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Introduction to CT enterography

CT Enterography

Figure 1: CT enterography example
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Introduction to CT enterography

Diagnosis of Crohn’s disease and other problems with small
intestine

Noninvasive, relatively safe procedure

Speed and resolution of multidetector CT

Large volumes of ingested neutral enteric contrast material

Good visualization of intestinal wall and lumen

Clearly shows small intestine inflammation by displaying
thickening of intestinal wall
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CT enterography

Oral contrast agent in several doses starting about 60 minutes
prior to examination

About 1 minute before examination is injected intravenous
contrast agent

CT scan with 1-3mm thick slices

Radiologist inspection
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Introduction to CT enterography

Thick vs. thin slices

Thick slices unsuitable for automatic/semiautomatic
processing

Good for radiologist examination
Connectivity of thin details lost in thick slices

Thin slices burdened with too much noise

Difference between lumen and wall mean value may even
become smaller than standard deviation of noise inside
homogeneous lumen
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Denoising

Figure 2: Noise-burdened CT data
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Denoising

Even with enterography approach - strong noise covering
important details

Axial slices usually already lowpass-filtered from the machine

Human eyes are able to see details, but only with correct WL
settings and with the help of passing through slices

(Semi)automatic segmentation very difficult
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Denoising

Large volume of data for each patient

512x512 images, approx. 400-600 slices

Must preserve small details

Gaussian lowpass fitering - blurs high contrast areas

Median filtering - good for edges, removes thin details
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Nonlocal means algorithm

Introduced by [Buades et al. 2005]

The best current algorithm for denoising

Removes noise, but preserves details

Approaches for automatic parameter tunning

Computationally very expensive

May run for hours on thin-slice abdominal dataset

Not iterative, easy parallelization

Successfuly used for denoising 2D images, 3D data, surface
meshes, etc.
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NL-means in 2D

Figure 3: Nonlocal means algorithm schema
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NL-means in 2D

NL(u)(xi ) =
∑
xj∈Ω3

w(xi , xj)u(xj) (1)

w(xi , xj) =
1

Zi
e−
||u(Ni )−u(Nj )||22,a

h2 (2)
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Accelerating NL-means on CPU

Very effective optimization introduced by [Coupé et al. 2008]

Select only relevant voxels

Compare local mean and variance values

Automatic tuning of smoothing parameter h

Blockwise approach
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Accelerating NL-means on CPU 2

Both voxel selection and blockwise approach improve time
complexity by an order

Coupé et al. claim improvement as much as 30x-66x

Implementation details not given
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Accelerating NL-means on GPU

Many examples of NL-Means algorithm on GPU, but only for
2D images

Modern GPU example (GT200):

Max. 512 threads in work group
16kb local memory
Processing single instruction on 8 threads
More than 500MB memory
Hundreds of cores
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Primitive algorithm

Reimplement Optimized NL-Means algorithm (with mean &
variance selection) in OpenCL

GeForce 275 GTX approx. the same speed as Optimized NLM
on Core i7 running with 8 threads

6-7x slower than Blockwise Optimized CPU version on Core i7

Bottleneck:

Global memory reads
Breaking thread consitency with voxel selection
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Primitive algorithm

Reimplement Optimized NL-Means algorithm (with mean &
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GPU optimized algorithm

NOT optimization by design, but rather implementation
optimizations on given architecture

Base is standard NL-Means

Without selections and other optimizations
Only L2 norm not Gauss-filtered

Massive usage of parallelism hides computational complexity

About 2-4 times faster than fastest CPU implementation
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GPU optimized algorithm 2

Prevent global memory reads

Fit as much data into local memory as possible

Use barriers to make the code run efficiently

Parameters:

Search radius = 4 voxels
Local neighbourhood size = 2 voxels
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Algorithm - workgroups

One workgroup for one column of voxels

One thread for each voxel in the neighbourhood

One workgroup processes a single Z-column of values
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Algorithm - kernel

1 Each thread reads the first 2 · (4 + 2) + 1 voxels in the Z
direction from global memory to local memory

2 For each relevant voxel, compute the weight function with
central voxel

3 Compute sum of weigths

4 Compute sum of weight · value for each relevant voxel

5 Normalize with weight sum

6 Store result into global memory

7 In each thread move all voxels in local memory by 1 and read
one new voxel

8 Continue with step 2
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Voxels

Figure 4: Volume needed for one voxel
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Voxels 2

Figure 5: One thread for each voxel in X/Y loads data
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Voxels 3

Figure 6: Threads actually computing weights
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Voxels 4

Figure 7: Loading next slice - one thread per voxel
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Memory consumption

Number of voxels = (2 · (4 + 2) + 1)3 = 2197

Source data size = 2197 · 4 bytes per float = 8788 bytes

Temporary memory for weights = (2 · 4 + 1)3 = 729 floats
= 2916 bytes

Additional memory for summing weights = 360 bytes

Some local variables

Fits into 16k OpenCL local memory
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Results

Algorithm Processor Threads/WkGrp Time

NL-Means Core i7 3.07GHz 8 5:38:15

Blockwise NLM Core i7 3.07GHz 8 0:26:35

NL-Means C2Quad 2.4GHz 4 —

Blockwise NLM C2Quad 2.4GHz 4 0:55:57

NL-Means GeForce 8800GT 132 0:13:41

NL-Means GeForce 275GTX 132 0:06:44

Figure 8: Measured on dataset of size 512x512x548
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Results - graph
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Example of denoised data

Figure 9: Axial slice
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Example of denoised data 2

Figure 10: Frontal slice
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Conclusion

The slowest and most computationally expensive algorithm on
CPU runs faster on GPU than the fastest solution on CPU

Not computing something may mean slowing down on GPU

Global memory on GPU is prohibitively expensive to access
more than once and unaligned

7 minutes per patient is much better than 5.5 hours, but still
not enough for practical use

Optimizations that work very well on CPU are not easily
applicable on GPU
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Future work

Blockwise approach

Try other optimizations, to use all 512 threads with the given
memory
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Thank you for your attention

Questions?
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