
DOCTORAL THESIS

Jan Horáček
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Abstract: The overall goal of our work is to develop algorithms for efficient
processing, segmentation and tracking of the small intestine in CT enterography
scans. The small intestine is a complex organ, the shape of which can vary con-
siderably between patients: and in addition to this, its location and shape can
change significantly between subsequent scans of the same person. The CT en-
terography process uses contrast agents to improve the visibility of the intestine,
so that various potentially problematic features, such as inflammations, obstruc-
tions and so on, can be properly seen. However, due to the convoluted shape of
the organ, manual diagnosis of raw CT enterography data is still a difficult and
time-consuming task, and is prone to diagnostic errors. We have prepared a set
of methods for automatic preprocessing, segmentation and tracking of such data
that aims at providing a much clearer data visualization: such tools can greatly
improve the diagnostic process.

Our first contribution is to make a high quality denoising method for volumet-
ric data practically usable: so far, it had been impractical due to its too high
computational cost. This is solved by devising a GPU-friendly implementation
scheme of the algorithm in question. Lowering its computation time from tens
of minutes, or even hours, to a few minutes at most (depending on HW), finally
makes it possible to use this algorithm for everyday practical work: and such a
high quality denoising step is crucial for a later successful segmentation of the
data. The next contribution is a system for computing the probability of intesti-
nal lumen and intestinal walls on watershed-segmented regions. We propose a
system for computing this probability based on several statistical features that
are computed over the watershed regions. We also provide a discussion of the
performance and suitability of the most promising subset of these features.

Using these computed lumen and wall probabilities, we then propose a robust
algorithm for tracking the small intestine path through the bowel area: within
this technique, we also address problems caused by the data imperfections that
are typical of real CT scans. Furthermore, we propose an algorithm for precise
segmentation of the lumen that is usable for wall analysis on tracked data. Finally
a set of visualization possibilities is presented, as suggestions for practical usage
of the results that are provided by the proposed pipeline.

Overall, we manage to create an automatic pipeline for processing noisy thin-
slice CT enterography scans into segmented and tracked data: the result is much
more suitable for diagnostic purposes than the original raw CT data. The only
manual processing step in our pipeline is a simple removal of certain unwanted
features, such as a distended colon, that are very similar in appearance to the
small intestine. Our techniques allow for visualization of the entire bulk volume
of the intestine to show topological locations and possible regions of interest,
as well as a detailed visualization along individual intestinal segments for closer
inspection.
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Abstrakt: Primárńım ćılem našeho výzkumu bylo vyvinout algoritmy pro zpra-
cováńı, segmentaci a sledováńı pr̊uběhu tenkého střeva na sńımćıch CT entero-
grafie. Tenké střevo je spletitý orgán, u každého člověka výrazně odlǐsný a ani
dva skeny jednoho pacienta nemuśı být nutně podobné. Metoda CT entero-
grafie využ́ıvá kontrastńıch materiál̊u ke zvýrazněńı a vyčǐstěńı střeva na sńımćıch
výpočetńı tomografie. T́ım pádem mohou být diagnostikovány r̊uzné zánětlivé
choroby, obstrukce a podobně. Ovšem manuálńı zpracováńı těchto sńımk̊u je vel-
mi náročné. Vyžaduje mnoho času a úsiĺı kv̊uli tvaru střevńıho traktu, velkému
množstv́ı šumu na sńımćıch a celkové velikosti dat. To může vést k chybám či
přehlédnut́ım. Kv̊uli zjednodušeńı diagnostiky jsme připravili sadu metod pro
automatické předzpracováńı, segmentaci a sledováńı pr̊uběhu, jejichž výsledky
jsou vhodné pro přehlednou vizualizaci.

Prvńım krokem bylo umožněńı využit́ı algoritmu pro vysoce kvalitńı odstraňováńı
šumu na objemová data. Navrhli jsme implementačńı schéma vhodné pro GPU a
t́ım sńıžili časovou náročnost z deśıtek minut až několika hodin na jednotky minut
(dle použitého hardware). Takto je možné nasazeńı i v každodenńı praxi. Kvalitńı
algoritmus pro odstraňováńı šumu je d̊uležitým krokem pro úspěšnou segmentaci
těchto dat. Daľśım krokem je systém pro výpočet pravděpodobnosti střevńıho
lumenu a stěny v rámci region̊u vzniklých watershed segmentaćı. Navrhli jsme
systém na odhad této pravděpodobnosti založený na několika statistických ukaza-
teĺıch poč́ıtaných přes tyto regiony. Uvedli jsme i rozbor vhodnosti a výkonu
nejslibněǰśıch statistických ukazatel̊u.

Dále jsme navrhli robustńı algoritmus pro sledováńı pr̊uběhu střeva s využit́ım
těchto pravděpodobnost́ı. Věnovali jsme se vyřešeńı problémů spojených s ap-
likaćı na reálná CT data a chybami s nimi spojenými. Navrhli jsme algoritmus
pro přesnou segmentaci střevńıho lumenu nad takto sledovaným pr̊uběhem kliček
- využitelný pro podrobněǰśı analýzu střevńı stěny. Nakonec jsme ukázali několik
nápad̊u, jak data źıskaná našimi metodami efektivně zobrazovat pro praxi.

Podařilo se nám vytvořit automatickou sadu krok̊u pro zpracováńı tenkých CT-
enterografických řez̊u s velkým množstv́ım šumu. Výsledkem jsou vysegmento-
vaná a trackovaná data s výrazně usnadněnými možnostmi diagnostiky. Jediným
manuálńım krokem z̊ustává jednoduché odstraněńı nechtěných část́ı těla, která
jsou na CT enterografických sńımćıch velmi podobná tenkému střevu - např́ıklad
tlusté střevo. Naše metoda umožňuje nejen zobrazeńı vysegmentovaného kom-
pletu pro źıskáńı informace o umı́stěńı v těle, zvýrazněńı zaj́ımavých část́ı, ale
také zobrazeńı a virtuálńı narovnáńı jednotlivých střevńıch kliček pro podrobnou
analýzu.

Kĺıčová slova: segmentace, GPU, odstraňováńı šumu, CT enterografie
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Introduction

In this thesis we would like to show and summarize our research on efficient volu-
metric data processing, especially the processing of computed tomography (CT)
and CT enterography (CTE). We present several new algorithms to preprocess,
segment and track the intestine.

Thesis goal

The primary goal is to provide significant support for the diagnosis of the small
bowel and the inflammatory diseases of the intestine, such as Crohn’s disease.

We have tried to automate as many of the computational steps as possible,
so that the only intervention of a human user would be to provide data and
then after some computation directly traverse through the segmented intestinal
segments.

The result is a series of algorithmic steps whose parameters have to be set-up
once per scan type and then may be executed automatically. The algorithms
are dependent on the setting of the CT scanner and on the preparation of the
patient. However, they should be consistent within a group of similarly set-up
scans coming from one machine type, which we tried to demonstrate on routinely
scanned datasets.

The analysis and final diagnosis at the end must be done by a radiology
specialist, but we are trying to give as much information about the patient as
possible while removing the inherent complexity of the intestinal path through
the body to speed up the exploration of the dataset and point at potentially
important places in the organ.

The reduction of a radiologist’s time and effort spent on one dataset is im-
portant, because a significant help for the medical expert should lead to lowered
probability of an error, overlooked problem and wrong diagnosis. Good visual-
ization in 3D also helps in planning a potential surgical intervention.

Thesis overview

The structure of the thesis follows both our research progress and the actual
sequence of operations that are performed during the processing. It is divided
into the following chapters:

• Chapter 1 gives a brief introduction to the nature of the data that we are
working on, including the acquisition process, reconstruction and specific
details of CTE.
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• Chapter 2 contains a crucial step in our processing pipeline - denoising.
We describe the sources of noise in the input data and our ways how to
improve the data quality for further segmentation operations. We propose
a fast implementation scheme of a high quality denoising algorithm adapted
for our data.

• Chapter 3 shows the subdivision of the dataset into watershed regions
and discusses various parameters describing these regions. We propose a
classification schema for the computation of probability - whether the region
belongs to intestinal lumen, intestinal wall or other parts of the body and
evaluate the results on real CT enterography datasets.

• Chapter 4 describes our algorithm for tracking the small intestine where
we estimate the continuity of individual intestinal segments. The result is
a set of paths through the dataset, which follow well distended parts of the
small bowel.

• Chapter 5 uses the result from chapter 4 and describes our approach to
a precise lumen border location estimation along each individual intestinal
segment.

• Chapter 6 uses tracked path and lumen segmentation results to visualize
the structure of small intestine. We have tried several methods to visu-
alize the segmented intestinal segments - in original CT space, in space
orthogonal to the path, with 3D or polar representation of the lumen/wall
intersection.

• Chapter 7 gives an insight into our implementation process including the
whole pipeline workflow and practical information about the programs used.

• Chapter 8 briefly summarizes results obtained with our methods and con-
cludes this thesis.

• Appendix A.1 shows more in depth comparisons of feature spaces for
probability computation in chapter 3. This chapter contains a comparison
between noisy and denoised datasets and a side by side comparison of two
different datasets.

• Appendix A.2 discusses the stability of our classification process on an
erroneously matched training set.
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Chapter 1

Source data

1.1 Acquisition - Computed tomography

The advancements of computing technology in the last 10 years enabled a very
significant step in the possibilities of data acquisition, large dataset processing
and analysis. What was impossible a few years ago is now in common use.

Lets take for example computed (or in some sources computerized) tomogra-
phy (CT). The base for this method is the detection of X-ray photon attenuation
by a source and a detector (details behind the physics of X-rays can be found for
example in Als-Nielsen and McMorrow [2011]). By sending high-energy photons
through an object or patient, we detect only a subset of them on the detector
cells or film.

The amount of photons detected gives us an estimation of the probability of
transmission through an object. Materials such as air or extruded polystyrene
have a very low probability of high energy photon absorption. Other materials
like bone tissue and metals have a very low transmissivity, blocking also high
energy photons (with energy in the range of MeV).

Comparing these probabilities gives us an idea about the internal structure
of an object without the need to disassemble it. Such methods in industry are
called nondestructive analysis. In medicine they are called noninvasive methods.
In either case the main idea is to obtain internal structural information without
the need to destroy or harm the object/patient.

The simplest (and also very frequently used) such method based on high
energy photon absorption is called simply an X-ray image. It can be used both
with analog and digital technology. Analog being a traditional X-ray sensitive
film and digital being usually a flat-panel with a scintillator (basically a very large
digital camera detector covered with a luminescent layer that emits visible light
under ionizing radiation). It is a very common and relatively cheap technique to
analyze broken bones, large tumors or (in industry) cracks, holes, bubbles and
other discontinuities in manufactured parts. A nice recent survey of techniques
used for X-ray image analysis is in Mery [2015]. However it is not very applicable
for the analysis of a more complex structure of analyzed objects. More projections
might be used, but even that is not enough in some cases of abdominal diseases
or brain analysis.

Next step in the effort to look inside objects is laminography. This technique
was developed for analog acquisition on traditional x-ray sensitive film. Currently
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it has a digital reconstruction-based version as well. The principle of analog
laminography is similar to X-ray imaging, but with the difference that the source
and detector/film are simultaneously moving. The movement is synchronized so
that only one plane of the inspected object always projects on the same part of
the detector/film. The result is an image with one focused plane and everything
above and below this plane is blurred. The shape of the blur is dependent on the
trajectory of the source and detector/film movement. Usually a linear or circular
movement is used. This way we can focus on an exact plane within the object. It
is not enough for a complete reconstruction, but especially with flat objects the
structure at a given height can be seen well enough. An analogy can be found
in traditional microscopy, where there is also a very narrow depth of field and
everything out of focus is blurred. The digital version closely resembles a CT
reconstruction, but with some unavoidable artifacts.

When we need a full reconstruction of the internal structure, our best tool
would be CT. The CT was invented in 1972 by Godfrey Hounsfield (in Hounsfield
[1972]) and the principle is relatively simple - rotate the object 360◦ (with static
source-detector pair, see figure 1.2) or rotate the source-detector (with static ob-
ject, see figure 1.1), project the X-ray shadow from many angles to the detector
and then reconstruct the volume. There are several possible geometric config-
urations of the source-detector pair (see for example Herman [2009]), but the
principle stays the same: for each reconstructed point have as many projections
as possible from different angles.

Figure 1.1: A schematic model of a CT used in health care.

The main problem with CT is the computational complexity of the reconstruc-
tion process and the final size of the data. A typical scan in medicine usually
has hundreds of MB, industrial scans with higher resolutions may have dozens or
even hundreds of GB. This is the perfect place to use the current computational
power of modern computers, especially the massive parallel architectures such as
GPUs. The reconstruction is only one step, further processing is necessary to
enable the inspection and the analysis of such large datasets and this processing
is usually very power consuming as well. We present several such algorithms that
can leverage the available power for a thorough processing of CT datasets.
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Figure 1.2: A schematic model of an industrial CT scan.

1.2 CT reconstruction

CT reconstruction is the process of obtaining information about the internal
structure of an object from a set of X-ray projections. This section shows a very
brief introduction to the reconstruction process to better understand the data we
are working with. Definitions, equations and citations in this chapter are taken
from Herman [2009], chapter 2.4 and 2.6.

Lets define the linear attenuation coefficient µte of a tissue t at energy e as
follows: Let ρ be the probability that a photon of energy e which enters a uniform
block of the material t of unit thickness on a trajectory perpendicular to the face
of the block, will not be absorbed or scattered in the material. We define:

µte = −lnρ (1.1)

We usually do not work directly with linear attenuation coefficient as defined
here, but rather a relative linear attenuation coefficient at energy e defined as
µte − µae , where t is the material present during the actual measurement and a
is the material present during calibration measurement. A CT number (or a
number in Hounsfield unit - HU) is a linearly transformed relative attenuation
with the background material water and scaled so that air has a CT number of
approximately -1000.

This is an important fact, that the CT numbers can be calibrated and repeat-
able and a given CT number at an energy e represents an absolute property of
the tissue. This is in contrast with other modalities (such as MRI, where the
situation is not that simple). In the rest of this book we will be dealing with CT
numbers in Hounsfield units as our source data.

The main goal of reconstruction is the computation of the linear attenua-
tion coefficient (or CT number) from ρ, which is estimated from X-ray projec-
tions. The process is mostly one of the two types: reconstruction based on
Inverse Radon transform (methods based on this are usually called filtered back-
projection (FBP)) or iterative approaches, such as SART (Andersen and Kak
[1984]).

An inverse Radon transform was created in 1917 by Johann Radon (Radon
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Figure 1.3: A 3D reconstruction from a medical CT. A DVR rendering of the
whole dataset and one axial slice through liver and stomach.

[1917], English translation of the paper is in Radon [1986], a survey on several
variants and usage is in Herman [2009] and Deans [1983]). It can be described
(from Herman [2009]) as ”the distribution of the relative linear attenuation in an
infinitely thin slice is uniquely determined by the set of all its line integrals”.

The equation is as follows: let L be the line of the photon trajectory, l the
distance of L from the origin, theta the angle made with the x axis by the
perpendicular drawn from the origin to L and let m(l, θ) be the integral of µe(x, y)
along the line L. Then:

µe(x, y) = − 1

2π2
lim
ε→0

∫ ∞
ε

1

q

∫ 2π

0

m1(x · cosθ + y · sinθ + q, θ)dθdq (1.2)

where m1(l, θ) is the partial derivative of m(l, θ) with respect to l.
We will not go into details of solving this equation, but it is a well explored

region of numerical mathematics (mostly dealing with a robust estimation and
interpolation of m1(l, θ) from noisy discrete points) and there are fast algorithms
for computing this reconstruction. This is however easily applicable only to circu-
lar or helical geometry (which is the case of most full-body medical CT scanners,
see figures 1.1 and 1.3).

On the other hand iterative approaches such as ART (Gordon et al. [1970]
Hounsfield [1972]), SIRT (Gilbert [1972] Herman [1980]) and SART (Andersen
and Kak [1984]) are trying to solve or approximate a set of equations over several
iterations. This easily enables other geometries than circular/helical (such as
Maisl et al. [2014]) or usage in ultrasound or microwave tomography. See for
example figure 1.4.

Current medical CT scanners have begun to replace old FBP algorithms with
the more computationally expensive iterative approaches. The reason for that is
the simplicity of implementation of some improvements directly into the recon-
struction process instead of post-processing the already reconstructed data. The
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Figure 1.4: A nondestructive inspection of welds using X-ray tomography. Pro-
jections scanned with 220keV, 0.3mA.

scanning process is currently more limited during the physical acquisition by the
sensitivity of detectors than the computational power of current computers.

1.3 CT enterography

CT examination is currently an invaluable technique for medical diagnosis, in
some cases with no other alternative. It is relatively cheap (compared to for
example MRI), fast (one revolution of source-detector pair takes around 0.5-1
seconds, full chest+abdomen scan is usually done within 2-5 seconds on a MDCT
- Multi-detector CT) and has very good resolution in respect to bones and some
organs with the possibility of a 3D visualization (especially important in case of
complicated bone fractures such as in femoral neck, see an example in Horáček
et al. [2009]). The speed of CT is especially important in medical diagnosis
of patients, it is able to produce full tomographic projection within a second,
minimizing the influence of peristalsis, respiration and heartbeat.

CT is based on radio-density measurement (stored in HU), which uses X-rays
of various wavelengths to estimate the attenuation within a human body. Thus
materials that have similar composition (like human internal organs with a large
amount of water) behave similarly.

There have been several improvements to the standard CT process in case of
internal organ diagnosis, such as post-contrast scanning. There are many variants,
mostly using intravenous positive contrast agent with enhanced attenuation of X-
rays to highlight parts of the body with high blood circulation. This way we can
mark blood veins, circulation in the brain, enhance kidneys, tumors in the liver
and other parts of the body.

CT enterography (CTE) is a special example of post-contrast computed to-
mography to simplify the diagnosis of bowel. It differs from traditional CT by
using intravenous contrast material, large volumes of a neutral oral contrast agent
and is scanned on a high resolution MDCT scanner (Booya et al. [2006], Paulsen
et al. [2006], Federle [2007]). Neutral contrast agent is used to improve intestinal
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lumen distention, intravenous agent is for enhancing intestinal wall, possible in-
flammation areas and additional complications. An example of difference between
standard CT and CT enterography is shown in Figure 1.5.

Figure 1.5: A comparison of normal CT to CT enterography scan. Left image is
contrast enhanced CT enterography (120 keV, 310mA). Right image is standard
(non-contrast) CT scan (120 keV, 150mA).

Neutral enteric contrast agent might be a sufficient amount of water (cheap,
well tolerated, available, but might pose problems due to fast absorption rate).
There are also alternatives, such as methyl-cellulose solution, polyethylene glycol
solution, and low-attenuation barium suspensions (Booya et al. [2006], Paulsen
et al. [2006]). Oral administration of neutral contrast agent is usually sufficient,
so no intubation is necessary, making the procedure much more pleasant for the
patient (compared to for example CT enteroclysis). Positive intravenous contrast
agent is injected right before the CT scan and precise timing is necessary to obtain
good results (scan is done usually within 30-60 seconds after administering the
intravenous contrast agent, exact timing varies between studies).

There is a range of other techniques for small bowel diagnosis (Cohen [2011]),
such as endoscopy, capsule endoscopy, serological markers, fecal calprotectin and
lactoferrin analysis and CT enteroclysis (Maglinte et al. [2007]) to name a few.

The main advantages of CTE over other techniques are its non-invasiveness,
relative simplicity of patient preparation, well tolerated by patients, ability to
clearly show wall thickening, prominence of vasa rectae (Madureira [2004]), ab-
scesses, fistulae and mural stratification (Choi et al. [2003], Zalis and Singh [2004])
and compared to capsule endoscopy - no risk of capsule retention. It is thus very
suitable for active Crohn’s disease (CD) diagnosis, but also for other inflamma-
tory diseases, bowel obstruction, etc.

The disadvantage is ionizing radiation with similar doses like a traditional
CT scan, the inability to display intestinal wall color (necessary for example
in the case of a mild or early disease, in which case a direct visualization of
the mucosal surface using endoscopy or capsule endoscopy is necessary - Afifi
and Kassem [2012]Sostegni et al. [2003]) and occasional intolerance to iodinated
contrast material.
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The accuracy of CTE when diagnosing CD has been reported to be 93.9%,
with specificity 100% and sensitivity 85.7% (Mazzeo et al. [2001]).

1.4 Data

The only source data we use for our computation are CTE scans results. The
nature of the data is volumetric with a regular 3D grid structure, where each
voxel contains the information about the relative linear attenuation coefficient
converted to HU. Preferred data are the ones with cubic or close to cubic shape
of voxels (i.e. similar size in each dimension), usually the size of a voxel is around
0.53 to 0.753 mm.

The complete dataset consists of a set of axial slices with spatial resolution of
512× 512 pixels/voxels. The amount of slices depends on the settings during the
scanning, there are usually 300-800 slices per scan.

The HU values of the input data are provided as 12-bit values stored in 16-bit
words. The storage/transfer format used is widely known as a DICOM standard.
We use DCMTK toolkit for loading the data. Input values range from -1000 or
-1024 HU for air, 3072 or 3096 for metals/maximal density and 0 for water (dif-
ferent values depend on dataset/machine settings, this information was included
in source DICOM format in fields RescaleIntercept and RescaleSlope).

We have included only datasets from patients that have signed an agreement
to use their data in a research project. All datasets were anonymised before using
them for tests, we only kept necessary information with technical details of ac-
quisition and reconstruction (scanning parameters, resolution, dimensions, etc.).
Our datasets were scanned with 120keV power, tube current varied depending on
each case. We had 34 datasets prepared this way for this research.

Internal format used for all computations was a custom volumetric format
with 32-bit float as the basis for voxel value. This was used for all steps starting
from the output of the denoising step (chapter 2 with the exception of markers
(used for marking regions of segmentation results), where a 32-bit integer was
used (the 24-bit mantissa of 32-bit float was insufficient).

The total size of the smallest input dataset was around 220MB (436 slices),
the largest input dataset was around 390MB (784 slices). The intermediate data
stored in 4-bytes per voxel took around twice that size per dataset. This size is
currently supported without problems on modern GPUs, several steps (especially
the denoising step) were performed on a GPU accelerator to significantly speed
up the computation and enable the practical usage of our processing.

12



Chapter 2

Denoising volumetric data on
GPU

2.1 Introduction

This chapter focuses on a much more general approach to volumetric data pro-
cessing than the rest of this thesis. We are discussing denoising which can be used
on many regular 3D volumetric datasets, independently on the data format. An
efficient and fast GPU variant of the NLM (Nonlocal Means) algorithm (Buades
et al. [2005]) is presented.

The reason behind this is that a very high quality denoising is crucial for the
rest of this work. Original data without denoising were strongly inapropriate for
standard segmentation algorithms. Examples of such data are shown in section
2.6.

However, a suitable denoising algorithm (such as NLM), which gives a very
good result and performs optimal denoising is computationally very expensive.
The results were sufficient for the rest of the segmentation process, but the compu-
tational burden being hours on a modern PC was a serious setback and prevented
the rest of the segmentation process from being practically useful.

Because of this we had to create a new approach to the computation of NLM
on an OpenCL-capable GPU to enable its use in practice. Here we would like to
present our results from Horáček et al. [2011].

2.1.1 Denoising volumetric data

Many current medical imaging methods produce volumetric data, such as com-
puted tomography (CT), magnetic resonance (MRI) and others. This data pro-
vides a good insight into the workings of the human body, but is also quite large
and it is difficult to process with more advanced processing techniques. We are
interested mainly in CT for our case.

For the examination of complicated structures and small details we need thin
slices and also low radiation doses to avoid any unnecessary harm to the patient
(a computation of a CT ionizing radiation dose to the patient can be found for
example in DeMarco et al. [2005] and in Bazalova and Verhaegen [2007]). But
thin slices bring a lot of noise with it and are thus very hard to follow and
segment with automatic or semiautomatic methods. Many current segmentation
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algorithms need a robust edge detection. In the case of many thin-slice CT
enterography scans, the standard deviation of the homogeneous inner parts of the
intestine (lumen filled with neutral contrast agent) might almost reach the level
of the difference between the mean value of the lumen and the contrast enhanced
intestinal wall (depending on the scanner settings, reconstruction process and
the efficiency of the intravenous contrast). Therefore we need a robust denoising
approach to apply some proven and efficient segmentation algorithm.

We will focus only on random noise, which is very apparent in the intestinal
part of the body. Acquisition artifacts, such as star artifacts resulting from dense
objects being present in the body are not so apparent, because unless the patient
has some sort of metal implant this part of the body usually contains only the
spine and upper part of pelvis and no other dense bones or objects. For example
Gu et al. [2006] discusses a method of star artifact removal.

2.1.2 Noise in low-dose CT

CT reconstruction process described in section 1.2 shows us a mathematically
simple solution to the problem of the X-ray tomographic inspection. However,
we need precise estimations of the line integral 2.1 of relative linear attenuation
along the line between the X-ray source and the detector and we also need an
infinite number of them. ∫ D

0

µe(x, y)dz (2.1)

That is not practically achievable and from the discrete and noisy estimations
rise errors that damage the result of the reconstruction. The exact analysis of
the errors and noise is not simple, we will try to analyze the most prominent ones
and the ones we are able to significantly reduce using techniques mentioned in
this chapter.

The first and for us also most important source of errors is the physical nature
of X-ray imaging - photons. Photon emission, interaction with material and
detection are all stochastic in nature. Combined with the need to reduce the
dose of high energy photons in medical imaging to prevent ionizing radiation
damage to the patient, this fact elevates it to the most important problem of
X-ray imaging.

As a side note: a similar problem, but arising from a different reason is found in
industrial CT imaging. The doses are also kept to a possible minimum, although
usually much higher than in health care. The reason is mainly the maximal
sustainable power of micro-focus X-ray sources, service life and degradation of
the detector (which might be one of the most expensive parts of an industrial
CT) and time constraints due to generally larger number of projections needed
for a good resolution in the reconstruction.

An example from an industry-grade detector is shown in 2.1. The acquisition
parameters are different than in health care. Medical CT scanners usually operate
with less voltage and higher current. But the complete exposition time is around
0.5s-2s (all projections), compared to 0.5s per projection in industrial CT (the
total exposition time of a complete scan must be multiplied by the number of
projections, such as 400-1600, depending on the resolution). We do not have a
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Figure 2.1: An example of an X-ray image (in the image is a folded metal sheet)
from an industry-grade detector. Acquisition parameters are 160keV, 0.5mA,
0.5s. The slight noise pattern might not be visible in print, please check also the
digital version of this work to examine the noise behavior.

similar example for medical CT, because the projection data are not captured
on a flat-panel detector, but rather by several rows of 1D detectors (Goldman
[2008]) and thus the source data are not suitable for direct visualization (they are
in a form of so-called sinograms). But it is clear that with a significantly smaller
dose the noise level would definitely increase.

The photon emission probability can be modeled (Macovski [1983], Herman
[2009]) with the Poisson probability law:

pYλ(k) =
λk · e−λ

k!
(2.2)

where Yλ is a discrete random variable describing the number of photons emitted
in a unit period of time in the direction of the detector by a stable X-ray source
that emits on average λ photons. By the central limit theorem, for large λ the
behavior of Yλ resembles normal distribution with mean λ and variance λ.

Let’s denote ρ the transmittance through the material and σ the probability
that a photon arriving at the detector is counted, then the number of photons
detected is a sample of a Poisson random variable with parameter λρσ. An
experimental study on the detector noise properties is in Wang et al. [2008].

We have not found a good study about the noise behavior in the reconstructed
data. The majority of studies only discuss the amount and variation of the noise,
but not its other properties. We have made an estimation, that the behavior
would be similar to Gaussian white noise, because a large number of factors with
a similar random probability would affect the result (each point is reconstructed
from many line integrals, all of which carry the error discussed above).

An experiment has been performed on parts of real CT scans of human bodies.
We have selected parts that should be homogeneous (ie. parts filled with water)
and performed a histogram analysis. An example of a fitted Gaussian curve on
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Figure 2.2: Example of a source dataset from which we estimated the behavior
of CT reconstruction noise. Extracted data are painted in green.

the extracted data histogram can be seen in figure 2.3.

Figure 2.3: Histogram of water from figure 2.2 (black) and fitted Gaussian curve
(red).

The next topic was the analysis of (in)dependence of neighboring voxels. We
have performed correlation analysis on the same (supposedly homogeneous) data.
The result can be seen in figure 2.4.

By analyzing only neighbors in axial slice or only along the Z axis we get
results shown in figure 2.5. Due to the fact that the reconstruction is performed
per axial slice, the dependence of noise between slices is very low (correlation
coefficient around 0.20-0.23). But correlation within one slice is much stronger
(around 0.70-0.75). Total correlation coefficient between all neighbors is around
0.5-0.6. This slightly breaks our assumption about white Gaussian noise, so we
definitely cannot use a 2D image based denoising method per input slice. We
have to rely on the low correlation between slices and use a 3D-based denoising
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Figure 2.4: Dependence of voxel HU value (horizontal axis) on the HU value of its
neighbors (vertical axis). Neighbors taken in all 3 dimensions (XYZ), correlation
coefficent is 0.567.

Figure 2.5: Dependence of voxel HU value (horizontal axis) on the value of its
neighbors (vertical axis). (a) Neighbors taken in axial slice (XY), correlation
coefficient is 0.743. (b) Neighbors taken only along Z axis, correlation coefficient
is 0.216.

process.
The noise behavior was validated on 3 datasets with similar results. We have

deemed such similarity as sufficient for our decision about the denoising algorithm.

2.1.3 Other error sources in low-dose CT

Other important sources of error worth mentioning causing visible degradation
of medical CT images are:

• Beam hardening

• Partial volume effect

• Wrong calibration of source/detector or their instability
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Beam hardening is the result of a wide X-ray spectra instead of single wave-
length photons and different absorption properties of tissues in regard to X-ray
photon energy. See Bazalova and Verhaegen [2007] for an example of a traditional
tungsten X-ray source spectra and its simulation. A very apparent result of beam
hardening on metal object in human body is shown in figure 2.6. Any X-ray to-
mography with non-monochromatic X-ray and non-homogeneous scanned object
suffer from beam hardening, but it is really apparent only on object scans with
very significant differences in material absorption. This means mostly metallic
implants, teeth, dental amalgam, etc. in medical CT area.

Figure 2.6: An example of a strong beam hardening artifact caused by a metal
endoprosthesis in femur. Scanned part is an axial slice just below the femoral
neck. Both femoral bones are visible, bone on the left side of the image contains
metal endoprosthesis, bone on the right side is without any artificial material.

set of patients

Fortunately, the only significant source of beam hardening artifacts in CT
enterography is the spine and the results are not so apparent, because the strength
of these artifacts created by vertebrae is not so apparent and in the area of
small bowel the ”star beams” are already a low-frequency background with a low
amplitude. Many figures in this thesis show axial slices including the spine and
it can be seen that the beam hardening artifacts in the bowel area almost cannot
be noticed.

Partial volume effect is caused by the finite resolution of the detectors and non-
linearity during reconstruction. This can be improved basically only by increasing
the detector resolution.

Wrong calibration or defects on detector/source may cause errors in transmis-
sivity estimation. Especially defective cells on the detector may cause so called
ring artifacts. (All our datasets were properly calibrated with a stable X-ray
source, so this was not a problem for our processing.)

All three mentioned sources of errors can be improved either during acquisition
or reconstruction phase (beam hardening) or by directly changing the mechanical
properties of the scanner (adding filters for pre- or post-hardening the X-rays,
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increasing resolution of detector, detector calibration, etc.).
Fixing these errors is beyond the scope of a single general-purpose denoising

algorithm. A sophisticated approach is necessary to reduce any of these errors,
ideally directly during the acquisition or reconstruction process. Especially the
beam hardening creates artifacts (figure 2.6), that are not easily removable by a
denoising method (sadly denoising algorithms tend to further enhance them).

We will not discuss removing these other errors more in depth as they did not
cause significant problems in our case of CT enterography processing.

2.2 Denoising approaches

We have tried implementing our own iterative reconstruction algorithm based
on SART iterative method (see chapter 1.2), but without significant improve-
ments over the reconstruction algorithms supplied with CT scanner equipment.
It turned out that the knowledge about the exact internal structure of the machine
(including filters, detector/scintillator composition, collimator, etc.) is crucial in
designing an algorithm with sufficient quality. In this regard an algorithm sup-
plied by the manufacturer surpassed our efforts both in quality and speed. We
were left only with the option of post-processing data supplied by the manufac-
turer’s reconstruction process.

The selection of denoising algorithms applicable on volumetric data is much
narrower than a selection of algorithms for 1D signals or 2D images. We refer
to currently used algorithms, such as Gaussian filter, median filter (in Gallagher
and Wise [1981]), total variation minimization (in Rudin and Osher [1981], Rudin
et al. [1992]) and nonlocal means filter and a survey given in Buades et al. [2005]
with improvements in Coupe et al. [2008].

We have not considered the BM3D denoising method (Dabov et al. [2006])
or its 3D variant BM4D (Maggioni et al. [2013]), because even though it should
have slightly better denoising performance compared to NLM, its computational
complexity is also very high. For our purposes the GPU variant of NLM was
sufficient both in the quality and speed performance area. We have yet to find a
way to speed up the BM4D to the performance level of our NLM implementation.

In this chapter we present the result of our previous work in Horáček et al.
[2011]. On a side-note there has been recently published also a newer variant of
NLM implementation utilizing multiple GPUs in Cuomo et al. [2014] and another
algorithm in Eklund et al. [2011], which is slightly slower than our solution,
although with a different algorithm implementation.

2.3 Nonlocal-means algorithm

First introduced by Buades et al. [2005] this algorithm is still nowadays considered
one of the best approaches quality-wise. It has very good properties in respect
to detail preservation and very successfully removes white noise. However the
computational complexity is very high, especially for 3D data.
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The definition is as follows:

NL(u)(xi) =
∑
xj∈Ω3

w(xi, xj)u(xj) (2.3)

w(xi, xj) =
1

Zi
e−
||u(Ni)−u(Nj)||

2
2,a

h2 (2.4)

where u is the original noisy image, Ω3 is the definition range of the image, w is
the weight computed from the similarity of the local neighborhoods of two voxels
and Ni, Nj are local neighborhoods around given voxels, h is a filtering parameter
and Zi is a normalization constant.

This can be explained as follows: Each voxel is reconstructed by the weighted
average of the most similar voxels in its vicinity. The similarity of two voxels is
computed from the L2 norm of their neighborhoods - voxel-wise.

It has been proven in Buades et al. [2005] that NL-Means is a very efficient
algorithm (quality-wise) and performs an optimal denoising. But the computa-
tional complexity (O(n ∗ m ∗ k), where n = number of voxels, m = size of the
search space and k = size of local neighborhoods for computing similarity, all of
which are 3-dimensional parts of the dataset) is nowadays too large for a daily
medical practice.

2.3.1 NL Means Optimizations

NLM has been tried on GPU, mostly for photos and other 2D or 1D datasets
(e.g. Kharlamov and Podlozhnyuk [2007]). The optimization was using block
approach without overlaps, which brings strong block artifacts and the whole
implementation is done only for 2D images.

Good optimizations for 3D data are given in Coupe et al. [2008]. The original
aim was denoising of the MRI datasets of head and brain, but they are good for
CT images as well. The basis is a selection of relevant voxels based on local mean
and variance values before the L2 norm is computed.

Combining this voxel selection with block-wise approach from Buades et al.
[2005] brings a very significant speedup, the authors claim as much as 40x to 66x.
No implementation details are given though. We did not manage to achieve such
performance without drastically reducing the quality of the result.

As a result of these optimizations, the algorithm is able to run in merely dozens
of minutes instead of hours. Our implementation has achieved approximately 20-
30 minutes on a quad core i7 processor for a volume of size 512x512x548.

2.4 OpenCL Capable GPU

The current GPUs supporting OpenCL interface (Khronos OpenCL Working
Group [2009]) are designed to efficiently process large tasks that are parallelizable.
The sheer computational power is at least one order higher than a commodity-
grade CPU. However, efficient use needs some practice and optimizations that are
unnecessary (and some also inefficient) on CPU (NVIDIA Corporation [2008b],
NVIDIA Corporation [2009]).

The main theme of GPU programming is a so called SIMT (Single Instruction
- Multiple Threads) execution model. This acronym was inspired by a similar
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Figure 2.7: Architecture of an nVidia GeForce GTX 280 processor. Image from
NVIDIA Corporation [2008a].

acronym in parallel computing - SIMD (Single Instruction - Multiple Data). It
was used by NVIDIA in the presentation of the Tesla scalable unified graphics
and parallel computing architecture (Lindholm et al. [2008]).

Although many different manufactures produce OpenCL (or a proprietary
alternative Cuda) capable hardware (the most known being NVIDIA Corporation,
Intel Corporation and Advanced Micro Devices, Inc.) and each manufacturer has
several generations of such hardware with different capabilities, the principle stays
always the same. One chip (usually called GPU, for example nVidia GeForce
GTX 280 in fig. 2.7) contains several so called streaming multiprocessors (SM,
shown in fig. 2.8). Each multiprocessor contains individual processing cores -
usually 8 or more.

Multiprocessors can perform different tasks, the shared part of the chip be-
tween SMs is not very large (and differs between GPU generations). The magic
happens inside these SMs, on the individual cores.

All cores in a single multiprocessor process the same instruction on different
data, because they share the instruction cache, scheduler and other parts that are
usually devoted to individual cores in CPUs. Also the size of caches is significantly
reduced compared to a CPU, leading to much higher latency when accessing the
GPU main memory. On the other hand, a much larger part of the chip is devoted
to ALUs and a special HW support is present to provide almost no-cost switching
of threads on the cores. So the SM can switch a thread that is waiting for data
from main memory with another thread that can perform computation.

The most effective way of utilizing the GPU is by running literally thousands
of threads that perform the same instructions (defined in a so-called kernel)
on different data. Also specific techniques such as memory coalescing, manual
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Figure 2.8: A detail of a single TPC (Thread Processing Cluster) consisting of 3
SMs (Streaming Multiprocessors). Image from NVIDIA Corporation [2008a].

caching in a fast but small local shared memory and other latency hiding methods
are required when running memory-intensive algorithms.

Practically, the threads are subdivided into blocks of threads, which are
grouped into a grid. A kernel is run on a grid, blocks are then assigned au-
tomatically to SM for processing. They may be executed in random order, so
special synchronization techniques are necessary in case some operations need to
be serialized. In our case we are using only serialization per block, by issuing
special serialization instructions that block the computation of threads untill the
whole block is finished. Blocks themselves are independent and may be run in
any order.

Specific techniques necessary for a proper GPU utilization vary slightly be-
tween individual hardware generations. That may mean the dimensionality of
blocks and grids, their sizes, available synchronization techniques, etc. Our algo-
rithm was originally designed on the first generation of Cuda-capable GPUs, so
forward compatibility is not a problem.

For a thorough discussion of individual hardware specifics, please refer to the
manufacturer’s documentation. For example: searching for OpenCL or Cuda
Tuning guide by NVIDIA, AMD, Intel or Apple might show up to date informa-
tion (note thought that Cuda is a proprietary NVIDIA technology). An example
is in: NVIDIA Corporation [2016].

2.4.1 Basic HW Implementation of Optimized Version

After implementing optimized NL means for the OpenCL interface, we have found
out that on a GeForce GTX 275 it is only about 6 times faster than on a single
2.6GHz CPU. However, current processors usually have more than one core and
thus are already able to perform parallel computations. Running this version on
a Core i7 with 4 cores and hyper-threading, the speed difference was even after
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careful optimization of the GPU version negligible, even though a GeForce was
running many more threads concurrently.

This is caused by a very slow memory access and no local cache on this
version of GeForce. About 90% of the computational time was spent on two
memory reads. Also the process of choosing which voxels will be computed breaks
the continuity of the thread warps and slows down the computation instead of
speeding it up. This algorithm is thus unsuitable for direct implementation on
GPU and needs to be changed.

2.4.2 HW Implementation of the Original NL Means

We tried re-implementing the original NL-means, this time to maximally utilize
the capabilities of the GPU with minimized branching and global memory access.
Meaning pre-loading the data to the fast on-chip memory and no voxel selection.

The parameters of NL-means filter for best quality are taken from Coupe
et al. [2008]: local neighborhood radius 2 voxels, search radius 4 or 5 voxels (only
small difference in quality) and automatic smoothing parameter computed from
pseudo-residuals.

Thus, the memory consumption of one voxel reconstruction with a search
radius 4 would be: number of voxels = (2 · (4 + 2) + 1)3 = 2197, so source data
size = 2197 · 4 bytes per float = 8788 bytes. We also add temporary memory
for weights = (2 · 4 + 1)3 = 729 floats = 2916 bytes and additional memory for
summing weights = 360 bytes.

This fits completely into the local memory even on the first generation HW.
Search radius of 5 voxels would not fit into the on-chip memory on some cards,
but the quality difference between 4 and 5 voxels in means of signal to noise ratio
is shown in Coupe et al. [2008] to be small enough.

The algorithm itself:

1. Each thread reads the first 2 · (4 + 2) + 1 voxels in the Z direction from
global memory to local memory (Figure 2.9(a, b))

2. For each relevant voxel, compute the weight function with central voxel
(Figure 2.10(a))

3. Compute the sum of weights

4. Compute the sum of weighted values for each relevant voxel

5. Normalize with weight sum

6. Store result into global memory (each threads writes to a unique position)

7. In each thread move all voxels in local memory by 1 and read one new voxel
(Figure 2.10(b))

8. Continue with step 2
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Figure 2.9: Blue voxels are the search space, orange voxels are highlighted for
explanation, currently processed voxel is in the middle of the blue voxels: (left)
Volume needed for one voxel. (right) One thread is executed for each column.

Figure 2.10: (left) Threads actually computing weights and sum. (right) Loading
next slice.

2.4.3 New HW Implementation of the Optimized Version

We also tried optimized selection of computed voxels by using this presented
algorithm with good utilization of the local memory. However, the results were
much worse than on the CPU. The algorithm has been running about 2x slower
than unoptimized version in 2.4.2. It was running about the same speed as
the unoptimized version only with drastic reduction in quality. The speed was
strongly dependent on the actual data (how much of the data was discarded).

24



Algorithm Processor Threads Time

NL-Means i7 3.07GHz 8 5:38:15
Block NLM i7 3.07GHz 8 0:26:35
NL-Means C2Q 2.4GHz 4 > 10 hours

Block NLM C2Q 2.4GHz 4 0:55:57
NL-Means GF 8800GT 132 0:13:41
NL-Means GF 275GTX 132 0:06:44
NL-Means GF 460GTX 132 0:04:22
NL-Means GF 980GTX 132 0:00:59

Figure 2.11: Measured on dataset of size 512x512x548. Thread count on GPU is
the number of threads per block - multiple blocks may be running on the whole
GPU.

2.5 Results

2.5.1 Performance

The times measured for given algorithms are shown in figure 2.11. As you can
see, the simple and computationally very expensive algorithm runs much faster on
current GPU than the most optimized CPU version on 8-threads on a good cur-
rent CPU. It should be stressed, that the results on CPU are already parallelized
and the comparison is done with the full CPU power and not a single-threaded
version.

The application performance has been validated with a profiler. The instruc-
tion throughput on a GT200 was 0.921813. The retired instruction per cycle on a
GF104 was 1.86737.

2.6 Quality

We have performed denoising on 34 datasets with the same settings for the NLM
filter and all results were visibly improved. We have not found any wrongly
removed feature, everything was visible and much clearer than in the original
data. An example comparison of different results is shown: thin slices without
processing, thick slices without processing and thin slices denoised.

Thin slices in figure 2.12 in our example have a thickness of 0.5mm, so the
voxels are cubic and ideal for segmentation, because all directions in the dataset
have the same scale. However thin slices have also the noisiest appearance.

Thick slices in figure 2.13 have a much better SNR, but significantly lack the
resolution in the orthogonal direction to the slice, so many small details might be
lost. In this particular example, there is a resolution reduction of 1:5. See figure
2.15 to see the results of thick slice reconstruction.

Denoised thin slices in figure 2.14 are the best candidate for a successful
segmentation. They excel both in spatial resolution and feature visibility.
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Figure 2.12: Axial plane of thin slice reconstruction. Red line in the data inter-
secting 3 intestinal walls is shown as an intensity profile.

Figure 2.13: Axial plane of thick slice reconstruction. Red line in the data inter-
secting 3 intestinal walls is shown as an intensity profile.

2.7 Conclusion

GPU version on an OpenCL-enabled graphics card allows denoising of the whole
patient dataset in merely minutes instead of hours and does not bring any artifacts
created with aggressive optimizations needed for CPU. Thus we consider this a
good approach for processing such intensive problems.

We have also validated that the original brute-force version without voxel
selection is faster than the CPU optimized one. The explanation of this behavior
is the GPU architecture briefly described in 2.4. Each multiprocessor performs
a single instruction for all its threads. In case of the brute-force processing all
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Figure 2.14: Axial plane of thin slice reconstruction after denoising with NLM
algorithm. Red line in the data intersecting 3 intestinal walls is shown as an
intensity profile.

instructions always align and the only problem is the memory latency, which can
be hidden by thread switching (by lowering the occupancy of registers), memory
coalescing (by reading subsequent bytes from main memory) and simple manual
caching in local memory shared over all threads.

The algorithm optimized for CPUs with relevant voxel selection has a problem
on GPU with input-data-dependent branching and thus increasing the number of
instructions (instead of decreasing). This is caused by broken thread coherency.
The problem is so apparent that a GPU with hundreds of ALUs gives us no real
advantage over a CPU with 4 cores.

A full evaluation of denoising quality is not given in this thesis, it can be
found in Coupe et al. [2008]. We have presented a brief effect on available CT
enterography data.

The profiling has shown that we have successfully eliminated the memory
bandwidth problem, on a GT200 architecture is room only for circa 8% improve-
ment onto the peak theoretical performance.

However, on the tested GF104 the performance is about half of the theoretical
peak. This is caused by heavy usage of the on-chip memory - two warps do not
fit on a single SM and this prevents the HW from executing 4 instructions per
cycle. We have not found a way to reach this limit without drastically increasing
the bandwidth dependency or quality of denoising.

Future improvements may be in implementing the block-wise approach for
GPU. Reconstruction by blocks was proposed by the original author of NLM
in Buades et al. [2005]. It performs similarly to per-voxel NLM, but does not
reconstruct a single voxel per step, but rather overlapping blocks over which the
L2 norm is computed (in equation 2.4). It has superior speed, as the number of
computed L2 norms per voxel is significantly lower, but it comes at the cost of
quality.

Another improvement may be overcoming the one-warp-per-multiprocessor
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Figure 2.15: Sagittal plane of all three compared datasets - thin, thick and de-
noised slices. It is apparent that thick axial slices have a significant deficiency in
orthogonal resolution.

limit when running on a GF104 and newer architectures or we could try to imple-
ment a GPU version of Darbon et al. [2008], which has even lower computational
complexity than the original NLM.

We have made a Cuda version of the algorithm implementation available in
an open-source library CUGIP (Cuda Generic Image Processing - Kolomazńık
[2013-2016]).
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Figure 2.16: Close up example of denoised result: (a) Original data. (b) Denoised
data with OpenCL GPU implementation of the original algorithm.
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Chapter 3

Processing CT enterography
using watershed segmentation

3.1 Introduction

This chapter is the first to be fully focused on working directly with CTE data.
We present here the first part of the segmentation process from Horacek et al.
[2015].

The processing system is based on a subdivision of the volume by a watershed
transformation into smaller regions and then classification of these regions to
obtain the main volume of the small intestine. A discussion of suitable region
descriptors is given and the result are probability maps of intestinal lumen and
wall - an example is shown in figure 3.1.

3.1.1 Other work

A significant amount of work has been done on the segmentation of colon for
virtual colonoscopy and some work also on the segmentation of small intestine.
However, a robust technique suitable for its tracking has not been identified yet.

We have surveyed the existing techniques in Fidler et al. [2009], Holmes et al.
[2010], Näppi et al. [2010] and Näppi et al. [2012] and tried various threshold-
based and voxel-based region growing algorithms without much success in track-
ing the intestine reliably. These methods had very frequent leaks into the neigh-
boring folds and the colon that could not be practically corrected, even manually.

The reason might be a slightly different scanning procedure, an excessive
amount of noise or a different contrast method. None of the denoising methods
mentioned in chapter 2 were sufficient to make a voxel-based growing usable.
The 3D region growing procedure on voxels is very sensitive even to a single
discontinuity in the scanned volume (due to noise, partial volume artifact or
imperfect distension with neutral contrast agent, see table 3.1). The healthy
intestinal wall is around 1− 2mm thick (Herlinger et al. [2001]), which may lead
to holes in the data in case of imperfect contrast agent saturation and/or diagonal
direction and close proximity of several folds.

A segmentation method directly for CT enterography based on region growing
is given in Näppi et al. [2010] and its improved version in Näppi et al. [2012]. In
our case it did not work for us in the general case due to very frequent leaking.
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Figure 3.1: Example of result from our watershed processing pipeline. Individual
watershed regions have a constant probability, which is color coded with a so-
called jet ramp LUT. (a) Source slice. (b) Lumen probability. (c) Intestinal wall
probability. (d) Jet ramp of values from 0 to 1.

However, a wall inflammation analysis method described there seems promising.
Another interesting method based on tracking the mesenteric vasculature is

mentioned in Zhang et al. [2013]. This method performs very well in segmenting
the overall small bowel volume, but does not perform any path tracking. Its
output is only the rough bulk of the organ.

There are also other methods for diagnosing small intestine and Crohn’s dis-
ease, namely using MRI, like MR enterography (Fidler et al. [2009], Gourtsoyian-
nis et al. [2006] and a method similar to ours in Holmes et al. [2010]). However,
our focus has been specifically the result of a CTE scan.
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3.1.2 Symbols used

We will be using the following symbols throughout the rest of this chapter:

• s . . . one whole watershed region

• A . . . a class of regions (i.e. lumen, wall, . . . )

• PA(s) . . . a probability that the region s belongs to A

• N(s) . . . a set of regions directly touching the region s

• Kk(s) . . . k nearest neighbors of s in a feature space

• v . . . a voxel in a 3D dataset

• τdecision . . . a threshold for an algorithmic decision, all thresholds in this
chapter must be optimized to input data acquisition parameters

3.2 Input data filtering

3.2.1 Denoising

Figure 3.2: Original and denoised CT enterography axial slice example. An
inflammation is visible in the right part of the image.

We need roughly cubic voxels with the size of around 0.53mm or smaller to
prevent partial volume artifacts on the relatively thin intestinal wall (healthy
wall is around 1 − 2mm thick). CT enterography data with thin slices (0.5-
0.75mm) unfortunately have a large amount of noise. Reconstruction details and
noise origin are discussed in chapter 2.1.2. Thick slices are not an option, slices
thicker than 2mm significantly reduce any possibility to diagnose the intestinal
wall parallel to the slice.

There are many methods for denoising, starting with a Gaussian or a box
filter and ending with anisotropic filters and NLM (non-local means). We have
tried several methods and the best results were with the NLM (Buades et al.
[2005]Coupe et al. [2008]Cuomo et al. [2014]).

NLM removes noise inside the lumen and at the same time keeps planar struc-
tures such as thin walls intact. The vague metric called here as the best denoising

32



Wall Lumen
Mean Std. deviation Mean Std. deviation

Original 131.09 59.83 49.26 44.69
Denoised 117.64 34.33 54.16 15.92

Table 3.1: Standard deviation on intestinal lumen and intestinal wall before and
after denoising. This was measured on the same voxels and datasets as the
histograms on figure 3.3.

Figure 3.3: Histograms of samples from (a) original and (b) denoised data from a
well distended and well contrast-saturated dataset. The same part (voxel-wise) of
dataset is used - a part of manually segmented intestine (lumen+wall), no other
body parts are included. Red line is lumen, blue line is wall, black line is the sum
of all marked voxels.

method is based on the optimality of the NLM Buades et al. [2005] and visual
evaluation of the presence and the visibility of anatomical structures such as in-
testinal walls and villi. Another metric was the amount of leaks in subsequent
processing (for example region growing), with NLM minimizing such events com-
pared to other algorithms (Gauss and adaptive Gauss filtering, diffusion-based
methods, median filtering, morphometry, etc.).

Here we have used our earlier implementation from Horáček et al. [2011] (de-
scribed in chapter 2). An example of the denoised data is shown in fig. 3.2.
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As can be seen in table 3.1, the denoising process significantly reduces the
standard deviation of lumen.

A histogram comparison from manually segmented part of the intestine is
shown in figure 3.3. Denoised data in fig. 3.3(b) have two apparent parts in
the full histogram (black), lumen with a narrow high peak of lower-intensity HU
values and wall with much wider higher-intensity HU values. Those two peaks
cannot be easily identified in full histogram (black) on figure 3.3(a).

The difference in mean values of both lumen and wall before and after the
denoising step in table 3.1 can be explained as a result of a very strong denoising
filtering needed due to large amounts of noise present. Thus values in lumen
are slightly increased because they are completely enveloped with higher-valued
voxels from the contrast-enhanced walls and even though the weight of voxels
from walls in NLM denoising is very low, it is slightly larger than zero. The same
applies to intestinal walls. We have performed a test on the whole dataset to be
sure the overall mean value of the dataset stays the same after denoising and the
difference was negligible (less than 1 HU, namely 0.15 HU on the whole dataset
from figure 3.3).

We have also sometimes used Gaussian low-pass filter. Although not for the
primary denoising of the source data. It has been used to smoothen intermediate
data between algorithms, such as the search for average gradient in some area.
Each usage in the following chapters is commented to show the reason for such
filter.

3.2.2 Watershed transformation

The watershed transformation is directly usable only on a very narrow set of prob-
lems and in the case of real-world images, it usually leads to an over-segmentation
(a practical application of watersheds can be seen for example in Peter et al.
[2008]). However, it can be very useful in the preprocessing as a tool for reducing
complexity of other algorithms or to provide some further information for the
next segmentation step.

The goals for our watershed transformation preprocessing is to provide a sub-
division into smaller regions that would ideally meet these demands:

1. lumen: cover large part of the lumen and regions neighboring with intestinal
wall should have precise borders usable for final segmentation

2. wall : one region would span across the whole width of the wall to cover all
statistically significant voxels

3. regions themselves would have statistically significant values and those
would be usable for classification

To satisfy these conditions we used the following schema:

1. Use a denoised dataset with (as much as possible) uniformly cubic voxels
as the input (see figure 3.4 for a comparison between original and denoised
dataset used as source for the Sobel magnitude operator)
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2. Compute a 3D Sobel magnitude operator as a an edge detector

SOB3D =
√
SOB2

X + SOB2
Y + SOB2

Z (3.1)

3. Compute watersheds on the Sobel magnitude operator output.

‘

Figure 3.4: 3D Sobel operator magnitude. (a) Computed over original data. (b)
Computed over denoised data.

To emphasize the importance of the denoise step we show two results of a
manual segmentation on watershed-preprocessed data in fig. 3.5. Both datasets
were segmented by manually selecting individual regions representing the lumen
as close as possible. You can see that the watershed region borders on the denoised
dataset match the true lumen/wall borders much more precisely. The shown
denoised dataset was then used as one of the training sets for the automatic
segmentation process.

Figure 3.5: Manual segmentation of the lumen by selecting watershed regions
computed on the (a) original and (b) denoised data.
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The Sobel gradient estimator as a base for the watershed transformation was
used for its properties of good ability to locate image/volume value edges and its
slight implicit low-pass filtering in the perpendicular direction smoothens noise
residuals. With it we can create watershed borders at both sides of the intestinal
wall due to its increased HU values by a positive contrast agent. In an optimal case
(without any noise, with good distention and contrast saturation) that would be
enough to segment the lumen completely in one region and a healthy wall should
have a thicknes of approximately one region as well.

For the watershed transformation we have used watershed regions with im-
plicit borders, because in contrary to 2D images explicit borders in volume data
would take up too much voxels and significantly reduce the size of watershed
regions for further analysis.

3.3 Probabilities

For the final processing of the watershed-processed data we used probabilities
of belonging to lumen or wall classes based on kNN sampling of a manually
segmented training set.

3.3.1 Training set

The training data source was selected as a representative part of one dataset that
included all relevant parts of the body - well-distended small intestine, bones,
other internal organs, air, fat, muscles, etc.

Manual marking of watershed regions was performed, indicating one of three
classes for each region - lumen, wall and other. Manual segmentation of one
patient takes over 10 hours of work. The advantage is a precise segmentation
even in unclear areas, disadvantage is obviously time. The representative part is
around 1

16
of the dataset and its manual segmentation took around 3 hours.

A set of features was computed and used as a training set for the probability
estimation.

You can see a part of the training dataset it in fig. 3.5, second image. It
is important to note that the training dataset must be scanned with the same
preparation procedure and scanner settings as the datasets we want to segment
automatically.

The whole patient dataset used for training was then included in the evalua-
tion with other datasets, but is explicitly marked as such to differentiate it from
the rest of the results.

3.3.2 Features selection

A number of various features comes into mind when we want to differentiate
regions into several classes. Some of them are computed as a property of the
whole region (such as standard deviation), some are averaged values computed
per voxel. Each of them should express some individual property of the watershed
region. We have tried the following set of them:
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Mean value:

s =
1

|s|
·
∑
v∈s

v (3.2)

This is obviously the most important feature, because visually we recognize
the lumen and wall as having different intensity (due to neutral and positive
contrast agents used, see Paulsen et al. [2006]). Using the mean value was without
question, so we used it also for the visualization for the following features (figures
3.6 and further).

Standard deviation:

σs =

√
1

|s| − 1
·
∑
v∈s

(v − s)2 (3.3)

The basic premise for this feature is that denoised lumen should have signifi-
cantly lower standard deviation than non-homogeneous wall. See figure 3.6.

Figure 3.6: Mean value vs standard deviation per region on denoised data. Red
is lumen, blue wall, black other regions.

Average multi-scale objectness filter based on Hessian matrix eigenvalues
(Antiga [2007]) - this filter can enhance planar or tubular objects in the dataset
and thus very easily highlight the intestinal walls. We will further refer to this
filter as objectness. The definition for the generalized filter is as follows: let’s
denote as λ1, . . . , λN the eigenvalues of a N ×N Hessian matrix such that λ1 ≤
· · · ≤ λN . When we want to enhance M dimensional objects in N dimensional
dataset, we define the following values:

RA =
|λM+1|∏N

i=M+2 |λi|
1

N−M−1

(3.4)

RB =
|λM |∏N

i=M+1 |λi|
1

N−M
(3.5)

S =

√√√√ N∑
j=1

λ2
j (3.6)

For the special case M = N − 1 we let RA → ∞ and in case M = 0 we let
RB = 0.
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The objectness value is then computed from Hessian eigenvalues computed
over a σ-Gaussian smoothed source data, thus detecting areas with changing
intensity of scale σ:

O(λ)σ =

(1− e−
R2
A

2α2 ) · e−
R2
B

2β2 · (1− e−
S2

2γ2 ) ifλj < 0forM < j ≤ N

0 otherwise
(3.7)

with α, β, γ being user-defined weights.
We compute the objectness for planar surfaces inside volumetric data, i.e.

M = 2, N = 3, final objectness computed as max(O(λ)1.5, O(λ)2 and user-
defined parameters α = 0.5, β = 1.0, γ = 5.0. I.e. we are searching inside a 3D
volume for 2D planes of thickness 3-5 voxels.

Objectness is a property of one voxel, the final region feature value is computed
as an average over the region. See figure 3.7.

Figure 3.7: Mean value vs average objectness per region. Red is lumen, blue wall,
black other regions.

Skewness:

γ1 =
1

|s|
·
∑
v∈s

[(
v − s
σs

)3
]

(3.8)

A statistical analysis of the intestinal wall has shown different (higher) skew-
ness values in the wall when compared to intestinal lumen. The reason for the
skewness of the wall region histograms is the intensity shape of the wall - with a
larger number of lower values on the borders, almost no voxels below the mean
value of the lumen (except for noise and neighboring fat/air) and a small amount
of high-valued voxels in the middle. See figure 3.8.

Kurtosis:

β2 =

1
|s| ·
∑

v∈s (v − s)4

σ4
s

(3.9)

We have tried kurtosis as another standardized moment and tried to reveal,
if it had any advantage for our case. Its benefit turned out to be of minor
importance. See figure 3.9.
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Figure 3.8: Mean value vs skewness per region. Red is lumen, blue wall, black
other regions.

Figure 3.9: Mean value vs kurtosis per region. Red is lumen, blue wall, black
other regions.

Size of average gradient and average size of gradient - chosen for the
same reasons as standard deviation, but turned out to be of less information
value.

We have selected a set of 4 features as the basis for our classifier: mean,
standard deviation, objectness and skewness. The bare minimum for a relevant
classification (albeit with many errors) is the mean value and objectness. Both
the standard deviation and skewness make the final classification more precise
with a stronger certainty on lumen and wall

Tables 3.2, 3.3 and 3.4 show the selection of features. We have used a man-
ually segmented training set as a source of features and then using these values
(shown in graphs in this chapter) tried to compute the probability of each region
belonging to its class (using a 2D to 4D k-NN classifier with k = 10 mentioned
later in section 3.3.3) on the same dataset. This way we have evaluated all regions
from the training set, thresholded the probability by 0.5 and computed total er-
ror in classification. Tables 3.2, 3.3 and 3.4 have 4 columns: Lumen and Wall
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Figure 3.10: Mean value vs size of average gradient per region. Red is lumen,
blue wall, black other regions.

Figure 3.11: Mean value vs per-region average size of per-voxel gradients. Red is
lumen, blue wall, black other regions.

indicate the percentage of regions within manual segmentation of lumen and wall
belonging to the correct class (higher number is better). Columns ¬Lumen and
¬Wall indicate number of erroneously marked voxels as Lumen or Wall while
not belonging to the given class (false positives).

The visualization of the feature space can be seen in figure 3.12. The rep-
resentation of individual features using grey values in volume space is shown in
figures 3.13.

3.3.3 Probability estimation

We have used a form of kNN (k nearest neighbors) probability estimator. This
estimator was chosen for these reasons:

• Good fitting to the training data with class clusters of various shapes

• Robust in case of noisy data
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Mean + . . . Lumen Wall ¬ Lumen ¬ Wall

Avg. grad. size 75.76 60.61 1.52 7.93
Objectness 83.02 75.84 2.17 7.68
Kurtosis 63.73 49.06 2.72 6.43
Skewness 77.25 67.32 1.79 7.66

Standard deviation 82.02 69.08 1.32 6.57
Avg. size of grad. 82.94 72.58 0.9 8.02

Table 3.2: Classification precision of training dataset. Using 2 per-region features:
Mean value + value on row.

Mean + Objectness + . . . Lumen Wall ¬ Lumen ¬ Wall

Avg. grad. size 81.42 68.81 1.41 6.59
Kurtosis 81.05 69.03 2.24 5.25
Skewness 81.59 73.99 1.9 5.81

Standard deviation 84.51 70.81 1.23 6.09
Avg. size of grad. 83.88 74.24 0.89 7.57

Table 3.3: Classification precision of training dataset. Using 3 per-region features:
Mean value + Objectness + value on row.

Mean + Obj. + Stddev + . . . Lumen Wall ¬ Lumen ¬ Wall

Avg. grad. size 83.97 70.63 1.3 6.12
Kurtosis 86.25 72.87 1.16 5.28
Skewness 88.23 75.92 0.88 5.5

Avg. size of grad. 87.85 76.72 0.97 5.07

Table 3.4: Classification precision of training dataset. Using 4 per-region features:
Mean value + Objectness + Standard deviation + value on row.

• Relative simplicity - easy implementation for testing, easy debugging

The speed of kNN is not very good in case of a brute-force version, but
acceleration structures can greatly improve the time complexity (such as a k-D
tree).

The training set creates a 4D feature space with individual points representing
regions from the training set. Depending on the size and density of the training
set, we need to choose a number k for neighbor selection.

When processing a sample region s, we select k nearest neighbors (set Kk(s))
from the training set in the feature space using Euclidean distance and compute
the probability that s is in class A:

PA(s) =
|{b|b ∈ Kk(s) ∧ b ∈ A}|

k
(3.10)

The training set consisted of all three classes: lumen, wall and other regions.
We needed the probabilities only for Pwall and Plumen.
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Figure 3.12: Feature space on NLM-filtered data of the training dataset. (a)
Mean value × objectness × standard deviation. (b) Mean value × objectness ×
skewness. Red dots are regions in lumen, blue dots are wall and black dots are
all other.
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Figure 3.13: Example of features computed per region. From top: (a) Mean
value. (b) Standard deviation. (c) Skewness. (d) Objectness filter.
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3.4 Results

3.4.1 Preliminary evaluation

The goal of this chapter is to provide a sufficiently reliable probability function
on the dataset to map the location of intestinal lumen and wall. So we performed
only a preliminary test of robustness, not a full test on all available datasets. For
each evaluation is necessary a full manual segmentation, which is a very time- and
effort-demanding task on the side of a specialist. Quality results shown in this
chapter are only given as a hint to the behavior of the probability computation
method.

The final result will be the ability to track intestinal segments with results in
chapter 4.

We have taken a different patient scanned with the same settings, with well
cleaned and distended intestinal lumen and good saturation of intestinal wall
with contrast. A part of this dataset was selected (219 × 180 × 217 voxels) and
manually segmented to provide exact information about the intestinal lumen and
wall.

Using the training data obtained in this chapter, we have performed similar
analysis as in section 3.3.3, but only using the selected features from the training
set on the new patient. The results are in table 3.5.

For comparison we have created a training set from this evaluation volume
and did a second evaluation in table 3.6.

Mean + . . . Lumen Wall ¬ Lumen ¬ Wall

Objectness 91.54 62.94 3.09 8.18
Skewness 81.16 62.62 2.32 12.31

Standard deviation 92.99 51.73 4.95 9.69
All 94.31 67.6 5.69 10

Table 3.5: Classification precision on a new (evaluation) dataset. Feature data are
taken from the training dataset, evaluated dataset is a different patient scanned
with the same settings. A part of the dataset with intestine has been extracted,
manually segmented and compared with thresholded probability results Plumen
and Pwall.

Mean + . . . Lumen Wall ¬ Lumen ¬ Wall

Objectness 87.48 63.77 1.77 4.97
Skewness 80.52 57.49 1.20 4.12

Standard deviation 80.37 54.73 1.80 3.49
All 90.13 66.72 1.00 3.37

Table 3.6: Classification of the evaluation dataset as in table 3.5, but with a
training set extracted from the same volume.

The precision in lumen probability came as a mild surprise. The explanation
seems to be that the evaluation dataset contained cleaner data and was also
smaller than the original training dataset. The behavior is, however, similar in
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both cases and a usable probability function can be computed using both training
inputs.

A significantly better performance in false positives (¬ Lumen and ¬ Wall)
can be observed on both datasets when the dataset itself is used as a training
set. A training set used from different dataset causes more errors - this might
be caused by the actual quality of the training set, because it is dependent on
the presence of other regions (other than lumen and wall) from the body. It is
obvious, that the fitting of training data over the present regions is much better
when trained on itself.

A graph representation of the second training set (created over the evaluation
patient) is shown in figure 3.14. Please compare these graphs with the original
dataset in figures 3.7 and 3.12(a) to see the stability of the training set created
on different patients scanned with the same settings.

Figure 3.14: Training set created on evaluation data for table 3.6.

A side-by-side comparison is shown in section A.1.2 for all used region features.
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You can compare the shape and location of matching region classes.
An interesting fact about the robustness of our approach rose from an error

during dataset evaluation. We have by mistake tried to evaluate a dataset scanned
with different parameters and with different scaling of values leading to similarly
looking pictures to human eye, but with values not aligned with our training
dataset (and significantly different characteristics in other features than region
mean value). The algorithm nonetheless managed to keep a precision around
30 − 40% in the lumen, 20 − 30% in the wall and around 95 − 99% outside.
Definitely not enough for a reliable segmentation and exact evaluation has not
been done as the pair training set - evaluated set was obviously wrong, but an
interesting effect of the feature space adaptability. An example of the results is
shown in appendix A.2.

3.4.2 Effect of denoising

We did not evaluate the original noisy data due to the problems mentioned before
(see especially figure 3.4). But for a rough idea of the state of the feature data,
see chapter A.1.1 where we have provided comparison graphs over original and
denoised datasets.

Many of the features form an indistinguishable blob unsuitable for processing.
Usually the resolution in any other dimension than mean value between the lumen
and regions outside the intestine is severely lacking.

3.4.3 Parameter scaling

Training set
on itself

Training set
applied on

evaluation set
Evaluation set

on itself
Error improvement −0.238% −0.049% −0.146%

Table 3.7: By how much percent of error metric did the scaling improve the final
result.

We have used several descriptors (given in section 3.3.2), but with a very
different range of values. To keep the values in a similar range, we took the
most ”compact” set of nD (n-dimensional) values, which was the set of regions
marked as lumen and multiplied the values in each dimension so that the standard
deviation in each dimension is approximately the same. Due to the nature of
the input data an exact fit is unnecessary, but a rough approximation always
helped with the result. Small differences around the final value did not make any
significant difference (i.e. had much lower impact than noise).

The results of parameter scaling can be seen in table 3.7 while applied on the
evaluation of the training set from chapter 3.3.2 and on evaluation dataset from
chapter 3.4.1.

3.4.4 Data size reduction

An important part of this chapter is the reduction of data for further computation.
Table 3.8 gives an overview of how extensive the reduction was in the case the
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Data example
Average reduction

over all data
Total number of voxels 160167497 1
Watershed on original 3637957 1:44.22
Watershed on denoised 1799773 1:87.38

Table 3.8: Data size reduction

full dataset from which was taken our training set.

3.4.5 Times

Exact time measurements of the individual steps were not taken, because their
performance varies with each new piece of HW on the market and it was not the
goal of this thesis. But a rough estimation is that each step takes at most a few
seconds (including watershed segmentation in about 2-3 seconds in Kolomazńık
et al. [2012]) with the exception of denoising (about 1-5 minutes per patient,
Horáček et al. [2011], in chapter 2). The complete processing can be done in
general within a few minutes (under 5 minutes on commodity HW, scales well
with better equipment). All steps can run automatically, so the preparation of
data may proceed just right after the CT reconstruction without any interaction
of the radiologist or other personnel. This is a great advantage.

3.4.6 Proposal of training set matching

Figure 3.15: Example of histogram computed over probability function Plumen.
Top: Probabilities computed with correct training set. Bottom: Probabilities
computed with a wrong training set belonging to different scanner settings.

47



Figure 3.16: Example of histogram computed over probability function Pwall. (a)
Probabilities computed with correct training set. (b) Probabilities computed with
a wrong training set belonging to different scanner settings.

With the main preparation work done only once, the evaluation of the dataset
and computation of probabilities Plumen and Pwal is done in mere seconds. Thus
there is room for optimization by using multiple training datasets for multiple
scan types. If a robust-enough technique for the automatic evaluation of the
probabilities is used, then the algorithm might try multiple training sets in case
the probability is evaluated as not good enough.

One such method that comes to mind is an analysis of a histogram computed
over functions Plumen and Pwall. Figure 3.15 and 3.16 show such histograms, one
extracted from correctly computed probabilities with matching training set and
the other taken from a wrongly selected training set. The number of voxels stays
the same, so a comparison of histogram values near 1 can give us at least an
information about a clearly failed matching.

We do not have available a large enough amount of datasets with various scan-
ner settings. Performing several different scans on patients just for the sake of this
research raises some ethical questions about excessive use of ionizing radiation.
Each patient is scanned to the best of knowledge of the radiologist to provide
ideal scanning performance, no experimentation is currently feasible without the
usage of a phantom. The analysis of training set fitness is thus left as a hint for
future research when a larger set of scans with different settings is obtained.
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Figure 3.17: Example of computed probability of (a) lumen and (b) wall on pa-
tient that was used as a training set. Probability goes from 0 on transparent/blue
parts, over green, yellow, to red with dark red being probability 1.

Figure 3.18: Example of computed probability of (a) lumen and (b) wall on
patient that was used as an evaluation set. Probability goes from 0 on transpar-
ent/blue parts, over green, yellow, to red with dark red being probability 1.
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3.5 Conclusion

We have shown, that a number of very simple automatic steps can provide a
relatively reliable probability map of intestinal lumen and wall (figures 3.17 and
3.18). These might subsequently enable the use of much more complex segmen-
tation algorithms, even on very large datasets. All these steps together take just
a few minutes and can be executed without any human intervention. The result
can be a map of probabilities (one scalar value) of where the intestinal lumen is
most probably found. This is a great foundation for any further segmentation
building on this input parameter - be it any kind of region growing, level sets or
different optimization approach. A drastic reduction in input data size (around
1:80) helps in choosing from a much larger pool of algorithms otherwise discarded
for their time/space requirements.

We do not change the asymptotic algorithm complexity, just reduce the input
size. From a radiologist’s point of view an algorithm that gives result in two
hours is unusable. But the same algorithm giving its result in half a minute is
already worth the wait, if it significantly helps with diagnosis.

A very important thing to notice is that using a state-of-the-art denoising
algorithm is a must in cases like CT enterography. Even watershed segmentation
on such data performs an order of magnitude worse and manual segmentation over
such created watershed regions is practically unusable due to the large amount
of noise.
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Chapter 4

Tracking of intestinal segments

4.1 Introduction

Small bowel is spatially a very complex organ and thus the manual inspection of
its path from the 3D CT enterography data is a lengthy process requiring a great
deal of concentration and time of a radiology specialist to identify and diagnose
possible inflammation, obstructions and other problems.

Our goal is to improve and simplify the inspection of the CT enterography
data by tracking the intestinal path and provide the radiologist with a clear cross
section in each segmented part. See fig. 4.1 and fig. 4.2.

Figure 4.1: Axial slice from raw input data.
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Figure 4.2: DVR projection of the desired result with segmented paths of small
intestine segments.

4.2 Algorithm overview

Our algorithm consists of several main steps:

1. Denoise input data (chapter 2)

2. Watershed transformation (section 3.2.2)

3. Statistical features computation on each watershed region (section 3.3.2)

4. Probability of region belonging to lumen/wall/other (section 3.3.3)

5. Segmentation of lumen (section 4.3)

6. Intestine path tracking (section 4.4)

7. Lumen border segmentation on tracked data (chapter 5)

8. Visualization (chapter 6)
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In this chapter we will deal with the segmentation of lumen from probability
maps and the tracking of individual intestinal segments. An example of tracked
segments is shown in figure 4.2. The golden goal would be a complete tracking
of the small intestine. That is, however, still not possible due to the quality of
the data from current medical-grade CT scanners, various pathologies, imper-
fect distention and cleaning in case of obstructions or narrow segments due to
inflammation.

We present here our algorithm that is able to track a significant part of the
small intestine by following several individual intestinal segments.

4.2.1 Symbols used

We will be using the following symbols throughout the rest of this chapter (some
of them have been used also in chapter 3 and we will keep it consistent here):

• s . . . one whole watershed region

• A . . . a class of regions (i.e. lumen, wall, . . . )

• PA(s) . . . a probability that the region s belongs to A

• N(s) . . . a set of regions directly touching the region s

• v . . . a voxel in a 3D dataset

• N(v) . . . a set of voxels in a direct neighborhood of v

• M(v) . . . a binary mask with values 0, 1

• DM(v) . . . a distance function computed on maskM indicating the euclidean
distance in volume space to the closest voxel w : M(w) = 0

• pos(v) . . . a position of voxel v in the volume space, in millimeters

• τdecision . . . a threshold for an algorithmic decision, all thresholds in this
chapter must be optimized to input data acquisition parameters

4.3 Segmentation

The segmentation step creates a binary mask Mlumen over the whole 3D volume,
value 1 indicating where the intestinal lumen is and 0 elsewhere.

Segmentation is done by the union of sufficiently large areas obtained from
adaptive growing from any potential lumen region S.

4.3.1 Probability clean-up

Several regions can have their probability wrongly assigned. There are many
reasons for this, such as: an improper clean-up of the lumen, partial volume
artifacts and also noise, both in the input data and in the training dataset.

Because the intestine usually spans over many regions, we can improve the lo-
cal probability homogeneity by checking the local neighborhood. Isolated regions
are usually an error.
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Let’s denote the cleaned probability of region S belonging to a given class A
P
′
A(S).

P
′

A(S) =


1 ∀n ∈ N(S) : PA(n) ≥ τaccept

0 ∀n ∈ N(S) : PA(n) ≤ τreject

PA(S) otherwise

(4.1)

This way we compute P
′

lumen(s) and P
′

wall(s). Both thresholds τaccept and τreject
are from interval 〈0, 1〉 and control how much cleaning is being done.

4.3.2 Adaptive region growing

Three thresholds are needed for the process (all must be ∈ 〈0, 1〉):

• τloose for benevolent lumen probability inside lumen

• τstrict for strict lumen probability near the intestinal wall, τstrict > τloose

• τwall for wall probability

A starting region s must belong to the lumen class, i.e. P
′

lumen(s) ≥ τstrict.
Lets denote the currently processed watershed region s. Algorithm is recur-

sively performing:

a) if (∀n : n ∈ N(s) → P
′

wall(n) < τwall) : grow into all regions m ∈ N(s) ∧
P
′

lumen(m) ≥ τloose

b) if (∃n : n ∈ N(s) ∧ P ′wall(n) ≥ τwall) : grow into all regions m ∈ N(s) ∧
P
′

lumen(m) ≥ τstrict

This approach prevents leaking into unclear areas where one or a small amount
of wall regions are wrongly assigned a middle-to-high lumen probability (that
happens when the wall is not saturated enough with the positive contrast agent).

4.3.3 Mask computation

Potential candidates usable as a starting point of adaptive growing are all regions
with high lumen probability, P

′

lumen >= τstrict. We go through all these regions in
sequence and run the adaptive region growing algorithm. If the segmented area
is large enough (the number of voxels is larger than τminvolume), mark all these
voxels in the result mask Mlumen as 1.

An optimization is to skip all already visited regions when selecting the next
adaptive growing start.

The result mask is free from all isolated regions from other parts of the body
and the lumen is sufficiently and compactly marked.
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Figure 4.3: Result of probability functions. (a) Original data. (b) Lumen proba-
bility Plumen. (c) Wall probability Pwall. (d) Binary cleaned mask Mlumen.

4.4 Tracking

The idea behind the tracking algorithm is that the segmented part of the intestine
should be an elongated object without branches.

We use a prioritized flood fill with backtracking and validity updates for the
path search. The algorithm is constructed to track the middle of the lumen while
avoiding the most common pitfalls of imperfect input data - small holes in the
mask through which simple voxel-based algorithms leak.

A set of candidate points is selected through which may lead a potential path
and then a path tracking algorithm is issued through all these points to obtain a
set of intestinal segments.

4.4.1 Single path tracking

The input for our path tracking algorithm is a distance map DM computed over
the lumen mask Mlumen computed in section 4.3.3. Each voxel in DM contains
the euclidean distance (measured in voxel coordinates space) to the closest voxel
w which has Mlumen(w) = 0. (That also implies that all voxels in DM outside
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lumen are equal to 0).
If we want to track the center of the lumen, a good guess at its position would

be to search for points far from the wall, i.e. in the center of the lumen. Thus,
a potential starting voxel v should be a local maximum of the distance function
DM .

Prioritized flood fill algorithm grows first into voxels with higher DM . All
voxels remember their parent and thus every voxel can be backtracked to the
starting voxel v. Let’s denote the backtracked path (as set of voxels) from voxel
w as BTPath(w).

A path validity check is then performed on each newly discovered longest
valid path: a path is backtracked and marked as invalid with the exception of
the last segment of the maximal length of τvalidpath from the end. All voxels in
the queue that are currently valid are kept as valid only if they share at least one
common predecessor from the new longest path marked as valid, all other voxels
in queue are marked as invalid for path search. Although they are processed
without difference, they only distribute the (in)validity flag to all future children
and are not considered for the longest path search.

error in segmentation

tracked
lumen

another loop
or organ

starting point

points in queue still considered 
for farthest path search

currently farthest
point

points in queue no longer
considered for farthest path search

already processed
voxels

C voxels of
backtracked path

Figure 4.4: A schema of the tracking algorithm. White voxels (descendants
of the thick line) are still considered for the longest tracked path computation,
gray voxels (descendants of the dotted line) are not considered for the tracking
anymore, but are still used for prioritized flood fill. Black voxels are not visited
yet. Letter C represents threshold τvalidpath.

The algorithm is then as follows (a schema is shown in fig. 4.4):

1. define a function V indicating that a voxel is still considered valid for the
longest path search, set it to unvisited everywhere

2. define a function len indicating the backtracked path length from the start-
ing point to any visited voxel, set it to undefined everywhere

3. add v to the queue Q of unprocessed voxels and set

V (v) = valid (4.2)

len(v) = 0 (4.3)

4. remove w from Q such that

∀u ∈ Q : DM(u) ≤ DM(w) (4.4)
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5. parse neighbours

∀u ∈ N(w) ∧ V (u) = unvisited ∧DM(u) > 0 : (4.5)

(a) add u to Q

(b) store the parent of voxel u so that backtracking is possible from any
visited voxel (add w to BTPath(u))

(c) set validity and distance

V (u) = V (w) (4.6)

len(u) = len(w)+ ‖ pos(u)− pos(w) ‖ (4.7)

(d) if V (u) = valid ∧ ∀x 6= u : len(u) > len(x) (found new longest valid
path), then perform validity update on current path and update V
(here valid = true and invalid = false, unvisited does not appear):

∀x ∈ BTPath(u) :

Vnew(x) = Vold(x) ∧ (‖ dist(u)− dist(x) ‖≤ τvalidpath)

∀x ∈ Q ∧ x 6∈ BTPath(u) :

Vnew(x) = Vold(x)∧(∃a ∈ BTPath(x) : a ∈ BTPath(u) ∧ V (a) = valid)

6. continue with step 4 until Q is empty

Lets denote the farthest point on the longest valid path as e1. It is then used
as the starting point for a second run of the algorithm (lower index 2 will denote
variables computed during the second run). This time we get the farthest valid
point e2. Path correctness is then decided on the following condition:

v ∈ BTPath2(e2) (4.8)

There are some things to emphasize about how this algorithm copes with
errors in segmented mask:

• Prioritizing voxels with high DM value forces the flooding to follow the
center of the lumen and avoids shortcuts in the same intestinal segment
(shortcut is a small hole in the mask between two parts of the same intestinal
segment, thus its values of DM will be small and processed later than the
central part of lumen on both sides).

• Path validation is there because of similar holes in the mask as shortcuts,
but between different segments of the intestine. The flooding will visit also
these holes and neighboring segments, but if it first follows the original
segment farther than τvalidpath from these holes, then they are flooded only
for the filling completeness and not considered valid for backtracking (and
thus leaking).

4.4.2 All paths tracking

As it was already mentioned, a set of potential candidates for points lying on a
path is the set of local maxima of the function DM . These points are sequentially
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processed, each is used as a starting point for a single path tracking algorithm.
When a viable path is found, all remaining candidate points in close vicinity to
the new path are removed from the queue to prevent unnecessary duplication of
paths.

The result is a set of isolated path segments of various lengths viable for
continuously creating cross-sectional images for a good intestinal wall thickness
and lumen distension analysis.

We have not found a reliable method to connect them to a single continuous
run, because the discontinuities might (and usually are) caused by not only small
local errors, but also longer segments of intestine that are either collapsed or filled
with something else than the neutral contrast agent.

In many cases we have concluded that the real world input data is in such a
state so that the necessary information needed is not present - especially badly
emptied intestine or several collapsed intestinal segments touching each other
looking as a single continuous (almost flat or uniformly noisy) area with no chance
to distinguish between individual segments. Thus using only the topology of the
segment ends to reconnect them may lead to significantly erroneous paths.

4.5 Results and Conclusion

We have performed a testing segmentation on 34 patient datasets scanned with
CTE with diagnosed or suspected Crohn’s disease or other inflammatory small
bowel disease or obstruction.

We have not performed any new scans just for the purpose of this research.
Our research data consist of available CT enterography scans that were taken
during routine small intestine examination in one hospital (Hospital Na Homolce,
Prague, Czech Republic) and the patients voluntarily signed an agreement on
participating in our research.

We are aware that our testing group was currently limited. We are continu-
ously increasing the size of our database.

4.5.1 Threshold selection

A number of thresholds are used throughout this chapter. Their selection was
done either empirically or by an automated search for optimal value. The number
of neighbors for kNN probability was set to 10, so all probabilities had a precision
of 0.1.

An optimal value was selected for τaccept(0.6) and τreject(0.3). These values
were obtained by doing the best ”blind” thresholding of the training dataset,
comparing the manual dataset to automatically assigned values and minimizing
the number of false positives and false negatives on assigning to both wall and
lumen classes. A full test was done over all possible values. Most of the cleaning
using these two thresholds is done inside the lumen, so a optimal value can be
found as causing minimal number of errors in both lumen and wall.

A more complicated situation is in the case of adaptive growing algorithm
(section 4.3.2) and its parameters τloose, τstrict and τwall. Our initial guess was
τloose(0.4), τstrict(0.6) and τwall(0.6). We have tested values around these initial
estimates, they are shown in table 4.1 and figure 4.5. The result of adaptive
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Figure 4.5: Dependency of error values during the testing of parameters τstrict,
τloose and τwall from table 4.1. Tested values with the same value of τloose form
visible clusters (see values in table 4.1 for input values).

growing in chapter is a binary mask indicating lumen location. We have compared
it with a manual segmentation. The error evaluation for wall and lumen was done
by counting false negatives of result mask in manual lumen segmentation and false
positives in manually segmented wall. Results with the same τstrict form clusters
with similar performance (i.e. τstrict causes the largest variance in the result).
Errors in wall cause ”leaking” between segments, errors in lumen cause incorrect
following of the lumen center. Leaking is a more serious problem, so the error
rate in wall areas was more closely observed. Error rate over 20% in lumen was
already too large to have smooth center line, error rate nearing 1% in wall caused
more leaks in thin areas with bad distention. All values from the cluster around
our initial guess created segmentations manually evaluated as good, so we have
used it for all tracking evaluation within this chapter.

Strictly empirical values were selected for τminvolume(2000 voxels) (containing
2 ∗ 103 voxels, i.e. 250mm3) and τvalidpath(20 voxels). These were chosen based
on our estimation of the the geometrical properties of the intestine and voxel
dimensions. A range of values around these thresholds work similarly, we have
not found an optimality criterion for their selection other than manual inspection
of the results.

4.5.2 Tracking results

The total length of the correctly tracked segments is given in tab. 4.2. An
individual segments analysis is given in tab. 4.3.

These results were cleaned manually by removing erroneously marked regions.
Due to the stochastic nature of the computation of underlying functions Plumen
and Pwall, some non-lumen regions were marked in the mask Mlumen as lumen due
to the fact that the only difference in the watershed regions was its anatomical
location. The method of Mlumen computation was not designed to handle these
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τloose τstrict τwall Error in lumen Error in wall

0.3 0.5 0.5 11.09% 0.91%
0.3 0.5 0.6 10.85% 0.91%
0.3 0.5 0.7 10.72% 0.91%
0.3 0.6 0.5 14.23% 0.61%
0.3 0.6 0.6 13.85% 0.63%
0.3 0.6 0.7 13.61% 0.63%
0.3 0.7 0.5 20.43% 0.38%
0.3 0.7 0.6 20.02% 0.43%
0.3 0.7 0.7 19.67% 0.43%
0.4 0.5 0.5 11.49% 0.88%
0.4 0.5 0.6 11.37% 0.88%
0.4 0.5 0.7 11.28% 0.88%
0.4 0.6 0.5 14.57% 0.57%
0.4 0.6 0.6 14.38% 0.59%
0.4 0.6 0.7 14.19% 0.59%
0.4 0.7 0.5 20.65% 0.35%
0.4 0.7 0.6 20.24% 0.39%
0.4 0.7 0.7 20.03% 0.39%
0.5 0.5 0.5 12.32% 0.87%
0.5 0.5 0.6 12.32% 0.87%
0.5 0.5 0.7 12.32% 0.87%
0.5 0.6 0.5 15.32% 0.56%
0.5 0.6 0.6 15.29% 0.58%
0.5 0.6 0.7 15.27% 0.58%
0.5 0.7 0.5 21.53% 0.34%
0.5 0.7 0.6 21.32% 0.38%
0.5 0.7 0.7 21.13% 0.38%

Table 4.1: Testing different parameters for adaptive region growing. Bold line is
our initial guess.

regions differently. So a post-process cleaning is necessary.
Most of the datasets had a false positive error in stomach, bladder and colon.

Stomach was marked due to the oral administration of neutral contrast agent, thus
filling the intestine through stomach. Bladder was marked for the same reason of
being filled with liquid very similar in radio-density to the neutral contrast agent.
Colon was marked only in case it was well cleaned and also filled with contrast
liquid.

An automatic method for removing these regions might be relatively simple
in case of stomach and bladder, possibly by introducing topological information
about the body as these two organs are reliably placed in similar positions, their
structure is simple and easy to track.

Another situation is in case of colon as it is very similar to small bowel on
CTE scans. We cannot rely on wall thickness or lumen width, because we are
dealing with patients suffering from inflammatory or obstruction problems. Also
the anatomical location is only somewhat reliable, but much more varying than in
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Dataset
name

# of
segments

Length
in voxels

Length
in mm

Training
set Note

02 18 2650 2247 04
04 35 5604 4898 04 A
07 30 3569 2867 04
08 57 6178 5052 04 B
09 17 1784 1577 04
10 30 3587 2975 04
11a 16 2007 1775 04 C
11b 21 2052 1611 04 C
12 17 2612 2128 04
13a 37 4549 3895 04 D
13b 30 5433 4816 04 D
14 30 5253 4460 04
15 15 2345 1920 04
17 47 5722 5421 04 E
18 44 5599 4488 04
19 13 1156 1088 04
20 20 3188 2465 04
22 7 922 700 04 F
23 29 3930 3016 04 G
24 36 5996 4949 04 H
25 21 2871 2377 04
26 40 5543 4550 04 I
27 42 4839 3487 04 J
28 15 2263 2051 04 K
29 35 5024 4083 04 L
31 6 670 486 04 M
32 17 2902 2581 04 N
35 33 4697 4139 04
38 8 1750 1523 04 O
B1 28 4409 3262 B1 P
B2 21 2470 1870 B1 P
B3 30 3788 2715 B1 P
B4 28 3433 2493 B1 P
B5 29 4186 3284 B1 P

Table 4.2: Tracking results per patient - total length analysis. Notes in the last
column point to table 4.4 with a detailed explanation of various interesting facts.
Dataset names are taken from intermediate marking during our research and do
not resemble any other property than a unique name.

case of other organs (like stomach, liver, bladder, kidneys, etc.). The cleansing of
colon during CTE is not often perfect, thus remaining feces wildly vary the radio-
density. Imperfect cleansing is partially solved by not marking it as intestinal
lumen, thus discarding these segments from the evaluation altogether. But the
remaining parts filled with similar liquid as small bowel cannot be easily connected
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Dataset
name

Average length
of segment
in voxels

Longest segment
length in voxels

Longest segment
length in mm

02 125 476 411
04 140 567 492
07 95 328 266
08 89 356 296
09 93 218 191
10 99 255 206
11a 111 268 234
11b 77 276 220
12 125 341 283
13a 105 434 385
13b 161 797 711
14 149 660 559
15 128 463 378
17 96 466 364
18 102 418 338
19 84 205 197
20 123 532 416
22 100 363 280
23 104 294 224
24 138 494 413
25 113 286 241
26 114 500 416
27 83 284 201
28 137 356 323
29 117 521 423
31 81 202 148
32 152 483 427
35 125 394 350
38 190 895 777
B1 117 480 357
B2 89 183 140
B3 91 262 190
B4 89 223 163
B5 113 297 237

Table 4.3: Tracking results per patient - individual segments analysis.

together.
We have left the removal of colon region entirely on the user. On the other

hand it can be tracked relatively easily by hand and so a manual fixing of paths
found within colon is a brief task.

In many datasets the duodenum was segmented/tracked alongside the rest of
the small intestine. We have left it included in the results, because it technically
belongs to the small intestine, looks similar to other parts of the intestine and it
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Note
name

Dataset
name Description

A 04 • part of this dataset used for training set
and the same training set was used for processing it
• good distention and contrast saturation

B 08 • good lumen distention and contrast saturation
• best segmentation in our database, shown in fig. 4.7
• good tracking even in jejunum

C 11 • two scans of the same patient taken at different times
• relatively similar performance on both scans

D 13 • same situation as in C
E 17 • this dataset used as evaluation dataset in section 3.4.1

• good distention and contrast saturation
• good segmentation and tracking, shown in figure 4.2

F 22 • bad segmentation
• very large amount of inflammation on intestinal walls
• lumen too narrow

G 23 • one segment leaked in bladder:
whole segment has 197 voxels, 63 leaked into bladder
the rest is good, we have left it included in results for
the examination of the intestinal part

H 24 • liver had similar radio-density like liquid in lumen
• tracked segments in liver were manually removed

I 26 • very well segmented and tracked
J 27 • enlarged gallbladder found in segmentation

• manually removed
K 28 • large amount of body fat

• bad lumen distention
• overall bad segmentation

L 29 • bad cleaning of lumen
• many air bubbles and feces (see figure 4.8)
• tracked only through water filled part of lumen

M 31 • extremely bad segmentation
• most of abdomen region filled with colon (figure 4.9)
• small bowel with very bad distention
• unsuitable for automatic tracking

N 32 • large amount of body fat (see figure 4.10)
• bad lumen distention

O 38 • bad lumen distention, also probably due to body fat
P B1-B5 • older datasets B1-B5, different scanner

• different training set necessary (created from B1)
• all have visibly higher noise level
(standard deviation in lumen around 50-55HU)
• apparent beam hardening artifacts in several places
• needed stronger noise removal

Table 4.4: Notes on tracking from table 4.2 and 4.3.
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can be used for diagnosis as well.
Visualization of one complete result displayed in DVR rendering of the source

dataset is in fig. 4.2.
One slice shown in fig. 4.7 displays how well the path tracking keeps to the

middle of the lumen. Note that white dots represent only those places that are
crossed through this slice with the path, nothing behind or in front of this slice
is displayed.

Overall the method works best on well-distended ileum and duodenum, rela-
tively reliably also on well-distended jejunum. Collapsed regions pose a problem,
especially when multiple bends are collapsed on one place. But that is prob-
lematic also for a human operator to distinguish the intestinal direction or even
distinguish between individual bends.

Figure 4.6: Patient 17 with good tracking. DVR rendering shown in figure 4.2.
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Figure 4.7: Patient 08 with the best segmentation and tracking in our database.
Voxel-wise longest paths. Most of jejunum segmented well. Ileum segmented
almost perfectly.
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Figure 4.8: Patient 29 with imperfectly cleaned lumen. Tracking was possible,
but only in water-filled regions. Parts filled with air bubbles and feces were not
traceable.

Figure 4.9: Patient 31 with abnormal abdominal structure. Most of the abdomi-
nal region was filled with colon, small bowel found only collapsed in small regions.
No paths visible in this slice.
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Figure 4.10: Patient 32. Body fat reduces the lumen distention and thus decreases
the probability for a good segmentation of intestinal lumen.
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4.5.3 Time performance results

Our implementation was far from optimized, there were several unnecessary data
exchanges through disk and almost all steps may be optimized and accelerated.
Approximate times for individual computation parts were as follows:

• Probability cleaning and mask computation: around 30-40 seconds

• Distance map computation: around 10 seconds

• Paths tracking for the whole volume: around 1-5 minutes, depending on
dataset

The path tracking step was implemented only as single threaded. Each major
part is parallelizable, a significant (our guess is: almost linear) speed-up should
be achievable when running on multiple CPUs.

Even in this unoptimized state the algorithm ran on a modern Core i7 pro-
cessor in under 6 minutes (with a potential prospect of around 2 minutes or less),
completely automatically.

Several simple optimizations might bring the total necessary time down to
only a few minutes, which is an acceptable delay for a diagnosis that itself should
then take much shorter time compared to a standard diagnosis using only raw
slices. The subsequent diagnosis has all tracked segments readily available for
real-time processing.

4.5.4 Conclusion and future work

We have presented an automatic algorithm for CT enterography small intestine
tracking consisting of several known methods and adding a new algorithm based
on region growing for the actual path tracking. The main purpose of this chapter
was to center on a robust and reliable data preparation process and an automatic
segmentation of individual segments of the intestine. We have shown that those
segments correctly track the center of the lumen and can be used with a visual-
ization process such as the ones stated in Oda et al. [2010]. The whole process is
fully automatic without the need of any intervention.

Our future work will be centered on these areas that still need improvements:
improving segmentation of hard-to-segment datasets by further incorporating a-
priori biological information to the segmentation process and finding additional
methods for the topological analysis to interconnect individual intestine segments
into longer paths.
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Chapter 5

Segmentation of lumen in tracked
sections

5.1 Introduction

5.1.1 Goal

Having a good tracking method of individual segments of the small intestine
presents us with a unique opportunity to use it for a precise per-voxel segmen-
tation of lumen. This enables various methods of visualization and analysis of
the intestine. Some methods will be mentioned in chapter 6. Segmentation of
the lumen was largely inspired by our previous work in Horáček et al. [2010], al-
though it was altered to fit the geometry of intestine and the segmentation itself
was done iteratively instead of using dynamic programming.

5.1.2 Algorithm overview

The algorithm has an input dataset as the source of values and a set of paths
from our tracking algorithm. The data is spatially transformed twice, segmented
and back-projected:

1. Computation of slices perpendicular to the path.

2. Polar transformation.

3. Segmentation of the lumen border with an iterative algorithm.

4. Inverse polar transformation to perpendicular slices.

5. Inverse transformation to the original dataset.

5.2 Input data

We need two data sources for a precise segmentation.

1. A set of paths indicating multiple tracked intestinal segments (computed in
chapter 4.4) which is a set of connected voxel coordinates.
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2. Suitable data with the same or better resolution as the original dataset to
perform a per-voxel selection.

5.2.1 Paths

Paths are provided by our previously mentioned tracking algorithm. Each path
has a start and an end and a set of in-between voxels that are direct neighbors.
Thus the distance between neighboring path voxels is between 1 and

√
3 voxels.

We will be using these explicit voxel locations as a base for the position and some
further filtering will be applied for other computations (such as path binormal
and tangent computation). This will be mentioned later in this chapter.

5.2.2 Source volume

Source volume must have several properties to enable a good segmentation of the
lumen.

• Good resolution

• Good difference between lumen and wall

We already have a selection of source and filtered data from the computation
in chapter 3. A number of possible sources comes to the mind:

• Denoised source data (chapter 2, figure 5.1a)

• Result of objectness filter (see section 3.3.2, figure 5.1b)

• Other results computed per watershed

Original denoised source data were not used, because the only difference be-
tween a wall and a lumen is the difference between their values. As already
discussed in chapters 2 and 4, this value alone is not a very reliable source.

All datasets computed on watersheds were discarded, because even though
they represent the intestinal lumen relatively well, they are largely dependent on
the local gradient magnitude (due to the watershed segmentation step) and are
very sensitive to noise.

The per-voxel computed objectness filter has a good ability to differentiate
between the wall and the lumen, much better than the source (denoised) data.
Also it is by definition searching objects of a specified size and shape - in our case
an intestinal wall of thickness around 1.5±0.5mm (Cronin et al. [2010], Fernandes
et al. [2014], see figure 5.2). The result of this filter is equal to or near zero in
flat areas and a positive value on positively enhanced wall like structures. This
is perfect for our case as this enables us to segment all near-zero values near the
path voxels. Also the sensitivity to noise is much lower than in the watershed-
segmented datasets while having a better resolution in complex areas (it is not
”compressed” into watershed regions).

No further comparison and tests between different types of data were per-
formed. Objectness filter was selected for its properties and simplicity of inter-
pretation of the values and homogeneity in the lumen area. It is possible that a
better data source might be found.
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Figure 5.1: Frontal slice through (a) denoised source and (b) per-voxel computed
objectness filter.

5.3 Perpendicular slices

We have estimated that the best position for obtaining a 2D slice with a good
visibility of the intestinal wall would be a slice perpendicular to the path - using
the Frenet frame (discovered by Frenet [1847]) vectors normal and binormal as a
base.

The path might bend relatively quickly, so slices are computed not only for
each path voxel, but also in-between. A good selection for the number of slices is
between 4-10 slices per path step. Larger number of slices might be preferred in
areas with high curvature. Selecting regular intervals has proven to have sufficient
precision for our cause - we will be using exclusively regular sampling. Adaptive
interval might improve the precision while lowering computational cost. However
the segmentation algorithm would then need to be adjusted accordingly.

The origin (central pixel) of each slice is taken by linear interpolation between
neighboring path voxels. Better interpolation or curve fitting is unnecessary,
because comparing it to the linearly interpolated positions would create difference
less than 1 voxel and that would have no effect on the algorithm, because the
total precision of the segmentation is 1 voxel.

The computation of the slice orientation is done using the Frenet-Serret frame
vectors tangent, normal and binormal. A set of steps is performed per original
path voxels:

1. A tangent vector is estimated by central difference of path voxels.

2. Tangent vector is filtered with Gauss filtering.

3. Normals are computed by central difference of filtered tangent vectors.
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Figure 5.2: Typical intestinal wall thickness in well distended segment. Two walls
are next to each other, each around 1.5mm thick.

4. Binormals are computed by cross product of normals and filtered tangents.

Binormals and normals are then linearly interpolated for each slice and nor-
malized to make an orthonormal base of each slice.

The reason for Gauss filtering of tangents is to have smoother changes in slice
orientation. The position of the voxels needs to be precise, so only linear interpo-
lation between neighboring voxels is used. However, the orientation is supposed
to cover as much intestinal wall on the slices as possible, so a smooth transition
is desirable. Using directly the result of central difference estimation would limit
the number of possible orientations too much. Filtering with neighboring voxels
makes smoother not only the tangent, but also the normal/binormal (ie. direction
of the ”up” and ”right” vector). In our case we have used filtering with standard
deviation σ = 10.0 voxels.

An example of a slice perpendicular to the tracked intestinal segment is shown
in figure 5.3.

Figure 5.3: A slice of input data perpendicular to the path direction.

The shape of intestinal cross-section usually resembles a deformed circle, so
polar transformation is used to unwind it into a form more suitable for segmen-
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tation. An example is shown in figure 5.4. Our polar transformation uses the
following notion in the text:

• r is the distance from the slice center

• α is the angle

• u, v are coordinates in the source slice with origin in the center

The resolution of the polar transformation, i.e. the number of possible values
for r and α is estimated so that it approximately represents all source pixels in the
input data. For a typical diameter of the small intestine around 20mm (Cronin
et al. [2010]) and voxel size 0.5mm, we recommend using radius of at least 2× of
the typical intestinal radius:

2× 10mm

0.5mm
= 40px (5.1)

For the number of angles we recommend to estimate the size of pixel in polar
coordinates in the position at least around 1.5× the typical intestinal radius with
the size of the voxel in the original data:

2π × 1.5× 10mm

0.5mm
≈ 190px (5.2)

Figure 5.4: Polar transformation of the slice from fig. 5.3.

Please note that the resolution and dimensions of the images shown here are
not exactly computed as explained, they are slightly adjusted to better display
the topic.

Of course, these two transformations can be combined together, and instead
of sampling the data twice with all the sampling problems that come from that,
we can sample directly the input data:

x = originx(d) + r · (binormalx(d) · cos(α) + normalx(d) · sin(α))

y = originy(d) + r · (binormaly(d) · cos(α) + normaly(d) · sin(α))

z = originz(d) + r · (binormalz(d) · cos(α) + normalz(d) · sin(α))

(5.3)

where origin is the position of the slice center in the input data and binormal
and normal are normalized perpendicular vectors computed earlier in this chapter
and d is the distance along the tracked path.
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5.4 Iterative segmentation

5.4.1 Data shape

A segmentation of the intestinal lumen in one slice perpendicular to the path
(figure 5.5) represented in polar coordinates (figure 5.6) would be a curve winding
along the α axis from one side of the polar slice to the other.

Figure 5.5: Segmentation of lumen in a slice from figure 5.3.

Figure 5.6: Polar transformation of the slice from fig. 5.5.

For the simplicity of explanation let’s use the directions as on figures 5.4 and
5.6. We can see that the center of the lumen is in the upper part of this polar
representation. Also the value in input data (Objectness filter) are 0 or near it
for lumen.

If we place the polar transformations of all slices behind each other, we will
obtain a 3D volume. Let’s call its axes α, r and d (representing directions right,
down and forward on figure 5.6). An example of such volume from a single
tracked intestinal segment can be seen in 5.7.

Values with the coordinate r = 0 are very near 0 and the surface of the
intestinal wall is represented as the top grey mountainous surface in the DVR
visualization. We will try to find this surface in our segmentation algorithm.

Some of the large transparent or almost empty ”holes” in the DVR repre-
sentation are caused by visualization, but the actual values are nonzero even in
these areas. However due to noise or other CT image acquisition problems some
of these ”holes” might be true near 0 valued areas in the intestinal wall. We need
an algorithm that resembles the whole surface area as closely as possible, but at
the same time does not leak into those mentioned holes.
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Figure 5.7: Direct value and DVR representation of a volume composed of polar
slices.

5.4.2 Lumen border approximation with heightmap

We will approximate the surface with a height-map - i.e. a function representing
the distance of lumen/wall border from the center for a given angle:

fhm(α, d) = rborder (5.4)

where α is the angle coordinate in the polar slice, d is the distance along the
tracked path and rborder is the distance of the lumen border from the center in a
perpendicular slice at the (α, d) location.

This height-map can be stored as a 2D discrete rectangular array of values
with the same resolution as we were sampling the angle α and traced path d. It
contains integer values, which correspond to multiples of the voxel size along the
r axis in the polar slices volume.

The algorithm will try to match the surface of the lumen by gradually moving
the height-map in its direction:

1. Initialize this height-map with 0. That represent a ”tube” around the cen-
tral path with diameter 0:

∀α∀d : f 0
hm(α, d) = 0 (5.5)

2. In each iteration step go through all height-map pixels and increase their
value only if neighbors have the same value or greater:

∀α∀d : fn+1
hm (α, d) =


fnhm(α, d) + 1, if fnhm(α± 1, d) ≥ fnhm(α, d)∧

∧fnhm(α, d± 1) ≥ fnhm(α, d)

fnhm(α, d), otherwise
(5.6)

3. End if no height-map value was changed during the last iteration.
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Values outside the definition of the height-map are handled by repeating the
function, i.e.

fnhm(αmax + 1, d) = fnhm(0, d)

fnhm(α, dmax + 1) = fnhm(α, 0)

fnhm(−1, d) = fnhm(αmax, d)

fnhm(α,−1) = fnhm(α, dmax)

(5.7)

The algorithm has at most rmax iterations, where rmax is the resolution of
the polar slices along the r axis. So this is effectively less or equivalent to the
computational complexity of a simple linear filter on the volume of polar slices.

An example of a result height-map can be seen in figure 5.8 and 5.9.

Figure 5.8: Height-map computed in our iterative lumen approximation algo-
rithm.

Figure 5.9: 3D rendering of the height-map from figure 5.8. (Note that
fhm(α, d) = 0 means low distance from the center of lumen, which is located
on the upper plane in the 3D rendering. So dark areas in fig. 5.8 are high peaks
in this figure).

5.5 Inverse spatial transformation

The last step remaining in lumen border segmentation is projection of the height-
map fhm(α, d) back to the input dataset. As the input dataset has the same or
better resolution than the original CT dataset (requirement in section 5.2), the
result of the segmentation might be used as a segmentation in the original dataset
as well.
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The transformation from the height-map to the original dataset space is done
similarly to the polar coordinates transformation. By substituting the value of
height-map into equation 5.3 we get the following transformation equation:

x =originx(fhm(α, d))+

+ r · (binormalx(fhm(α, d)) · cos(α) + normalx(fhm(α, d)) · sin(α))

y =originy(fhm(α, d))+

+ r · (binormaly(fhm(α, d)) · cos(α) + normaly(fhm(α, d)) · sin(α))

z =originz(fhm(α, d))+

+ r · (binormalz(fhm(α, d)) · cos(α) + normalz(fhm(α, d)) · sin(α))

(5.8)

A result of transforming the whole height-field into the original dataset is
shown in figure 6.1.
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Chapter 6

Visualization

This chapter gives several hints for good visualization of results obtained through-
out this thesis. The main focus is understandably the intestinal lumen, intestinal
wall, their properties and topological relations within the body. We report several
techniques that we have used during our research and proved to be useful for this
case.

6.1 Brief DVR introduction

3D visualization of CT data (Drebin et al. [1988], Levoy [1988], Weiskopf [2007])
is best achieved with DVR (direct volume rendering). This method is used for
false color projection of the volumetric data to a 2D plane. The algorithm com-
putes volume orientation in respect to the camera, generates rays from the camera
through the volume and samples and accumulates values along the ray. Sampling
might be in regular intervals, jittered intervals, by DDA (digital differential an-
alyzer) algorithm through all voxels, combined with anti-aliasing etc. Sampled
values do not have to be interpolated or can be interpolated with trilinear or
more complex interpolation.

Sampled values are then transformed with a transfer function LUT (look-up
table) that projects a value in HU (in our case from range -1000 to +3000) to a
color value and transparency. Custom LUT can be used to generate remarkable
and easy to interpret results. Many images throughout this thesis are rendered
using a DVR algorithm.

There are many variants, especially in recent years when the computer hard-
ware advancement allowed for real-time rendering of volumetric data or off-line
rendering with global illumination. We will deal only with a simple DVR with
a 1D RGBA custom transfer function. That is sufficient for presentation of our
datasets.

There are also other methods for volumetric data projection, such as MIP
(maximum intensity projection), iso-surface rendering, X-ray simulation, etc. We
will not deal with those in this thesis.
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Figure 6.1: Visualization of the lumen border in one tracked segment of intestine.

6.2 Topological view of a single spatially com-

plex segment

The single lumen border obtained from a segmentation in chapter 5 can be visu-
alized in 3D to enable quick overview of the width of the small intestine. Also
even though we try to make every step as robust as possible, we are working on
imperfect real-world data, there might be errors and this is a very quick overview
if any such error is present. A simple DVR projection of a binary segmentation
mask is shown in figure 6.1.

We can also use the segmentation as an overlay mask over the original dataset
to enable the radiologist operator evaluate the original data and have the infor-
mation about the lumen at the same time. An example is shown in figure 6.2.

Another method to display a single intestinal segment is to project the seg-
mented height-map on a straight line and thus effectively straighten the intestine.
An example is shown in figure 6.3. This view is suitable for analysis of bowel ob-
structions.

6.3 Tracking slice view for wall analysis

We have tried several methods for a more thorough analysis of intestinal dis-
tention, wall saturation and thickness. The first method does not need further
preprocessing, it only displays tracked slices along the intestinal path. An exam-
ple is shown in figure 6.4.

The radiologist can move simultaneously on 4 slices through the path of the
intestine. One slice is perpendicular to the tracked path, other three represent

79



Figure 6.2: Axial slice of the original CT enterography data with an overlay of
the lumen border segmentation.

Figure 6.3: Lumen border from figure 6.1 projected onto a straight line.

standard orthogonal slices for CT visualization. Simultaneous movement allows
for wall thickness assessment in complicated areas.

Figure 6.5 shows another possibility - to display a slice following the whole
path direction. We have been inspired by CPR (in Kanitsar et al. [2002]) and
its variants. In our case we have a path with greatly varying direction. We have
thus generated images along the path - one axis in the result cut is a selection of
slice along the path (axis d), the second axis is projected onto a rotated vector
in the Frenet frame plane N × B (normal and binormal) in each slice computed
in section 5.3. Rotation angle stays the same for one projection.

This way the radiologist has a complete overview along the intestinal segment.
All walls can be examined by rotating this slice along the axis. This projection
has the same source data as in figure 6.4. The inflammation can be observed in
fig.6.5, top right section (about 1

3
along the complete path length).

All such slice-based views in figures 6.4 and 6.5 can be overlaid by lumen
border indication, such as in figure 5.6 and 5.5. The height-map data stored in
fhm (see chapter 5.4.2) are available for this task without problems. We have
omitted here the overlay to better display the wall/lumen interface.
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Figure 6.4: Slices through the currently examined path point along the tracked
intestine. Top left is a slice perpendicular to the path, other three represent axial,
frontal and sagittal planes. This example shows an inflammation in the intestinal
wall.

Figure 6.5: A slice following the intestinal path. This slice is parallel to the path
direction and can be rotated along the axis. For visualization purposes it was
divided into two parts - top right end continues on bottom left border.

6.4 Advanced wall visualization

We have also prepared methods for advanced wall analysis. For this we need
perpendicular direction to the intestinal wall. In chapter 5 we have computed the
location of lumen border for each step along the intestinal path. To estimate the
perpendicular direction through the wall from the lumen border we need gradient
estimation. Sampling the wall at a different angle creates errors in wall thickness.

Gradient estimation is best computed over objectness function computed in
section 3.3.2. This way we get a clean gradient exactly along the lumen border.
By sampling this gradient at the lumen border and unwrapping it along the path
and polar coordinates, we get an estimation of perpendicular direction through
the intestinal wall.

An example of sampled and unwrapped gradient along the whole tracked

81



Figure 6.6: Gradient computed over objectness-filtered data. This slice roughly
corresponds to frontal slice in figure 6.4 - bottom-left.

intestinal segment is shown in figure 6.7. We did not include this image only for its
aesthetic appeal, but to show the irregularities of the gradient along the intestinal
track (horizontal axis). If the gradient computation were not necessary, it would
appear much smoother. By using the measured gradient we are significantly
correcting the sampling direction for the intestinal wall.

Figure 6.7: Gradient sampled along the path and at the lumen border. Axes on
this image correspond to axes on figure 5.8 (although it is a different intestinal
segment from figure 6.4). Colors R,G,B represent normalized gradient coordinates
X, Y, Z.

We will proceed to sampling of the intestinal wall in the perpendicular direc-
tion on each lumen/border point. We need information as close to the original
data as possible, without the noise. So we will be sampling the denoised original
dataset. Samples must be dense enough to hit all voxels.

After we have samples, we try to fit a Gaussian curve to the intestinal wall.
Its parameter σ gives us an information about the width of the wall. The peak µ
of a fitted curve gives information about the contrast saturation of the intestinal
wall. These numbers roughly characterize the wall within the neighborhood. It is
not a completely reliable technique, but handles many situations well and brings
attention to potentially important places. An example of this fitting is shown in
figure 6.8. Gaussian curve is not strictly necessary, we have selected it for its ease
of use. Any other fitting that can express the wall width and saturation might
be applicable (see for example Näppi et al. [2010]).

The information about saturation is another important value that might reveal
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Figure 6.8: DVR visualization of the σ parameter fitted on wall, projected on the
segmented lumen border. We have used jet ramp as a color LUT. Blue values
indicate thin wall, red values indicate thick wall. Yellow/red part in the narrow
segment corresponds to position over inflammation in figure 6.4.

potential problems. We have used a sample from the denoised original dataset
at the µ position of the fitted Gaussian curve and applied it similarly to the
segmented lumen border. An example of the same dataset (this time with the
saturation information) is in figure 6.9. This example is even more revealing the
inflammation of the intestinal wall.

Figure 6.9: DVR visualization of the contrast saturation estimation of the in-
testinal wall.
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A more complex method for intestinal wall analysis has been given in Näppi
et al. [2012]. Similarly to previous visualization a line perpendicular to the wall is
projected through the wall. A polynomial is fitted and a support vector machine
is used for Crohn’s disease prediction. This method would ideally complement
the whole dataset visualization.

6.5 Complete dataset visualization

Figure 6.10: DVR visualization of the σ parameter fitted on wall, projected on
the segmented lumen border. The intestinal segment from chapter 6.4 can be
seen highlighted on the right side.

Methods for displaying individual segments might be generalized for the whole
patient. An example of wall width estimation is shown in 6.10.

The next figure 6.11 shows the maximal contrast saturation of the intestinal
wall - the inflammation region is here much more apparent as a red section.

We have also prepared for completeness a rendering of the whole body, includ-
ing the complete segmented intestine - figure 6.12. Such view might be important
for a surgeon before any surgery of the small intestine takes place. A knowledge
about the actual anatomy shown with a good overview makes the surgery prepa-
ration stage much simpler.

This rendering shows the whole bulk of the intestine, but of course any com-
bination of the techniques mentioned in this whole chapter is possible. Including
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Figure 6.11: DVR visualization of the contrast saturation estimation of the in-
testinal wall applied to the whole segmented intestine. The segment from figure
6.9 is highighted on the right side.

visualization of individual segments, combined visualization of wall properties
estimation with whole body rendering, etc.

From the technical point of view the current computer hardware is at a point,
when a dataset of size roughly 5123 can be displayed in real-time or even animated
without any problems.
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Figure 6.12: DVR visualization of the whole dataset with strongly highlighted
segmented intestinal lumen.
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Chapter 7

Implementation overview

7.1 Workflow pipeline

A schema of the first part of the whole pipeline described throughout this thesis
is shown in figure 7.1. All major steps of the computation for a daily practice are
shown. The only manual step before visualization is a potential manual cleaning
of segments erroneously shown as intestine. We have created a simple GUI tool
visualizing the location of each segment by the intersection with current slice and
the length of a selected segment. User can remove said segment with one click.

Training set creation is not included in the schema, only the actual training
data in yellow input cells. Training dataset is created by manual marking of
regions belonging into lumen or wall and extracting the necessary feature values
from per-region datasets computed over the training input dataset.

7.2 Implementation details

All implementation was done in C++, Cuda, OpenCL, GLSL and bash.
Due to the research nature of the process it was subdivided into several easy

to manage applications. The main parts were:

1. Utilities for extracting data from DICOM format

2. Denoising utility based on OpenCL

3. Cuda-based utility for computing Hessian-based objectness filter

4. Commandline C++ utilities for processing simple operations over the data-
sets. Built-in support for text-based scripts for performing a long sequence
of operations.

5. Qt-based multiplatform viewer for volumetric data. Support for .rek (.raw),
.mrc and custom built-in formats. Basic volumetric operations, masking,
multiple datasets, basic morphologic operations, evaluations and segmenta-
tion algorithms that need user input.

6. Qt-based multiplatform 3D ray-casting viewer for volumetric data. Support
for .rek (.raw), .mrc and custom built-in formats. Ray-casting and sampling
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Figure 7.1: Workflow pipeline from source data to tracked intestinal segments.

88



Figure 7.2: Qt-based multiplatform viewer of volumetric data.

done in real-time based on OpenGL Shading Language. Rendering modes
include DVR, DVR+light, X-ray simulation, MIP. Support for stereo ren-
dering and full-screen mode. User editable 1D transfer functions for DVR
rendering.

All implementation is scriptable. User input is needed only during two situ-
ations - DICOM data extraction to select correct dataset and cleanup of wrong
paths after tracking is finished. Everything else runs automatically.

All algorithms and applications are created so that compatibility between
different operating systems is seamless. Applications were developed and used on
all three major desktop systems - Windows, Linux and MacOS X.

Figure 7.3: Qt-based multiplatform ray-casting 3D viewer of volumetric data.
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Chapter 8

Conclusion

We have succeeded in designing a process to enable segmentation, tracking and
uncluttered visualization of thin-slice CT enterography data. We have designed
several new algorithms and validated our results on real data. To our knowledge
we have not found another published work that would manage to give results
matching ours.

Figure 8.1: We have achieved to process the CTE data into a segmented and
tracked small intestine information.

The whole process is subdivided into several parts analyzed and discussed in
this thesis:

1. Fast, efficient and high-quality volumetric denoising of the input data

2. Watershed segmentation, processing of watershed regions, computation of
region feature descriptors and classification

3. Segmentation of the bulk of small intestine organ by filtering the classifica-
tion results

4. Robust tracking of intestinal segments

5. Segmentation of intestinal lumen on tracked data

6. Visualization and analysis
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We have contributed to these steps and published our work in international
journals and conferences. This thesis reports on our results and follows the same
logical order of operations as the actual practical algorithm. All steps in our
processing pipeline are fully automatic with several possibilities of user input to
correct or improve the process.

From the practical point of view we have optimized all algorithms to keep the
total time requirements of the pipeline within several minutes on a commodity
hardware with good scaling possibilities on higher-end hardware. This is an
important fact to enable widespread use of our methods.

8.1 Denoising

Figure 8.2: Denoising result example.

High quality denoising of volumetric data is not computationally cheap. We
have presented an algorithm to compute a proven nonlocal means algorithm in its
volumetric variant on one abdominal CT scan in under one minute on a modern
GPU. The same algorithm on a CPU would take hours to compute.

This step was crucial in processing high resolution thin-slice CT enterography
data. Otherwise the data were unfit for any reasonable processing approaches.

Figure 8.3: Histogram of the small bowel area on a CT enterography scan. (a)
Raw CTE scan. (b) Denoised dataset. Red histogram indicates lumen, blue
indicates intestinal wall and black is a sum of all voxels within small intestine.

The denoising process significantly improved the results of CTE data pro-
cessing. It increased the possibility to recognize and segment important parts of
abdominal CTE scans.
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8.2 Watershed processing

We have presented a behavior analysis of watershed-segmentation applied on CT
enterography data and selected a number of descriptors of watershed regions.
These selected descriptors enable a relatively reliable classification of the input
data. We have also given a discussion of different descriptors and their efficiency
at classification.

We have managed to create probability maps indicating the location of intesti-
nal lumen and wall within the body without any a-priori anatomical information.

Figure 8.4: Computed probability maps on watershed regions. These maps indi-
cate the probability of lumen and wall respectively.

Different settings during scanning create slightly different datasets. We have
hinted at an idea to automatically match various classification training sets on
the given data.

8.3 Tracking of the intestine

We have used the probability maps to compute a segmentation of the intestine.
An approach of combining intestinal lumen and intestinal wall probabilities cre-
ates a binary segmentation of the CT dataset that provides the location of small
intestine within a patient’s body.

A new algorithm for robust tracking of the segmented lumen was presented. A
two-iteration prioritized flood-fill with backtracking was designed from the ground
up to solve the most problematic aspects of CT enterography data tracking.

We have overcome the problems of leaking due to errors in data and the
algorithm is able to track even very complex paths of the small intestine.
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Figure 8.5: A result of our algorithm designed for tracking the small intestine.
Frontal slice with intersecting paths and a DVR rendering of the whole dataset.

Figure 8.6: Result lumen border segmentation overlay on an axial slice.

8.4 Segmentation of tracked lumen

We have adapted one of our previous algorithms (previously used for precise
segmentation of femoral head corticallis) for use on tracked intestinal data. It
provides us with an exact location of border between the lumen and wall.

A cross-section of the previously tracked intestinal path is used to generate an
unwrapped continuous polar transformation of the small intestine segment. An
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Figure 8.7: Intermediate unwrapped part of one segment of tracked intestine in
polar coordinates and the result segmentation computed over it.

iterative algorithm is then used to descend on the border of lumen and wall and
backward transformation to volume space creates a nice continuous wrapping of
the intestinal lumen.

8.5 Visualization

Figure 8.8: Visualization in 2D slices through the intestine.

The ultimate goal of the work on CTE data processing was to simplify and
quicken the analysis of the data, the assessment and diagnosis of inflammatory
diseases in small bowel, obstructions and other problems. We present several
ideas how the results of intestine segmentation might be visualized and analyzed.
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Figure 8.9: 3D visualization of one intestinal segment with inflammation and the
whole segmented bulk of small intestine.

8.6 Diagnosis improvement results

A significant subjective relief and a better concentration on diagnosis was ob-
served even on our small set of data. The reduction in time can be observed
when all already displayed paths are marked in the dataset, so that the radiolo-
gist concentrates only on parts not visited yet.

It is hard to quantify the exact diagnosis improvement as every patient is
unique and every diagnosis takes significantly varying amount of time. How-
ever, our approach brings several meters of tracked intestinal data ready for a
fast overview through healthy parts and enables the inflammations to be viewed
without disturbances emitting from a constant orientation in the dataset.

However a more in-depth analysis of the diagnosis time and conclusions can be
done in the future and on a larger set of datasets - ideally parallel to traditional
techniques to have a direct comparison.

8.7 System automation

All steps of the system from the loading of the original raw CT dataset up to
individual segment tracking are fully automatic. There are basically only three
moments of user interaction and only two of them are performed regularly:

1. Manual creation of a training set for a given CT enterography set-
ting. This is done only once per CTE setting. That means each tuple
(machine, power, current, exposition, set of contrast agents, contrast agent
administration process) should have one training set to guarantee good per-
formance. However, many settings might be compatible. As mentioned in
section 3.4.6 obtaining scans with different settings just for the sake of our
research is not currently feasible, so the actual degree of compatibility is
still partly an open question.
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2. Removal of segments in other areas than small intestine that have a simi-
lar appearance. This happens usually in stomach, colon and bladder, some-
times also the gallbladder or other parts. This is caused by the stochastic
nature of the probability computation and similar or even the same contrast
agents present in organs with a locally similar shape to the intestine. A sim-
ple GUI tool with a one-click interaction is enough for mistaken segments
removal. This removal is necessary only for complete dataset visualization.
Individual segments analysis can be performed even without this removal
step, because wrong segments are simply not selected.

3. Actual analysis/diagnosis composes of manual inspection of our visu-
alization results shown in chapter 6. The decision making is still kept on
the radiology specialist or surgeon (in case of a pre-surgery inspection for
topological information).

8.8 Future work

Our future work will be centered on several areas:

• Incorporating a-priori information into the stochastic part of the dataset
evaluation and probability computation. However, advancing and incorpo-
rating the actual shape for an organ such as small intestine is a challenging
task and a more promising path seems to be an automatic detection of
segments not belonging to the small intestine. Another approach might be
based on a statistical model by extending the work in Kolomazńık et al.
[2015].

• An automatic system for selecting a matching training set from a selection
of provided ones. That would enable a preparation of several training sets
with a selection of commonly used parameters that can be provided with the
system. That would eliminate the need for creating a training set manually
at each workplace.

• Topological analysis of individual segments and their relative positions to
obtain longer segments from disjoint parts.

• Improve the analysis of intestinal wall. Current methods are not robust
enough for real CTE data and are used mostly as a hint for a radiologist. A
fully automatic process would further speed up the diagnosis. However, a
high degree of robustness would be necessary to allow the radiologist to rely
on such result. Any overlooked problem might cause harm to the patient.
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Chapter A

Attachments

A.1 Feature space

A.1.1 Original and denoised comparison

Graphs in this section are taken from a training set computed over original source
data and denoised data. Each figure represents a matching pair to provide easy
comparison of the denoising process effect on our training sets.

Figure A.1: Comparison of (a) original and (b) denoised features - mean value
vs standard deviation per region on denoised data. Red is lumen, blue wall,
black other regions.
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Please note that all graphs are shown within the same range along matching
axis types. Important difference is the shape of the blobs and the significant
overlap in case of raw CT noisy data (causing bad discrimination of classes) and
also the overall location (causing incompatibility of training data of denoised data
with original source).

Figure A.2: Comparison of (a) original and (b) denoised features - mean value
vs skewness per region on denoised data. Red is lumen, blue wall, black other
regions.
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Figure A.3: Comparison of (a) original and (b) denoised features - mean value vs
objectness filter per region on denoised data. Red is lumen, blue wall, black
other regions.
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Figure A.4: Comparison of (a) original and (b) denoised features - mean value
vs kurtosis per region on denoised data. Red is lumen, blue wall, black other
regions.
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Figure A.5: Comparison of (a) original and (b) denoised features - mean value vs
average size of gradient per region on denoised data. Red is lumen, blue wall,
black other regions.
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Figure A.6: Comparison of (a) original and (b) denoised features - mean value
vs objectness vs standard deviation. Red is lumen, blue wall, black other
regions.
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Figure A.7: Comparison of (a) original and (b) denoised features - mean value vs
objectness vs skewness. Red is lumen, blue wall, black other regions.
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A.1.2 Alternative training set comparison

A comparison of two different training set is given in this section. We have selected
two different patients and used similar criteria for training set generation - the
region in body was left part of abdominal region with well distended lumen,
reaching approximately to the spine and being around 100 × 100 × 100mm in
size.

Both training sets are created manually by marking lumen/wall regions in the
said part of dataset.

Figure A.8: Comparison of training set created over two different datasets - mean
value vs standard deviation per region on denoised data. Red is lumen, blue
wall, black other regions.

The scanning parameters are the same in both sets. The goal was to show the
similarity and stability of training sets taken on different patients. Scatter graphs
are shown always in a pair, where the first graph is the training set generated
over dataset 04 (used in most of our evaluations) and second is dataset 17 (used
in comparisons and stability tests) - see table 4.2.

117



Relatively large differences in other regions (in all graphs with black color)
are understandable, because these regions strongly depend on the selection of the
training source and the visible presence of other organs.

The rest of the regions (lumen = red and wall = blue) should form blobs with
similar shape and location, differing mostly only in the density of the represented
regions - again caused by the size and selection of the training set.

Figure A.9: Comparison of training set created over two different datasets - mean
value vs skewness per region on denoised data. Red is lumen, blue wall, black
other regions.
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Figure A.10: Comparison of training set created over two different datasets -
mean value vs objectness filter per region on denoised data. Red is lumen,
blue wall, black other regions.
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Figure A.11: Comparison of training sets created over two different datasets -
mean value vs objectness vs skewness. Red is lumen, blue wall, black other
regions.
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Figure A.12: Comparison of training sets created over two different datasets -
mean value vs objectness vs standard deviation. Red is lumen, blue wall,
black other regions.
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A.2 A note on probability robustness: wrong

training set

Figure A.13: Comparison of lumen probability Plumen computed with (a) correct
and (b) wrong training set.

Results in this chapter are a result of an interesting mistake that happened
during the evaluation of our datasets. We have not done a full evaluation, but
we found the effect interesting enough to give it a short explanation.

We had two major groups of datasets with different scanning parameters.
Both groups have been CT enterography scans with similar preparation and
scanning procedure. For one group we had full information about the scanning
procedure and all patients were scanned on the same machine with the same set-
tings. For the second group (slightly older) the scan parameters were lost during
the anonymization process. The only information we had about this group was
that the scans were CTE and all patients within the group were scanned with the
same settings.

Obviously the datasets looked similar under casual view, but with evident
quantifiable differences. There was a shift in the dataset values, around 20HU
in neutral-contrast agent filled lumen and more than twice that difference in in-
testinal wall. We do not know whether this was due to the scanning procedure
(voltage, exposition, . . . ) or due to the contrast agent preparation (type, satu-
ration, time of scan, . . . ). This information is currently no more retrievable and
we would have to do an in-depth analysis with the database stored in hospital.
That is currently not practically viable. However the data were consistent within
each group.

You can see in the examples in figures A.13 and A.14 that even though the
training set was wrong and useless for a segmentation and tracking, the probabil-
ity followed the data in a relatively consistent way. This leads us to a conclusion,
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that the sensitivity to the training set fitness is not extremely narrow. So a prepa-
ration of multiple training sets and an automatic algorithm for selecting the right
one should be possible.

Figure A.14: Comparison of wall probability Pwall computed with (a) correct and
(b) wrong training set.
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