. We hope that this will serve as a small case study for anybody who is willing to take the same path
we did.

Also, we mustn’t fail to mention our supervisor, Mr. Otakar Nieder, who patiently followed our progress,
attended our weekly meetings throughout the duration of the project and always supported us. Thank you!

2.2 Externists

This short section describes our experience with the people we were working with. One might find it
interesting, especially if going in the same direction as we did and plans to manage people working on a
bigger project.

The strength of the World War I. airplane simulator community was one of the reasons we decided to do
the Flying Samurai instead of other project we had in mind. A quick research showed that a large number
of people still play and modify rather arcane games such as Red Baron II and Red Baron 3D [25]. Also,
the only reasonable alternative we could find was Over Flanders Fields [21], a mod of Microsoft Combat
Flight Simulator 3 that has already been in development for a rather long time, needed the original Microsoft
software, and seemed to be stalling at the time we started the project.

We have made short announcements and advertisements at The Aerodrome (http://www.theaerodrome.
com) and at Wings of Honour (http://www.wingsofhonour.com), hoping to attract researchers, beta-testers,
flight-model testers, artists (also advertised at the http://blender3d.cz and other Blender oriented web-
sites), and menu artists (for that position, we advertised at http://cegui.org.uk). Later, we even tried
mailing individual people, especially artists, with request for help. Our policy was that you are free to leave
whenever you want as long as you let us know that you are leaving.

Below is an attempt at a complete list of external people who cooperated on the project in no particular
order. For each of them, a short history and work overview is given. Names of people who are not in the
credits have been anonymised. Two of them actually left for medical instead of personal reasons, but we
decided not to implicate those people directly.

Manilo Japson A Belgian modeller and the externist who contributed the most to the project. Only got
in touch late in the project, but got a lot of quality work done. He did two complete airplanes models
and all of the buildings.

Matt Haslem A Canadian modeller who did the SE5a model. After finishing this model, he complained
about personal reasons and never replied to our mails again.

Marek Moravec A Czech modeller whom we recruited from the Czech Blender site. Did the Fokker E III
models, without the unwrap, and then quit due to a change in priorities.

Darren Reynolds A 2D artists whom we contacted directly. He did a lot of research in the few months
he was with us, the complained about personal problems, and then quit responding altogether.

J A Swedish modeller. Did some work on one model but quit for personal reasons and we never got our
hand on any of his work. Stayed in touch, but due to a change in priorities never came back once his
problems got resolved.

G A Czech modeller whom we recruited from the Czech Blender site. Did a model (of which we saw some
screenshots) that was lost in a hard-disk crash before he managed to send it to us. Didn’t contribute
to the project again due to workload and a change in priorities.

K A Czech modeller whom we contacted directly. Wanted to cooperate once his current project is over, but
changed his mind about a month later.

3

http://www.theaerodrome.com
http://www.theaerodrome.com
http://www.wingsofhonour.com
http://blender3d.cz
http://cegui.org.uk

L A beginner artist who has shown interest in working on the project, but never replied to one of our mails
about 4 days later.

Sebastian Dreyer A history student from Germany who volunteered as a result of one of our advertise-
ments. Helped us with the historical research early in the project, stayed for three months, and left
because the actual workload for the project was higher than he expected.

A A high school student from Great Britain, wanted to help us with testing and research. Got in touch
early in the project on V’s recommendation. Stopped replying when first real work was needed about
9 months after he first wrote to us.

V A high school student from the Czech Republic who wanted to help us with testing an research. Got in
touch early in the project. Also tried modelling, but left due to a change in priorities about 10 months
later, without every contributing to the project.

P An American who wanted to do research. Complained about workload, then stopped replying altogether.
Never did any actual work, left 4 months after getting in touch.

Mikuláš Peksa A friend of one of the programmers and a physics student at MFF UK, advised us on the
physical model throughout the project.

Tomas Caitthaml A friend of one of the programmers and a former student at MFF UK, he dedicated a
day to on-site testing a few days before the project’s hand-in.

János Sebök A tester from Hungary who got in touch rather late in the project. Due to technical difficulties
on our side, beta-testing couldn’t start as early as we had hoped. Nevertheless, in the 2 months he
stayed with us, he did a lot of valuable work.

F An Australian high school student who wanted to do some modelling. First postponed his work due to
school exams, later due to personal reasons, and finally left due to a change in priorities.

S An English speaking artist who wanted to contribute some already existing models on the condition we
optimize the game to run on his 32 MB graphics card. We never got our reply to our rather long
explanation of why that is not possible.

C A Columbian music composer who volunteered to do some music. Stopped replying about 14 days after
most details about the music were agreed.

D A German volunteer who even wanted to visit us during his trip to Prague. Didn’t get in touch as agreed
on the expected meeting day, quit a few days later due to a change in priorities.

J A friend of one of the team members. Did some work on a 3D models, but he didn’t show any further
progress after the model was about half-way done.

R A texture artist from Russia. Left us after about 14 days after starting due to personal reasons.

Scott Hamill The webmaster of The Aerodrome (http://www.theaerodrome.com) who helped us with
project publicity and let us use some of The Aerodrome’s textual resources.

Ruediger Gemmrig The webmaster of Wings of Honour (http://www.wingsofhonour.com) who helped
us with project publicity.

As you can see, despite our requests to inform us about their intentions to leave the project, the majority
of the externists never did. Overall, most people do not have an idea of what it is like to work on a project
of this size. They expect instant results, have very little sense of responsibility, and are not able to estimate
the expected workload well. The crucial point probably comes with the first serious work request, i.e. during

4

http://www.theaerodrome.com
http://www.wingsofhonour.com

the transition from being part of something to making sacrifices. Also, beware of people who are keen to
list their preferred features, but refuse to put in any serious work or only work on things that never got
requested but that they find interesting.

The externists, though, might have also had their reasons to leave the project. We got behind advertised
schedule several times and late in the project, we had problems with running the game outside of the IDE
which delayed beta-testing by several weeks.

2.3 Review of specification

Here, we will review the features as they were given in the specification [7].

• Network mode with multiplayer support - “focus on LAN, we’ll need to implement the server,
performance optimization”

There is no network mode in the game. We had to drop it about 5 months before the project was due
as it became obvious that there is not enough time left for it to get implemented.

• Graphics and graphical effects - “we’ll need to build the game over the Ogre3D engine, implement
all the necessary shaders, program additional effects (tunnel vision, bloom, etc.)”

We built the game on top of the Ogre3D engine, implementing all the necessary logic, shading, and
the two above mentioned effects. Refer to the programming documentation, Section 4.5.

• Terrain with cities - “large scale terrain, we’ll need to procedurally generate simple cities to make
the game environment look realistic”

We use real-world height-maps, but the whole terrain is covered with procedurally generated cities,
roads, forests and fields (Sections 4.5.3 and 4.5.4).

• Realistic airplane physics - “lift, other basic effects, integration of the Bullet engine, that (like
other similar engines) doesn’t support flight physics calculations, need to ensure numerical stability of
the calculations”

The game uses a rather realistic physical model that is capable of simulating most of the basic effects.
Bullet engine is used for collision detection and to simplify physical calculations (see Section 4.6). The
physical model shows no signs of numerical instabilities.

• AI - “basic usage of tactics, need to do AI calculations in 3D”

The AI groups the airplane in formations, makes them follow 3D paths and is able to engage in aerial
combat in 3D (see Section 4.7).

• Different mission types - “ace dogfight, squadron dogfight, bombardier raid, bombardier escort, patrol
the front”

All of the above mentioned missions types have been implemented (see Section 4.4.2).

• Career mode with campaign - “front positions change with time, military ranks and transfers to
different airfields, basic statistics”

All parts of the career mode where changing the parameters with time makes reasonable sense have
this ability (see Section B for more details). Military ranks, as well as awards, are implemented on
a per nation basis (see Section B). Transfers, both requested by the user and enforced by the game
logic, have been implemented (see Section 4.4.3). The game keeps track of a wide range of the player’s
statistics.

5

All in all, with the exception of the network mode, we have reached, and sometimes exceeded, the given
specifications.

The network mode was added to the specification to provide enough work for all of the team members. With
the departure of Filip Bureš, the responsibilities within the team changed (see Section 2.1) and even though
we have made every effort to include the network mode in the game, it had to be dropped so that we could
concentrate on the more important parts of the game.

2.4 Hardware requirements

In agreement with what has been announced in the project specification, the hardware requirements of our
game are quite high. They are still lower that requirements of contemporary 3D games, but of course, we
don’t reach the visual quality of these games either. There are three reasons for this. First, we use the
Ogre3D graphics engine, which is a general 3D engine not optimized for specific purposes. All modern game
engines are specifically optimized not only for real-time 3D graphics in games, but also for a concrete type of
the game (shooter, strategy game, simulator etc.). Naturally, we don’t have access to this kind of technology.
Second, the game contains a really large terrain, larger than the great majority of even commercial games.
To render this terrain, we use a terrain rendering plugin for Ogre3D, which is not designed for such large
terrains, yet is the only usable mechanism to render paged terrains on Ogre3D. Third, we simply don’t have
time and resources to optimize the game beyond configuration of the third party engines and libraries we
use.

The following hardware and software configuration is the recommended minimum to play the game without
any significant degradation in speed and quality.

• CPU: At least 2GHz, preferably multi-core CPU. The game can utilize up to four cores.

• RAM: At least 1.5GB on Windows XP, or 2GB on Windows Vista/7. The most of the memory
consumption is caused by the terrain, of course.

• VGA: NVidia GeForce 8600GT or equivalent with Shader Model 3.0 support and 256MB VRAM.

• HDD: Around 2GB of HDD space for the installation.

• Controller: Standart keyboard and mouse. We also support joystick (without advanced features like
force feedback or PoV hat).

• Software: Windows XP/Vista/7 (with support for x86 applications), DirectX 9.0c runtime (February
2010 or newer, because Ogre3D 1.7 needs it), .NET runtime (for the Startup configuration dialogue).

The main bottlenecks of the game are graphics and physics. Graphics is the most prominent consumer of
resources, but on configurations with strong VGA and slower CPU, it can be the CPU which bounds the
game performance (one example is the machine of one of the developers – 1.86GHz Intel Core2 Duo CPU and
NVidia GeForce 8800GT VGA). The graphics part is most resource-intensive when a lot of terrain geometry
(such as mountains) and particle effects is on the screen at the time, while physics start to be demanding
when there are many airplanes in the mission at once, especially when some are in contact with the ground
(because of the collision calculations).

2.5 Comparison with similar software

One of the reasons we chose to work on a combat flight simulator from the World War I. was that while
there’s a great abundance of shooters, strategy and RPG games on the game market, there is not even

6

remotely as many flight simulators, and even among these, flight simulators from the First World War are
even sparser (indeed the number of people keen to play flight simulators is lower as well, but still). However,
some similarly aimed project exist, and a few of them we summarize here.

Red Baron II, Red Baron 3D Red Baron II first saw the light of day in 1997 and a heavily patched
version, Red Baron 3D, got published in 1998. One of the latest patches significantly improved multi-player
capabilities of the game, bringing the number of players who can play the game at one moment to 76. This
led to a number of virtual squadrons being established and the game was, due to it’s easy modifiability, kept
up by the community until at least 2008, for about a decade. Other than that, the game also included a
dynamic campaign mode that allowed for hours of single player game-play. In 2009/2010, Mad Otter Games
purchased the rights to Red Baron 3D, and efforts to consolidate all the community patches are underway
[24].

The first installment of the Red Baron series was our main inspiration. We obviously surpass Red Baron
3D’s limited graphics, offer at least the same amount of modifiability, and are not far from reaching it’s
career/campaign mode, but we provide no networking capabilities.

Rise of Flight [26] A relatively new (Q2 2009) WWI combat flight simulator from the Russian team
neoqb. It is currently considered to be top-of-the-line WWI flight simulator, with very convincing graphics
and realistic flight model. We can’t compete with this game in the quality of these aspects, but we are not
that remotely behind it either (e.g. we use similar techniques, such as terrain splatting, in our game), and
we are of course speaking about a commercial product here. Moreover, RoF had been in the development
for 4 years and the team has about 30 developers [31], and even now, almost a year after its release, the
development team is releasing large (hundreds of MB) patches and updates for the game, to remedy bugs
within the game and enhance the amount of features to make it more interesting. The game is available for
roughly 40 EUR.

Over Flanders Fields [21] OFF is a commercial third-party modification of the Microsoft Combat Flight
Simulator 3 game by OBD Software. Unfortunately, we haven’t been able to try it, because we don’t have
an access to MCFS3 and we are not aware of any demo version of OFF either. Judging from the videos,
screenshots and reviews, the game is similar to Rise of Flight, and therefore stands in a similar relation
to Flying Samurai. As for the development, the game is still being developed, although some earlier retail
versions have already been released – and as we said, this is just a mod of MCFS3, which means that the
core features of the game engine didn’t have to be written. The price is 30 USD plus the price of MCFS3.

2.6 Timeline

Specification We decided early in the winter semester of 2008/2009 that we are going to make a computer
game as our Software project. For that reasons, we all signed up for the Computer Games Development
course, led by Mr. Otakar Nieder. We dedicated the whole semester to writing the design document,
successfully defending it at the end of the course.

Early project stage Preparations for the actual implementation, such as middleware research, and the
architecture of the project, have been done during the summer semester of 2008/2009. At the end of the
semester, after only a few unanswered questions were left, we have submitted the specification to the Project
Committee on 6. March 2009.

7

Summer of 2009 Shortly before the end of the summer semester of 2008/2009, on 13. July, we made a
formal request to start the project. By that time, we have already parted ways with Filip Bureš and were
rather certain that we wouldn’t be able to find a suitable replacement.

While we were hoping to make a lot of progress over the Summer of 2009, unexpected personal reasons and
the Summer itself kept our work rate below our expectations. At the beginning of summer, we were hoping
to have the project ready before the end of the year. At the end of the Summer, that wasn’t the case any
more.

Winter semester of 2009/2010 The winter semester of 2009/2010 was the time when most of the hard
work was done. We built on the core that had been written over the summer and integrated most of the
other libraries with the game. By the end of the year, we had an alpha version of the game ready. It was
at that time also that we had decided to drop the network mode, as it became obvious that there was not
enough time left for that.

Summer semester of 2010/2011 During the summer semester of 2010/2011, the game’s functionality
was finished, graphical resources integrated, datafiles created and integrated, and documentation was written.
During this time, our progress was hindered for about 14 days by the crash of the urtax server, which hosted
our SVN.

Luckily, we didn’t qualify for the first hand-in date by a few days, which provided us with some additional
time.

Summary From the time we first met until the hand in date, about 21 months have passed. That amounts
to about 17 months of work on the project, from start to finish when the idle months (exam periods and
similar) are not counted.

In comparison with the specification, which state 2. January 2010 as the expected end of project date, we
have needed extra 5 months. Yet, we have still managed to fit within the given boundaries.

2.7 Future of the project

We will, most probably, release the game as open source shortly after it is defended. From the initial feedback
we got from our testers and friends, it seems that the game has enough potential to convince some people
to add further functionality.

“...its an enjoyable game really (at least for a simmer). I spent 2 hours fighting this morning ;). Its quite
an accomplishment you guys have made there. Physics is reasonably good (with the observations I made
earlier); I have some background on the complexity of flight physics calculations, and I am aware of the

compromise you need to make between realism and performance. The graphics is also ok; of course you can
not compete with commercial high budget projects but you created some good-looking terrain. Also in a

flight sim I have always appreciated the physics more than the effects.”

— János Sebök

Also, the game has been developed with easy modifiability in mind; adding new airplanes or creating new
campaigns should therefore be rather easy for a skilled user.

8

2.8 Known bugs

Despite we made all the effort to make the game as stable as possible, there may be some problems we
haven’t remedied, mainly because of the strictly imposed deadline, and also because of difficult invocability
or rareness of some of them. Also, there are some glitches we are aware of, but are very problematic to solve
(for instance because they are caused by 3rd party libraries or some other external factors). We list the ones
we know about here, which of course means that they will get a highest priority of repairing when we issue a
patch. Feel free to report anything not listed here to one of the e-mail contacts listed at the project website
http://tinyurl.com/flyingsamurai (and please attach the Ogre.log file from the config/ directory and
a detailed description of the problem you’ve encountered).

• We’ve had some issues with ATI graphics adapters. Officially, Ogre3D supports them, but there is a lot
of factors which may influence graphical issues (drivers, current version of related libraries, hardware
errors etc.). To be more specific, we have problems with airplane mesh displaying on one concrete
piece of ATI HD3200 Mobile card. Unfortunately we can’t test this further, because we don’t have an
access to machines with ATI cards.

• On one or two particular machines (in the MS laboratory), we’ve encountered problems with Direct3D
device losing (causing the game to crash), in particular when performing Alt+Tab, but also during a
normal flight. This was happening very rarely, and we suspect driver problems.

• We started to work on our sound subsystem just recently, which implies that it is still being in an
experimental phase. The machine gun sound is a bit noised sometimes, and in a single occasion we’ve
experienced a crash of the game, when an enemy airplane crashed into us from behind (which is in
itself very rare event, as our AI is a good pilot overall). If some problems with the sound occur, we
recommend to disable it from the Startup dialogue.

• When transitioning from one terrain page to another, the game lags slightly. This is due to the loading
of the new terrain data for the next page. We can’t easily influence this, because it is an internal matter
of the Myrddin Landscape Plugin (which claims to support background data loading, but apparently,
it doesn’t work).

• The freelook camera mode (controlled by right mouse button) sometimes gets stuck and it’s necessary
to hit the button once more to dock the camera back behind the player’s airplane. This is most probably
caused by skipping one game frame in the graphical subsystem and with it, also the information about
the event that the right mouse button has been released (this may happen in lower framerates, when
the graphics is running slower than the game logic).

• The Myrddin Landscape Plugin doesn’t support per-renderable changing of the camera clipping planes
(which influence numerical precision of the depth buffer). We therefore must use fixed positions of
these virtual planes, which causes artefacts like Z-fighting of distant ground objects and the possibility
to “peek” underneath the terrain, when the camera is close to it.

• It is possible to break the integrity of the game logic by filling nonsensical values into the configuration
files, namely Entities.xml and Media/Objects.xml. We do some integrity checking of these during
the game initialization, but we can’t provide a full resistance to errors within these, so we recommend
to stick with our directions with regard to the adding of new records into these.

• The game consumes quite a lot of memory. On some machines with low amount of physical memory,
the game may crash on a bad_alloc exception, since no checking of available memory is done in most
of the code (this is mainly an issue of the Myrddin Landscape Plugin, which consumes a lot of memory
due to the fact that it handles the rendering of our large terrain).

• The SE5a airplane is untextured. We just couldn’t find anybody, who would do an UV unwrap and
draw those textures (doing UV unwrap is not trivial and we don’t have an experience for it).

9

http://tinyurl.com/flyingsamurai

• The houses in the cities are misaligned with the streets sometimes. This is caused by wrong orientations
of the building models we have. We didn’t manage to fix this, because the exterist who was working
on the house models delivered them just before the project deadline. We have included an ad-hoc
rotation offset for the houses directly into the code to remedy the situation a bit, but the problem is
still apparent.

• When using the Startup dialogue and running the game in window, the game window doesn’t get
activated and needs to be selected manually. We have tried to solve this problem by using several
approaches, both from the Startup application and from the game itself, yet none of them worked.

2.9 Some statistics

In this section, we provide some statistics and estimates. First, it should serve as a reference for others who
will be working on similar software projects; second, it is a small memorial to the work we have done.

As mentioned in Section 2.6, the project took 21 months from the first idea to hand-in, about 17 months
of work. We have held approximately 50–60 team meetings, wrote about 68 thousand lines and just under
1.3 MB of C++ and C# code. Taking into account just the development period – some 11 months – and
a workload of 15–20 hours per week and person, we get to 660-880 hours per person. We wouldn’t be too
surprised if the real workload got to somewhere between 1000 and 1500 hours per person for the entire
project. We have made about 880 commits on the urtax server, 265 commits on our new server, and over
185 commits on the documentation repository.

10

3 Building the project

3.1 Setting up the environment

First, you’ll need to download the source-code from the SVN repository. The current address of the SVN
repository can be found on our webpage (once the project has been defended): http://tinyurl.com/

flyingsamurai. Alternatively, you will already have gotten all the necessary files via official channels.

You will also need the following tools to successfully build the game and/or game tools:

• CMake 2.6 or higher [4] - a build system that provides customized makefiles/project files for a variety
of environments.

• Microsoft DirectX SDK 9.0c [5], at least February 2010 (!) - SDK required to successfully build and
run the game.

• Microsoft VC++ 2008 SP1 Compiler [29] - compiler used for both the development and the release
version.

• Microsoft Windows SDK 6.0 [30] - if you use Express versions of MSVC, you also need this.

Once you have all the tools installed and the source code with pre-build external binaries checked out of the
SVN repository, change your directory to \flying-samurai\config and execute build-game-vc9.cmd. Af-
ter the build finishes, you can find the binaries in \flying-samurai\bin\Debug and \flying-samurai\bin\
Release. To run the game, the PATH environment variable must contain references to the 3rd party libraries
that can be found in \3rdparty* directories.

One way to run the game is using the Microsoft Visual Studio solution file generated by CMake. For
development, we use \flying-samurai\FlyingSamurai.cmd. The script adds 3rd party directories to PATH

and allows Visual Studio to successfully launch the executables.

3.2 Building from sources

The game uses CEGUI, Ogre3D, OIS, Boost, Bullet, tinyXml, irrKlang, Myrddin Landscape plugin and
PagedGeometry plugin. OIS, CEGUI, and irrKlang are used in a binary release form. Boost, Bullet and
tinyXml are built unpatched. Ogre3D, Myrddin, and PagedGeometry are patched against known bugs and
functional requirements. We provide pre-patched source code of Ogre3D and its plugins.

After checkout of the complete repository with 3rd party source codes, you need to execute the following
steps:

• Ogre3D - Build with double precision and full threading support using Boost. Use the out-of-source
build to the OgreBuild directory.

• Myrddin plugin - found in the Ogre3D plugins directory.

• PagedGeometry - found in a subdirectory of the Ogre3D directory.

CMake scripts are configured to distinguish the pre-built configuration from the custom build configuration.
To open the project, you just need to execute FlyingSamuraiEx.cmd. Header files, library files and binary
files are automatically used from your custom-built Ogre3D.

Our patches of Ogre3D and its plugins address following issues:

11

http://tinyurl.com/flyingsamurai
http://tinyurl.com/flyingsamurai

• Ability to track every memory allocation using Ogre3D’s integrated memory tracker - we
accomplished this by modifying the allocator interface and then refactoring the whole Ogre3D library
and all of its plugins. Before, the majority of all allocations was done anonymously.

• Resource allocation and deallocation logging - for easy identification of leaking materials and
textures.

• Paged geometry optimization - there are only two types of objects and they had thousands of
instances in the game. This was the plugin’s expected behaviour, but it had to be fixed nevertheless.

• Incorrect usage of Ogre3D allocators - both Myrddin and PagedGeometry contained incorrect
calls to Ogre3D memory management routines resulting in the inability to correctly free game resources
and quit the executable.

Temporarily, we also modified the Bullet library allocator. This, however, was very late in the project
development and was used to find physics related memory leaks. These changes were removed since it would
leave several places of non-game code non-compilable.

4 Programming documentation

The text below should give the interested read a general overview of the whole system and give him a short
walk-through of each of the subsystems. Nevertheless, this is not a complete in-depth guide. The reader is
encouraged to look at the source code and use, for example, the “Find all references” and “Find in file(s)”
features of the IDE. We have used this method with a lot of success when the need to fix or integrate older
code arose.

12

4.1 Architecture

Currently, the game is separate into these subsystems:

• Entities - a read-only database of game data.

• Input - input sampling.

• Graphics module - rendering.

• Physics module - physical computations.

• AI - AI computations.

• Game logic module - game state, career, menu, and similar.

• Shared data - a collection of data that the other subsystems share.

Shared data

Entities
AI Module

Game Logic Module

Physics Module

Graphics Module

Input

Figure 1: Dataflow between the models. The arrows depict the calls that request data, in other words, they
go against the data flow.

When the game is running, the modules “exchange” information (see 1) mainly via the Shared data subsystem
(see Section 4.2.5). The Entities subsystem is always read-only, while the Input subsystem is usually read-
only.

In addition to that, communication via messages (see Section 4.2.7) is also possible and rarely, other forms
of communication have been used.

execute

game logic comp.

physics computations

AI computations

render one frame render one frame· · ·

swap hooks
swap

barrierstart of logical frame

Figure 2: Control flow in a logical frame. All threads are waked, each of them does some calculations and
stops at the a barrier. One of the threads (possibly a different one every logical frame) then executes the
swap hooks and the swap itself. Notice that several graphical frames might get executed during a logical
frame.

13

Since the game was designed to be multi-threaded, the architecture strongly reflects that. The modules
correspond to individual threads (see Section 4.2.1), while the Shared data subsystem provides a mean of
sharing data and the remaining two subsystem, Input and Entites, provide read-only data. At the end of each
frame, swap hooks – functionality that is best implemented in a single-threaded environment – get executed
(see Section 4.2.6) and the swap operation takes place (see Sections 4.2.6 and 4.2.4). The computation is
done in cycles, called (logical, as opposed to graphical) frames. The control flow within a logical frame is
depicted in Figure 2.

For further detail about each of those subsystems, refer to the respective section.

14

4.2 Multi-threading model

4.2.1 Threads and their purpose

In the beginning of the project, a threading model had to be chosen. Since the game specification included
artificial intelligence for dozens of computer controlled players and realistic physics, the application had to
be multi-threaded. Our main concern were uneven computational requirements; later on, profiling tools
provided evidence that physics and AI calculation spike in presence of sudden movement or object collisions.

The model is based on the following load estimates:

Module CPU requirements
Graphics high
Physics low - medium
AI low - medium
Network(dropped) low
Game logic low
Input low

Any module that would possibly require CPU time was assigned its own thread, the rest was joined. The
final distribution was decided as such:

“Graphics” thread (main) Graphics
Physics thread Physics
AI AI
“Network” thread Network, Game logic, Input

4.2.2 Synchronization

Non-trivial time was allocated to shared structures and following discoveries were made:

• Majority of game data is produced by Physics, AI, Network and Input modules. Graphics just consumes
data.

• AI, Physics, Network and Input provide more or less exclusive data and do not need to share data
members with each other.

• Best approach to local input is sampling (Section 4.8).

• AI, Physics, Network and Graphics can work in parallel.

• Certain non-game-play related actions require messaging.

Due to this and the fear of possible deadlocks and overhead of ad-hoc locking of common structures we
decided that one rigorously specified synchronized structure would be the most effective way to solve all
problems. Model provides two sets of data. The first set (so called writers) provides an interface for writing
and consumers (so called readers) provides an interface for reading. The main idea is that the AI and the
physics generate data for the next drawn frame while the graphics module renders the current frame. When
all producers finish and a new frame is ready, a swap occurs. Then, the current frame is dropped and data
from the new frame are copied into the current frame. Details of each aspect of the synchronization are
described in chapters below.

15

Threading was implemented as a core part of the application and in a time when no other module wad
mature enough for integration. It is designed for minimal overhead, while providing messaging and safe
access to shared structures. It could be easily removed and used in other module based project.

4.2.3 Messages and heartbeat

All message structures are classes sharing a common ancestor, the Message class. Application recognizes
two types of messages. DiscarableMessage is used for ad-hoc non-periodical events like initialization,
loading, game logic events and termination. PersistentMessage is used for periodical messages to prevent
unnecessary heap operations. Messages are identified by ID. Custom message classes can contain data
members.

Physical simulation, graphical rendering, input sampling and communication are all fashioned in a cyclical
manner. Every now and then these cycles need to stop and share the generated data. This required barrier
synchronization which as in all multi-threaded games is periodical and under optimal conditions constant.
We achieved this by making use of the heartbeat pattern. The most idle thread – the “Network” thread – is
designated to emit the HeartBeatMessage every frame. Upon receiving this message, each producer begins
its calculation.

4.2.4 Reader and Writer

The application contains a root synchronization structure called GameData. All shared structures are placed
inside as members. All members are required to provide the Bufferable interface. Reader and writer
accessors are provided at the root level of the data structure. GameData is a core structure and wraps all
data operations. Each operation is executed by locating the target structure, getting reader and writer
accessors instances by using the GetReader and GetWriter methods. Ideally, no data are accessed directly.
It is our goal to enforce a common pattern in shared data manipulation. The GameData class serves as an
adapter to all the shared data. This pattern helped us to manipulate data transparently without worrying
about threading problems.

Usage is fashioned accordingly:

1. HeartBeatMessage is emitted by the threading core.

2. GameHeartBeatMessage is sent to each registered module.

3. Module asks for the Writer interface by calling StartWork.

4. Module finishes its calculation and calls EndWork.

5. GameData recognizes when all modules have finished and there are no readers present, and swaps the
frames.

6. Module threads sleep until a new message arrives.

The reader interface can be invoked at any time and the usage of this interface is assumed/designed to be for
a short period only. This interface is used by every thread to process inputs and Graphics thread to reflect
data into graphics engine.

HeartBeatMessage and GameHeartBeatMessage are used to control game computation. HeartBeatMessage
is a core part of the Thread class and is localized to one thread only. If the core classes were to be reused,
it could used as a standard message-based timer. GameHeartBeatMessage is a specialized part of the game.

16

All modules execute calculations upon receiving this message. It is being emitted only after all modules are
loaded. Basically GameHeartBeatMessage is a multiplexed version (thread-wise) of HeartBeatMessage with
frame timing data.

4.2.5 Structures

GameData data members use these structures:

• BufferedValue<T,R,W> - single structure.

• BufferedList<T,R,W> - indexed list.

• BufferedMap<K,V,R,W> - ordered map with key lookup.

R and W point to types used for read and write access to the item itself. T and V need to provide the
T *Clone() and Update(T &_source) member functions.

Structures are swapped automatically when at the right time. Collections require additional locking (provided
transparently by the structure) when new items are added. Adding items is not done directly. New items
are appended to an auxiliary list. The next swap joins these items with the collection itself. Collections
provide a vector adding function AddItems to avoid multiple sequenced locking and unlocking. In the whole
game, no two different modules add the same object to a single collection. Therefore we do not have to solve
the duplicated keys issue in map collection. Added items are not visible until the next frame.

Deletion is flag based. Items that are no longer needed will have their to-be-deleted flag set. Items stay
active until the next swap occurs. During frame swap, flagged items are removed from the structure and
deleted.

The mechanism guarantees that collections stay unchanged and correct (from the iterator’s point of view)
and changes to the collection do not cause thread blocking, ie. iterations over the collection do not need a
lock.

Collections provide reader and writer iterators. Generally, all data should be read only from reader iterators
and written to write iterators. There are however breaches of this rule is several places. Since it is mostly
related to data that do not change during life cycle of an object (reading from a writer), we tolerate these
exceptions.

17

Reader and writer iterator usage example:

BufferedList <

Data:: GraphicMenuAction ,

Data:: GraphicMenuActionReader ,

Data:: GraphicMenuActionWriter

>:: ReadIterator action_r = _reader.GraphicMenuActions.Begin ();

BufferedList <

Data:: GraphicMenuAction ,

Data:: GraphicMenuActionReader ,

Data:: GraphicMenuActionWriter

>:: WriteIterator action_w = _writer.GraphicMenuActions.Begin ();

/* ... */

while(

action_r != _reader.GraphicMenuActions.End()

&& action_w != _writer.GraphicMenuActions.End()

)

{

switch(action_r ->Type)

{

/* ... */

}

action_w.SetToBeDeleted ();

++ action_r;

++ action_w;

}

/* ... */

Structures are strongly typed and implemented using templates. Most of the target structures use helper
macros for common implementations of the required interface. Target structure can provide custom reader
and writer accessors. When not applicable, plain pointers are provided to access the data.

• FS_BUFFERABLE macro - adds plain pointer interface for GetReader and GetWriter, Update uses
operator=, Clone uses copy constructor.

• FS_BUFFERABLE_EX macro - Update uses operator=, Clone uses copy constructor.

• no macro - used when Update needs custom handling or post processing (see AirplaneGameFrameEn-

tity).

It is also worth to mention that classes used in GameData members are forward declared. This was done
mid-way when game recompilation times became an issue. GameData interface remained unchanged, but R

and W template arguments were necessary.

4.2.6 Swap and swap chain

Swap is a barrier synchronization primitive. During a swap only one thread (although it might be a different
thread every time) is awake and it is guaranteed that there are no unreleased readers and writers. Routines

18

executed during the swap have full access to all shared structures. Game modules can register ordered swap
hooks during game start-up. They are used for menu and logic actions processing, user input processing,
game consoles update and debugging purposes.

Currently the game has the following swap hooks:

• 01input - polling user keyboard and mouse input.

• 02graphics - graphical console refreshing, applying menu actions, frame related debug output.

• 03logic - applying menu events.

Since this mechanism has a very high risk of misuse, we tried to limit the amount of code executed during
swap to the minimum. However, it was very useful for identifying concurrency-related bugs. If some new
feature caused problems, we could check easily if the problem is thread-related by moving it to the swap
hook.

The swap hook is implemented in Module subclasses. Each module can provide a virtual function and register
the module with a swap hook key into GameData structure. Upon every swap, the swap hooks are executed
in ascending order by key .

void GameLogicModule :: SwapHook(const SwapHookKey&, const GameData :: Reader

&_reader , GameData :: Writer &_writer)

{

/* ... */

}

A module can be registered multiple times with different swap hook keys and execute different actions
depending on the current ordinal position of the swap hook. Both the reader and writer interfaces are fully
available.

4.2.7 Messages in detail

Message classes can be divided into abstract (DiscardableMessage, Message, ModuleLoadFinishMessage,
ModuleLoadUpdateMessage, ModuleLoadStartMessage, PersistentMessage, ThreadInitMessage, Thread-
QuitMessage) and final groups (the rest).

Each message has its own ID listed in an enumeration in the Message class. If message is required to hold
additional data, it has to be subclassed. If not, only the registration of a new ID is required. Messages can be
sent using the PostMessage method of Thread or Module (thread associated to the module) classes. Message
processing starts by overloading the ProcessMessage method of the Thread derived class. The messages
than fall through the modules registered with the thread. The return value of Module::ProcessMessage
tells you whether the message has been processed. If no-one consumes the message, an assert is triggered.
This is considered to be a logical error. In that case, the message has been sent to the wrong thread or
module, or its processing not implemented at all.

Sending of discardable messages:

graphicsThread.PostMessage (* fs_new ThreadInitMessage ());

19

Sending of persistent messages:

typedef std::pair <const Module*, GameHeartBeatMessage*> Registration;

typedef std::list <Registration > RegistrationList;

for (RegistrationList :: const_iterator reg = this ->m_registrations.begin(); reg

!= this ->m_registrations.end(); ++reg)

{

reg ->second ->UpdateFrameTimeDifference(diff);

reg ->first ->PostMessage (*(reg ->second));

}

The second mechanism is used mainly for loading and game heart beat. However, it is used only sparsely.

20

4.3 Menu

4.3.1 Concepts

Before the game starts, the player has to configure the game options and career options. This is usually
done in the game’s menu. According to Internet discussion forums and due to personal recommendations,
we chose CEGUI [2] as our menu system. This choice was confirmed by our initial tests, although usability
problems appeared at a later development stage.

4.3.2 Implementation

CEGUI subroutines can only be called by the graphical thread. Control logic is centred inside the GameLo-

gicModule which runs in the NetworkThread.

Since our synchronization model didn’t match the requirements of the GUI subsystem, the event model was
used. All events are handled by instances of the GraphicMenuAction and LogicMenuAction classes.

GraphicMenuAction handles GUI changes such as layout loading and setting of widget properties. Logic-

MenuAction serializes UI event data to be processed by menu layout handlers. Each widget layout has its
own subclass of the MenuHandler class and a CEGUI layout file. The class reimplements categorized event
handlers, while the base class providers routines for handler registration.

Layout loading and GUI setup takes place in GameLogicMenu. CEGUI itself contains a renderer for Ogre3D,
but since we patched Ogre3D and broke the binary compatibility, renderer code got included in the project.
The renderer still follows the standard interfaces and is not patched.

4.3.3 Handlers and actions

The Menu class handles handler registration and wraps CEGUI window objects. Each CEGUI layout has
its own MenuHandler subclass, which is instantiated upon game initialization in Menu::LoadLayouts. The
subclass then loads layout resources and, using virtual functions, provides event handler sinks. Each layout
window (control) must subscribe to its corresponding events. This is done in the subclass’ constructor.
Currently, we support the following events:

• ButtonClicked handles CEGUI::PushButton::EventClicked.

• TextChanged handles CEGUI::Editbox::EventTextChanged.

• ListSelectionAccepted handles CEGUI::Combobox::EventListSelectionAccepted.

• SelectionChanged handles CEGUI::Listbox::EventSelectionChanged.

• CheckboxChanged handles CEGUI::Checkbox::EventCheckStateChanged.

• SliderChanged handles CEGUI::Slider::EventValueChanged.

• ScrollPositionChanged handles CEGUI::Scrollbar::EventScrollPositionChanged.

The GUI is set up and controlled from GameLogicModule by GraphicMenuAction. This structure holds all
the necessary data to configure the desired CEGUI window. All layouts are loaded only once, at start-up,
and we use only hiding and activating to alter the GUI appearance as needed. This requires a complete reset
of all layout controls, since the previous chain of game states may have left it in an inconsistent state. We
support the following actions:

21

• HideLayoutAction - hides current layout, returns display back to game.

• LoadLayoutAction - shows layout, hides the old, if any.

• UpdateProgressBarAction - sets the data of a CEGUI::ProgressBar.

• ComboboxUpdateAction - sets the data of a CEGUI::Combobox.

• ListboxClearAction - clears a CEGUI::Listbox.

• ListboxUpdateAction - sets the data of a CEGUI::Listbox.

• EditboxUpdateAction - sets the data of a CEGUI::Editbox.

• CheckboxUpdateAction - sets the data of a CEGUI::Checkbox.

• SliderUpdateAction - sets the data of a CEGUI::Slider.

• ScrollPositionUpdateAction - sets the data of a CEGUI::Scrollbar.

• SetStaticTextAction - updates text of a CEGUI:Window; this property is fairly common and has
different uses depending on the subclass.

• SetVisibilityAction - hides or shows a CEGUI:Window.

• SetDisabledAction - enables or disables a CEGUI:Window.

• SetComboSelectionAction - changes selection of a CEGUI:Combobox.

• MultiColumnListUpdateAction - load all data for a CEGUI::MultiColumnList.

22

4.4 Game logic

A game’s most important quality is it’s playability and enjoyability. The means to make a game playable
and enjoyable are defined by a game design document (which was stored in our DokuWiki, had been lost
during the crash of the urtax server, and is basically irreproducible); the most immediate implementation
of a game design document, in turn, is the game logic. Since game design is not an exact science, many
decisions are based on gut feeling or on a short survey amongst other developers and potential players.

As a game gets implemented, it’s design evolves along with it. On one hand, changes that invalidate parts of
the architecture have to be made to avoid unexpected gameplay pitfalls, on the other hand, the design has
to change to accommodate the project’s schedule and avoid features that turned out (as opposed to their
perceived difficulty during the design phase) to be too difficult to implement given their gameplay merit.

4.4.1 Logical entities

There are several logical entities within the game (we will refer to them as entities in this chapter) that play
the role of various real-life concepts and objects. We believe that terms such as Pilot, Airfield, Airplane-
Type, Nation, Side (a group of nations), Award (military medal), Rank (military rank) do not need further
explanation. Of the other terms, a Squadron is a logical group of pilots, roughly equivalent to, for example,
a sports team; a Front defines the geographical position of the front at a point in time; News defines a piece
of text that will be shown at some point during the war; finally, a Period defines the properties of a timespan
during the war. The relationships between the entities are given in Figure 3.

Some of the entities have parameters that change over time. The front’s position or a pilot’s assignment to
a squadron are good examples.

Pilot Side

Nation

AirplaneType

Airfield

fights for 1

is managed by 1

Squadron

assigned to 1

stationed at 1

is flown as a default by N

is awarded by 1
Award

Rank

is manufactured by 1

Figure 3: Selected entities and their relationships. Relationships in italics change with time.

There are four airplane roles (see AirplaneRole) currently distinguished, namely a fighter airplane, a bomber
airplane, a balloon and a Zeppelin; out of these, only the fighters and the bombers are currently present in
the game.

Strong Types Because of the large number of various IDs present in the game and the possible bugs that
would stem from the eventual mix-up of the various IDs, it has been decided that strong types have to be
introduced for some of the IDs, namely those where the meaning of the respective IDs is rather similar, such
as the ID of an airplane as opposed to the ID of an airplane’s type. Specifically, the following strong types
were introduced: PilotId, AirportId, SquadronId, AirplaneId, and AirplaneTypeId.

23

Each strong type acts as a wrapper for an integral ID value. It allows for automatic conversion to an integer,
but an explicit cast is needed for re-assignment.

Implementation Each entity and each time-dependent relationship is defined in its own class. The 1:1
relationships are usually defined as references within those classes. All of those entities are managed with the
Entities class, which can be accessed using the Globals::GetEntites method. The Entities class’ calls
are re-entrant and thread safe once the class has been initialized. This is due to the fact that the interface
provides, with the exception of the initialization code, read-only functions.

Because the Entities class acts as the game’s a database, a lot of effort has been made to make all the
information contained in it easily accessible. The basic getters such as GetPilot return a class who’s members
are cross-references to other classes. For example, getting a pilot’s nationality string can easily be done using
the following piece of code:

std:: string pilotsNation(

Globals :: GetEntites ().GetPilot(pilotId).Nation.ID

);

where Nation is a reference to the nation class, and ID is the nation class’ identification number.

The more difficult queries return a list of results, as does, for example the GetSquadronsAtDate function.
Each result is then a specialized type containing all the information deemed relevant to the query in question.

4.4.2 Mission

The gameplay is divided into missions. There are five mission types available in the game (see GameSubType):

1. Ace dogfight - a one-on-one encounter with a famous pilot from the past.

2. Squadron dogfight - a squadron vs. squadron encounter.

3. Bombarder escort - the player’s squadron escorts a squadron of friendly bombers. The goal is to
prevent them from being shot down by the enemy squadron.

4. Bombarder raid - the player’s squadron should primarily stop the enemy bombers and possibly also
their escort squadron.

5. Patrol the front - similar to the squadron dogfight, the player is supposed to fly along the front and
shoot down any enemy airplanes he encounters.

In a mission, one fighter squadron from each side and, depending on mission type, at most one bomber
squadron get generated. Before the mission starts, and depending on the mission type, a path for each of
the sides is generated and the squadrons are placed near the beginning of those paths.

Each mission’s paths are only generated in 2D, being converted to 3D when the airplanes’ positions are
initialized. The path generation is parametrized by the time relative to the mission’s start at which the two
sides are to meet.

The airplanes’ relative positions are defined by a formation (see GameFormation). It is not enough to just
generate the positions at the beginning, the relative offsets (see ComputePathOffset) to the centre of the
formation need to be passed (see the constructor of AirplaneGameFrameEntity) to the AI so that it can
maintain the formation’s shape. There is no other explicit formation information, since only one fighter

24

(a) Line abreast (b) Line astern (c) Echoleon (d) Vee Wing

Figure 4: Airplane formations supported by the game. The arrow shows the flight direction of one of the
airplanes.

squadron is present for each side and the eventual bomber squadron doesn’t engage in combat, therefore
never leaves the formation in the first place.

Once the mission starts, the game logic keeps track of the current state of the mission, eventually deciding
the ending criteria were met and ending the mission. Depending on the mission type, the ending criteria
vary. For example, the bombardier raid mission ends when all enemy bombers have been shot down. Even
if the end criteria are met, the player is allowed to choose whether he wants to continue playing the mission
or whether to return to the menu (under the condition that there are enemy airplanes left).

The end of the mission is determined by the HasMissionEnded function, which returns the MissionEndInfo

class. The MissionEndInfo class encapsulates the mission end information such as whether the mission
can continue (”if the end criteria for the mission type have been met, are there still enemy airplanes to
shoot down?”), what the cause of the mission’s end is (see MissionEndCause), etc. Because of the Read-
er/Writer paradigm, the information is propagated in the Mission::m_endInfo member variable (set using
SetMissionEndInfo and queried using GetMissionEndInfo).

While there are several pre-defined mission end causes (see the MissionEndCause enumeration), the currently
used ones are MissionEndSuccess (mission criteria have been met), MissionEndFailure, MissionEndTime
(mission time ran out), MissionEndAbandoned (the player abandoned the mission), and MissionEndDeath

(the player died).

Three stages of death are recognized (see Figure 3). The first one (see RegisterPlayerWillDie) means that
the pilot is bound to die sooner or later; aside from the obvious PilotId of the pilot who “will die” soon,
the function takes an optional parameter specifying the killer’s PilotId. The second stage of death (see
RegisterPlayerHasDied) specifies that the player has already died, usually by hitting the ground too hard
or by getting hit by a bullet directly. The final stage of death is when the player’s wreck gets deleted from
the game (see RegisterWreckRemoved).

Will die Has Died Wreck RemovedHealthy

Figure 5: The three stages of death and their ordering. Note that the healthy stage is not explicitly
represented in the game.

The above mentioned methods are called by the physics module. It is assumed that if one of them is called,
all the preceding stages’ methods have already been called. Without calling the RegisterPlayerWillDie,
no information about who shot down which airplane would exist. But should this callback be removed, an
airplane could be heading uncontrollably towards the ground, implicating the pilot will get killed in the
process. Yet if they player quit the game before the impact happened, the kill would not get registered. If
the player dies, we want the user to be able to view the smoking wreckage for a short while before going

25

back to the menu. Therefore, we schedule the (human) player’s wreck to get removed much sooner than
the AI wrecks, ending the game once it has been removed, hence the need to register the wreck removal
(RegisterWreckRemoved). But since the AI wrecks remain on the ground for several minutes, it’s not prac-
tical to use this information to count the number of remaining enemies. Therefore, RegisterPlayerHasDied
had to be introduced. Once all AI pilots ”have died”, the mission can safely end, and the eventual shock-
menu effect (caused by using the ”will die” level, which gets triggered as soon as the AI is bound to die) as
well as the no-menu effect (caused by the logic waiting for all AI wrecks to disappear) is avoided.

Score The missions score is calculated (see GetMissionScore) using the following formula:

s = c · (10 ·Nfighters + 8 ·Nbombers)

where s is the final score, Nfighters is the number of fighter airplanes the user shot down, Nbombers is the
number of bomber airplanes the user shot down, and

c =

{
0.7 mission’s goals weren’t achieved
1.6 mission’s goals were achieved

This score model is rather simple. It could be greatly improved by taking the total number of shot down
enemy airplanes and other statistics into account.

4.4.3 Career

The career mode is a a game mode built over the regular mission. By adding a sense of continuity and
the ability to develop his/her own career, the user should get more engaged in the game than in the single
mission mode.

Military ranks and military awards are one of the player’s main motivations. A record of the user’s achieve-
ments is kept throughout the career. The more successful the user gets, the higher rank he’ll attain
(AttainedRank) and the more prestigious awards he’ll receive (checked in OpenDebriefing).

The career mode keeps track of current date (m_date member in Career class, where the whole career mode
is implemented) to know where between the career mode’s beginning and end (see Section B.1) the user
currently is. After each mission, as well as at the beginning of each career, the number of days to elapse until
next mission and the next mission’s parameters (type, formation, number of friendly and enemy airplanes,
etc.; see PlanNextMission) are generated.

A list of famous pilots (aces), along with their dates of deaths, is loaded into the entities. Some of them died
during the war, and some of them might have been shot down by the user. A list of aces that are still alive
is therefore kept (in m_acesAlive) and updated after each mission, deleting both aces that have been shot
down in the game as well as the aces that during that period of time. Those will no longer be scheduled to
fly mission with or against the player.

The user is always assigned to one of the squadrons. Depending on his rank, he can either be transferred
without his own consent, or request transfer to one of the other squadrons himself. The squadrons’ assignment
to airfields, as well as airfield position, can (and if defined so in the datafile, will) change over time.

26

4.5 Graphics

The graphical subsystem is an important part of any computer game. It is responsible for the visual
presentation and appearance of the game environment. Graphics, along with an intriguing gameplay, is
the most significant factor that attracts players’ attention. Since our game has been planned as a realistic
combat flight simulator, we have tried to make it look as realistically as possible with the limited resources
we had at our disposal.

Figure 6: Screenshots from Flying Samurai.

Figure 6 lists a few screenshots from the game. Some of the graphical effects included in the game can
be seen there, such as terrain rendering using texture splatting, large forests, approximative sky scattering,
particle effects such as smoke and bullets, clouds (unfortunately not volumetric ones), or fullscreen effects
like HDR rendering, tunnel vision and aiming cross-hair.

The cornerstone of our graphical subsystem is the Ogre3D graphics engine [19]. Ogre3D is an open source
project, that is quite established in its large community, which was the main reason why we chose it. From
a technical point of view, its architecture is quite well thought through and it is very stable, considering it is
an open source project. The main problem of Ogre3D is the fact that it is a general graphical engine, usable
a for wide spectrum of 3D applications ranging from games to 3D editors. This is actually a slight downside
for us, as it can’t match a narrowly specialized game engine in terms of performance. But this is something
we weren’t even expecting from it. There is also quite a number of plugins for Ogre3D, which enhance
its capabilities. From these, we are using Myrddin Landscape Plugin [18] (MLP) for terrain rendering (see
Section 4.5.3 for details), PagedGeometry Engine [22] for rendering of large batches of static geometry (see
Section 4.5.4), HDRlib plugin [11] which provides HDR rendering capabilities and CEGUI library [2] for
displaying GUI components. Since these plugins are developed by Ogre3D users who haven’t participated on
its core development, the stability of these plugins is usually not as good anymore. This has been problematic
mainly for MLP (partly because it’s still in its beta version) and CEGUI, and not so much for the other two.

The graphical subsystem in Flying Samurai is accessed through theGraphicsModule class, which is also its
core part. Since graphical subsystem is a tightly grouped part of the game, there is a quite low number of
other classes associated with the GraphicsModule class. The workflow of GraphicsModule’s functionality
has two major parts – translation of shared game structures into graphical representation and rendering
(display) of this representation. At the beginning of each frame, GraphicsModule locks and reads (see
Section 4.2) the shared internal game structures which contain information about game entities and updates
their graphical representation accordingly. Then Ogre3D’s rendering pipeline is invoked and one graphical
frame is rendered based on this graphical representation of the game scene.

The following sections describe the most significant aspects of Flying Samurai’s graphical subsystem: Sec-
tion 4.5.1 describes the structure of the scene graph, Section 4.5.2 contains the description of airplane
meshes, Section 4.5.3 describes how the terrain is modelled and rendered, Section 4.5.4 explains the struc-
ture of classes that handle static geometry in the game, Section 4.5.5 explains the functionality and structure

27

of the in-game HUD, Section 4.5.6 mentions some special effects in the game, Section 4.5.7 says a few words
about camera control in Flying Samurai and Section 4.5.8 briefly describes our GUID system.

4.5.1 Scene graph

Scene graph is a basal data structure which represents an abstract structure of the scene and the hierarchical
relations of objects in it. Scene graph is composed of nodes which form a tree; each node can have an arbitrary
number of children. Some of the nodes also attach various movable objects called ‘entities’ (according to
Ogre3D’s terminology – these are not the same entities as logical entities described in Section 4.4.1). These
represent renderable objects in the scene. Each node (not just leaf nodes) can have one or more entities
attached to itself. The hierarchy in the scene has not only some abstract purpose, but also represents a
hierarchy of objects transformations, which are concatenated during the descent in the scene graph. Each
node has a certain position in the world space, which also determines the position of the attached entities
(where they will be rendered). When the scene is about to be rendered, the Ogre3D engine traverses the
scene graph and renders those parts of it, which are currently visible to the camera (visibility culling) and
are not marked as invisible (which is possible and reasonable in some situations).

Root Scene Node

Scene graph substructure created by
‘ airplanes’ node ‘ bullets’ node

‘bullet[bullet id]’ node

‘bulletribbontrail[bullet id]’ node

‘bulletbillboard[bullet id]’ entity

‘bulletribbontrail[bullet id]’ entity

1:N

1:N

‘[airplane name][airplane id]’ node

‘[airplane name][airplane id] body’ entity

‘[airplane name][airplane id] [submesh name]’ node

‘[airplane name][airplane id] [submesh name]’ entity

1:N

1:N

MLP and PagedGeometry

‘[airplane name][airplane id] SmokeTrail’ node

‘[airplane name][airplane id] SmokeTrail’ entity

‘[airplane name][airplane id] Flag’ node

‘[airplane name][airplane id] Flag’ entity

Figure 7: Structure of the main scene graph.

Our scene in Flying Samurai contains four basic object types (except for some auxiliary geometry). These
are terrain tiles (Section 4.5.3), static scene geometry (Section 4.5.4), airplanes and bullets. See Figure 7 for
the schematic depiction of the scene graph structure.

Terrain renderables and static scene geometry (trees and houses) are managed by third party Ogre3D plugins
(namely Myrddin Landscape Plugin [18] and PagedGeometry Engine [22]). These create and manage their
own scene graph structure attached to the root scene node. We won’t go into detail here, because we don’t
have any control over this part of the scene graph.

28

Airplanes are the key objects in our scene. For these we have a special ‘_airplanes’ node, to which all
active airplanes are attached (so we can easily iterate over them). Every airplane has its own node marked
by its unique ID (as all nodes in the scene graph must have unique names). To this node the main ‘_body’

submesh is attached, as it has zero translation in respect to the airplane’s position. The rest of the airplane’s
submeshes (see Section 4.5.2 for the enumeration of all submeshes the airplane can have) is attached to the
airplane’s body via their respective nodes suffixed ‘_[submesh name]’. The reason why certain parts of the
airplane are decoupled from its body is either they need to be animated (ailerons, propeller etc.) or because
the physics module needs to load them separately for physical simulation (such as wings or pilot cage). Two
more nodes are attached to the main airplane node and these are the ‘_SmokeTrail’ node/entity which
represent the smoke system activated when the airplane is damaged and the ‘_Flag’ node/entity, which
represent an overhead sign that marks which side of the conflict a particular airplane belongs to.

The last group of objects are bullets. They again have their own ‘_bullets’ node for easy iteration over
them. A bullet is represented by 2 nodes – its main ‘bullet’ node marked by an unique bullet ID and the
‘bulletribbontrail’ node. The main node has a flare billboard marking the bullet position attached and
along with the second node, they also have the bullet ribbon trail attached (which represents a smoke trace
behind the bullet and has to be attached to two scene nodes).

4.5.2 Airplane meshes

windshield

wheel_right_n

rudder_n

pilot_cage

machinegun_n

propeller_n

wheel_left_n rotary_engine_n

wheel_left_n
wheel_right_n

wing_right wing_left

aileron_right_n aileron_left_n
engine_block

pilot_cage

engine_block

elevator

body

wheel_right_axis_n wheel_left_axis_n

rudder_axis_n

engine_axis_n

engine_axis_n

wheel_left_axis_n

wheel_right_axis_n

elevator_axis

aileron_right_axis_n

aileron_left_axis_n

gun_barrel_point_n

smoke_emitter_point_n

Figure 8: Subdivision scheme of an airplane mesh, part one.

29

Airplanes are graphically represented by mesh models which are attached to their corresponding scene nodes
as described in Section 4.5.1. These meshes are further subdivided into smaller submeshes, for two reasons:
either they need to be animated or they are important or vulnerable parts of an airplane and thus have to
be loaded separately by the physical module (or both). This section describes general rules about how an
airplane model should be subdivided into these submeshes and their naming conventions (which is sort of
overlapping with Section F, but conceptually it belongs here, because there’s a direct connection between
scene graph structure and airplane submeshes).

windshield

wheel_right_n

rudder_n

pilot_cage

machinegun_n

propeller_n

wheel_left_n rotary_engine_n

wheel_left_n
wheel_right_n

wing_right wing_left

aileron_right_n aileron_left_n
engine_block

pilot_cage

engine_block

elevator

body

wheel_right_axis_n wheel_left_axis_n

rudder_axis_n

engine_axis_n

engine_axis_n

wheel_left_axis_n

wheel_right_axis_n

elevator_axis

aileron_right_axis_n

aileron_left_axis_n

gun_barrel_point_n

smoke_emitter_point_n

Figure 9: Subdivision scheme of an airplane mesh, part two.

Figures 8 and 9 show an example airplane (Fokker E III) with all submeshes marked by coloured boxes
and their corresponding labels. Colours of the boxes don’t have any meaning, they are there just for better
distinction. Purple labels mark invisible auxiliary geometry, as explained below. If a label has a light-blue
background, it means that the corresponding mesh is not present on all airplanes (e.g. not all airplanes
were actually armed with a machinegun). If a label contains suffix ‘_n’, it means that there can be more

30

instances of that mesh type on a particular airplane (e.g. some airplanes had more than one machinegun)
– the n is then an integer value, starting from 0. Some submeshes don’t have this suffix, even though there
can be more of them, but in that case they can be joined into one submesh, because they don’t need to be
animated and the physical module doesn’t need to distinguish between them (for instance, there can be more
engine blocks, but the physics don’t need to know which one was hit, just that any of them was). The names
on the labels correspond only to the [submesh name] part in Figure 7, the submesh files in the respective
airplane directory have to be moreover prefixed with [ariplane name]_.

The data which describe one complete airplane are these: a set of .mesh files, which represent their respective
submeshes, three textures in .dds format (see Section F) and one .scene file. This file is generated by a
.mesh file exporter and describes relative spatial positions of all submeshes in local coordinate system. The
format is described in [6], but we utilize only the name, position and scale attributes. The GraphicsModule
class loads and reads this file manually (i.e. we don’t use any of the available plugins for it). All subnodes
of the main airplane node are positioned based on the values in this file.

Normal meshes Normal meshes are visible renderable solid parts of an airplane.

• aileron_left_n (not present on all airplanes, animated)
Flight control part, controls airplane rolling. Each left wing can have one, but some older aircrafts
used different methods for rolling (‘wing shearing’).

• aileron_right_n (not present on all airplanes, animated)
Same as the previous, but on the right wings.

• body (present on all airplanes)
Root airplane mesh, always has zero offset in local coordinate system and is attached to the main
airplane node.

• elevator (present on all airplanes, animated)
Flight control part, controls airplane pitching.

• engine_block (present on all airplanes, special collision body)
Encapsulates airplane engine(s). More vulnerable than the most of the airplane.

• machinegun_n (not present on all airplanes, special collision body)
Airplane’s primary weapon. More vulnerable than the most of the airplane (but there’s a very low
probability of hitting it).

• pilot (present on all airplanes, special collision body)
Pilot’s body, not drawn on the schemes. Extremely vulnerable.

• pilot_cage (present on all airplanes, special collision body)
Basically the outer cockpit bounds. Very vulnerable, because it is easily penetrated by bullets, which
then reach the pilot.

• propeller_n (present on all airplanes, animated)
Airplane’s propelling device. There can be more engines one a single airplane, and therefore also more
propellers.

• rotary_engine_n (not present on all airplanes, animated)
Rotary engines were special types of engines, which rotated on a fixed shaft with the same angular
speed as the propeller (for sake of an efficient cooling). This allowed an engine to be much lighter, as
it didn’t need a heatsink. However, this caused the airplane to constantly roll to one side, so the pilot
had to compensate for it.

31

• rudder_n (present on all airplanes, animated)
Flight control part, controls airplane yawing. There can be more of them for higher yawing performance.

• wheel_left_n (present on all airplanes, animated)
Wheel which is in contact with the ground during takeoff and landing.

• wheel_right_n (present on all airplanes, animated)
Same as the previous, but on the right side of the fuselage.

• windshield (not present on all airplanes, different material)
Cockpit windshield, not every airplane had one.

• wing_left (present on all airplanes, special collision body)
Joined left wings (some places had 2 or 3 main wings). Susceptible to damage, which can change the
airplane lift, causing it to roll to one side.

• wing_right (present on all airplanes, special collision body)
Same as the previous, but on the right side of the airplane.

Auxiliary meshes Auxiliary meshes, as the name suggests, serve as helper objects to the normal meshes.
Apart from the normal meshes, these are neither visible, nor are they part of the scene graph. We have two
kinds of auxiliary meshes: axes and points. Axes serve as anchors for their respective submeshes, which rotate
around them during the animation. We chose this representation of submesh rotation axis over utilization of
the quaternion attribute in the .scene file, because it’s more intuitive for artists to place and align these
additional meshes. Points mark some important places on the airplane model.

Axes:

origin

direction

origin

direction

Points: position

position

position

Figure 10: Proxy geometry representation scheme.

The construction of these meta-objects is very simple, and is sketched on Figure 10. Axes are constructed
by placing a triangle into the scene in a modelling application, and two of the points are collapsing onto the

32

same place. Now they form a vector – the game detects the two collapsed points as being next to each other
and marks them as the origin of the vector; the third point then determines the direction of this vector.
This vector is then normalized and serves as a rotation axis for the respective submesh. It’s important not
to misplace them during the modelling, as the rotation won’t behave well anymore. It’s also necessary that
they are oriented as shown on Figure 10, otherwise the rotation will be reversed. Points are constructed
similarly – all vertices of a triangle or quad are collapsed and this collapsed primitive is then placed onto
the intended place on the airplane model.

• aileron_left_axis_n (not present on all airplanes)
Left aileron rotation axis. There can be more of them, as there can be more left ailerons on the same
airplane.

• aileron_right_axis_n (not present on all airplanes)
Same as the previous, only on the right wing.

• elevator_axis (present on all airplanes)
Elevator rotation axis.

• engine_axis_n (present on all airplanes)
Rotation axis for the propeller and for the rotary engine, if present.

• gun_barrel_point_n (not present on all airplanes)
This point marks the tip of its corresponding machinegun; the game uses this point to initialize newly
shot bullet’s position.

• rudder_axis_n (present on all airplanes)
Rudder rotation axis.

• smoke_emitter_point_n (present on all airplanes)
Placed into the centre of an engine, this point marks the position where the smoke system indicating
airplane damage is placed.

• wheel_left_axis_n (present on all airplanes)
Left wheel rotation axis.

• wheel_right_axis_n (present on all airplanes)
Right wheel rotation axis.

4.5.3 Terrain

The terrain is one of the most significant parts of the graphical content in our game. In order to cover the
entire area involved in the aerospace combat during the World War I. (see Figure 11), we use data spanning
roughly an area of 450km by 450km. These data include terrain geometry, splatting maps and textures,
trees and houses. For the description of the workflow for creating and processing these data, and getting
them into the game engine, please refer to Appendix D.

Terrain geometry The terrain is represented by heightmaps, which is one of the standard methods to
represent terrain geometry (see [12] for instance). We use realistic heightmap data for the involved region
obtained from Google Earth [9]. These heightmap data are divided into an array of 32×32 tiles (pages), and
each of the tiles has the resolution of 5132. Given the size of the region, this is equivalent to approximately
one heightmap sample per 25 meters, which is more than sufficient for use in a flight simulator, where the
terrain is viewed mostly from distance. The heightmap tiles are stored as little endian .raw files (named
hf_hm_[x]_[y].raw) using 16 bits per sample.

33

Figure 11: The area spanned by our terrain. In the upper right corner, the corresponding downscaled
heightmap can be seen.

Splatting data Splatting [1, 8] is a technique to texture and colour virtual terrains, and is especially
suitable for large terrains, where storing high resolution textures for the entire terrain would easily lead
to tens of gigabytes of texture data. In short, splatting uses splatting maps (masks) with relatively small
resolution, where each of the masking layer corresponds to one type of surface material and then a set of
several per-material textures, which are tiled across the entire terrain and their contribution is controlled by
the splatting masks. Thanks to the interpolation between the layers and between samples, the transitions
between different materials are smooth, and the use of tiled textures provides the terrain with details.
Figure 12 shows a screenshot from our game, showing the terrain textured by splatting.

We use 32×32 splatting maps (so there’s a 1:1 correspondence with the heightmap tiles), each having the
resolution of 10252. Each tile is represented by two 4-channel .tga files (named hf_sm[i]_[x]_[y].tga,
where [i] is either 0 or 1); each of the eight channels corresponds to one type of surface material, except
the last one, which we don’t utilize. Therefore we operate with 7 splatting layers, which correspond to the
following types of surfaces (the correspondence to the concrete channels in the splatting textures is marked
by L0 and L1 (the first and the second file from the pair) and R, G, B and A (red, green, blue and alpha
channel in the files)): 2 different types of grass (L0R, L0G), rock (L0B), forest (L1G), snow (L0A), field
(L1B) and roads (L1R). These data are generated from the heightmaps, partially by the L3DT software [16]
and partially by our own tool CityGen (see Appendices D and I for the description of CityGen and the

34

Figure 12: Splatting in Flying Samurai (grass, rock, field and road layers are present).

terrain generation pipeline).

Trees and houses These are static objects placed on the terrain to enhance richness of the game envi-
ronment. They are thoroughly described in Section 4.5.4.

For rendering the terrain we use the Myrddin Landscape Plugin [18] (MLP) for Ogre3D engine. It is an
implementation of SceneManager class of Ogre3D designed for rendering large terrains. It implements paging
and Level-of-Detail capabilities, which are both essential for rendering terrains of sizes comparable to ours.
However, in spite of being designed for large terrains, the author haven’t designed it for terrains spanning
several hundred of kilometers, and as a consequence of that we had problems with numerical accuracy, for
instance from close views the terrain is slightly shaking. The stability of this plugin is also not very good, as
it is currently only in the beta version and the author has abandoned the project some time ago. Integration
of MLP into Ogre3D was not very smooth too, mainly because of its complicated configuration. Still, we
kept using it, because it is the only viable terrain rendering plugin for Ogre3D engine (we have also tried
Paging Landscape Manager 2, which performed terribly and had severe stability problems. We have also
considered writing our own terrain rendering system, but implementation of all capabilities we need would
take much more time, than integration of MLP and overcoming of the problems with it).

MLP is capable of paged loading of the terrain elevation and splatting data, and of rendering the terrain
based on these data in real-time. It also provides us with some miscellaneous features, such as approximative
sky scattering computation (without clouds), fog rendering and animation of the moving Sun as a directional
light source. All its functionality is configured from the land.xml settings file.

It’s good to mention that we don’t model water surfaces in Flying Samurai. There are multiple reasons for
that. First, we use real terrain data ranging in their altitudes from 0 meters at the seashore up to about
2000 meters in Alpes around Switzerland. This means that the riverbeds are sloped and the lakes would

35

have their water levels in different altitudes, just like in reality. This however is very problematic to tackle
with the currently used methods to model large water bodies (which are in most cases modelled as a single
large water plane at the ocean level) and the MLP plugin don’t support such complicated water bodies
(only the simple single-plane approach). Second, despite our geometry being fine enough for terrain in a
flight simulator, it is still too coarse to account for the shape of most riverbeds, and MLP does not contain
any constraints to mark the rivers, which leads to the problem that rivers are washed out in distance by
Level-of-Detail mechanisms. Since player is focused mostly on the combat during the gameplay, we decided
not to include water surfaces in Flying Samurai.

4.5.4 Static terrain geometry

Static scene geometry comprises objects that are positioned on the terrain and enhance its richness. Flying
Samurai contains two types of static objects – trees and buildings. Rendering these objects is not an easy
task (we have roughly a billion trees and up to a million houses spread over the terrain). For this purpose
we use Paged Geometry Engine (hereinafter PGE) plugin for Ogre3D, which uses advanced techniques such
as geometry paging and instancing to render large portions of static objects. We found PGE to be not only
stable and fast, but also relatively easy to integrate into the game engine. It saved us a lot of time and we
can only recommend it.

Trees Trees are grouped into forests, naturally. Of course, we can’t store positions of each individual tree,
because this would occupy several gigabytes of HDD space at best, considering the number of trees we are
working with. Instead, we use density maps to store local densities of the forests (these maps are generated
from the splatting maps, from the layer L1G that corresponds to forests, see Section 4.5.3). We again have
an array of 32×32 tiles (named tile_[x]_[y].tga), so each tile corresponds to one heightmap tile, similar
to the splatting maps. Each tile is a single-channel .tga file with the resolution of 10242. Each texel of this
map is an 8-bit value ranging from 0 to 1, and corresponds to a particular area with the size of 14×14 meters
on the terrain. The value of 0 means no trees are present on the area corresponding to that particular texel,
and the value of 1 means full tree density for that area. The trees are then randomly generated over this
area and this number is determined simply by 〈texel value〉 · (MaxForestDensity+1), where the value of
MaxForestDensity is obtained from the graphics.cfg configuration file, and is further configurable from the
in-game graphics options.

This approach has some intrinsic limitations. Firstly, it’s not possible to straightforwardly include more types
of trees in the game, since we store only the forest densities. This could be remedied by using density maps
with more than one channel or by determining the forest type according to the terrain elevation. However,
we don’t need to do this, because due to the lack of artistic resources, we have only a single tree at our
disposal, which we randomly scale during the positioning on the terrain to include at least slight variation to
the uniformity of our forests. Secondly, it’s not possible to have solitary trees (for example tree alleys along
the roads) with this approach. This could be done by having a separate storage for these trees, where the
exact positions of such trees would be stored (this is feasible, as the amount of these trees would be only a
fraction of all trees on the terrain). However, due to the lack of time and limited capabilities of our content
generation tool, we don’t currently do this.

The trees themselves are geometrically represented by a single billboard covered with a tree texture. This
is necessary, because the amount of trees in a single frame can reach hundreds of thousands on the highest
settings, which would lead to a severe performance hit if we’d used even a very rudimentary geometrical
representation for each tree. This representation is indeed very rough, but since forests are mostly viewed
from distance, it doesn’t decrease the quality of their appearance in most situations.

36

Buildings Buildings are the basic building blocks of villages and towns. We generate them with our
CityGen tool (see Appendix I). CityGen generates locations of the buildings on the terrain and their rotations,
along with an unique ID, which is understood by the engine and a proper building is placed on the given
position based on this identifier. The list of the generated buildings is then divided into a set of binary files
by our TileCombiner tool (see Appendix D). These files again have a 1:1 correspondence to the heightmap
tiles and contain binary data about the buildings on that particular tile. These are read by the game engine,
which positions the corresponding types of buildings on the terrain in runtime.

Structure of these files is very simple. CityGen produces a single ASCII text file containing the following
four-tuples:

[<building ID> <position X> <position Y> <rotation>]

Each of these four-tuples corresponds to a single building. The TileCombiner tool then creates the array of
32×32 files (named citytile_[x]_[y].bin), which contain the same data, but are binary. The quaternions
are serialized as 16-bytes long sequences, there the first 4 bytes are an unsigned int representing the
<building ID> and the next 12 bytes are three floats, which represent the spatial coordinates of the
building.

GraphicsModule

PagedGeometry

ProceduralTreeLoader

ProceduralBuildingLoader

SurfacePageLoader

PagedGeometry

PageLoader HDD

Figure 13: Scheme of the static geometry subsystem.

The subsystem that handles the generation of the static geometry on-the-fly and its rendering is sketched
in Figure 13. The graphical subsystem GraphicsModule (also see Section 4.5) contains two instances of
PagedGeometry class – m_pagedTreeGeometry and m_pagedBuildingGeometry (each of them handles its
respective type of geometry). The PagedGeometry class is a core class of PGE and provides access to the
geometry paging features. It also communicates with the instance of Ogre3D’s SceneManager. These two
objects then query the procedural loader classes everytime a new page of the geometry is needed (each of
them uses a different size of the geometry page, determined from the graphics.cfg settings file). This is done
by calling ProceduralTreeLoader::loadPage() and ProceduralBuildingLoader::loadPage() callback
methods by the two PagedGeometry objects. The ProceduralTreeLoader and ProceduralBuildingLoader

classes inherit from the PGE’s abstract PageLoader class and perform only the generation (positioning)
of the geometry on the terrain. The data for this are provided by the SurfacePageLoader class, which is
a simple paging microengine, that loads the pages of the static geometry data from HDD on demand (by
calling SurfacePageLoader::GetPageAt()) and stores them in a small FIFO cache. These data include the
tree density maps, the city tiles, but also the heightmaps, so the trees and the buildings are placed at the
correct altitude on the terrain.

This design based on lazy evaluation works well; the two PagedGeometry objects query the data when needed,
always within a certain perimeter around the current position of the camera in the scene. They deallocate
the geometry pages automatically when they get outside this perimeter. They also perform visibility culling.
The paging mechanisms of the SurfacePageLoader class ensure that the pages are not loaded from HDD
repeatedly each frame, and the small size of the cache ensures that the memory consumption of this subsystem
won’t be too high (we cache 10 pages and each page has the size of roughly 1.5MB with the currenty used

37

resolutions).

A building itself is graphically represented by a single .mesh file and two textures. The mesh should have as
low amount of polygons as possible and the local coordinates origin should lie in the middle of the bottom
side of the building. All details regarding the building models are explained in Sections F and E.

4.5.5 HUD and debugging graphics

HUD – head-up display – is (almost always) a screen-aligned piece of graphics that informs the player about
the game’s status or statistics. The HUD in our game is rather simplistic, but it serves it’s purpose well.

All of the HUD gets shown and hidden depending on the gamestate (parts of the HUD can be hidden on
demand; in the menu, no HUD is shown) and whether the aiming cross is activated. Any quote-delimited
strings that appear in this subsection are object or node names.

“map rootNode”

“map airplanesNode” “map airfieldsNode”

“debugging airplane f pilotId”

“debugging airplane e pilotId”

“airfieldObjectName airfieldId”

“map FriendlyObject”

“map EnemyObject”

“map NeutralObject”

“map FrontObject”

“debugging airplane f pilotIdobject”

“debugging airplane e pilotIdobject”

m mapSceneManager’s root

Figure 14: Structure of the scenegraph with respect to HUD and debugging output. Scene nodes are in
normal boxes, objects are in dash-dotted boxes, root is in a heavy-framed box. Substrings in italics are
substituted with respective numerical values; each such object actually represents a group of objects. Note
that, while the names given here are strings, constant variables are actually used instead.

Map The map geometry gets rendered in a separate viewport (see m_mapViewport), which allows for easier
positioning and clipping. The geometry is placed in a direct sub-node of m_mapSceneManager’s scenegraph
(see m_mapName) (see Figure 14).

The respective part of the scenegraph gets reinitialized (see InitializeDebuggingNode, InitializeMap(),
InitializeHUD) with each new mission. In each frame, a new centre of the map is calculated and according
to it, all of the objects are regenerated (see RefreshMapAirplanes, RefreshMap, RefreshMapAirfields).

On the map, the friendly path (see Section 4.4.2), the enemy path, the front, and the map’s and viewport’s
frame are shown (the map’s frame is only visible with some map-scales; see Figure 14). Each of those objects
has a simple custom material (see InitializeMap). The airplanes and airfields also have custom materials
(defined in Media\debugging\debugging.material).

38

Map centre Map centre – the point around which the map’s display will be centred – is calculated
separately for each dimension. First, the side s of the visible portion of the displayed map is computed.
Then, a border of the s/2 size is stripped off the map, the remaining region being called the core area (see
Figure 15). As long as the user’s airplane stays within this core area, the visible area of the map will fully
overlap the map’s viewport. If the airplane is in the the border strip, the map has to stop moving along
with the airplane, or else parts of the viewport won’t be covered by the map anymore.

[0; 0]

[width; height]

border strip

core area
sx
2

sy
2

Figure 15: Illustration of some of the values needed for map centre calculation.

When the airplane is in the border strip, it no longer gets drawn in the middle of the screen. Because the
map viewport is centred in the screen and its display is positioned based on the calculated map centre,
no special logic is needed to display the user’s airplane differently. As with all other airplanes, only the
offset with respect to the map display’s calculated centre (which aligns with the screen centre) needs to be
calculated.

Rest of the HUD The airplane control’s part of the HUD is displayed in an Ogre3D’s Overlay. A
PanelOverlayElement is then used as a logical and graphical container for the respective texts, represented
by TextAreaOverlayElements.

3D paths To the main scenegraph’s root, a subnode called “debugging node” is attached. Under it,
two separate objects, namely “debugging pathsFriendlyObject” and “debugging pathsEnemyObject”, are
attached. They represent the 3D paths (see Section 4.4.2) the squadrons should follow. Those are exclusively
used for debugging purposes and cannot be enabled in the public release version of the game.

4.5.6 Special effects

We have some nice special effects in the game, for example an advanced local reflectance model for airplanes,
particle effects like smoke and bullets, or fullscreen compositors like HDR and tunnel vision.

We use Strauss local reflectance model [27] for airplanes shading. This is a very nice model, and while it
is empirical, it gives much more realistic results than the standardly used Blinn-Phong model. We also
use smoothness and metalness maps to modulate some of its parameters across the airplane surface (see
Section F).

For visualization of bullets and smoke, we use particle systems available in the Ogre3D engine. Smoke (which
is active when an airplane is damaged) is modelled as a particle system with our own custom material,

39

emitter and affectors. Its density is derived from the current airplane damage, and is calculated in the
GraphicsModule::UpdateSceneGraph() method. Bullets are modelled as billboards with ‘smoke’ ribbon
trails attached to them.

Fullscreen post-processing effects enhance the perceived visual quality of the game. HDR (High Dynamic
Range) rendering allows rendering of scenes with high dynamic range of illumination in them (such as the
sky). For this, we use the HDRlib [11] plugin into Ogre3D, which provides us not only HDR, but also a
fullscreen bloom effect. Tunnel vision is an effect of darkening of the peripheral areas of human vision, when
subjected to high acceleration. We model this effect by multiplying the rendered image by a radial gradient
texture, which darkens the edge areas of the screen. This multiplication is weighted by an acceleration
coefficient, which is again computed in GraphicsModule::UpdateSceneGraph(). Also, the aiming crosshair
(invoked by pressing SPACE during a mission) is modelled as a fullscreen effect by modulating the rendered
image with the crosshair texture. All fullscreen effects in Flying Samurai are modelled using Ogre3D’s
Compositor pipeline.

4.5.7 Camera

Camera is an important part of the graphics pipeline, as it represents the ‘eye’ of the player in the game. In
Flying Samurai the camera is represented by the CustomCamera class. This class is a relatively small extension
of the default Ogre3D’s Camera class. We chose encapsulation of the Camera class over its specialization – for
no technical reason, just to underline the fact that this class is not tightly coupled with the Ogre3D engine.

The CustomCamera class contains methods that allow docking of the camera behind the player’s airplane, its
rotation and orbiting around the airplane when in the free-look mode (mapped to the right mouse button
by default) and setting its relative position with respect to the player’s airplane when looking through the
aiming cross-hair. It also implements a few methods for debugging purposes, such as free roaming over the
landscape (these are of course disabled in the release version of the game).

4.5.8 GUID

GUID (Globally Unique Identifier) is a means of having an identifier, which will never be generated and
used twice. Normally, this term refers to a 32-digit hexadecimal number, generated by a special algorithm
to minimize the probability of generating [10] the same number twice. In Flying Samurai, we use a weaker
32-bit integer value. We also don’t use an algorithm to generate them, but the user of the engine has to
come up with a new identifier which haven’t been used in the game yet.

The purpose of GUIDs in the game is to bind abstract representation of game entities (stored in Entities.xml)
with their graphical representation (stored as records in the Objects.xml file). Also, GUIDs are used in
the game to identify unique graphical objects (e.g. there can be more instances of the same airplane in a
single mission, and while every one of them will have a different AirplaneId (see Section 4.4.1), all of them
will have the same GUID, as they use the same mesh). Filling in the GUID value is therefore a part of the
process of adding new graphical resources into the game (described in Section E).

40

4.6 Physics

Inseparable part of the simulation is the physics module. In short, it keeps track of the internal state of the
entities (namely planes, bullets and the terrain), and updates this state every time step, taking into account
user interaction (based on input translation) as well as reacts on collision events. In the following sections,
we’re going to elaborate further on these aspects, breaking them down and explaining the implemented code.
We will focus on describing the logic that applies to airplanes as that is the core of physics complexity, but
where appropriate, bullet and/or terrain behaviour is mentioned in short afterwards.

Also, as many parts of the physics can’t be understood without proper theoretical background, this section
also describes theory, simplifications made and implementation choices first, and only then gets to the source
code citations and explanations of the basic parts.

4.6.1 Introduction

Physics module plays a big role in the project, which we can further divide into several sub-roles as follows:

1. The core physics computing. That basically reduces to transforming the current state indicators of the
rigid body like its linear and angular velocity, position (especially elevation to compute the air density)
and such and transform them into a set of forces that affect it. These will later get integrated (Bullet
physics engine is used to do this uninteresting work for us) and a new object state state is computed
for the next frame.

2. Input translation. Game’s input layer provides the input events as well as their amounts which the
physics module translates into change of the airplane control surfaces’ positions and where necessary,
recompute the parametrization of the model used in the first sub-role.

3. Collision detection and reaction. This is a need to go through the Bullet data structures and pick up
the events that signal that a collision has occurred. For every such event it should trigger a function
that analyses it and performs an action accordingly (add damage to the airplane part or remove a
simulated bullet body from the simulation etc.).

4. Logic signalling. As it’s the physics module which keeps the information about the airplane (or even
pilot) damage, this information needs to be propagated. These events include when the airplane is
heavily damaged (WillDie), pilot has crashed either to the ground or in a mid-air collision (Dead) or
when the entity is about to be removed completely. These events are described in more detail in the
game logic section (4.4).

5. Visualization. This role is similar to the previous one: physics module keeps track of many important
values internally and there is a need to propagate them to the graphics module. This includes values
like smoke level (computed from the current damage) or control surfaces’ positions.

4.6.2 Model overview

First, let us state the requirements for the physics module in our project. We need to simulate the airplane
physics as precisely and in as parametrizable fashion as possible. The aim is to have a full-fledged flight
simulator, so especially this part is crucial. At the same time – contradictory to the previous – is the need to
have a small set of simple parameters that completely describe the motion, because we also aim at the ability
to conveniently add new planes to the simulation from commonly accessible historical records, without the
need to perform any expensive, time consuming or other difficult measurements on a full-scale real model.
Wind tunnel, to name an example, is able to produce huge amount of data that can easily describe flight

41

properties of the rigid body in question, but we can’t design it the way that this device or such coefficients
will be necessary.

After some basic research, we came to a conclusion of four basic transition functions:

1. f1 : v → F defines the acting force given the velocity vector of the body. This can effectively cover the
air friction, the lift (or portion of it, as discussed later), gravity or thrust.

2. f2 : Ω → F , similar to the previous function, but this time it’s taking an angular velocity as a
parameter. Directly describes the forces that arise from a rotation of the body (a rotary engine or
other bodies).

3. f3 : v → M translates the linear velocity into a rotatory moment. This function covers the logic of
turning in the direction of the air flow as well as instabilities caused by damage or rotation caused by
control surfaces and alike.

4. f4 : Ω→M describes the transformation of actual angular velocity into a rotatory moment. The main
idea for this function is to cover friction in rotation.

However, as these forces described by f2 are often marginalised by the previous function in most applications
(except special helicopter designs which we won’t assume to be used in our application), we decide not to
look too much further into that one. That leaves us with just three functions to consider.

Additionally leaving out the gravity (provided by the Bullet physics engine) and thrust (we’ll simply add this
force component to the result of the function f1), we can approximate all these functions with a quadratic
function:

fi(~x) = Mi · sgn~x · ~x2 = Mi




x1 · |x1|
x2 · |x2|

...
xN · |xN |




where Mi is some constant matrix. As we assume exactly three dimensions in our physics simulation, we
can put it in the form of matrix-vector multiplication:

fi(~x) =




c11
. . .

c33


 ·




x1 · |x1|
x2 · |x2|
x3 · |x3|




The outlined model still needs some minor technical adjustments (alteration of the Mi matrix elements
according to the current control surface positions or airplane damage), which we will discuss later in this
text.

4.6.3 Model parameters

Having outlined the idea of the implementation of physics in the previous section, it’s time to describe the
set of parameters we’ve chosen to represent a plane. This can be further divided into parameter sets for
the mounted gun, the plane body itself and finally the graphical/input interpretations. These parameters
usually correspond to the ones specified in the Entities.xml file, with a few notable exceptions when a
physical parameter is not used directly, but is still either planned in some future release or is supposed to
be shown in some tables by the game logic.

To describe them in order, the list of gun/bullet parameters follows:

42

Accuracy Angle The higher number, the less accurate the gun is. The bullets are generated with normal
distribution and this value represents the cosine of variance of the angle.

Reliability Probability that the gun will not jam, per bullet shot.

Range How far can the bullet fly (before it’s deleted from simulation) in meters.

Rate of Fire Shots per second. The physics module doesn’t interpolate this information on lower frame
rates, so it might happen on some low-end hardware that the value given won’t be adhered with.

Ammo The number of rounds at the beginning of the mission. Every shot decreases the counter by one,
and when it reaches zero, it’s not possible to shoot anymore.

Bullet Size Specifies the diameter of the bullet in meters. Even though graphics module always visualizes
it as a point billboard, for physics it’s a sphere with the given calibre.

Bullet Mass The weight of one bullet in kilograms.

Initial Velocity Relative velocity (to the airplane’s velocity) at the moment the bullet leaves the gun barrel.

Air Friction Friction coefficient of the bullet material. Lower number will make the bullets fly a bit more
straight, higher number will make it slow down rapidly after release and head to the ground.

Simultaneous Says whether all plane’s gun barrels shoot simultaneously or one-by-one. The information
about the barrel positions is gathered from the graphics module (refer to Section 4.5.2).

The parameters that alter the visualization or the input interpretation are:

Pitch Up Manoeuvring capabilities of the plane. 1.0 is base, 2.0 means it’s twice as agile in the specified
direction. It’s possible to specify different values for positive and negative sense for planes are more
agile in right turn but less able to do left turns for example (this is for example the case of airplanes
with a rotary engine).

Pitch Down The other manoeuvring coefficient of pitch.

Roll Left Manoeuvrability when rolling left.

Roll Right Manoeuvrability when rolling right.

Yaw Left Manoeuvrability when yawing left.

Yaw Right Manoeuvrability when yawing right.

Smoke Threshold Low When computed smoke level is lower than this threshold, none will be shown.

Smoke Threshold High At the time the computed smoke level is higher than the value specified in this
parameter, a maximum density will be assumed for the rendered smoke. Anything in between is linearly
interpolated to fall into the [0, 1] interval.

Smoke Body Coefficient that the damage caused to the body is multiplied with. Used when computing
the smoke level.

Smoke Engine Multiplicative coefficient for the damage caused to the engine. Used when computing the
smoke level.

Smoke General Coefficient to specify the amount of smoke for general damage (any hit to the plane is
accumulated to this damage indicator).

43

Rudder Mul. Multiplicative constant for transforming the input value (always inside the range [−1, 1]) to
the angle of the rudder airplane part visualization.

Rudder Add Additive constant for rudder visualization.

Elevator Mul. Multiplicative constant for elevator visualization.

Elevator Add Additive constant for elevator visualization.

Left Aileron Mul. Multiplicative constant for left aileron visualization.

Left Aileron Add Additive constant for left aileron visualization.

Right Aileron Mul. Multiplicative constant for right aileron visualization.

Right Aileron Add Additive constant for right aileron visualization.

And finally, the parameters mainly used in the core model:

Engine Power Engine power, in Watts.

Empty Mass Weight of the plane fully unloaded. This number is assumed to be used in airplane listings,
as physics module ignores it and uses the next one instead.

Base Mass Weight of the plane with pilot and other necessities (i.e., the base mass of the body that is
simulated).

Fuel Mass Weight of the full fuel tank.

Endurance Time (in hours) how long the fuel lasts. Used to compute the mass change during the flight or
the speed of the fuel depletion.

Range Range (in kilometres) how far the plane can fly. It’s an informative value, not used in the simulation.

Maximum Speed Maximum forward speed (to reach at sea level-like air density at maximum thrust).
This value only specifies the forward friction (engine power is given) and is not actually used to cap
the speed (one can achieve higher values by utilizing gravity). Specified in meters per second.

Take-off Speed Minimum speed required to achieve balance of gravity and lift (any faster and the lift will
exceed the gravity, resulting in takeoff).

Stall Speed Another value not directly used in physics simulation and intended to be shown to user for
simple a comparison purposes.

Service Ceiling Service ceiling specifies the altitude in meters where the air density decline causes the rate
of climb to decrease to zero.

Rate of Climb Rate of climb is specified in m/s at the sea level at full thrust. It represents the ability
of the plane to counter the gravity with its lift. As stall speed and take-off speed can be (to a small
degree of error) derived from this value (it basically gives us lift), those parameters are not actually
used in simulation (assumed to be shown in plane listings though).

Wing Area Wing area is used to recompute the lift force (the one derived from the rate of climb) in
situations like wing damage. Specifies the cumulative surface of all wings in square meters.

Wing Alpha α or an angle of attack of the flow of the air to the wing. The correspondence with the lift
is not that clear (it’s only one of the major forces, together with low pressure above the wing at high
speeds).

44

Wing Loading This value specifies the amount of weight one wing can support in kilograms. Could be
used in wing bending visualization, but it’s not implemented at the time of writing this document.

Surface X Describes the surface of the projection of the three-dimensional model along the X axis (that
is, Y-Z plane). Together with the following values it’s useful when computing the friction coefficients
along the sides.

Surface Y Surface in square meters of the model projection along the Y axis (X-Z plane).

Surface Z Surface in square meters of the model projection along the Z axis (X-Y plane).

Rotational Friction X One of the less straight-forward “plane agility” parameters. This friction specifies
how “heavy” the plane body feels when turning – low value means it’s very likely to turn around the
given X axis, higher value represents relative stability when turning.

Rotational Friction Y Friction in rotation along the Y axis (from the top to bottom).

Rotational Friction Z Friction in rotation along the Z axis (one aligned with the direction of flight).

Rotation Correction 1 This correction is an empirical value that specifies how likely the plane is to turn
into the velocity vector direction. When one uses large values, the plane body will be very likely to turn
into the direction of the air flow and relatively difficult to effectively steer. The first value represents
the Y → X direction.

Rotation Correction 2 The other correction coefficient, this time representing the X → Y sense.

Length Dimension of the plane body. The only use is in plane listings, as this value is represented much
better in the plane mesh.

Wing Span Width of the plane.

Height Height of the plane.

Minor Impulse Lower limit for applied impulse (collision reaction force – when the plane hits other plane
or a ground). If the actual applied impulse is lower than this one, it’s ignored.

Major Impulse High threshold for applied impulse. This extreme will signal instant death.

Material Friction The material constants of the plane. As planes rarely interact with the ground or other
planes (and assumption goes that it doesn’t play an important role for bullets), we simplify the physics
by using only one material for the whole plane body.

Material Restitution Restitution coefficient of the rigid body representing airplane.

Damage Lift Degradation Specifies a coefficient (in [0, 1]) how the lift of the airplane is altered by the
damage.

Damage Stability X How the stability of the flight (right-left axis) is altered by the damage. Range
[−1, 1], positive numbers are accepted and mean it’ll be harder to rotate along the given axis.

Damage Stability Y Damage-stability dependence coefficient for top-bottom axis.

Damage Stability Z Damage-stability dependence coefficient for forward axis.

Damage Torque Coefficient for damage-torque dependence.

Damage Wing Imbalance How strong will the effect of difference in wing damage on the airplane’s im-
balance be.

45

Zero Lift-Drag Coefficient Unused tabular constant.

Lift-To-Drag Ratio Unused tabular constant.

Rudder Area Unused tabular constant.

Aileron Area Unused tabular constant.

Elevator Area Unused tabular constant.

All these parameters are specified in the Entities.xml file, using camel casing (plus few minor non-physics
related ones).

4.6.4 Core formulae

Let’s break up now, one by one, the formulae used in the game, starting from the basic ones building our way
to finally express the force and the torque that affect the plane rigid body. This way, we’re going to achieve
a similar dependency and order of computation that is actually used in the source code (some excerpts will
come in later section).

All the following are coded in PlanePhysicsModel class, which is used (and can be shared) by every plane
that uses the same set of model parameters. It possesses the ability to compute (even when constant) most
of the physics.

Air density Given the altitude of the plane (h) and the density scaling constant of ρ0 = 1.2 kg
m3 (assuming

temperature of 20◦C), g = 9.8m
s2 , p0 = 101 325Pa, we compute

ρ(h) = ρ0 · e
−hρ0g
p0

Thrust Given a constant angular velocity of the propeller, the device is providing different thrust force
depending on the surrounding fluid flow. As we aim for realism, we need to describe this phenomenon. Given
the power of the engine (parameter Engine power or P in the following formula) and a current absolute length
of the velocity vector (l = |~v|), we use the relation

Ft(~v) =

{
P l ≤ 1
P
l l > 1

The first option is not physically accurate, but we use it as a workaround in our discrete model. It’s actually
true that we can assume the force acting on a rigid body is infinitely large while the object is not in motion.
However, as soon as the object gains some speed, this force very sharply decreases and thus, integrating
over a continuous function describing this behaviour would still result in a finite number. We have no such
privilege and so we assume the velocity is never below 1m

s .

Also, in the formula we should use only the portion of velocity parallel to the direction of flight, but we have
made a second assumption that most of the time the body will be in such a situation anyway.

Both these simplifications lower the actual power of the engine during the time airplane is contained in one of
these special circumstances, so one might wish to set a slightly higher Engine power parameter if necessary.

46

Physical matrix set As stated earlier, the core of the physics is driven by transformation of the current
linear (angular) velocity to force or momentum. This is achieved by the multiplication of the altered vector
(where every value is squared and multiplied by the signum of the original value). Details were already
introduced in the description of the functions fi, i ∈ {1, 2, 3, 4}.
Here, we’re presenting the formulae for the (eight) matrices that are necessary to define the above mentioned
functions. The indexes are correlated with the functions, a positive matrix is called M+

i and a negative one
M−i .

M+
1 = M−1 =



−cfx 0 0

0 −cfy lift
0 0 −cfz




M+
2 = M−2 =




0 cr1 0
−cr2 0 0

0 0 0




M+
3 = M−3 =




0 0 0
0 0 0
0 0 0




M+
4 = M−4 =



−crfx 0 0

0 −crfy 0
0 0 −crfz




where cr1 and cr2 are rotation corrections and crfx to crfz are frictions in rotation. These parameters are
directly specified by the designer of the model and read from the XML file. cfx, cfy and cfz are friction
coefficients and lift is naturally a lift coefficient. These are computed as follows

lift = − (mbase +mfuel)g

v2termρ(hceil)

cfz =
Ft(vterm)

v2termρ(0)

cfy = −lift · v
2
term

v2climb

= −lift ·
(
vterm
vclimb

)2

cfx =
Sx

2Sz
cfz +

Sx

2Sy
cfy

where the parameters are

mbase base mass
mfuel fuel mass
vterm terminal velocity in forward sense
hceil service ceiling
vclimb climb rate

As we see, matrices are basically zero in every element where we didn’t mention otherwise in the introduction
or where our God Juju on the mountain didn’t tell us. Also, we mention (and actually use in our code) the
M3 matrices and compute f3 (ω → F), but leave it zero. This is for easy future extension for new models –
in such a case, it would be easy to reuse, alter or overload (with slight improvements) the existing class.

Another noteworthy thing is that although we compute exactly the friction in the y and z-axes, the pa-
rameters don’t contain enough information to express the similar coefficient in the x (right-left) axis. To
make up for this insufficiency, we interpolate it from the previous two. This should not make a considerable
difference, as this friction coefficient plays a marginal role in the big picture.

47

Bullet, on the other hand, follows an extremely simple set of formulae. It’s basically shot at its initial speed
(which gets summed with the current velocity of the shooting airplane) at the destined exit point (provided
by the graphics module). Then, the gravity is the only force that acts upon the bullet. When the bullet hits
another body, it is removed from the simulation, so there are no more interesting aspects about this collision
object.

Equilibrium velocity When initializing an airplane, one needs to set such an initial speed that the plane
will not receive a significant kick (either from friction or by the pull from the sudden thrust). This is achieved
by a method in PlanePhysicsModel class that computes the following approximation.

f = f1(~v)

ve = 3

√
t

|f |

f1 is defined in the same sense as we have introduced in the Section 4.6.2.

4.6.5 Input processing

Physics module can get all the input for every player as a linked list. It iterates through this list and performs
every event accordingly. For all the main inputs there are two kinds of them: set and relative change. While
the first one changes the internal value right away, the relative change is pre-processed, added to the current
stored state and finally capped to still fall into the necessary interval (usually [−1, 1]).

Pitch, roll and yaw Every one of the three axis (representing pitch, roll and yaw) has a left (top) and
right (bottom) coefficients. Whenever an input is read that is in relation with the given axis, the difference is
multiplied by the appropriate coefficient (depending whether the input is in the positive or negative sense)
and clamped back to the interval [−1, 1]. This is kept and used in the core formulae.

Thrust Thrust is stored either as a percentage of the full engine output (an integer number in the range
[0, 100]) or as a floating point number from [0, 1]. These representations are used interchangeably on a few
spots in the code and the first one is the native representation for the input chain. Any change to the thrust
(either relative or absolute setting) is applied immediately (we assume the rotary momentum of the engine
is marginalized by its output strength).

4.6.6 Visualization

As we’ve tried to simplify the graphics module to perform as little of non-graphic related tasks, the decision
was made to move part of visualization to the physics module. The aspects in question are the smoke level
computations (as the damage model is pretty much an internal part of physics) and control surface deviation.
The later is not as much an obvious choice, but is still bearable as physics module translates input and this
way it can be expanded to compute the fluid body dynamics more precisely.

Smoke level computation is based on three internal values (ranging from 0 to 1) defining the body
(Db), engine (De) and general (Dg) damage. These are combined in a specified manner using the loaded
parameters Smoke Threshold Low (t−), Smoke Threshold High (t+) fulfilling the inequality of t− < t+,

48

Smoke Body (sb), Smoke Engine (se), Smoke General (sg) using the formulae:

Σs = Dbsb +Dese +Dgsg

s′ =
Σs− t−
t+ − t−

s =





0 Σs ≤ t−
s′ Σs ∈ (t−, t+)
1 Σs ≥ t+

s ∈ [0, 1] is sent to graphics module as an amount of smoke to render coming out of the particular airplane
entity. It’s interpreted as an opacity of the smoke.

Control surface angles is the other derived value set managed by the physics module. The physics is
the thread to process the input, it keeps the input translation constants and also returns the rotation of the
control surfaces (relative to the position set in the mesh – see Section 4.5.2).

The graphics module will need an angle in radians (representing the rotation along the axis from the plane
model). To get this value, all of the three control surface groups have additive and multiplicative constants.
Given that a is the additive and m the multiplicative one and i ∈ [−1, 1] the stored input, returned value v
will be equal to the obvious

v = m · i+ a.

4.6.7 Damage model

Airplane body division An airplane mesh is divided into sub-meshes, where every one plays a special
role, in graphics as well as in our damage model. For physics purposes, we divide it into

1. body,

2. elevator,

3. engine block,

4. rotary engine,

5. pilot cage,

6. propeller,

7. rudder,

8. left and right wheel,

9. left and right wing.

For each airplane part, a mesh is requested from the graphics module. If Juju gives us the power, the
game will not collapse into the threading hell. These parts are added in order into one btCollisionObject

abstract class inherited object, with user pointer set to the CollisionData instance holding information
about the part. This pointer will be used when a collision occurs to identify the behaviour branch in the
decision tree.

Let us also note that to make the movement possible, we need to convert the mesh into a convex hull, as
the general mesh is unable to represent a non-static (that is, with a zero mass) object in Bullet collision

49

detection and reaction library routines. Supposedly this feature is there to speed up the already pretty slow
computation pipeline and to solve some extreme situations occurring in the discrete simulation resulting in
the artefacts in the object movements. One such example could be a quickly rotating concave object.

Damage variables To describe a damage caused to either part of the airplane body, we’re going to keep
four variables (ranging in [0, 1]). Every collision with another object will alter one of these variables. Also
the game engine will keep a set of flags (boolean vales) that indicate some of the special cases (like whether
the engine is not operational or a pilot is dead). The variables are namely

1. engine damage de,

2. general damage dg,

3. left and right wing damage, in order dl and dr.

How these are altered can be deduced from the table 1

Model alterations These variables, together with the other values specified in the parameter set will
be used to compute the damage matrices, which are added to the already computed Mi matrices defining
functions fi to alter the physics model. For example, to decrease lift, add some permanent torque (resulting
from the wing damage imbalance) and similar.

Actually, only the values dg, dl and dr directly alter the physical model. The value of de (engine damage)
only adds up over the game period and if on any occasion happens to reach 1, the engine is stopped and it’s
not possible to start it again (the physics module will make sure the thrust percentage will be set to 0 until
the end of the mission). All the other controls are still in effect, just the plane is bound to land sooner or
later.

As for the other three parameters, they are used to decrease lift (to make it harder to keep the plane in
the air), increasing friction in the forward direction (thus making it much harder to glide), adding to the
rotation correcting coefficients in M2 (so the player will find it harder to steer to the desired orientation) or
just to add a permanent torque to turn the plane along the forward axis (because one of the wings has got
a greater lift than the other). Let’s describe the formulae used to simulate these aspects.

Lift and stability reduction As these forces are described by the same matrix (the one that defines v → F
transition), one can unify these aspects. The additive matrix (to either M+

1 or M−1) is



dsx · dl+dr+dg
3 cfx 0 0

0 dsy · dl+dr+dg
3 cfy −dlg · dl+dr+dg

3 · lift
0 0 dsz · dl+dr+dg

3 cfz




where dsx, dsy and dsz are damage stability X, Y, Z parameters and dlg is damage lift degradation
parameter. lift is the value as computed in Section 4.6.4.

Adjustment of rotation correction and torque Again, these two aspects of damage can be combined
into one matrix (the one that alters the positive or the negative one defining the v → M function).
The matrix is 


0 tor · dl+dr

2 cr1 0

−tor · dl+dr
2 cr2 0 0

0 0 wi · ws · (dr − dl)




where tor is damage torque parameter, wi is damage wing imbalance and ws the wing surface parameter.
cr1 and cr2 have the same meaning as in 4.6.4.

50

Table 1: Hard-coded coefficients for damage per every hit to the given airplane part
From the following table one can read the amounts added to the each damage component when a given
airplane part is hit. There is a special behaviour when hitting a pilot cage (no damage added, but the pilot
status is set to dead, blocking any successive input from the player/AI module. Also, although right and
left wheels are defined and there is a switch for them on many places in the code, landing have never been
finished, so it’s basically an empty instruction.).

Plane part left wing right wing engine general
Body (left part) 0.05 0.00 0.00 0.02
Body (right part) 0.00 0.05 0.00 0.02
Engine 0.00 0.00 0.40 0.10
Pilot cagea 0.00 0.00 0.00 0.00
Left wing 0.05 0.00 0.00 0.00
Right wing 0.00 0.05 0.00 0.00
Left wheel 0.00 0.00 0.00 0.00
Right wheel 0.00 0.00 0.00 0.00
Rudder 0.00 0.00 0.00 0.10
Elevator 0.00 0.00 0.00 0.10
Propeller 0.00 0.00 1.00 0.00

acauses instant death for pilot

4.6.8 Collision reaction

To provide a reliable collision against a potentially infinite heightmap, the game engine introduces a relatively
small piece of heightmap copy under every plane. The shape and the position of this heightmap is updated
every swap in physics module’s SwapHook method.

During a single simulation step, all collisions are collected into a linked list and stored. In the last phase of
the physics thread computation, this list is retrieved and every item in it is processed. Basically we separate
four different situations.

1. airplane-airplane collision,

2. airplane-ground collision,

3. airplane-bullet collision and

4. any other collision (basically this leaves out with bullet-bullet or bullet-ground).

Airplane-airplane collisions For every such a collision, the applied impulse (for both planes involved) is
computed (which is handled by the Bullet library) and compared to the impulse minor and impulse major
parameters. A corresponding amount of damage is added to the dg damage indicator and if it reaches 1, the
plane is considered dead.

Airplane-ground collisions For this case we compute basically the same impulse logic as in the airplane-
airplane collisions. However, in this case the Bullet library is also utilized to put the collision detection to
rest when the body settle in some stable position. We use a technique known as deactivation available
in the library (it needs to set some limits, which we’ve hard-coded). To activate the plane, the function
PlanePhysics::CalcPhysics checks whether the forces applied to the plane body are of any significance.

51

Airplane-bullet collisions When such a collision occurs, the bullet is naturally removed from the simu-
lation, but just before that, the shooting pilot Id gets recorded for mission logic purposes. Also, according
to Table 1, a given amount of damage is dealt (or a flag is set) to the plane. The damage model as described
in the previous section will take care of the rest.

Other cases In other cases, the game engine just simply removes any bullet involved. That is, if two
bullets collide, they will be removed from the simulation. Also in case a bullet hits the ground, it will get
removed.

52

4.7 AI

The objective of the artificial intelligence used in the game is to perform as fairly as possible. The idea
originated from the materials that pointed out that during the World War I., it was a sneak calm strategy
more like than any other that lead to victory. Fighters that were able to gain an advantage over the enemy
(be it the altitude or the position in their back) won the dogfight. So we strived to provide a modern player
with a very similar realistic experience. Things like hiding in the sun or planning a path through clouds and
other ways to block the clear vision were discussed, however, never completed.

AI design comes mainly from the early stages of the development, that means, it contains plenty hooks
and abstract classes that were targeted to give the computer a controlled plane to provide such a high-level
decision-making options. However, as many of the originally intended aspects were either not implemented
at all or there was no consensual feasible solution implemented to transfer the internally stored structures
either to physics or AI module, the abstract classes and drafts are all that remained.

4.7.1 Overview

The developed artificial intelligence system consists of another three significant (in both complexity and size)
subsystems. For a better orientation for the reader, we’re going to very quickly introduce these. Later, there
is an entire section dedicated to each one of them, so the reader is free to decide which one to read.

Used libraries Most of the software used in the AI module comes from our team – including the neural
network recall and training framework. From third-party software, we used the middle-level OpenSteer
steering and geometry library [20]. Physics (necessary to rank the inverse motion decisions) is being computed
by our physics module described earlier in this document (in Section 4.6). It uses Bullet library, although
for performance reasons, this library is used only indirectly (for purpose of the calculations in the AI we
disable almost all computations like collision detections and similar). Full-scale computations are performed
only after the AI makes a final decision and sends it via the reader-writer subsystem as an input equivalent
to the input from any other human player.

As the knowledge of these libraries (mainly of OpenSteer) will be required in the following text extensively,
it’s recommended for the reader to understand at least the main features and usages of these libraries.

Information gathering Computer-controlled player receives imperfect information about the surrounding
environment mainly via two classes: Radar (returns the list of other surrounding agents – friendly as well as
enemy ones) and HeightMap, which provides an abstract interface returning a set of nearby objects to avoid.
Especially note the very vague definition of the latter: even though the name suggests it ought to represent
just a wavy terrain, it can do much more. As it returns a list of objects (triangles, spheres, etc.) to avoid,
it can also represent terrain features like trees, houses, even cavities.

This information is gathered and given to the agent to process.

Agent An agent is represented by the unifying class PlaneAgent, which gathers the decision information
and either uses it directly (when there is an object to avoid in an immediate distance) or uses it as a parameter
for the agent role. It is also a successor of the OpenSteerPlugIn class, so it can be easily visualised and
debugged in the OpenSteer infrastructure. It takes the behaviour prescribed by its agent role defined for any
situation the plane can get into and returns one of the (later described in more detail) states, like “catching
another plane”, “evading from enemy fleet” or similar.

53

Every such a state (and possibly one or more associated parameters) can give an instructions what is the
plane supposed to do. It is also translated in its geometric meaning (considering the current plane speed,
position and orientation as well as any limits given). This is usually a curve that the plane should follow to
complete the task. For our purposes, we only get a point few milliseconds (two physics simulation frames to
be exact) in the future and try to adjust the control surfaces of the plane to reach that point. To get this
done, we’re introducing another AI subsystem, namely the inverse physics.

Inverse physics Inverse physics or as a similar functionality is usually called in robotics – the inverse mo-
tion – is a way to translate the current and future positions in the world into a set of elementary instructions
that the agent should perform, ideally resulting in reaching the later position. In our case, the elementary
instructions represent the control surface alterations (like moving the left aileron upwards) or engine thrust
change.

Because we target as fair AI as possible, we can’t settle on skipping this step like many other arcade games
do. A good simulator needs to make sure every player, including the computer-controlled one, is adhering
to the laws of physics, at least the ones that are defined in the simulation. This system will make sure the
AI can’t fly higher, faster or slower, without losing or gaining altitude accordingly, which is exactly what
we need. On the other hand, the inverse motion system often suffers from high dimensionality. The set
of input parameters (at least two position vectors and two rotation quaternions, all floating point numbers
with vaguely defined extremes) makes it a tricky theoretical computer science problem to solve.

The description of the three main subsystems (and how they propagate the values into physics and later
read the simulated results back) can be seen on Figure 16.

Radar

HeightMap

Environment

AgentRole

Object avoidance

Decision making

Parametrized agent state

BruteForce
Inverse physics

ByAxis
Iterate
NeuralNetwork

Simulation Physics input values

Figure 16: A scheme of value propagation inside the AI subsystems as well as the physics module.

4.7.2 Environment knowledge

Here is an overview of the implementation details. The base abstract class in question will be described
(with a code listing attached) and then the actual implementation will be explained in short.

Radar As can be observed from Figure 17, the AbstractRadar class holds the lists of agents (separated
into a list of friendly and a list of enemy planes) in the given radii. The Discover radius specifies the
minimum distance when the radar can consider informing the AI about the presence of another plane. As
soon as a plane is discovered, a human player somehow keeps an eye on him, so it might be harder to lose

54

track about him. To emulate this, there is a (in general case) different value for lost radius, which makes
sure the radar will not consider removing the agent from the sets of the known ones before it’s at least the
given distance from the computer player.

class AbstractRadar

{

public:

void SetMaxRadius(float _discover , float _lost);

virtual void Update(float _dt , PlaneAgent* _agent) = 0;

void GetNeighbors(PlaneAgentGroup &_neighbors);

void GetNeighborsBySide(int _side , PlaneAgentGroup &_friends ,

PlaneAgentGroup &_enemies);

PlaneAgent* GetLostNeighbor ();

void RemoveReferences(const PlaneAgent *_agent);

void Reset ();

AbstractRadar ();

};

Figure 17: Public AbstractRadar methods

An update is always performed inside the Update call, which takes the time elapsed (called dt) and an agent
instance in question. After such call, one can fetch the updated lists, either using one of the GetNeighbors

functions (for visible agents) or to fetch one-by-one the list of neighbours that has been lost.

RemoveReferences is a technical method that ensures there’s no reference to a specified agent left in the
radar. The sole purpose is to make sure the engine will not crash on an invalid pointer operation once an
agent is freed from memory.

In the final stage, we’re using an angular exponential radar implementation in the AngularExponentialRadar
class. It takes three parameter pairs (multiplicative m and additive a) plus two angles (for front and rear).
The angles are used to detect whether another plane is in front (resp. rear) of the airplane centre, that is,
whether it is in the cone around the forward() (resp. -forward()) vector. The two areas are visualized on
Figure 18. Anything outside these two cones is considered as “side”.

α β

Figure 18: The front and the rear area of the airplane parametrized by two angles in an angular-exponential
radar implementation.

Once we know the relative position of the agent in question, we can compute the probability of seeing it by
using the other two parameters and the formula

p = e−mx−a

55

where x is the distance. This probability is recomputed every second, simulating a pilot that takes a good
look around every now and then. It also (when parameters are chosen well) can make a nice difference
whether the player is approaching the AI from the front or rear, giving the player a nice realistic feeling that
the AI still haven’t seen him.

Height map Height map, on the other hand, has a comparatively simple interface. As can be seen in
Figure 19, there are just two virtual methods. The first one, AddObstacles, pushes new obstacles to the
‘given by reference’ obstacle group for a given vehicle and radius. OpenSteer logic will be later used to
avoid these obstacles. This significant level of abstraction allows us to add any number of OpenSteer or
OpenSteer-derived obstacles into the list, like cubes (for houses), planes (large levelled terrains, bodies of
water etc.), or triangles (for an exact height map).

GetHeight is even simpler method, which just returns the buffer below an agent. The main purpose of this
function is to signal to the higher level logic (namely the PlaneAgent class described in just a moment later)
whether it’s appropriate to switch into the “gain altitude, you’re too low” state.

class AbstractHeightMap

{

public:

virtual void AddObstacles(OpenSteer :: ObstacleGroup &_obstacles , const

PlaneAgent *_vehicle , float _radius) = 0;

virtual float GetHeight(const PlaneAgent *_vehicle) = 0;

};

Figure 19: Public AbstractHeightMap methods

The concrete implementation is rather simple, it just takes the highest point on the terrain in the given
radius and returns a single plane obstacle with this height. This solution is very beneficial considering its
complexity (OpenSteer will get either no or just one obstacle to avoid). Also, the original plans were not
found viable as there is no reliable method to query objects from the graphics module (just a function for
querying the height at a given point).

4.7.3 Agent states

In preparation for the next section, we’re going to describe each agent state and possibly its parametrization
here. In most cases they simply copy the OpenSteer manoeuvre naming conventions.

Heading This represents a need of the agent to reach a single point in space. For example, when an agent
needs to return to the base, assuming he possesses the coordinates of the base, it can signal it is heading
towards those coordinates.

Approaching Almost the same like heading, just with an extra parameter specifying the time. The agent
needs to approach a given point in space in a given time. The speed will be adjusted accordingly. However,
this manoeuvre (unlike the later described catching) doesn’t specify anything about the orientation itself
(thus is not really usable for landing, for example). On the other hand, it’s perfectly fit in cases an agent
needs to reach a known point on the front in, say, ten minutes.

56

Following Similar to heading, just in this case an agent is following a path at an offset. Path also has
a specified radius, in which an agent can operate more or less freely (however, the position on the path
plus the offset will result in an attractor). If the radar reports some other friendly vehicles, it will use their
positions to keep near the nearest point on the path to the average position of the group. In combination
with a skilful setting of the offsets will naturally result in the set of agents who keep a formation. On top of
that, if the strict following parameter is not set, the agent will slow down (or even turn around) if it detects
some other plane(s) in the group lag behind him as well as will try to catch up in case he’s behind.

Taking into account the game purpose, the agents will most probably spend a significant time in this state.
Either when escorting a bombardiers (when the path is set the same for all agents, bombers follow strictly
and fighters will switch to catching whenever an enemy is spotted) or patrolling the front (where the setting
is obvious), following logic plays a central role.

Evading Evading is a manoeuvre parametrized by a list of other agents. These will be considered repellent
and the steering will result in evading all these agents.

Catching The most sophisticated state is no doubt the catching another plane (called prey). It needs to
get an advantageous position over the enemy (that is, get behind and possibly slightly above) as well as it
needs to adjust the orientation accordingly to get into the shooting position. While doing all this, it also
dictates to predict the prey’s future position (to decide when exactly to shoot and where to steer to).

It is parametrized by the far and near distances, where the first one signifies the distance that is too far to
shoot, while the later is the time to slow down or steer away from the prey (as it is dangerously close and a
collision might be imminent).

Gaining height The one manoeuvre that translates into another OpenSteer logic. It basically means the
plane nose should level with the ground, keep stable straight flight and gain heigh (not too quickly though,
respecting the airplane possibilities). It’s not triggered by the agent role itself, but by the PlaneAgent.

Wandering This is not really a state on its own, but it is a parameter for any of the previous states. It
says how much an agent might want to wander off the otherwise computed path. It allows to simulate more
human-like behaviour, because it will on occasions (randomly) steer few metres to the side, higher or lower.
Might prevent lock-ups, when for example two agents decide to catch each other and both possess the same
plane. Such a situation (without this random “wandering” around) would result in two planes in a tie –
circling, trying to get into the back of each other.

4.7.4 Agent role

Agent role describes what an agent (computer-controlled plane) should chose to do (namely the agent state
as described in Section 4.7.3). Similarly as in the case of the radar or height map, we’ve designed an abstract
class for simple design and introduction of the new strategies.

The first four have informational role for other computer-controlled players and roughly mean the following

Revenging is an airplane when it will shoot at me after I open fire (true for most players but bombers and
such).

Defensive is such player who when entering area he controls, will open fire (agents who protect a base, for
example).

57

class AbstractAgentRole

{

public:

virtual bool IsRevenging () const = 0;

virtual bool IsDefensive () const = 0;

virtual bool IsOffensive () const = 0;

virtual bool IsWandering () const = 0;

virtual void SituationUpdate(const std::vector <PlaneAgent*> &_friends ,

const std::vector <PlaneAgent*> _enemies) = 0;

virtual void AgentDisappear(const PlaneAgent *_agent) = 0;

virtual AgentState GetState () const = 0;

virtual bool Shooting () const = 0;

virtual std::vector <PlaneAgent*> GetEvadeList () const = 0;

virtual OpenSteer ::Vec3 GetHeadingPoint () const = 0;

virtual OpenSteer :: Pathway* GetPath () const = 0;

virtual OpenSteer ::Vec3 GetPathOffset () const = 0;

virtual bool GetPathStrictFollowing () const = 0;

virtual float GetApproachTime () const = 0;

virtual PlaneAgent* GetPrey () const = 0;

virtual void GetPreyRanges(float &_close , float &_far) const = 0;

virtual float GetWanderWeight () const = 0;

};

Figure 20: Interface of the AbstractAgentRole

Offensive describes a player who actively searches for enemies and shoots them down.

Wandering is a flag for vehicles that move around without a mission (not related to wandering agent state).
Opposite is a plane that follows a path or circles above an important point (guards the air territory).

The decision making of other agents heavily depends on correct return values of these four functions (as it
might make a difference of attacking or fleeing).

SituationUpdate and AgentDisappear (meaning disappearance either because the agent have died or flew
away) are functions that update the internal state of the agent. The derived class should utilize these to
compute what should an agent do given the information about other players.

The numerous (nine) getters at the bottom of the interface definitions are just to get the internal agent state
and its parameters, as described in the dedicated Section 4.7.3.

Simple agent Simple agent’s behaviour is the base for the other two. This player will take a path and
other parameters when being created and during the gameplay will basically switch between following (or
just plain wandering if not path is specified), catching (when sees some enemy) or evading, when enemies
outnumber the friendly planes the agent knows about. It chooses as prey any (the first seen) enemy.

Fighter Fighter is derived from the simple agent and is all defensive, offensive and revenging. It also
follows more sophisticated logic when choosing a prey, when it prefers undamaged (that is, ignores wounded

58

players which usually only wait for gravity to crash them) planes and among multiple undamaged possible
targets chooses the offensive ones. As a real flying Samurai, never evades anyone and rushes into the fight.

Bomber Bomber role, although derived from the simple agent, is way simpler. It basically never changes
its state from the initial following the path. It also never returns the fire, is not defensive nor aggressive.
Bombers usually didn’t have any mounted guns anyway.

4.7.5 Decision making

Decision making is stored in the PlaneAgent (significantly extending the base class from OpenSteer) PlaneAI
(consisting mainly of a routines to get a set of decision values from the former) class. Let’s take a look at
most important methods and members in the Figure 21.

class PlaneAI

{

private:

InverseGuess *m_inverse;

PlaneAgent *m_agent;

AbstractHeightMap *m_map;

SimpleAgentRole *m_role;

public:

PlaneAI(ProximityDatabase &_pd , AbstractHeightMap *_map ,

SimpleAgentRole *_role);

void SetParams(const Entities :: AirplaneType &_params);

void SetPathway(const std::vector <Ogre::Vector3 > &_points , const

Ogre:: Vector3 &_offset , float _radius);

void SetSide(int _side);

void SetWounded(bool _wounded);

void SetPosition(const btTransform &_transform , btScalar _velocity);

void ComputePosition(float _time , float _elapsed);

btTransform GetTransform () const;

};

Figure 21: Extract of some important definitions in the PlaneAI definition

One can observe many are named quite intuitively. The class holds record of the actual agent in the form
of the PlaneAgent pointer as well as some access methods. The core usage is to get the current position
(represented by a Bullet btTransform structure containing both position and orientation plus a velocity
vector), let the plane agent decide the future position (by a call to ComputePosition) and then get the
target transform that will be later handed to the inverse physics subsystem.

Another class we mentioned earlier is the PlaneAgent. This is much bigger piece of code, so again let’s list
the main defined features and describe them in more detail (figure 22).

One can observe the multiple levels on which this class needs to function. It was very favourable especially
in the beginning stages of the development (when the game was not playable yet) to use the class purely as
an agent being visualized in the OpenSteer program. That’s why we needed to implement draw() method
(together with some handy annotation functions not shown in the listing). Also, reset() and update()

59

class PlaneAgent : public OpenSteer :: SimpleVehicle

{

public:

PlaneAgent(ProximityDatabase& _pd , AbstractHeightMap *_heightMap ,

AbstractAgentRole *_role);

void draw();

void reset ();

void update(const float _currentTime , const float _elapsedTime);

// ...

void GetNeighbors(float _radius , PlaneAgentGroup &_neighbors);

OpenSteer ::Vec3 DetermineCombinedSteering(const float elapsedTime);

friend class PlaneAgentPlugIn;

};

Figure 22: Most important parts of the PlaneAI definition (not the complete code listing)

methods are abstract functions defined in AbstractVehicle and play a role when this class is used in
OpenSteer, but the AI module (or, to be more precise, plane AI class) will utilize them for our purposes of
decision making in the game.

This class does the geometry itself, according to the state returned from the agent role. It also adds two
important aspects of the logic: it switches to a state sGainHeight for gaining height when the plane is very
low above the ground and decides whether it’s in the good position to shoot, relative to the prey. The later
is always logically added to the return value from the agent role. The reason to portion out this decision
whether to shoot is that an agent role has very limited knowledge about the geometry of relative prey’s
position. The idea is to leave as much geometry computations to the OpenSteer (and thus, PlaneAgent) as
possible, while keep agent role class a high-level one.

We can also observe other technicalities, like the simple fact that PlaneAgent is the code which keeps the
height map information, the obstacle of the agent itself or the fighting side. It also counts and keeps track
of the friendly and enemy vehicles spotted on the radar. All this information is then served to the agent role
and the decision is used to compute the geometry of the trajectory.

4.7.6 Inverse motion

Brute force This method just searches in the given range and given step size which combination of inputs
gets the closest to the desired result. So, its complexity is O(pn4), where O(p) is the complexity to compute
physics score guess and n represents an amount of steps to try in each axis. If we assume the question of the
inverse motion system in every step is simply “Do I want to increase or decrease the thrust/pitch/roll/yaw
by a given fixed step?”, the n will be equal to reasonable 3 (selecting from the set −s, 0, s). Nevertheless,
this method performs very poorly when it comes to computational time.

Brute force per-axis Very similar to the previous brute force method, but this time utilizing a simple
trick. We find the best scoring change in every axis separately and then combine them. The idea is that the
axes are not affecting each other much (increasing the thrust is not likely to affect the rotation along any axis,
for example), so it’s safe to assume this will work. It reduces the original O(pn4) into much better O(4pn).

60

On our hardware, the multiplicative coefficient change of 81
12 at the smallest range (where n = 3) turned the

AI from major bottleneck into something that took significantly less computing time than graphics module
(which dictates the upper frame rate limit anyway). It is also recommended way of solving the inverse motion
problem in the Flying Samurai game, producing easily achievable and solid results for most situations.

Iterative search Another way to improve raw speed (but when the precision and reproducibility suffers)
is to use random hill climbing approach. This algorithm will take a random coordinate out of the four
(thrust, pitch, roll and yaw) and changes it to another random value in the [−1, 1] (resp. [0, 1]). Then it
compares the performance to the previous state. If it has improved, it forgets the old configuration and
replaces it with the newly altered one. This iterative process is repeated for the specified number of steps.
The computational complexity goes down to O(np), where n is freely configurable and signifies the upper
limit of iterations. On the other hand, the performance is rather low, as it doesn’t use neither gradient or
any wider knowledge about the rather continuous nature of the world.

Neural network The most complex, but also the most promising method (if well trained, of course). It
utilizes traditional neural networks with the input layer representing the decision values structure and ability
to read the input values on the output layer1. The time to retrieve an answer from the network is basically
constant (depends only on the amount of neurons, which in all practical uses is comparatively low, otherwise
will hardly converge during the training phase anyway).

To train the neural network, one can use the invphysics.exe tool, which reads the Entities.xml file the
same way the game would read it (see the appendix for the file’s syntax – it describes also the tool’s learning
parameters) and perform a blend of back-propagation algorithm and evolutionary selection.

This approach have shown after few days of guided training (that is, altering the learning parameters by
hand when appropriate to speed up the whole process) a reasonable improvement over the baseline (freshly
initialized network). In many cases, it even could over-perform the brute force (as the brute force is still
limited by the size of the step), but these results were scarce and also the network wasn’t performing well in
all possible situations the plane can get into.

Combination Obviously, there are positives and negatives about all the previous methods. In strive for
being able to use not completely trained neural network, but still being at least partially stable, we also
implemented a combiner of the previous inverse motion algorithms. As every algorithm is able to score itself
(using the difference function in PhysicsPattern class derived from an abstract NeuralPattern – contrary
to the name usable also in other methods), we can let two or more of the previously described ones let make
its decision and then just pick the best one. In practice this is accomplished by multiple inheritance from
the other classes, where the core method calls one-by-one the inherited core methods, keeping track of the
best achieved score. That one is returned.

1The author is aware this usage of “input” and “output” is a great source of confusion. But inverse physics’ main purpose
is to convert a value that is an output of the traditional physics into a value that given as an input will provide the mentioned
output. For this simple reason, there is little choice of different terminology.

61

4.8 Input

Our game is supposed to be a realistic flight simulator. This implicates several requirements on input. First,
digital (two state) input is not enough and analog input has to be supported. Second, the airplane (usually)
has 3 degrees of freedom, which means there have to be (at least) three different airplane controls governed
by the input system. Finally, since joystick is the preferred input method for most flight simulation players,
joystick support was almost a must.

Our library of choice is OIS – the Object-oriented Input Library – which interfaces the input hardware,
including joysticks, nicely.

We chose to provide a query-based, rather than callback-based, interface, since queries can be made more
than once, which allows different threads to make the same query in a frame’s timespan. If callbacks were
used, they would have to broadcast the information, and the callbacks would have to be triggered at before
the frame starts but after the swap has been made, so that the handlers would already have access to the
fresh readers and writers (see Section 4.2). Currently, input is polled (see Poll) during the swap and is
guaranteed to return the same values over the frame’s timespan. This might, however, cause problems when
the game is running at rather slow framerates, since some keystrokes, for example, might get missed.

4.8.1 Abstraction layer

Since OIS works in a rather low-level fashion, a further abstration layer was needed. Ideally, the physical
module shouldn’t be concerned with whether the input came from the joystick, the mouse, or the keyboard.
To provide some level of input configuration, a mapping from the hardware input (joystick position has been
changed, key has been pressed, etc.) to in-game actions (roll to the left, yaw to the left, pitch up) has to be
provided.

The hardware input comes in three different flavours. A key or a mouse button is either pressed or released,
but the joystick position is given in absolute coordinates (this is device dependent, but it was so for the
joystick we tested with), and mouse movement is best tracked by checking it’s relative coordinates (with
respect to last frame; if we used absolute coordinates instead, mouse movement wouldn’t change the mouse
position when the cursor is located at the edge of the window, whereas relative coordinates work fine in this
case).

Absolute coordinates

Relative coordinates

Digital input

Device actions

Device actions Game action

Game action

Game action

∑

Figure 23: The input pipeline, showing the data-flow for each kind of input.

Next, having a position doesn’t really tell us much about what has actually happened. The action (movement
to the left, for example), has to be extracted from the raw coordinates. We call those actions device actions
(see MouseAction, JoystickAction,). Note that the keyboard, being a two-state device, doesn’t have this
problem and no actions need to be explicitly defined (they are already predefined by OIS and are identical
to the key-codes).

Finally, if the user uses all possible input devices at the same time, possibly even triggering the same action
using different input devices, which of them should we prioritize? We chose to sum all of the influences
(we call them amounts) together (see GetAmount). Therefore, for each device, a mapping between de-

62

vice actions and the game actions (see InputAction) is defined (see m_keyBinding, m_mouseBinding, and
m_joystickBinding).

Since the keyboard is a two-state device, a default amount for each of it’s actions has to be defined. We hoped
to implement an input aid that would make using the keyboard easier by changing the amount continuously
depending on how long the action has been pressed or released (see below; a similar system is sometimes
implemented in car simulations). This, though, proved not to be necessary.

For some actions, it is also useful to track whether the action has just started, is in progress, or has just ended.
We chose to re-implement this functionality in the abstraction layer, even though OIS already provides it.
By keeping track of the previous frame (see m_inputFrame, m_currentFrame, and m_lastFrame), we are
able to answer the above-mentioned queries (see HasBeenPressed, HasBeenReleased, IsPressed).

Special handing of the SHIFT key was needed to compensate for a known bug in OIS-CEGUI integration.
Extra mouse keys also need to be filtered to avoid crashes.

63

4.9 Sound

4.9.1 Requirements

The Game takes place in a three dimensional environment and sound effects should make use of this to provide
a more authentic experience. The engine used therefore has to be able to “position” each track/sound in
the 3D environment. Support for the Doppler effect and customized sound roll-off decided that iirKlang [15]
was chosen as the most suitable engine. The engine itself supports multi-threading, 3D sound, the Doppler
effect, customized playback, and is very easy to use.

4.9.2 Resources and usage

The game provides these sound effects:

• Engine sound - each plane emits thrust dependent noise.

• Fire - emitted by each machine when a bullet leaves its barrel.

• Explosion - when the plane collides with the ground or with another plane.

The pitch of the engine sound is modulated according to the level of thrust each plane is currently at (see
GetSoundCoefficient and GetSoundVolume). Since engine is quite loud, it is to be expected that most of
the time, the player will only be able to hear his own engine and only close proximity to another plane makes
location by sound possible. Listening point position is determined by the user’s position vector, direction
vector, orientation vector and velocity vector(for Doppler effect). Engine and bullet sounds require position
vector and velocity vector (for Doppler effect). Explosions are played as 2D sounds. These help to identity
whether a airplane crash occurred.

4.9.3 Integration

The author of the irrKlang library recommends the sound interface to run either in a separate thread or to
receive updates roughly thirty times per second. The multi-threaded mode allows the usage of irrKlang in
its own separate thread. To avoid concurrency problems, we used the default multi-threaded mode with a
re-entrant interface.

The engine itself is represented by a ISoundEngine instance. During start-up, game pre-loads all sounds to
memory for uninterrupted playback. Every airplane has it’s own paused instance of engine sound. Every
scene graph update triggers the refresh of engine and bullet sound positions. Sounds are paused when the
user enters the in-game menu. Sounds are resumed when the user returns to the game. Game does not play
any sound during start-up and when in menu. Pausing and resuming is triggered in logical action handler
in GameLogicModule

4.9.4 Interface

The game wraps the sound in the Sound class. This class provides functions to add 3D/2D sound using
Ogre3D vectors. Bullets and explosions use non-looped tracks and the interface does not track their playback.
Engine sounds are played in a loop and the wrapper keeps their handles to allow for pause and resume
functionality. These handles are mapped to s32 sound indexes in order to allow for easy sound engine
exchange.

64

4.10 Miscellaneous

Information about those pieces of code that do not directly fit into any of the other sections or that are span
multiple section with no clear affinity can be found here.

4.10.1 Consoles

To make debugging easier, several debugging consoles were introduced. These convey information about
the state of various parts of the game. Because of the reader/writer paradigm, the consoles have to be
handled in two separate classes, the Console and GraphicalConsole. The Console class implements both
the reader and writer via the !ConsoleReader and ConsoleWriter classes and therefore buffers the data to
be displayed. The GraphicalConsole class then takes care of rendering the data from the ConsoleReader.

Both classes work with lines. Each line has a number and the data can be changed on a per-line basis.
While lines with newline characters display correctly, the lines below them have no concept of that and will
overwrite a part of the line with newline characters. As a rule of thumb, either one single line with newline
characters or several lines without newline characters should be used.

The GraphicalConsole class is based Ogre3D’s Overlay and PanelOverlayElement classes and uses the
default material from Ogre3D demos for console background. Screen position in 〈0, 1〉×〈0, 1〉 can be specified
for each of the corners.

It is worth noting that the text output in Ogre3D is rather slow and displaying too much textual data might
slow the game down considerably.

4.10.2 SettingsFile

With the exception of Entities.xml, all data files are read and written by the SettingsFile utility class.
Class is essentially a strong typed key-value pair storage. Each module is provided with its own settings file.
Career and statistics data are also serialized and de-serialized using the SettingsFile class.

Usage:

SettingsFile settingsFile;

if(! settingsFile.Load("superman1.dat"))

throw std:: exception("too bad");

if(settingsFile.HasKey("vertical_resolution"))

u32 verticalResolution =

settingsFile.GetU32("vertical_resolution");

if(settingsFile.HasKey("horizontal_resolution"))

u32 horizontalResolution =

settingsFile.GetU32("horizontal_resolution");

// add some other key

settingsFile.AddBool("fullscreen", true);

settingsFile.Save("superman2.dat");

Later in development, we added support for container storage. Using the Checksum class, we assure the

65

integrity of career data. The user can only load careers that have been created with the current Entities.xml
file.

4.10.3 Command line parameters

The game supports various command line options. We use boost::program_options since it seems to be
the most elegant solution available in the currently used 3rd party libraries. This mechanism is used to easily
add simple development related functionality

• --settings-path <dir> - path where the Startup (see Section A) settings file is located. If not
provided, the current directory is used as a default.

• --simple-tests - runs tests that only take a short amount of time upon game start.

• --run-all-tests - runs all tests upon game start.

• --disable-terrain - replaces terrain with a simple plain terrain with uniform height. Used for mainly
in debug mode to make the game load and run faster.

• --help - prints command line options to console.

• --console - shows external command line console window with debug output.

• --log-file <file> - redirects standard output to the specified file. Console window output is pre-
served.

Please note that unit tests were only used to debug utility classes in early stages of development. It is
not guaranteed that tests will pass or even be able to finish without a crash, since they are not up to
the date with the rest of the code.

4.10.4 Helper code

Game code interconnects several frameworks and their structures are naturally not compatible. A good
example of this is the conversion of Bullet, Ogre, and irrKlang vector types. We implemented conversion
functions to seamlessly pass data from one framework to another. There was also the need for basic type
conversions (from string and to string). ToString and FromString template functions are used for this
purpose.

Although it is considered a bad practice, we use C macros to simplify or remove redundant code. This
is used in shared structures(FS_BUFFERABLE and FS_BUFFERABLE_EX) and entity classes (EntityWithMap,
EntityWithList and EntityWithList2, see Section 4.2.5). Macros are an essential part of the transparent
memory tracker.

We have also typedefed most of the common built-in types to make the usage of signed and unsigned types,
as well the use of specific length types, easier; see Types.h.

4.10.5 Code sharing foundation

A Subset of header and cpp files is prepared for usage in multiple projects. This can be seen in invphysics and
game projects. It is accomplished by using compatible pre-compiled headers and project specific C #defines
to disable unused code with #ifdefs. The most heavily affected file is Globals.cpp and it illustrates how
only some modules are used in each project.

66

4.10.6 Multi-platform support

The game can be currently run on the Windows platform only. There are no known problems that would
not allow the project to be built (but not run!) on a platform intersection of used 3rdp arty libraries. If
someone would attempt to port code to different platform and/or different compiler, the following needs to
be done:

• Ogre3D library and its plugins must build manually from supplied patched sources.

• game_pch.h contains a few parts that have to be modified.

• We use custom CMake include files and these have to be modified.

• The OpenGL renderer in Ogre3D stopped working early in the project’s development. All of our shaders
have been written in Cg[3] (we have also used some of Ogre3D’s default materials that have been written
in different shading languages) and we believe this or the usage of some OpenGL incompatible construct
in Cg is the source of the problem. We have not investigated into the matter any further, though.

67

5 Conclusions

After over 20 endless months of work, we have approximately gotten to the point where we wanted to be when
we started. Of course, the game is not an AAA title, and there are still details that we could fix and features
that could be added, but the result is very satisfying and, especially in comparison with professional projects
such as Rise of Flight and Over Flanders Fields (see Section 2.5), we are very proud of our achievement. The
first feedback we have gotten from the community (at the time of writing, the game hasn’t been released
yet) is also positive.

It goes without saying that we have all improved our (or gained our first) teamwork skills. We have all
seen and experienced how important tolerance, work morale, covering each others back, team spirit, project
management, and individual skills are. Several unexpected events – especially the unexpected crash of the
supposedly backed up urtax server that hosted our SVN/SVNStats and DokuWiki – have also shown us
that risk management shouldn’t be underestimated. Working with externists has also taught us a lot about
the motivation in other people and increased our management skills.

The sheer size of the project forced us to integrate and adapt several already existing solutions, something
one doesn’t usually encounter much while working on his/hers lab assignments. Our ability to read and
understand other people’s code, as well as the ability to write code that can easily be understood, has also
improved.

While several non-ideal decisions were made over the course of the project, most of them were forced or
couldn’t have been avoided without further experience. If we were to do the project over again, we’d
probably drop the paged terrain solution which was very hard to get running and maintain in favour of a
more simple – possibly non-paged – one, and drop and replace the CEGUI library, which has proved to be
rather difficult to use well.

All in all, we believe we can hold our heads up high.

68

6 Acknowledgements

First, we would like to thank our project supervisor, Mr. Otakar Nieder, for his responsible attendance at
our weekly project meetings, for his help with preparations of the airplane meshes, and of course for his
share of leadership.

Secondly, we thank all externists that participated on the project by doing historical and technical research,
game content creation, and testing. Their names and respective contributions to the project are mentioned
in Section 2.2.

Thirdly, we thank the developer teams of all the libraries, plugins, and software we have used – Ogre3D
graphics engine, Bullet physical engine, Opensteer library, Boost library, irrKlang sound engine, tinyxml
library, Myrddin Landscape plugin, PagedGeometry plugin, CEGUI library, HDRlib plugin, L3DT software,
and probably others.

Last, but not least, we would like to thank Lenka Forstová for providing us with the room for the project
meetings and a PC workstation for overnight neural network training, Tomáš Holan for consulting the
administrative side of the project with us, and APS Group, s.r.o. for hosting our TRAC and SVN repository
(after the crash of the urtax server).

69

7 References

[1] Bloom, Charles: Terrain Texture Compositing by Blending in the Frame-Buffer, http://www.cbloom.
com/3d/techdocs/splatting.txt, 2000

[2] CEGUI plugin for Ogre3D, by Crazy Eddie and open source community, http://www.cegui.org.uk

[3] Cg - the Language for High-Performance Real-Time Graphics, http://developer.nvidia.com/page/
cg_main.html

[4] CMake, by Kitware, http://www.cmake.org

[5] DirectX library, by Microsoft Corp., http://www.microsoft.com/windows/directx

[6] DotScene fileformat for Ogre3D, http://www.ogre3d.org/wiki/index.php/DotScene

[7] Flying Samurai: Specifikace softwarového projektu, http://ksvi.mff.cuni.cz/~holan/SWP/zadani/
flying.pdf

[8] Glasser, Nate: Texture Splatting in Direct3D, in gamedev.net, http://www.gamedev.net/columns/

hardcore/splatting

[9] Google Earth software, by Google, http://earth.google.com

[10] Globally Unique Identifier (GUID), in Wikipedia the Free Encyclopedia, http://en.wikipedia.org/
wiki/Globally_Unique_Identifier

[11] HDRlib plugin for Ogre3D, by Christian Luksch, http://www.ogre3d.org/wiki/index.php/HDRlib

[12] Heightmap, in Wikipedia the Free Encyclopedia, http://en.wikipedia.org/wiki/Heightmap

[13] How To: Generate Superb Heightmaps, in Transport Tycoon Forums, http://www.tt-forums.net/
viewtopic.php?f=29&t=27052

[14] Inkscape, by open source community, http://www.inkscape.org

[15] irrKlang, by Ambiera, http://www.ambiera.com/irrklang

[16] L3DT software, by Bundysoft, http://www.bundysoft.com/L3DT

[17] MICRODEM software, by Peter Guth, http://www.usna.edu/Users/oceano/pguth/website/

microdem/microdem.htm

[18] Myrddin Landscape Plugin for Ogre3D, by Jacques Quidu, http://myrddinplugin.sourceforge.net

[19] Ogre 3D engine, by Torus Knot Software and open source community, http://www.ogre3d.org/

[20] OpenSteer library, initially developed by Craig Reynolds, Research and Development http://

opensteer.sourceforge.net/

[21] Over Flanders Fields mod for Microsoft Combat Flight Simulator 3, by OBD Software, http://www.
overflandersfields.com

[22] PagedGeometry Engine for Ogre3D, by John Judnich, http://www.ogre3d.org/wiki/index.php/

PagedGeometry_Engine

[23] Photoshop, by Adobe, http://www.adobe.com/products/photoshop/compare

[24] Red Baron II, in Wikipedia the Free Encyclopedia, http://en.wikipedia.org/wiki/Red_Baron_II

70

http://www.cbloom.com/3d/techdocs/splatting.txt
http://www.cbloom.com/3d/techdocs/splatting.txt
http://www.cegui.org.uk
http://developer.nvidia.com/page/cg_main.html
http://developer.nvidia.com/page/cg_main.html
http://www.cmake.org
http://www.microsoft.com/windows/directx
http://www.ogre3d.org/wiki/index.php/DotScene
http://ksvi.mff.cuni.cz/~holan/SWP/zadani/flying.pdf
http://ksvi.mff.cuni.cz/~holan/SWP/zadani/flying.pdf
http://www.gamedev.net/columns/hardcore/splatting
http://www.gamedev.net/columns/hardcore/splatting
http://earth.google.com
http://en.wikipedia.org/wiki/Globally_Unique_Identifier
http://en.wikipedia.org/wiki/Globally_Unique_Identifier
http://www.ogre3d.org/wiki/index.php/HDRlib
http://en.wikipedia.org/wiki/Heightmap
http://www.tt-forums.net/viewtopic.php?f=29&t=27052
http://www.tt-forums.net/viewtopic.php?f=29&t=27052
http://www.inkscape.org
http://www.ambiera.com/irrklang
http://www.bundysoft.com/L3DT
http://www.usna.edu/Users/oceano/pguth/website/microdem/microdem.htm
http://www.usna.edu/Users/oceano/pguth/website/microdem/microdem.htm
http://myrddinplugin.sourceforge.net
http://www.ogre3d.org/
http://opensteer.sourceforge.net/
http://opensteer.sourceforge.net/
http://www.overflandersfields.com
http://www.overflandersfields.com
http://www.ogre3d.org/wiki/index.php/PagedGeometry_Engine
http://www.ogre3d.org/wiki/index.php/PagedGeometry_Engine
http://www.adobe.com/products/photoshop/compare
http://en.wikipedia.org/wiki/Red_Baron_II

[25] Red Baron II/3D, by Dynamix, http://www.wingsofhonour.com/redbaron3d/html_woh_

redbaron3d_about.en.html

[26] Rise of Flight, by neoqb, http://riseofflight.com

[27] Strauss, Paul S.: A Realistic Lighting Model for Computer Animators, in proceedings of IEEE Computer
Graphics and Applications, 1990

[28] Truevision TGA, in Wikipedia the Free Encyclopedia, http://en.wikipedia.org/wiki/Truevision_
TGA

[29] VC++ 2008 SP1 Compiler, by Microsoft Corp., http://www.microsoft.com/downloads/details.

aspx?familyid=a5c84275-3b97-4ab7-a40d-3802b2af5fc2&displaylang=en

[30] Windows SDK 6.0, by Microsoft Corp.

[31] Wings of Honour, Rise Of Flight - Interview with neoqb, http://www.wingsofhonour.com/

riseofflight/articles/interview_neoqb_20090813/html_woh_riseofflight_interview_neoqb_

20090813.en.html

71

http://www.wingsofhonour.com/redbaron3d/html_woh_redbaron3d_about.en.html
http://www.wingsofhonour.com/redbaron3d/html_woh_redbaron3d_about.en.html
http://riseofflight.com
http://en.wikipedia.org/wiki/Truevision_TGA
http://en.wikipedia.org/wiki/Truevision_TGA
http://www.microsoft.com/downloads/details.aspx?familyid=a5c84275-3b97-4ab7-a40d-3802b2af5fc2&displaylang=en
http://www.microsoft.com/downloads/details.aspx?familyid=a5c84275-3b97-4ab7-a40d-3802b2af5fc2&displaylang=en
http://www.wingsofhonour.com/riseofflight/articles/interview_neoqb_20090813/html_woh_riseofflight_interview_neoqb_20090813.en.html
http://www.wingsofhonour.com/riseofflight/articles/interview_neoqb_20090813/html_woh_riseofflight_interview_neoqb_20090813.en.html
http://www.wingsofhonour.com/riseofflight/articles/interview_neoqb_20090813/html_woh_riseofflight_interview_neoqb_20090813.en.html

A Startup

To provide customized application launch, a .NET launcher was created. It main function is to provide
the game with a graphics and sound configuration dialogue (we wanted to replace Ogre3D’s configuration
window, as it contained some options that could crash the game, such as the OpenGL renderer). The Startup
application (see Figure 24) replaces this mechanism and among other things, shows our own logo.

Figure 24: The Startup configuration dialogue.

User configurable items are fully customizable. The assembly references DirectX binaries and inter-op
binaries to detect available video modes. The configuration file is then saved to the user profile directory.
The user interface roughly copies the behaviour of the Ogre3D configuration dialogue. The configuration file
is loaded and stored using serialization. After the user decides what graphics and sound settings he wants,
the “Launch” button starts game.exe and makes it read the user specific configuration file.

72

B Game parameters definition file (”entities file”)

This section describes the ”entities file”. The purpose of this file is to define parameters and objects for
the game logic, such as airfield positions, airplanes, pilots, nationalities, etc. Because the file is an XML
document, basic to intermediate knowledge of XML is assumed.

Basic concepts

Two basic concepts need to be understood. First of all, some entities in the file might be cross referenced.
A cross-reference defines a relationship between these two entities, for example a pilot might cross-reference
an airplane (”I’m the pilot of that airplane” relationship). For this purpose, ID numbers are used and the
entities then mention the ID of the other entity somewhere in their definition.

Second, some of the entities can change their attributes with time. This is achieved using the From attribute.
This attribute specifies the date from which the set of values is valid. There is no To attribute, once the date
in the campaign goes far enough, a definition with a more recent From attribute will be used. The concept
is illustrated on the following example:

<Front From="1910 -01 -01"> .. </Front >

<Front From="1912 -01 -01"> .. </Front >

Two sets of data for the front are specified, one valid from 1. January 1910, one valid from 1. January 1912.

B.1 MOD

The entity file first defined basic properties of the current game MOD. This is done inside the ¡Mod¿ tag as
follows:

<Mod Name="Original Mod" From="1914 -08 -28" To="1914 -09 -10"/>

Name attribute should be a unique string identifier, From and To attributes specify the beginning and end of
the campaign. The dates above are valid for the World War I., but can be arbitrary dates in the YYYY-MM-DD

format.

B.2 Period

The campaign might be divided into different periods, each of them specified by a <Period> tag. The goal
of this option is to provide a way to control the frequency of missions (less missions at the beginning of the
war) and the type of the missions (less bombing missions at the beginning of the war). Note: The mission
types are fixed (cannot be redefined)!

<Period From="1914 -08 -28" Missions="3" SquadronDogFight="1" PatrolTheFront="2"

EscortBombarders="0" RaidBombarders="0" />

The From attribute specifies the time dependency. Missions attribute specifies the number of mission
in that time period (until the next time period takes over). The SquadronDogFight, PatrolTheFront,
EscortBombarders, RaidBombarders attributes specify the ratio of the various mission types during that

73

time period. For the above mentioned example, the ratio would be 1:2:0:0, i.e. some squadron dogfights,
twice as many patrol the front missions and no escort bombers or raid bombers missions.

B.3 Map

The Map tag defines properties for the map that is to be used. Currently, the map of western Europe is
always used, it’s width and height in meters is defined using the Width and Height attributes of the map
tag

<Map Width="530000" Height="430000" />

B.4 Front

The front is time dependent. The <Front> data are valid from the date specified by the From attribute and
until either the end of the war, or until overridden by a next <Front> tag with a newer date.

<Front From="1910 -01 -01">

...

</Front>

<Front From="1912 -01 -01">

...

</Front>

The above example defines two fronts, one valid from 1. January 1910, and another one, valid from 1.
January 1912. This way, the shape of the front can change with time. Note that the From attribute can
contain dates that are less recent than the start of the MOD.

Inside the <Front> tag, the actual front data are given. A set of points is given, consecutive points being
connected by a line. Each point is given as a <Point X="0" Y="0" /> tag, where the X and Y attributes
define the position of the point on the map (in meters; relative to the upper left corner, X going from 0 (left
border of the map) to map width (right border of the map), Y going from 0 (top of the map) to map height
(bottom of the map).

<Front From="1910 -01 -01">

<Point X=’265000 ’ Y=’0’ />

<Point X=’269755 ’ Y=’8600’ />

<Point X=’267939 ’ Y=’17200 ’ />

<Point X=’262062 ’ Y=’25800 ’ />

</Front>

74

B.5 Nations, Sides

The game recognizes sides and nations. There are always two sides only (for WW1, that is the allies and
the entente powers). Each side might have one or more nations, i.e. Great Britain and France for the allies,
Germany and Austria-Hungary for the entente powers. Sides and nations could be specified in the following
way:

<Side ID="1" Name="Allies" />

<Side ID="2" Name="Entente" />

<Nation ID="1" Name="Great Britain" SideID="1" />

<Nation ID="2" Name="France" SideID="1" />

<Nation ID="3" Name="Austria -Hungary" SideID="2" />

<Nation ID="4" Name="Germany" SideID="2" />

Notice that the nations cross-reference the sides they belong to by using the SideID attribute. Name and
ID obviously specify the unique identifier and the name of the respective side/nation.

B.6 Airfields, Squadrons

Airfields and squadrons are quite similar. Each <Airfield> tag defines a physical airfield. Each airfield
might be shared by one or more squadrons. The usual pattern would be to first define an airfield, and then
define one or more squadrons that would occupy this airfield. Airfields are specified in the following way:

<Airfield ID=’33’ Name=’33_axis ’ NationID=’2’>

<Location X=’267568 ’ Y=’409898 ’ From=’1910 -01 -01’/>

<Location X=’267768 ’ Y=’409298 ’ From=’1912 -01 -01’/>

</Airfield >

The ID is a unique identifier of the airfield and will be used elsewhere to reference this airfield. The Name

attribute specifies the name of the airfield, (the name should probably change as the location of the airfield
changes; this is currently not so, choose a generic name like the one above if more names would apply)
NationID references the nation this airport belongs to (not side!). Inside of the <Airfield> tag, locations
that change with time can be defined, X and Y attributes specifying position of the airfield from a given date,
From specifying that date. Squadrons are defined like this:

<Squadron ID=’0’ Name=’Flying Circus ’>

<Airplane AirplaneID=’1’ From=’1910 -01 -01’ />

<Station AirfieldID=’0’ From=’1910 -01 -01’ />

</Squadron >

ID attribute specifies the squadron’s unique identifier, name defines the name of the squadron. The squadron’s
assignment to airfields is time dependent and can be specified using the <Station> tag, where the AirfieldID
specifies id of the airport to assign this squadron to, and From specifies the date from which that should
happen.

Each squadron might also have a default airplane. This assignment is also time dependent, as at the beginning
of the war, different default airplanes will be used than at the end of the war.

75

B.7 Airplanes

Each airplane has to have it’s own Airplane tag. The ID attribute specified the airplane’s unique identifier.
The GUID attribute specifies the (see Section 4.5.8). FullName attribute contains the airplane’s name,
NationID attribute specifies the ID of the country that build the airplane, MountedGunID attribute specifies
the ID of the gun that is mounted on the airplane, AIParams specifies the set of AI parameter to be used,
BuildFrom is that date the airplane’s production started, BuildTo is the date the airplane’s production
ended, AmountBuilt is currently ignored, and finally, the PhysicsID attributes specifies the physics model
to use. Within the <Airplane> tag, the <description> tag contains a character data section with the
airplane’s description that will be used in the career mode.

<Airplane

ID="5"

GUID="111"

FullName="Fokker E III"

NationID="2"

MountedGunID="6661"

AIParams="5"

BuildFrom="1914 -01 -01"

BuildTo="1920 -01 -01"

AmountBuilt="100"

Powerplant="100"

PhysicsID="1"

>

<Description >

<![CDATA[Scourge of the air during the winter of 1915, the Fokker E.I was

the first aircraft armed with a synchronized , forward firing machine

gun. German pilots were ordered not to fly it across enemy lines for

fear the Allies would capture the secrets of the synchronizing gear.

Followed by the E.II, E.III and E.IV, the Eindecker was underpowered

and slow but could out turn most of its opponents. Allied aviators

who faced it called themselves "Fokker Fodder ". The Eindecker ruled

the skies until the Nieuports and SPADs were developed.]]>

</Description >

</Airplane >

B.8 Pilots

Pilots are defined like this:

<Pilot ID=’1001’ FirstName=’Manfred ’ Surname=’Richthofen ’

DateOfBirth=’1900 -01 -01’ DateOfDeath=’1960 -01 -01’ NationID=’2’ />

ID is a unique identifier and should be higher than 20 ·#nations+1. It’s advised to reserve about a thousand
ID’s for each nation, i.e. all Germans could be 1001, 1002,, all Brits could be 2001, 2002, etc. Lower
numbers are reserved for dummy pilots (unnamed pilots that fly bombarders etc). FirstName is the first
name of the pilot, Surname is the surname of the pilot, DateOfBirth specifies the date of birth for that pilot
and serves no real purpose as of now (might be visible in the GUI at some later point in time), DateOfDeath
specifies when that pilot dies. If that date is within the MOD’s starting and ending date, the pilot will really
die then (unless he gets shot down in a confrontation with the human player earlier), i.e. he will not take
part in any missions after his date of death.

76

B.9 Ranks

Ranks are defined as follows:

<Rank ID="0" NationID="1" Name="Rittmeister" Downs="0" Missions="0" Average="0"

LossAverage="1.0" Days="0" Score="0" CanPaint="false" CanTransfer="false"

CanLead="true" />

ID is the unique identifier, NationID cross-references the nation this rank belongs to, Name is the name
of the rank. Downs (number of enemy airplanes downed), Missions (number of mission flown), Average
(average number of shot downs per mission), LossAverage (average number of lost friendly airplanes per
mission), Days (days in service), and Score (achieved score) define the requirements necessary for the player
to achieve that rank. CanPaint (can paint his airplane, i.e. Red Baron, currently ignored), CanTransfer
(can the holder of this rank request transfer to some other squadron?), CanLead (can the holder of this
rank select formation, number of airplanes etc. before each missions?) define the qualities of this rank.
LossAverage might be useful to discard players who lose too many friends in battles, a good leader would
never let that happen. Other conditions are pretty self-explanatory in their use.

B.10 Awards

For each nation, a set of awards can be defined. An awards is defined in the following way:

<Award ID="0" NationID="1" Name="Pour le Merit" Downs="17" RankID="3"

Missions="0" Average="50.0" N3="1" N4="2" N5="3" Score="100"

Posthumously="true" Description="Pour le Merit is one of the most

prestigious ..." />

ID is the unique identifier, NationID cross-references the nation that awards this awards, Name is the name
of th awards. Following attributes define the condition under which the award is awarded: Downs is the
minimum number of downed enemy airplanes, RankID is the minimum attained rank, Missions is the
minimum number of mission flown, Average is the shot-down average per mission, N3 is the number of times
3 or more airplanes were downed by the pilot during a single mission, N4 is the number of times 4 or more
airplanes were downed by the pilot during a single mission, N5 is the number of times 5 or more airplanes
were downed by the pilot during a single mission, Score is the minimum total score achieved by the player.
Finally, Posthumously defines whether the award might be awarded posthumously and Description is a
longer description of the award.

As a guideline, awards where big bravery is required might use N3, N4 and N5 to require the player to down
several enemy airplanes during one mission. Rank might be used to limit the recipients only to some level of
ranks, Missions might be useful for ”lifetime achievement” awards or to require a certain experience before
the award is awarded, Average might help you to distinguish between experienced players who do okay,
but who generally don’t perform above-par; in combination with the Missions attribute, this will be useful
for awards that shouldn’t be achievable just by pure endurance, but that require a long-term above-par
performance level.

B.11 News

Various news can be specified and will be shown to the user at the first occasion after the given date (when
in campaign mode). These can be defined as follows:

77

<News Date="1917 -03 -10" Message="The allies now dominant" ImagePath="path" />

Date attributes specifies the date in a YYYY-MM-DD format, Message is the message to show, ImagePath

attribute should contain path to the image that is to be shown (the ImagePath attribute is currently ignored)

B.12 Physics, Gun

Every physics section bears the physics parameter set for an airplane. It should be specified before the
Airplane tag that uses it. More details on those sections can be found in 4.6.3. In addition to the described
attributes, gun contains the FullName and GUID. Finally, both physics and gun tags have an ID attribute
that is used solely for purposes of binding it with the corresponding airplane.

B.13 AIParams, NeuralParams

These two tags specify the parametrization of the AI module, either directly the parameter set affecting
the agent behaviour or the neural network used in the inverse motion. The attributes of AIParams (all are
required) consist of

Inverse specifies which algorithm should be used for inverse physics. Valid values are Brute, ByAxis,
Iterate, Neural and Combine.

UseNeural a boolean value used in case inverse physics algorithm is combining.

UseBrute a boolean saying whether to include brute force algorithm in combining inverse physics algorithm.

UseIterate a boolean saying whether to include iterative algorithm in combining inverse physics algorithm.

Smoothing is a boolean saying whether the actual output of the inverse motion algorithm should be a
weighted average of the previous control position and the new one.

SmoothingCoef is a coefficient for weighted average of the previous input value set.

Thrust/Pitch/Roll/YawStep are settings for the brute force search in the input space.

Thrust/Pitch/Roll/YawRange are ranges for the brute force search in the input space.

MaxIterations is a parameter for iterative inverse motion algorithm.

NeuralParams is an ID number of the (previously specified) neural parameter set.

Individual is the number of the individual in the population that will be used for neural network inverse
physics algorithm (the first indexes belong to the elite).

WideAngle specifies the cosine of an angle in which the turning towards the prey will take place.

NarrowAngle specifies the cosine of an angle inside which shooting makes sense.

FriendlyFireAngle defines the cosine of an angle in which there should be no friendly airplane (otherwise
the shooting is prevented).

PreyClose, PreyFar define parameters for the catching agent state.

MaxSpeed, MaxForce define limits for OpenSteer calculations. Lower values will force AI to somehow
limit its manoeuvre skills.

78

And the neural params are as follows:

InputGenerate new input sets (in the size of FitnessTests) are generate every n generations.

LongTerm says how many generations are considered long-term (for on-screen statistics output).

MaxGenerations specifies when to stop the evolution.

SaveInterval the progress (binary genome of every individual) is saved every n generations.

DoReverts whether to revert to a previously saved population if the performance decreases.

ReportRevert whether to write an on-screen report about the revert.

ReportMilestone whether to report a milestone (for revert purposes).

Population number of individuals in population.

Layers number of hidden layers (that is, excluding the input and output layer).

LayerSize the size of every hidden layer.

FitnessTests how many tests are performed every generation.

Mutation probability to mutate.

Recombination probability to recombine.

Education probability to perform a back-propagation learning.

LearnRepeat states the number of repeats the back-propagation will be performed.

Elite is the number of elites in population.

Garbage is the number of worst individuals in population that will be thrown away.

Injection is the number of new individuals introduced every generation.

CodeTolerance what weight at the synapse will be tolerated without penalty.

CodeSeriousness the multiplicative coefficient for the penalty derived from overly high synapse weights.

MutationRange the range for floating point mutation.

InitialRange the initial range of weights for new individuals.

Lambda learning coefficient.

79

C Media directory

This section describes the structure of the Media/ directory. We use this directory for storing all multimedia
game content (mainly related to the Ogre3D engine), as the name suggests. Also some configuration files
are placed in this directory.

Media/ The root directory of the tree. Also contains OgreCore.zip archive
(contains few Ogre3D minimal-profile objects), forestdata.zip

archive (forest density maps), Objects.xml config file (a list of reg-
istered game objects, mostly airplanes) and land.xml (MLP terrain
configuration file).

Media/citydata/ Building positioning data tiles (see Section 4.5.4).
Media/debugging/ Textures and other resources related to various debugging and helper

features.
Media/flora/ Media related to tree models (currently only a single tree).
Media/gui/ Resources related to GUI display, such as layouts, schemes and un-

derlying textures.
Media/hdrcompositor/ Subtree used by the HDRlib plugin for fullscreen bloom and HDR

effects.
Media/mlp terrain/ Resources related to terrain rendering and Myrdding Landscape Plu-

gin.
Media/mlp terrain/hf/ Skeleton terrain representation. Contains two archives, hf.zip and

hf sm.zip, which contain terrain elevation data and terrain splatting
maps, respectively. See Section 4.5.3.

Media/mlp terrain/materials/ Resources that influence terrain appearance, such as material scripts
and programs, splatting textures and other textures.

Media/models/ Mesh entities. Mainly contains airplanes and their textures (resources
of each airplane are stored in a special subdirectory of this directory,
named as the respective airplane).

Media/programs/ GPU programs, most of them written in Cg and HLSL languages.
Media/scripts/ Material, compositor and particle script files, written in Ogre3D’s

dedicated language.
Media/sound/ Sound files in .wav format, used by our experimental sound system.
Media/textures/ Several image textures that don’t belong to any other category of

entities.
Media/textures/sky polar Hemispherical sky maps in polar coordinates. To add a new one,

the given naming must be obeyed and the corresponding setting
in graphics.cfg must be changed to reflect the new number of
skymaps.

80

D Terrain preparation workflow

This section describes the process of preparation of the data which are related to the game terrain. Note
that the structure and usage of these data is described in Section 4.5.3 and Section 4.5.4; this section only
describes how these data are obtained and what processing of them has to be performed to produce a form
readable by the game engine.

We use several third party applications to manipulate and process these data. These are namely Adobe
Photoshop [23] (raster image editor), Google Earth [9] (3D Earth viewer), MicroDEM [17] (GIS application
for processing digital elevation maps), L3DT [16] (synthetic terrain generator and elevation data editor)
and Inkscape [14] (vector graphics editor). All of them are freely available, except Adobe Photoshop, which
can be substituted by another raster image editor capable of batch-processing of files. We also use our own
auxilliary applications, namely TileCombiner (a tool for manipulation with .tga tiles and operations over
them, see Appendix H) and CityGen (a tool for generation of cities and road networks, see Appendix I).

As described in Sections 4.5.3 and 4.5.4, the terrain is composed of 4 types of data – heightmaps (elevation
data), splatting maps (colouring and texturing data), and forest and city description data (localization of
forests and buildings over the terrain). Since our terrain spans an area of roughly 200,000 km2, it would
be impossible to create all this content by hand. We therefore decided to generate most of these data
automatically. This approach of course produces a terrain with a certain degree of uniformity, but at least
makes incorporation of such huge landscape feasible. The advantage of our generation pipeline is that all
these data are generated from real elevation maps obtained from the area where air combat during the World
War I. was present (i.e. the Western front; but our engine is not limited to this area, any other set of data
can be used in our game). And except elevation maps, no other data are necessary to generate the game
terrain (just metadata about character of the country etc., which are used to configure various parts of the
pipeline).

The following sections describe the preparation pipeline of all types of data: elevation maps (Section D.1),
splatting maps (Section D.2), and static terrain geometry (Section D.3).

D.1 Terrain elevation maps

Google
Earth

MicroDEM MLP
.dem

L3DT
.tiff .raw .raw

HF

·download ·merge ·erode ·tile
·details

Figure 25: Heightmap creation pipeline.

This part of the pipeline if schematically shown in Figure 25.

1. Raw terrain elevation data in the .dem format are obtained from Google Earth (it is of course possible
to use any other source of elevation data). The procedure for this, along with the next step, can be
found at Transport Tycoon Forums [13]. In our case, we downloaded 4 .dem tiles of the area around
the northern French border.

2. The .dem tiles are fed to the MicroDEM application, where they are processed and merged into a single
elevation map in the .tiff format.

3. The heightmap is used as a basis for the L3DT application, where further processing of it might be
performed. On our case, the resulting elevation map after processing in MicroDEM had the resolution

81

of about 8k×8k, which was insufficient for us. Therefore we used L3DT to rescale the heightmap to
16k×16k, on which we applied a simulation of erosion processes on the terrain. We then converted the
elevation dataset to the 16bpp .raw format. Generally, these steps are not necessary, if the obtained
dataset has sufficient details, but usage of L3DT (or some other alternative software) is recommended,
as the heightmap is also used to generate some of the layers for the splatting maps (see Section D.2).

4. Finally, the Myrddin Landscape Plugin (MLP) has to be used to split the large singular .raw file
onto smaller .raw tiles, which will be utilized by the paging mechanism of MLP during the rendering.
This is done by calling TerrainSceneManager::setOption("ToolGenerateMosaic", ...) method
(directly in code), specifying the appropriate parameters according to the documentation of MLP. For
this, MLP has to be compiled with TSM_EDIT flag enabled. In our case, we divided the large 16k×16k
heightmap onto an array of 32×32 tiles, each having the resolution of 513×513 (with 1-pixel overlaps).
The naming of these files is according to the conventions of MLP, with hf_ prefix.

D.2 Splatting maps

This part of the pipeline if schematically shown in Figure 26. This is the most complicated part of the terrain
workflow. It consists of two branches – L0 and L1, which are in the end combined to create the resulting
splatting maps.

L3DT

InkScape

·rasterize·generate ·convert ·merge

·tile·merge·median·quarter

·generate ·convert

PhotoShop

PhotoShop

PhotoShop

TileCombiner

TileCombiner TileCombiner TileCombiner

CityGen

.png .tga

.svg .png .tga

.tga

.tga .tga .tga .tga

TileCombiner

HF

.cfg

L0

L1

SM0

SM1

.tga

.tga

.tga

.tga

·gauss

·combine

HF

Figure 26: Splatting maps creation pipeline.

L0 branch This branch creates the ‘natural’ splatting layers – 2 grass types, rocks and snow.

1. L0 layers are created from the elevation maps during their processing in L3DT (as a side product on
demand; they are designated as ‘alpha maps’ here). The underlying algorithm decides which material
layer is present on a particular position based on the terrain elevation and slope, and probably other
indicators. Since L3DT usually produces more than 4 required layers, it’s necessary to fuse some of
them, preferably the ones with low terrain coverage. The resulting data files are then exported as .png
tiles (32×32 in our case, each having 1025×1025 texels).

82

2. These .png tiles are then batch-converted in Photoshop to uncompressed 32bpp .tga format, to be
processed further in the TileCombiner application.

L1 branch This branch creates the ‘urban’ splatting layers – roads, fields and forests (hardly being ‘urban’,
but anyway).

1. The initial representation of roads, forests and fields is generated by the CityGen application. Building
data are also generated in this process (see Section D.3). The result depends on the CityGen config-
uration, consisting of a set of abstract parameters describing the target dataset. CityGen outputs an
array of .svg tiles (4×4 in our case; it would be better to avoid this tiling, but unfortunately Inkscape
isn’t capable of opening much larger files, due to large physical memory consumption). In these, roads
are represented as red lines and fields and forests by blue and green polygons, respectively (.svg is a
vector image format).

2. Inkscape is used to convert (rasterize) the .svg files into .png files. We used the resolution of 8200×8200
texels for each of the 16 tiles.

3. Photoshop is used to batch-convert these .png files to .tga format, so the TileCombiner application can
read them.

4. TileCombiner merge command is used to merge these tiles into a single large .tga file.

5. In our case, the large .tga file had the resolution of 32800×32800 texels, resulting in the size of 4.3GB.
Photoshop won’t open this file, because the .tga fileformat specification bounds the file size to 2GB
at most (although the internal structure of that file is correct). Because of this, the TileCombiner
split_on_quarters command is used to create four .tga tiles out of this single large file.

6. The two previous steps has been performed to get as large as possible tiles into Photoshop for processing.
The problem is that fields and forests are generated in the form of hard-edged polygons by CityGen. To
make them appear more natural, it’s necessary to smooth these two layers somehow (but not the road
layer!). For this we have used roughly 20-pixels-wide median filter and 3-pixels-wide Gaussian filter
afterwards. Since these operations are not consistent near image edges, it’s essential to have as large
continuous tiles as possible for these operations, to minimize boundary artefacts during the rendering.
After applying the smoothing operations, the files are saved as .tga tiles again.

7. The juggling with the tiles is reversed. First, the TileCombiner merge_quarters command merges the
four .tga tiles back into one large file, and then the split command creates an array of smaller .tga
tiles again (32×32 files 1025×1025 texels large in our case). These form the L1 layers.

Final combination The L0 and L1 layers are just a semiproduct, which has to be processed by the
TileCombiner application to obtain the final SM0 and SM1 datasets. The processing includes calculation of
the splatting map values on a per-texel basis, deciding the priority of layers and normalizing the texel, so that
the sum of all 7 involved channels is always equal to 1 (otherwise colour inconsistencies on the terrain would
occur). This is achieved by using the TileCombiner combine command. It is important that the number of
tiles in both dimensions and their resolution matches. Also note that this operation requires access to the
heightmaps, to determine the altitudes where fields should be clamped and forest character changes towards
snowy surface. The resulting SM0 and SM1 datasets are then directly utilizable by the terrain rendering
engine, or MLP, in other words. An example of these is show in Figure 27.

83

Figure 27: An example of the resulting complete dataset (except city files, which don’t have a graphical
representation). From left to right: heightmap, and the corresponding SM0 and SM1 splatting maps and
forest density map. These correspond to roughly 14.3km by 14.3km area on the terrain.

D.3 Forest and city data

Forests and cities are commonly called ‘static geometry’. They are spread over the terrain to enhance
its appearance. This section does not deal with the artistic resources that represent the trees and houses
themselves, just with the underlying data that are used to place these objects over the terrain.

FOREST
TILESSM1

.cfg

.txt .bin

.tga

CityGen

PhotoShop

TileCombiner

CITY
TILES

·extract

·generate ·tile

Figure 28: Static geometry data preparation pipeline.

Forest pipeline Forests, or more precisely, forest density maps, are created from the previously computed
SM1’s layer/channel, which corresponds to forests (green channel in our case). The procedure is quite simple –
Photoshop is used again to batch process all SM1 tiles. From these, the green channel is extracted and stored
separately as 8bpp greyscale .tga files with the same resolution (actually one pixel less in each dimension,
that is 1024×1024 in our case; this is for practical reasons, as it’s simpler to work with power-of-two files).
These are then utilized by the graphical engine as described in Section 4.5.4.

City pipeline Buildings are generated by CityGen at the same time as the data for L1 layers are. CityGen
produces a single .txt ASCII file containing the generated buildings data (see Section 4.5.4) depending on its
configuration. This .txt file is then processed by the TileCombiner citygen command (the match of naming
is a coincidence here), which generates an array of binary files. The buildings are divided between these

84

files according to their spatial positions. The .bin files are then utilized by the graphics engine during the
rendering.

85

E Adding new models into the game

This section describes the process of adding new models into Flying Samurai. In case of airplanes, this is
done in four steps, which register the data for graphical and logical subsystems of the game.

1. Create a new subdirectory of the Media/models/ directory, named ‘[airplane name]’. Copy all
necessary graphical resources into this directory, as described in Sections 4.5.2 and F.

2. Add a new resource path into the config/resources.cfg directory. The record should be added into
the [Airplanes] group and should look like FileSystem=./Media/models/[airplane name].

3. Add a new object record into the Media/Objects.xml file. It should look like this:

<Object

name="[airplane name]"

GUID="[unique ID]"

type="GOT_AIRPLANE"

material="scripts/StarussLRM_Normal" />

The GUID attribute should be an unique number across all entities in the game, not only for the airplanes
in this file. Try to generate a large random number, it can be anything between 0 and 4294967295.
Don’t change the type and material attributes (unless you have a special material you’d like to use
for the airplane).

4. Finally, add a new record into the Entities.xml file as a new Airplane node. See Section B.7 for the
details.

For building models it takes one step less, because the game logic doesn’t need to acknowledge them.

1. Adding the graphical resources is the same as the case of airplanes. Create a new subdirectory of the
Media/models/ directory, named ‘[building name]’ and move all the necessary resources in there
(one .mesh and two .tga textures, again see Sections 4.5.2 and F).

2. Again, add a new resource path into the config/resources.cfg directory. This record should be added
into the [Buildings] group and will look like FileSystem=./Media/models/[building name].

3. And finally, add a new object record into the Media/Objects.xml file. It should again look like this:

<Object

name="[building name]"

GUID="[unique ID]"

type="GOT_HOUSE"

material="FS/House" />

One additional condition must be fulfilled here; the GUID attribute must not only be unique, but it
also have to agree with the GUID of the corresponding building in the citytile data (generated by the
CityGen and TileCombiner tools, see Sections D.3, I and H). This unfortunately means that to add a
new building, the city data and L1 splatting maps must be regenerated. A simpler way to add a new
building is to substitute it for an existing one, ideally with a similar size and style. This way, the GUID

stays the same, only a new building name and path to the resources is provided, rewriting the old one.

86

F Modelling and texturing conventions

The purpose of conventions for artistic content in the game is that every artist deliver their work in the same
format and visual style. This is very important, and it is even more important for us, because our externists
don’t have an unified working environment, but rather each of them work with a different set of tools.

Meshes

Meshes, or models, represent the geometry of objects in the game. The meeting point of all modelling tools
are third party exporters, which exist as plugins for all major modellers (Maya, 3DS Max, XSI, Blender etc.).
These exporters export the created meshes in Ogre3D proprietary .mesh binary format, which is directly
utilizable by the engine. All meshes used in the game are in this format.

Airplanes Most of the conventions for airplane meshes are described in Section 4.5.2, so this section will
only fill the remaining holes of what haven’t been defined yet.

• Consistency In order to work properly, all newly created airplane models must be consistent (i.e. all
auxiliary geometry must be properly placed and the airplane must be divided onto correctly named
submeshes). This also includes correct length measurement – one world unit (1.0) should correspond
to one meter, in other word an airplane with wingspan of 10.5m should really have a wingspan of 10.5
units. This should ensure that the airplanes will have correct sizes, independently of the modelling
tool they were created in.

• Axis alignment The left-to-right direction should be aligned with the positive X axis, the bottom-
to-up direction with the positive Y axis and the front-to-back direction with the positive Z axis.

• Primitive count It is also important to keep the amount of geometry in moderate levels (which means
about 5000–10000 triangles per airplane), since there are missions in the game where up to 20 airplanes
may fly at the same time.

• Winding order The winding order of the geometry should be set to CCW (counter clockwise).

• Vertex format The following vertex format is required for airplanes (in Cg code):

struct AirplaneVertex {

float3 Position : POSITION;

float3 Normal : NORMAL;

float2 UV : TEXCOORD0;

float3 Tangent : TANGENT;

};

• Endian All files should be in little endian (IBM PC format).

Buildings Buildings are a part of static geometry placed on the terrain. Section 4.5.4 describes how this
is done.

• Primitive count All buildings should have an extremely low amount of geometry, because there can
be a lot of them rendered at the same time. Therefore none of them should have more than roughly
50 triangles (additional details can be of course incorporated into their normal maps).

87

• Otherwise, everything what have been said for airplane meshes is valid for buildings as well (consistency,
axis alignment, winding order, vertex format).

Textures

Textures are image files wrapped around objects to provide 2D surface data for them, such as colour,
perturbed normals, or smoothness and metalness coefficients.

Colour data RGB tristimulus values that determine surface colour (i.e. what portion of incoming light
will be diffusely reflected). In our case these are three 8-bit unsigned integer values, giving 24 bits per
texel (interpreted as values from 0 to 1) in R8G8B8 texture.

Surface normals Perturbing normals that add virtual details that are too fine to be modelled by the
geometry. They are stored in a normal R8G8B8 texture, but the values are remapped from 〈0; 1〉 to
〈−1; 1〉 and interpreted as three-dimensional vector.

Smoothness coefficient Special modality that determines local smoothness of an object. It is fed per-
fragment into the Strauss reflectance model (which we use only for airplanes). It needs a single 8-bit
channel and the values correspond to various surface roughness – value of 0 means rough (fully diffuse
surface) and value of 1 means perfectly smooth surface (producing sharp highlights).

Metalness coefficient Special modality that locally determines how close is the underlying material to a
metal. Values of 0 mean no metal is present on a surface, values of 1 represent fully metallic material.
Along with the smoothness coefficient we use a single 16bpt L8A8 texture (‘L’ channel contains the
smoothness values and ‘A’ channel contains the metalness values).

Airplane textures Airplane textures should be placed in the same directory as the corresponding .mesh

files and .scene file, i.e. Media/models/[airplane name]. All textures have to be in the .dds format,
either uncompressed or DXT-compressed. We use all aforementioned modalities for airplanes. The naming
conventions and optimal resolutions of them are as follows:

Modality Name Resolution
Diffuse texture [airplane name]_map_diffuse.dds 10242

Normal map [airplane name]_map_normal.dds 10242

Smoothness/metalness map [airplane name]_map_smoothness_metalness.dds 5122

Building textures Building textures should be placed in the same directory as their corresponding .mesh

file. All textures have to be in the .tga image format (for no special reason, just for the unification, and since
they should be smaller then the airplane textures, we don’t need a DXT compression for them so much). We
use only colour and normal maps for buildings. The naming conventions and optimal resolutions of them
are as follows:

Modality Name Resolution
Diffuse texture [building name]_diffuse.dds 5122

Normal map [building name]_normal.dds 5122

88

Splatting textures These are located in the Media/mlp_terrain/materials/textures/splatting/ di-
rectory. They are in various formats and have various sizes, depending on the splatting material layer. Their
usage is governed by the Media/land.xml settings file used by the Myrddin Landscape Plugin. The cor-
responding material settings are located in WorldMap/Splatting/LayerMaterials node – these determine
which splatting layer uses which diffuse texture and if detail texture and normal map are applied as well.
The directory contains more textures that are currently in use, so the user can experiment with them by
setting different textures in the land.xml file, which causes the terrain to look differently. Since Ogre3D can
read all common image formats, users are encouraged to add more textures here and experiment with the
settings further.

89

G Graphical subsystem settings

Graphical subsystem is configured from the graphics.cfg file in terms of various constants that are used
through this module. The internal structure of graphics.cfg is equal to XML. On start-up, this file is
loaded and the values are translated into the GraphicsEngineSettings class, where the GraphicsModule

class accesses them during runtime.

This section lists and explains the settings that graphics.cfg contains. We have tried to decouple as many
constants as possible from being hardwired in the code, but in some cases this is not meaningful, so we did
this only for those settings which can really become a subject to change later.

KeyDay (default value 0.51)
HDR ‘Key’ value during the day (subjective photometric intensity).

KeyNight (default value 0.04)
HDR ‘Key’ value during the night.

WorldPageSide (default value 14336.0)
Size of one terrain page in world space in meters (all pages are squared).

WorldPageHeight (default value 2000.0)
Height scale coefficient of the terrain in meters (peak terrain elevation).

WorldTreePGPageSide (default value 112.0)
Size of one forest page in meters.

WorldBuildingsPGPageSide (default value 14336.0)
Size of one page of static buildings in meters.

CameraFreeLookConstant (default value 0.03)
Controls the speed of orbiting of the free-look camera around the player’s airplane.

MaxForestDensity (default value 9.0)
Peak forest density coefficient (amount of trees generated on a 14×14 meters area in full forest on
highest settings).

MinForestDistance (default value 300.0)
Minimal rendering distance for forests in meters (lowest graphical settings).

MaxForestDistance (default value 3000.0)
Maximal rendering distance for forests in meters (highest graphical settings).

MinForestBlendWidth (default value 200.0)
Minimal blending width for forests in meters – transition from full density to zero density at the edge
of the current rendering distance (lowest graphical settings).

MaxForestBlendWidth (default value 800.0)
Maximal blending width for forests in meters (highest graphical settings).

FlagBillboardSize (default value 3.0)
Size of the nationality-identifying flag billboard in meters.

FlagBillboardOffset (default value 5.0)
Offset of the nationality-identifying flag billboard in meters from the airplane.

TerrainPageSide (default value 513)
Discrete resolution of one terrain page.

90

TreePageSide (default value 1024)
Discrete resolution of one forest page.

NumPagesX (default value 32)
Number of pages in horizontal direction across the entire terrain.

NumPagesZ (default value 32)
Number of pages in vertical direction across the entire terrain.

ProceduralPageLimit (default value 10)
Size of the FIFO page cache of the SurfacePageLoader class.

NumTreeTilesX (default value 128)
Number of forest pages in one terrain page in horizontal direction.

NumTreeTilesZ (default value 128)
Number of forest pages in one terrain page in vertical direction.

TreeTileSide (default value 8)
Number of tiles in one forest page (one tile corresponds to one texel in the forest page datafile).

NumBuildingTilesX (default value 32)
Number of city pages in horizontal direction for the entire terrain.

NumBuildingTilesZ (default value 32)
Number of city pages in vertical direction for the entire terrain.

TreeImpostorResolution (default value 256)
Resolution of the impostor texture for one virtual orientation.

PolarSkyboxTextures (default value 5)
Number of available skybox textures.

91

H TileCombiner application

TileCombiner is our own auxiliary application for manipulation with .tga images, specifically splitting them
onto smaller tiles and merging these tiles back, and calculating the final splatting maps from pre-prepared
semiproducts. It provides fictions in the terrain preparation pipeline (see Section D) which we couldn’t find
a third party software for.

The application works with uncompressed BGRA Truevision Targa .tga image files according to their 2.0
specification, without extension metadata [28]. That means we support only 4-channel .tga files with the
standard 18-byte header and 26-byte footer. This is on of the standard formats produced by Photoshop or
any other image editors. We don’t support .tga files according to their full specification, because it serves
us only as an intermediate format to manipulate with the splatting maps. We chose this format because of
its simple structure and because it is widespread and well established.

Since this is our internal tool, no error checking of any kind is performed. It is assumed that all files have the
previously mentioned format and all of them have sensible dimensions (i.e. splitted file must have dimensions
allowing exact splitting onto the demanded amount of tiles, merged tiles must all have the same dimensions
etc.), given paths are valid, no files are missing and so on. Failure to comply with these assumptions may
result in undefined behaviour (that is, it will most probably crash).

The following operations are available:

split Splits one .tga file onto a 2D array of smaller .tga tiles. Syntax:

tile_combiner split <input image > <result dir > <# tiles X> <# tiles Y> [<bpp

(1-4) >] [<# rows at once >]

• <input image> path to the image to split

• <result dir> directory where the tiles will be placed

• <# tiles X> number of tiles in horizontal sense

• <# tiles Y> number of tiles in vertical sense

• [<bpp (1-4)>] bit depth of the image. Optional parameter, for debugging purposes only

• [<# rows at once>] number of concurrent rows to process. Optional parameter, for debugging pur-
poses only, the application determines this automatically

merge Merges a 2D array of tiles into a single .tga file. Syntax:

tile_combiner merge <source dir > <output image > <# tiles X> <# tiles Y> [<bpp

(1-4) >] [<# rows at once >]

• <source dir> directory where the tiles are located

• <output image> path to the merged image

• <# tiles X> number of tiles in horizontal sense

• <# tiles Y> number of tiles in vertical sense

92

• [<bpp (1-4)>] bit depth of the image. Optional parameter, for debugging purposes only

• [<# rows at once>] number of concurrent rows to process. Optional parameter, for debugging pur-
poses only, the application determines this automatically

split on quarters Splits the given file on 4 quarters with 1-texel overlap. Syntax:

tile_combiner split_on_quarters <input image > <result dir >

• <input image> path to the image to quarter

• <result dir> directory where the 4 tiles will be placed

merge quarters Merges 4 tiles with 1-texel overlap into a single .tga file. Syntax:

tile_combiner merge_quarters <source dir > <output image >

• <source dir> directory where the 4 tiles are located

• <output image> path to the merged image

combine Combines two series of tiles corresponding to L0 and L1 layers. Creates the final SM0 and SM1
splatting maps (see Section D.2). Syntax:

tile_combiner combine <source dir L0 > <source dir L1 > <heightfield dir > <result

dir > <# tiles X> <# tiles Y> <heightfield page side > [<tile prefix >]

[<field clamp height (0.0 -1.0) >] [<forest clamp height (0.0 -1.0) >] [<# rows

at once >]

• <source dir L0> directory where the L0 tiles are located

• <source dir L1> directory where the L1 tiles are located

• <heightfield dir> directory where heightfield tiles are located. There have to be the same amount
of these as of L0/L1 tiles

• <result dir> directory where the resulting splatting maps SM0 and SM1 will be placed

• <# tiles X> number of tiles in horizontal sense

• <# tiles Y> number of tiles in vertical sense

• <heightfield page side> dimension of the .raw heightmap tiles

• [<tile prefix>] prefix that will be added at the beginning of the tiles’ names. Optional parameter

• [<field clamp height (0.0-1.0)>] relative clamping altitude for fields. All field texels above this
altitude will be nulled. Optional parameter, the default value is 0.35

• [<forest clamp height (0.0-1.0)>] relative clamping altitude for forests. All forest texels above
this altitude will be converted to snow layer. Optional parameter, the default value is 0.495

• [<# rows at once>] number of concurrent rows to process. Optional parameter, for debugging pur-
poses only, tha pplication determines this automatically

93

citygen Generates binary tiles of buildings from the single .txt file generated by CityGen. Syntax:

tile_combiner citygen <input file > <result dir > <# tiles X> <# tiles Y> <tile

world size >

• <input file> path to the .txt file that contains building data

• <result dir> directory where the .bin tiles will be placed

• <# tiles X> number of tiles in horizontal sense

• <# tiles Y> number of tiles in vertical sense

• <tile world size> size of one tile in world units (we use 14336.0)

94

I CityGen application

To make the terrain more realistic, fields, forests, cities and roads have to be generated (see Section 4.5.3). It
was originally our intention to use InkScape[14] to draw all the roads and generate the cities based on their
positions and size. This has, however, proved to be a very unrealistic idea, as the availability of historical
maps is rather bad and the number of roads to draw is too large. Therefore, we have decided to generate
both the roads and the cities randomly, adding fields and forests for further realism.

The CityGen tool is an ad-hoc piece of software that we programmed to make resource preparation easier
and much less time-consuming. It is, by no means, a full blown procedural generation framework; due to it’s
complexity and it’s one-off nature, making this tool robust was hardly our priority.

I.1 Generation of road network

First, a regular grid of vertices – future villages, town, and cities – is generated (see !Grid::Initialize).
Then a copy of this grid, translated by half the distance between (horizontally or vertically) neighbouring
vertices is generated; those vertices are called dual vertices (see image 29(a)). Those are then checked against
a list of forbidden, so called Chernobyl, polygons where there are no cities or roads allowed. Those in the
Chernobyl zones get discarded (see image 29(b)). Also, each dual vertex checks if the four neighbouring non-
dual vertices aren’t discarded. If even just one of those has been discarded, the dual vertex gets discarded
too. This greatly simplifies the possible cases of the next step.

(a) Vertices and dual vertices (b) Chernobyl and discarded vertices (c) Road network

Figure 29: Map border is in a dotted line, (non-dual) vertices are filled, dual vertices are just outlined,
Chernobyl polygon(s) is in a full-line, and vertices, discarded either due to not having enough neighbours or
due to being in the Chernobyl polygon(s) are marked as crosses. Notice that no dual vertex chose to discard
itself in Figure 29(c)

In the next step, each non-dual vertex spawns a road to it’s left and to it’s right (if the potential neighbour
still exists). Each dual vertex randomly chooses one of the following four cases:

Discard Discards the city and spawn no roads whatsoever.

Diagonal Spawns two roads that connect the dual vertex’ neighbours in a diagonal fashion (one of the two
possible diagonal is picked).

Three out of four Builds roads to all but one of the four non-dual neighbours.

Four out of four Builds roads to all of the (four) non-dual neighbours.

95

As a result (see image 29(c)), a plausible, although not absolutely prefect, road network is generated. Some
artefacts still remain (see the bottom and top left corners of image 29(b)).

Each vertex position gets perturbed and each road connecting two vertices gets subdivided and it’s vertices
sub-positions get perturbed, too (see PostprocessRoads). This results in a much more believable road
network. For clarity sake, this step has been omitted from Figure ??.

I.2 Generation of cities

For each of the vertices (both dual and non-dual), it’s degree is calculated (see GenerateCities). If the
degree is higher than a constant (currently 4) or exactly one (to avoid blind roads), a random city area a is
generated using the following formula:

a = rp · (sidemax − sidemin) + sidemin

where r ∈ 〈0, 1〉 is a random number, sidemax and sidemax are the minimum and maximum city sizes,
respectively, and p is the citySideRemapPower parameter (see below) that introduced non-linearity to city
area. From the area, the city size is chosen randomly (see CityRect::CityRect)

After that, intersections of all roads with the city’s boundary are made and all edges that intersect the city’s
bounding box get stored in a minimap (see Figure 30).

Figure 30: Minimap; the rectangle denotes the city’s bounding box, dashed lines are part of the city’s
minimap, full lines are not, small points are road subdivision vertices, big vertex is the original vertex from
the road network generation phase.

This minimap is then used as a basis for city generation (see GenerateCity). All of it’s roads are recursively
subdivided until a limit length for each segment is reached. All of the vertices within the minimap are now
enqueued as spawn points (see spawnPoints in GenerateCity). From each spawn point (a spawn point is a
position and the direction in which a new road will be generated), a new road that is roughly perpendicular
to the original road can be generated.

If this new road ends outside the ellipse that fills the bounding box, it gets discarded (see Figure 31).

If an intersection with another road is found, the road’s two intersections are checked and if one of them
is within a given limit, the newly spawned road’s endpoint gets snapped to it (if it doesn’t intersect other
roads, if it does, it gets discarded). If neither of the road’s two intersections is close enough, the intersection
is used as the newly spawned road’s endpoints. The spawn point gets deleted from the spawn point queue.

If no intersection with another road is found, the nearest road endpoint (belonging to a different road,
obviously) is found; if the road from the original spawn point to the nearest vertex doesn’t intersect any

96

Figure 31: The ellipse filling the minimap; it is used to make the cities rounder; the newly spawned road,
depicted by a solid line, would get discarded.

other roads, it gets added. In any case, the spawn point gets discarded.

Finally, if there was no intersection and no other endpoint was close enough to snap to, a new “blind” road
gets generated. The (new) endpoint of this road spawns 0 to 3 new points, each with a different spawn
direction. The probability of a new spawn point with a respective spawn direction (left, right, forward with
respect to the existing road) influences the shape and density of the road network structure.

When there are no spawn points left, the road network generation ends.

I.3 Generation of buildings

All of the resulting street are then iterated (in no particular order), and each of the streets gets populated
(see PopulateStreet). From one end of the street to the other, new random buildings (see Section I.6
for information about how buildings are defined) are generated on each side of the road and an offset that
denotes the already occupied street length is kept for each side. Before any buildings gets added, it gets
checked for intersections with other buildings and roads. If there is an intersection, a constant value is added
to the occupied street length to make sure that the algorithm stops and to add the ability to skip occupied
places (see Figure 32).

A

Figure 32: Roads in grey; the buildings are added from left to right (by convention). Each time a building
is added, the occupied street length gets increased by the amount taken by the newly generated building.
Notice the free span that has been skipped; this was caused by (already existing) building A occupying space
in the vicinity of the road. If a building that could fit (without collisions) into the free space doesn’t get
generated, a certain amount of space gets skipped (repeatedly if needed).

There are three classes of building types: village buildings, town buildings, and city buildings. Depending
on the area of the generated city, the city is marked either as a village (village buildings only), town (town

97

buildings and village buildings), or a city (all three kinds of buildings). The city type then acts as the limit
for the best building type. Building types form a gradient with respect to distance from the city centre
(see Figure 33. For each building type, several building subtypes might exists. After the building type is
determined, a subtype is randomly chosen.

village

town

city

Figure 33: Buildings gradient for a city of city type.

I.4 Generation of fields, forests, and occluders

To add more detail to the terrain, fields and forest are also generated. For both fields and forests, a regular
n-gon is generated and each of it’s vertices is then displaced along the line connecting the vertex to the
centre. Forest polygons get discarded if there’s a city within their bounding box.

To add irregularity to both fields and forests, occluder polygons were introduced. Also regular n-gons with
displaced vertices, occluders get drawn in the colour of grass and thereby create dents and holes in both
cities and fields. To create some free space around cities, an occluder is also added under each city.

I.5 Output

Due to InkScapes instability, output has to be split up into smaller chunks (see the Cell class). For each of
the chunks, a list of all items that overlap it is generated and each chunk is then output separately.

Output colours are currently hard-coded into the tool’s source. Fields are pure blue, forests are pure green,
grass and occluders are black, and roads are red. The output can be seen in Figure 27, third picture from
the left.

Due to the rather primitive implementation, the tool is rather time demanding. Be ready to wait a few hours
for larger terrains.

I.6 Configuration file

The whole tool is configured using the config.xml file. In the root tag (<config>), the output file and the
Chernobyl SVG files are specified

<output filename="cityout2.svg" debug="true"/>

<chernobyl filename="forbidden2_polys.svg"/>

If the debug attribute is set to true, auxiliary output files with debugging information will be output.

98

The Chernobyl file is an InkScape SVG file that contains polygons. Those are saved as polylines by InkScape.
All polylines whose first and last point are equal will be used as forbidden polygons (see LoadPolygons).
The file’s content will automatically get scaled to the dimensions specified in the config.xml file.

Then, a parameter section follows.

<parameters >

<parameter name="width" value="458752"/>

...

</parameters >

Below is a list of possible parameter names2. All dimensions are in meters or in meters squared. See the
default configuration file for an example.

width width of the map to be generated (overrides SVG dimensions!)

height height of the map to be generated (overrides SVG dimensions!)

scaleFactor by what factor to scale contents of the file.

subdivisionThreshold divide streets under this length, in meters (recommended value: 50).

subdivisionVariation when dividing a street, how regular the division should be (+- 0.2 of the length of
the original street).

streetWidth how wide should the streets be (needed for building positioning, doesn’t affect SVG)

roadWidthSVG width of the roads/streets for SVG export.

streetDeviation how much should each coordinate of a new street be perturbed; ± value meters.

vertexSinkSize when loading SVG data, merge vertices closer than value meters.

spawnLengthMin minimum length of generated streets (servers as a hint, might be shorter).

spawnLengthMax maximum length of generated streets (servers as a hint, might be longer).

townArea classify cities with an area ≥ of value m2 as towns.

cityArea classify cities with an area ≥ of value m2 as cities.

forrestRadiusMin] minimum forest radius hint forrestRadiusMax] maximum forest radius hint for-
restRadiusRemapPower] remapping parameter of the forest radius, similar to “gamma” parameter in
gamut mapping equation; the actual forest radius r is determined by the equation

r = rMin+ (rMax− rMin) · unitRandremapPower

and so value of remapPower of 1.0 gives no bias, values < 1.0 produce larger forests (likely closer to
rMax) and values > 1.0 produce smaller forests (likely closer to rMin); The unitRand variable is a
random number ∈ 〈0, 1〉.

forrestRadiusVariation between 0.2 and 0.8, influences the forest shape (smaller -¿ more round, higher
-¿ more rugged).

forrestCount how many forests should be generated (note: many forest will get merged, some will get
discarded; this value is just a hint) .

2Forest is sometimes incorrectly spelled as forest; use the incorrect version in this file

99

fieldRadiusMin see forrestRadiusMin.

fieldRadiusMax see forrestRadiusMax.

fieldRadiusRemapPower see forrestRadiusRemapPower.

fieldRadiusVariation see forrestRadiusVariation.

fieldCount see forrestCount.

occluderRadiusMin see occluderRadiusMin.

occluderRadiusMax see occluderRadiusMax.

occluderRadiusRemapPower see occluderRadiusRemapPower.

occluderRadiusVariation see occluderRadiusVariation.

occluderCount see occluderCount.

horizontalTiles in how many cells/chunks/tiles should the terrain be split horizontally?

verticalTiles in how many cells/chunks/tiles should the terrain be split vertically?

citySideMin minimum city side (60 - small, 150 - moderate, 500 - maximal reasonable thing (count with
approximately 20 seconds per town!).

citySideMax maximum city side.

citySideRemapPower see forrestRadiusRemapPower.

cityOccluderCoef scale factor for the city occluder, even values under 1.0 might be safe (there’s some
margin).

Finally, after all parameters, a database of available building types follows. In the <Buildings> tag, various
building subtypes are defined.

<buildings >

<building width="10" height="10" GUID="435" type="village"/>

...

<building width="15" height="15" GUID="637" type="town"/>

...

<building width="20" height="20" GUID="535" type="city"/>

</buildings >

The width is the size of the building/parcel from east to west, the height is the size of the building from
north to south, orientation is with respect to south, GUID (see Section 4.5.8).

100

J PathGen

PathGen is a simple tool written in C# that converts InkScape’s poly-lines into the game’s XML format
and generates airfield positions. It takes an InkScape SVG file (not a regular SVG!) as input. See the
template.svg for an example of

Bring up the “Layers” → “Layers...” panel in InkScape. Add new layers and name them front, Y Y Y Y −
MM − DD, where Y Y Y Y −MM − DD is the date from which the front is valid (see Figure 34 for an
example). In each of those layers, draw a poly-line representing the layer as it was at the specified date.

Figure 34: The “Layers...” panel and the template.svg file in InkScape. Notice the front layers definitions
on the right side. On the left side, two black-colour lines represent the two fronts.

Such an SVG file is then selected in the PathGen application (“Inkscape’s XML file”). Several parameters
can be specified in the dialogue. If you also want airports to be generated, specify the minimal and maximal
distance and airplane should be from the front, the number of airfields (for each side), and the nation IDs
(as defined in Section B). After pressing the Convert button, extract the relevant part of the XML that is
output into the textbox at the bottom of the dialogue.

This is a tool. It will give you a set of airfields, but they are not guaranteed to be on the correct sides of
the front (if the front has a lot of turns, the normal from the previous front segment might intersect the
next segment, thus putting the airfield on enemy territory) , although, in most cases, they will be. Use it to
pregenerate data that you then review manually.

The implementation of this tool is rather straightforward. The input file is parsed, and the fronts are

101

converted. Then, a set of airfields is generated with positions that change with the front and with time. The
export to XML is done using .NET’s in-built framework.

102

	Introduction
	About the project
	Team
	Externists
	Review of specification
	Hardware requirements
	Comparison with similar software
	Timeline
	Future of the project
	Known bugs
	Some statistics

	Building the project
	Setting up the environment
	Building from sources

	Programming documentation
	Architecture
	Multi-threading model
	Threads and their purpose
	Synchronization
	Messages and heartbeat
	Reader and Writer
	Structures
	Swap and swap chain
	Messages in detail

	Menu
	Concepts
	Implementation
	Handlers and actions

	Game logic
	Logical entities
	Mission
	Career

	Graphics
	Scene graph
	Airplane meshes
	Terrain
	Static terrain geometry
	HUD and debugging graphics
	Special effects
	Camera
	GUID

	Physics
	Introduction
	Model overview
	Model parameters
	Core formulae
	Input processing
	Visualization
	Damage model
	Collision reaction

	AI
	Overview
	Environment knowledge
	Agent states
	Agent role
	Decision making
	Inverse motion

	Input
	Abstraction layer

	Sound
	Requirements
	Resources and usage
	Integration
	Interface

	Miscellaneous
	Consoles
	SettingsFile
	Command line parameters
	Helper code
	Code sharing foundation
	Multi-platform support

	Conclusions
	Acknowledgements
	References
	Startup
	Game parameters definition file ("entities file")
	MOD
	Period
	Map
	Front
	Nations, Sides
	Airfields, Squadrons
	Airplanes
	Pilots
	Ranks
	Awards
	News
	Physics, Gun
	AIParams, NeuralParams

	Media directory
	Terrain preparation workflow
	Terrain elevation maps
	Splatting maps
	Forest and city data

	Adding new models into the game
	Modelling and texturing conventions
	Graphical subsystem settings
	TileCombiner application
	CityGen application
	Generation of road network
	Generation of cities
	Generation of buildings
	Generation of fields, forests, and occluders
	Output
	Configuration file

	PathGen

