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Fig. 1. Equal-sample comparison (20 per technique per pixel) of direct illumination estimated by an MIS combination of two light sampling techniques
(Trained and Uniform, see Sec. 8.2 for details) with our optimal weights (top row) and the power heuristic (bottom row). The false-color images b) show
per-pixel average MIS weight values as determined by the two weighting strategies. Unlike any of the existing MIS weighting heuristics, the optimal weights
can have negative values, which provides additional opportunity for variance reduction, leading to an overall 9.6 times lower error per sample taken than the
power heuristic in this scene.

Multiple Importance Sampling (MIS) is a key technique for achieving ro-

bustness of Monte Carlo estimators in computer graphics and other fields.

We derive optimal weighting functions for MIS that provably minimize the

variance of an MIS estimator, given a set of sampling techniques. We show

that the resulting variance reduction over the balance heuristic can be higher

than predicted by the variance bounds derived by Veach and Guibas, who

assumed only non-negative weights in their proof. We theoretically ana-

lyze the variance of the optimal MIS weights and show the relation to the

variance of the balance heuristic. Furthermore, we establish a connection

between the new weighting functions and control variates as previously

applied to mixture sampling. We apply the new optimal weights to integra-

tion problems in light transport and show that they allow for new design

considerations when choosing the appropriate sampling techniques for a

given integration problem.
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1 INTRODUCTION
Monte Carlo (MC) integration is an essential tool in light trans-

port simulation [Pharr et al. 2016; Veach 1997] and other fields of

science and engineering [Kalos and Whitlock 2008]. An inherent

problem of MC integration is its slow convergence, which is why

numerous variance reduction schemes have been proposed, notably

importance sampling. Its extension, known as multiple importance
sampling (MIS) [Veach and Guibas 1995], is particularly versatile as

it enables combining different sampling techniques in a robust way

to form better MC estimates.

In the context of light transport simulation, MIS has served as a

cornerstone for robust bidirectional path sampling [Georgiev et al.

2012a; Hachisuka et al. 2012; Křivánek et al. 2014; Popov et al. 2015;

Veach and Guibas 1995], Markov chain Monte Carlo light transport

[Gruson et al. 2016; Hachisuka et al. 2014; Šik et al. 2016], adaptive

path sampling (path guiding) [Herholz et al. 2016; Müller et al. 2017;

Vorba et al. 2014], or in isolated integration problems such as direct
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illumination estimation [Georgiev et al. 2012b; Veach and Guibas

1995; Vévoda et al. 2018].

The key to the efficiency of MIS are the weighting functions

used to combine samples from different sampling techniques. A set

of weighting functions known as the balance heuristic has been

suggested as a de facto universal solution, as no other weights can

yield substantially lower variance [Veach and Guibas 1995] (we show

that this claim does not generally hold). Since the balance heuristic

variance bounds can be fairly loose, alternative weights have been

proposed to address shortcomings in some specific cases. The power,

cut-off, or maximum heuristics can reduce variance for low-variance

problems, but this comes at the expense of an overall variance

increase [Veach and Guibas 1995]. The α-max heuristic incorporates

prior assumptions to avoid assigning too high weights to poorly

performing sampling techniques [Georgiev et al. 2012b]. However,

the performance of different weighting heuristics is problem-specific

and the existing work fails to provide a clear answer as to which

weighting functions to use in which situation.

Our work focuses on weighting functions for MIS. We derive a set

of weighting functions that provablyminimize the variance of theMIS
estimator for a given set of sampling techniques and a fixed number

of samples. The resulting optimal weights may be negative, and this

additional flexibility enables substantial variance reduction over

the existing weighting heuristics. In fact, we show that the optimal

weights can result in variance lower than the balance heuristic bounds
derived by Veach andGuibas [1995], as non-negativity of theweights

was a silent assumption made in their derivation.

We provide further theoretical insights into the new optimal

weights: We establish a connection between MIS with our optimal

weights and another common variance reduction scheme – control

variates. Moreover, we relate the variance of the optimal weights

and the balance heuristic. The derivation of the optimal MIS weights

and their analysis comprise our main theoretical contribution.

Our practical contribution consists in proof-of-concept applica-

tions of the optimal weighting scheme in light transport, specifically

in direct illumination calculation. Apart from the variance reduc-

tion afforded by using the optimal weights in an existing sampling

setup, we show that the optimal weights allow for an additional

flexibility in designing the sampling techniques themselves. More

specifically, variance properties of the optimal weights directly mo-

tivate new sampling techniques that – while performing poorly

with balance and power heuristics – provide a substantial speedup

with our optimal weights.

2 PREVIOUS WORK
MIS in light transport. Multiple importance sampling (MIS) [Veach

and Guibas 1995] offers a flexible way to combine a set of Monte

Carlo integral estimators, so as to achieve reasonable performance

in a wide range of scenarios – a property referred to as robustness.
It has been one of the keys behind the recent success of physically-

based light transport in VFX and computer animation [Keller et al.

2015]. MIS is typically used to combine a set of sampling techniques,

each of which matches different features of the integrand, but none

of which is a particularly good match across the entire domain. A

prime example is direct illumination estimation [Veach and Guibas

1995], where MIS is used to mix BRDF- and light-sampling tech-

niques. Likewise, bidirectional path tracing [Veach and Guibas 1995]

and algorithms built upon it [Georgiev et al. 2012a; Hachisuka et al.

2012; Křivánek et al. 2014; Popov et al. 2015] rely on MIS to com-

bine different techniques to sample entire light transport paths. In

Markov chain Monte Carlo methods, MIS has been used to combine

contributions from different chains [Kelemen et al. 2002; Šik et al.

2016] and to mix different target functions [Gruson et al. 2016].

Another important use-case for MIS is defensive sampling: An

adaptively trained sampling distribution is combined with a defen-

sive strategy to ensure robustness to over-fitting. In path guiding,

adaptively constructed guiding distributions are typically mixed

with BRDF sampling [Herholz et al. 2016; Müller et al. 2017; Vorba

et al. 2014]. Similarly, in adaptive direct illumination sampling, MIS

is used to combine learned light selection distributions with other,

more defensive strategies [Georgiev et al. 2012b; Vévoda et al. 2018].

MIS estimator design. MIS represents a wide family of estimators

parameterized by the combined sampling techniques, number of

samples taken from each technique, and the weighting functions

used to combine the samples. The choice of sampling techniques is

application-dependent and we are not aware of any work addressing

the sampling technique design specifically in the context of MIS.

Another degree of freedom is the sample allocation. While Veach

[1997] argues that “no strategy is much better than that of simply

setting all [sample counts] equal”, the fixed sample allocation has

its shortcomings. For instance, if one technique is particularly good,

samples from other techniques only serve to incur overhead and

increase variance. To determine the sample allocation among BSDF,

light, and photon map-based sampling, Pajot et al. [2011] introduce

the notion of “representativity” – a measure of how well each tech-

nique samples a given integrand. Similarly, Lu et al. [2013] optimize

sample allocation among BSDF and environment-map sampling by

approximately minimizing the MIS estimator variance in terms of

the sample counts. Havran and Sbert [2014] and Sbert et al. [2016]

show that the optimal sample allocation must equalize the second

moment of the weighted estimates corresponding to the individual

sampling techniques. Sbert and Havran [2017] use the above result

to design an approximate sample allocation solution and Sbert et

al. [2018] introduce new balance heuristic estimators better than

the balance heuristic with equal sample count per technique. Fi-

nally, Cappé et al. [2008] apply population Monte Carlo to optimize

sampling from mixture densities.

Alternative weighting heuristics. In our work, we assume the sam-

ple counts to be given and we focus on designing the optimal MIS

weighting functions – a problem setup shared with several previous

works. In the context of many-light sampling, Georgiev et al. [2012b]

point out that the balance, power, and maximum heuristics per-

form poorly, and they introduce the α-max heuristic with the aim

to achieve better stratification among the sampling techniques.

Popov et al. [2015] introduce a new weighting heuristic accounting

for correlations between paths in bidirectional path tracing. Elvira et

al. [2015; 2016] propose clustering of sampling techniques to cut the

overhead introduced by evaluating the balance heuristic when the

number of sampling techniques is high. While these works design

new weighting heuristic for some specific cases, our goal is more
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ambitious: The provably optimal MIS weighting functions (for a

given set of sampling techniques and fixed sample allocation).

Control variates and mixture sampling. We show in Sec. 6 that

our optimal weights are equivalent to optimal control variates (CV)

[Lavenberg et al. 1982; Rubinstein and Marcus 1985; Venkatraman

andWilson 1986]. Thesewere also studied byOwen and Zhou [2000],

who realize CV by a mixture of sampling densities, and approximate

the optimal CV coefficients through multiple linear regression over

a set of observed estimates. We discuss the relation to their work

in more detail in Sec. 7 and in the Supplemental material. Fan et

al. [2006] then applied Owen and Zhou’s approach in rendering, and

we compare to their approach in Sec. 8.4. In the follow-up work [He

and Owen 2014], the authors jointly optimize the CV coefficients and

the sample allocation. They show that the MIS estimator variance

is jointly convex in the above quantities and these can be found by

convex optimization.

3 MULTIPLE IMPORTANCE SAMPLING
In this section, we reviewMonte Carlo (MC) integration, variance re-

duction via importance sampling, and multiple importance sampling

(MIS), as first described by Veach and Guibas [1995].

Monte Carlo integration. Let F =
∫
D f (x) dx be the integral of

a function f : D → IR over the domain D, and let there be a

sampling technique for generating random samples fromD following

the probability density p such that f (x) , 0 ⇒ p(x) , 0. Then

the importance sampling estimator ⟨F ⟩ = f (X )/p(X ), where the
random variable X is distributed according to p , is unbiased, i.e.,
its expected value E[F ] equals to F . The shape of p has a dramatic

impact on the estimator’s variance V[⟨F ⟩]: the closer p is to being

proportional to the integrand f , the lower the variance.

Multiple importance sampling. The idea of MIS is to improve

the robustness of MC integration by incorporating N sampling

techniques with probability densities pi , i = 1, . . . ,N , each of which

could be a good match to a different feature of the integrand. An

MIS estimator of the integral F is then defined as:

⟨F ⟩∗ =
N∑
i=1

ni∑
j=1

wi (Xi j )f (Xi j )

nipi (Xi j )
, (1)

where Xi j ∈ D is a random variable representing the j-th sample

out of ni samples generated by the i-th sampling technique, and

wi (x) are weighting functions. All Xi j are independent. To keep the

MIS estimator (1) unbiased, the weighting functions must satisfy:

f (x) , 0⇒
∑N
i=1wi (x) = 1, (2)

pi (x) = 0⇒ wi (x) = 0, (3)

i.e., they must sum up to 1 whenever f (x) is nonzero, and each

weightwi (x) must be zero whenever pi (x) is zero. A particular set

of weighting functions is referred to as a combination strategy.
The above formulation of MIS, where a pre-determined number

of samples are taken from each sampling technique, is known as

the multi-sample model. On the other hand, the one-sample model

⟨F ⟩∗1 =
wi (Xi )f (Xi )

cipi (Xi )
, (4)

is evaluated by first selecting one sampling technique pi at random
with probability ci , and then generating a sample Xi from it.

Balance and power heuristics. All combination strategies yield

unbiased estimators, but they can differ in their variance. The two

most commonly used combination strategies are the balance and
power heuristics, sharing the common form

wp
i (x) =

[nipi (x)]
β∑N

k=1[nkpk (x)]
β
. (5)

For the balance heuristic, we have β = 1. Veach and Guibas [1995]

showed that no other combination strategy can have significantly

lower variance than the balance heuristic; we revisit this near-

optimality claim below. The power heuristic, for β > 1, is a strategy

better suited for low-variance problems, i.e., those where one pi
closely matches the integrand [Veach and Guibas 1995, Sec. 4.1]. We

set β = 2, the choice that Veach and Guibas considered the best.

The same authors have additionally proposed the cutoff and

maximum heuristics, but since these are used less frequently in

practice and we do not consider them here further.

4 REVISITING BALANCE AND POWER HEURISTICS
In this section, we first illustrate sub-optimal performance of the

balance and power heuristics, we then revisit the balance heuristic

variance bounds, and show that allowing for negative weights may

yield far lower variance than predicted by the bounds.

4.1 Motivation
The balance and power heuristics enable combining sampling tech-

niques in a robust way, so that the presence of a bad technique does

not ruin the combined estimator’s performance. But the robustness

comes at the expense of decreased overall efficiency; the MIS com-

bination can be far from optimal and sometimes significantly better

results may be achieved by ignoring all samples but the ones taken

from the single best technique.

Let us illustrate this observation on a simple 1D example shown in

Fig. 2. Column a) depicts an integration problem where the integral

of a function f is estimated via MIS. Three sampling techniques,

p1,p2, and p3, are used, and one sample is taken from each. The two

rows differ solely in the sampling technique p2: while p2 closely
matches f in the first row, in the second row it is fairly different.

Columns b) and c) plot, respectively, the balance and the power

heuristic weights. We additionally define the best-technique heuristic,
depicted in column d), as the combination strategy assigning unit

weight to the single technique yielding the lowest variance and zero

to the others. We can now compare the variance of the balance,

power, and best-technique heuristics.

While in the second row the variance of all the three strategies is

similar, there is a significant difference in the first row. The power

heuristic achieves somewhat lower variance (∼0.123) than the bal-

ance heuristic (∼0.158), as this case is an instance of the low-variance

problem due to p2 being a good match to the integrand. Nonetheless,

the best-technique heuristic has by far the lowest variance (∼0.0442),

almost 3x lower than the power heuristic. This is an inherent prob-

lem of the balance and power heuristics; they are not optimal and

sometimes much worse than using the best technique alone.
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Fig. 2. a) The integrand f along with three sampling techniques p1, p2 and p3. b-d) The weighting functions associated with the balance, power, and
best-technique heuristic, respectively. e) Optimal weights (unconstrained sign). The two rows differ by the sampling technique p2. See the Supplemental for
additional results for the maximum and cutoff heuristics (slightly worse than the balance heuristic) and a Mathematica notebook used to produce this figure.

4.2 Balance heuristic variance bounds: Are they valid?
The balance heuristic is widely used for its robustness and because

it is provably good: Veach [1997] has shown that a) for the multi-

sample model, no other combination strategy can improve the vari-

ance beyond certain bounds, and b) it is optimal for the one-sample

model. While the optimality proof for the one-sample model is valid

in general, the proof of the variance bounds for the multi-sample

model assumes non-negative weights that results in an entire class

of combination strategies being omitted.

We now revisit the proof for themulti-samplemodel and point out

that allowing negative weights (affine combinations rather than con-

vex) can improve the variance beyond the bounds derived by Veach.

To simplify the notation, we denote the inner product of two func-

tions a and b defined over the domain D as ⟨a,b⟩ =
∫
D a(x)b(x) dx .

According to Veach, the variance of a multi-sample MIS estimator

utilizing the balance heuristic is no larger than the variance of any
other MIS estimator plus some fraction of F 2, more precisely:

V[⟨F ⟩b ] − V[⟨F ⟩∗] ≤

(
1

mini ni
−

1∑N
i=1 ni

)
F 2. (6)

In the proof [Veach 1997, p. 288], the variance of an MIS estimator:

V[⟨F ⟩∗] =
N∑
i=1

∫
D

wi (x)
2 f (x)2

nipi (x)
dx︸                        ︷︷                        ︸

first term

−

N∑
i=1

1

ni
⟨wi , f ⟩

2

︸             ︷︷             ︸
second term

(7)

was inspected. While the balance heuristic was the result of the min-

imization of the first term (giving the optimum for the one-sample

model), the variance bound (1/mini ni − 1/
∑N
i=1 ni )F

2
was established

as the difference of the upper and the lower bound of the second

term in (7). The lower bound derivation did not rely on any specific

assumption, but in the upper bound derivation:

N∑
i=1

1

ni
⟨wi , f ⟩

2 ≤
1

mini ni

N∑
i=1
⟨wi , f ⟩

2

⋆
≤

1

mini ni

( N∑
i=1
⟨wi , f ⟩

)2
=

1

mini ni
F 2,

(8)

the second inequality ⋆ holds only if

⟨wi , f ⟩ ≥ 0, (9)

that is, in the context of rendering where the integrand is non-

negative, only whenwi (x) ≥ 0.
1
For ⟨wi , f ⟩ < 0 the upper bound

on the variance of the balance heuristic can in fact be larger than
what Veach’s result suggests.

To the best of our knowledge, this fact has not been previously

recognized; the weighting functions are usually designed to be non-

negative everywhere and for such the bounds are valid.

In what follows, we show that the non-negativity assumption

is not necessary for an MIS estimator to remain unbiased. In fact,

there are many cases where a combination strategy with ⟨wi , f ⟩ < 0

produces anMIS estimator with variance lower than predicted by the

bounds, and it can be significantly better than any other combination

strategy considered by Veach [1997].

4.3 Weights with unconstrained sign: An example
Suppose we define weights allowing negative values for our integra-

tion problems from Sec. 4.1. One example of such weights is shown

in Fig. 2e), along with the variance of the resulting estimators. They

yield estimators with far lower variance than estimators utilizing

any of the three heuristics discussed in Sec. 4.1.

For the integration problem in the second row, the MIS estimator

using these weights has variance even lower than dictated by the

variance bounds for the balance heuristic: the balance heuristic

1
To be precise, the condition is slightly weaker, because a weighting function wi
negative in a part of the domain may still yield ⟨wi , f ⟩ ≥ 0.
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variance is ∼1.3 and the bounds are ∼0.5, meaning that any other

MIS estimator ⟨F ⟩∗ with only positive weights should have variance

above 0.8 (according to (6)). But the MIS estimator with the negative

weights has variance ∼0.3, which is well below this threshold.

In the next section, we derive weighting functions that provably
minimize the variance of the MIS estimator, should there be no con-

straint on the weights’ sign. In fact, the weights used in Fig. 2e)

resulted from that derivation.

5 OPTIMAL MIS WEIGHTS
We now derive optimal weights for MIS by directly minimizing the

variance V[⟨F ⟩∗] of the combined estimator (1), without imposing

any restrictions other than those necessary to obtain an unbiased

estimator. More formally:

Problem 1. Given the MIS estimator (1), minimize the functional
V [w1, . . . ,wN ] = V[⟨F ⟩∗] in terms of weightswi , while maintain-
ing the constraints

∑N
i=1wi (x) = 1 and pi (x) = 0 ⇒ wi (x) = 0,

and keeping the number of samples ni and probability densities pi
fixed.

To describe the solution let us first define some terms:

Definition 5.1. Let f : D → IR be a function to integrate, pi (x), i =
1, . . . ,N be a set of probability densities on D, and let ni denote the
number of samples taken from pi . We define the technique matrix
A = (aik ) as a symmetric N × N matrix with elements given by

aik =
〈
pi ,pk/(

∑N
j=1 njpj )

〉
, (10)

and the contribution vector b = (b1, . . . ,bN )⊺ as a column vector of

length N composed of

bi =
〈
f ,pi/(

∑N
j=1 njpj )

〉
. (11)

The technique matrix is independent of the integrand f and it is

composed of the inner products between all the probability densities

normalized by the factor (
∑N
i=1 nipi )

−1
. Elements of the contribu-

tion vector represent contributions to the final F =
∫
D f (x) dx ,

because the dot product (n1, . . . ,nN ) · b equals to the integral F .
The solution to Problem 1 can now be summarized as follows:

Theorem 5.2. Let the column vector α = (α1, . . . ,αN )⊺ satisfy
the system of linear equations

Aα = b, (12)

where A and b are the technique matrix and the contribution vector,
respectively. Then the weighting functions

wo
i (x) = αi

pi (x)

f (x)
+

nipi (x)∑N
j=1 njpj (x)

(
1 −

∑N
j=1 α jpj (x)

f (x)

)
(13)

minimize the functional V [w1, . . . ,wN ].

An MIS estimator using the weightswo
i (x) will be denoted ⟨F ⟩

o
.

The proof of Theorem 5.2, given in Appendix B, employs the cal-

culus of variations (Appendix A) to directly minimize the variance

functional. It does not rely on any other assumptions than those nec-

essary to ensure unbiasedness, and therefore the solution is indeed

optimal in the MIS estimator family, i.e., no other MIS combination
strategy can result in a lower variance.2

Due to the negative term in (13), the weights can be negative; the
example in Sec. 4.3 shows that this indeed happens in practice.

Appendix C provides a discussion of the the existence and unique-

ness of the optimal weights.

6 OPTIMAL WEIGHTS AS CONTROL VARIATES
In this section, we show that the optimal weights from Theorem

5.2 can be interpreted as control variates [Glasserman 2003]. Based

on that we provide some intuition on the integration problems for

which the optimal weights will yield the highest variance reduction.

6.1 Background: Control Variates
Consider an MC estimator ⟨F ⟩ for the integral F =

∫
f (x) dx . Take a

set of K other estimators ⟨Gi ⟩ with expected valuesGi , i = 1, . . . ,K ,
called control variates. Rewriting the original estimator ⟨F ⟩ as

⟨F ⟩CV = ⟨F ⟩ +
∑K
i=1 γi (Gi − ⟨Gi ⟩)

=
∑K
i=1 γiGi + ⟨F ⟩ −

∑K
i=1 γi ⟨Gi ⟩

(14)

can reduce variance when some ⟨Gi ⟩ is correlated with ⟨F ⟩ and
γ = (γ1, . . . ,γK )

⊺
is chosen appropriately. Variance is minimized

for γ solving the system Σγ = σ , where Σ = (σik ) is a K × K
covariance matrix, and σ = (σ1, . . . ,σK )

⊺
is a covariance vector,

with their elements defined as

σik = Cov[⟨Gi ⟩, ⟨Gk ⟩], σi = Cov[⟨Gi ⟩, ⟨F ⟩]. (15)

This is a well-known form [Lavenberg et al. 1982; Rubinstein and

Marcus 1985; Venkatraman and Wilson 1986]. In the case of a

single control variate (K = 1) variance is minimized for γ1 =
Cov[⟨G1⟩, ⟨F ⟩]/V[⟨G1⟩].

6.2 Optimal weights as control variates
Let us plug the optimal weights from (13) into the multi-sample

MIS estimator in (1). DenotingM =
∑N
i=1 ni , ci =ni/M , and pc(x)=∑N

i=1 cipi (x), we obtain the optimal MIS estimator ⟨F ⟩o in the form

⟨F ⟩o =
N∑
i=1

αi +
1

M

N∑
i=1

ni∑
j=1

(
f (Xi j )

pc(Xi j )
−

∑N
k=1 αkpk (Xi j )

pc(Xi j )

)
. (16)

The above form can be interpreted as the control variate esti-

mator (14) utilizing one or N control variates. Here, for the pur-

pose of further analysis, we interpret it as the former: Using д(x)=∑N
k=1 αkpk (x), the above form is equivalent to (14) with K = 1,

where

⟨F ⟩ =
1

M

N∑
i=1

ni∑
j=1

f (Xi j )

pc(Xi j )
, ⟨G1⟩ =

1

M

N∑
i=1

ni∑
j=1

д(Xi j )

pc(Xi j )
, (17)

the expected value G1 =
∫∑N

k=1 αkpk (x) dx =
∑N
k=1 αk , and the

parameter γ1 = 1. The estimator ⟨F ⟩ above is a multi-sample MIS

estimator of F utilizing the balance heuristic, further denoted ⟨F ⟩b .

2
Applies to combination strategies in MIS framework (1) as defined by Veach and

Guibas [1995]. Other ways of combining samples (e.g. nonlinear ones) may perform

still better, but these do not belong to the MIS family.
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a) first row b) second row
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Var: 0.0176, (9x ↓ ) Var: 0.307, (4.3x ↓ )

Fig. 3. Illustration of the difference f − д for the first (a) and second (b)
row of the integration problem from Fig. 2a along with the variance of MIS
using the optimal weights, and the variance reduction with respect to MIS
using the balance heuristic. Note, that the flatter the difference the higher
the variance reduction.

Similarly, the ⟨G1⟩ estimator above is anMIS estimator of

∫
D д(x) dx ,

and we denote it ⟨G⟩b .

6.3 Variance considerations
The α vector from Theorem 5.2 yields an optimal control variate

of the general form (16), minimizing its variance.
3
The variance is

then equal to the variance of the balance heuristic MIS estimator

of

∫
D f (x) − д(x) dx , and as such it depends on the magnitude of

f − д as well as its proportionality to pc. Intuitively, the “closer”
the function д is in its shape to the integrand f , the higher the

variance reduction due to the optimal weights compared to the

balance heuristic. Moreover, the variance of ⟨F ⟩o becomes zero for

f = д, that is, when the integrand f can be written as a linear

combination of the sampling pdfs pk .
In Fig. 3 we plot the difference f −д for the two integration prob-

lems from Sec. 4.3, where д is computed using the vector α for the

respective optimal weights. The overall amplitude of the difference

is smaller for the first example and larger for the second, which is in

line with the higher variance reduction for the former case. We build

on these observations in Sec. 8.3 to design new sampling techniques

specifically aiming at variance reduction with the optimal weights.

Relation to the balance heuristic. The optimal estimator ⟨F ⟩o is

given by the sum

∑N
i=1 αi (no variance) plus the difference of two

correlated MIS estimators ⟨F ⟩b and ⟨G⟩b , given by (17). The variance

of ⟨F ⟩o is therefore equal to the variance of that difference, i.e.,

V[⟨F ⟩o] = V[⟨F ⟩b − ⟨G⟩b ]. In Appendix D we prove that

V[⟨F ⟩o] = V[⟨F ⟩b ] − V[⟨G⟩b ]. (18)

This result confirms the expected: the optimal estimator’s vari-

ance is less than or equal to the balance heuristic variance. More

importantly, it shows that the balance heuristic is optimal when-

ever V[⟨G⟩b ] = 0. This occurs when α is collinear with the vector

n = (n1, . . . ,nN )⊺, that is, when the elements of the vector α are

proportional to the number of samples from the individual sampling

techniques. This result can be used to detect the achievable variance

improvement over the balance heuristic.

3
If it was not the optimum, then other weights better thanwo

i (x ) would exist, which

is a contradiction.

Covariance vector and matrices. Interpreting (16) as a form utiliz-

ing N control variates

⟨Gk ⟩ =
1

M

N∑
i=1

ni∑
j=1

pk (Xi j )

pc(Xi j )
, k = 1, . . . ,N , (19)

with expected values Gk = 1, we can verify that α indeed repre-

sents the optimal parameters γ . The technique matrix A and con-

tribution vector b in Theorem 5.2 are related to their covariance

counterparts (defined by (15)) by

Σ = (I − AN)A, σ = (I − AN)b, (20)

where N is a diagonal N × N matrix with the sample count ni
along the diagonal. The above relation emerges if we obtain the

covariances σik and σi in a similar way we obtained the covariance

(38) in Appendix D. It follows that the full solution for alphas (see

Appendix C) solves the system Σγ = σ .

7 OPTIMAL WEIGHTS IN PRACTICE
AnMIS estimator with the optimal weights (13) cannot be evaluated

directly since the inner products forming the technique matrix A
and contribution vector b from Definition 5.1 generally do not have

a closed form solution. Our implementation therefore follows three

steps: 1) estimation of the technique matrix A and contribution vec-

tor b; 2) estimation of the vector α using the estimated A and b;
and 3) realization of an approximate optimal estimator ⟨F ⟩o using
the estimated α . We now elaborate on the individual steps.

7.1 Estimating A and b
The elements of the technique matrix A and the contribution vec-

tor b are given by the integrals (10) and (11), respectively. We es-

timate these integrals using MIS with the balance heuristic, and

denote the result ⟨A⟩ and ⟨b⟩.4 In the matrix form, the estimators

⟨A⟩ and ⟨b⟩ can be expressed as follows:

⟨A⟩ =
N∑
i=1

ni∑
j=1

Wi jW
⊺
i j , ⟨b⟩ =

N∑
i=1

ni∑
j=1

f (Xi j ) Si j Wi j , (21)

where Si j =
(∑N

k=1 nkpk (Xi j )
)−1

and Wi j is the column vector of

all sampling techniques evaluated at Xi j and scaled by Si j ,

Wi j = Si j
(
p1(Xi j ), . . . ,pN (Xi j )

)⊺
. (22)

Recall from (1) that Xi j denotes the j-th sample from pi .

7.2 Estimating the vector α
The vector α is given by the linear system (12). We estimate ⟨α ⟩ by
least squares minimization, because the estimated system ⟨A⟩⟨α ⟩ =
⟨b⟩ may be (close to) singular, especially when the estimates ⟨A⟩
and ⟨b⟩ are based on just a few samples. While the ⟨A⟩ and ⟨b⟩
estimates are unbiased, the estimate ⟨α ⟩ is generally biased, because
the matrix inversion involved in solving the linear system does

not preserve expectation, i.e. (E[⟨A⟩] = A) ⇏ (E[⟨A⟩−1] = A−1).
Nonetheless, we can see from (16) that the resulting MIS estimator

will be unbiased for any value of α . The difference between the true

4
The power heuristic is less appropriate, as the integrals (10) and (11) are not low-

variance, i.e., no sampling strategy is a particularly goodmatch for any of the integrands.
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ALGORITHM 1: Progressive estimator

1 ⟨A⟩ ← 0
N×N

; ⟨b⟩ ← 0
N×1

; ⟨α ⟩ ← 0
N×1

; r esult ← 0;

2 for iteration ← 0 tomaxI terations − 1 do
3 for i ← 1 to N do
4 {Xi j }

ni
j=1 ← draw ni samples from technique pi ;

5 end
6 if (iteration ≥ 1) and (iteration mod U ) = 0 then
7 ⟨α ⟩ ← solve linear system ⟨A⟩ ⟨α ⟩ = ⟨b⟩;
8 end
9 est imate ← evaluate ⟨F ⟩o using ⟨α ⟩; // (16)

10 r esult ← r esult + est imate ;
11 ⟨A⟩ ← ⟨A⟩ +

∑N
i=1

∑ni
j=1 Wi jW

⊺
i j ; // (21)

12 ⟨b⟩ ← ⟨b⟩ +
∑N
i=1

∑ni
j=1 f (Xi j ) Si j Wi j ; // (21)

13 end
14

15 return r esult/maxI terations

ALGORITHM 2: Direct estimator

1 ⟨A⟩ ← 0
N×N

; ⟨b⟩ ← 0
N×1

;

2 for iteration ← 0 tomaxI terations − 1 do
3 for i ← 1 to N do
4 {Xi j }

ni
j=1 ← draw ni samples from technique pi ;

5 end
6 if foo then
7 f oo;
8 end
9

10

11 ⟨A⟩ ← ⟨A⟩ +
∑N
i=1

∑ni
j=1 Wi jW

⊺
i j ; // (21)

12 ⟨b⟩ ← ⟨b⟩ +
∑N
i=1

∑ni
j=1 f (Xi j ) Si j Wi j ; // (21)

13 end
14 ⟨α ⟩ ← solve linear system ⟨A⟩ ⟨α ⟩ = ⟨b⟩;
15 return

∑N
i=1 ⟨αi ⟩

Fig. 4. Pseudocode for two estimators with the approximated optimal MIS weights: the Progressive and Direct estimators (see Sec. 7.3). Differences are
highlighted in red.

α and its particular estimate ⟨α ⟩ introduces extra variance in the

final estimator ⟨F ⟩o . The extra variance diminishes thanks to the

⟨α ⟩ estimate being consistent; this follows from ⟨A⟩−1 approaching
A−1 with the increasing sample count in the ⟨A⟩ estimate.

7.3 Approximate optimal estimator ⟨F ⟩o

We have various options to approximate the optimal estimator ⟨F ⟩o .
For instance, we could estimate ⟨α ⟩ from an initial batch of samples,

hold it fixed, and use it to evaluate the optimal weights (13) for all

subsequent samples. This approach would be suboptimal, however,

as the estimated alphas would not evolve over time.

Progressive estimator. A more efficient option is to realize the ap-

proximate estimator in a progressive manner. The computation is

performed in iterations. In each iteration, we first draw ni samples

from each sampling technique pi , i = 1, . . . ,N . We then compute

⟨α ⟩ based on the ⟨A⟩ and ⟨b⟩ estimates from the previous iterations.

We plug it in formula (16) of the MIS estimator ⟨F ⟩o to compute the

integral estimate from the current samples and accumulate it. Note

that for the first iteration we set ⟨α ⟩ to zero which is equivalent to

evaluating an MIS estimator with the balance heuristic. Finally, we

update ⟨A⟩ and ⟨b⟩ using the current samples according to (21) and

proceed to the next iteration. This procedure yields an unbiased MIS

estimator, the efficiency of which improves over time as the esti-

mates ⟨α ⟩ converge to the true value. Since recomputing ⟨α ⟩ every
iteration may be time-consuming, we also allow for performing the

recomputation only after every U updates to ⟨A⟩ and ⟨b⟩. We will

callU the update step. See Algorithm 1 in Fig. 4 for a pseudocode.

An important note: Despite the division by the integrand f (x)
in the optimal weights (13), the MIS estimator ⟨F ⟩o in the form (16)

exists even for f (x) = 0. In contrast to previous MIS weighting

heuristics, samples X with f (X ) = 0 must not be discarded, because
they generally have a non-zero contribution to the estimator.

Direct estimator. By definition (see (29) in Appendix B), each αi
is equal to the integral of f weighted by the optimal weightwo

i :

αi =

∫
D
f (x)wo

i (x) dx . (23)

Because the weighting functions sum up to one for all x ∈ D, we
can express the integral of f as∫

D
f (x) dx =

∫
D
f (x)

(∑N
i=1w

o
i (x)

)
dx =

∑N
i=1 αi . (24)

We can therefore obtain an estimator ⟨F ⟩ by summing the elements

of ⟨α ⟩. Such a Direct estimator will be biased, but consistent as

follows from biasedness and consistency of ⟨α ⟩, discussed in Sec. 7.2.
The Direct estimator is simpler and more efficient than the Pro-

gressive one: in each iteration, it only updates the ⟨A⟩ and ⟨b⟩
estimates, and the linear system is solved for ⟨α ⟩ only once after

all iterations have been processed. See Algorithm 2 in Fig. 4.

7.4 Empirical tests
Fig. 5 illustrates the behavior of the Progressive and Direct esti-

mators, described above, on the example integration problem from

Sec. 4.1 (depicted in Fig. 2a). The MSE of different estimators as a

function of the number of iterations is shown in Fig. 5a. The uncor-
related version uses two independent sets of samples to estimate the

technique matrix ⟨A⟩ and the contribution vector ⟨b⟩, respectively.
The correlated version uses a single sample set for both.

In the correlated case (solid lines), both Progressive (cyan) and

Direct (orange) estimators have similar performance, almost as good

as the reference optimal estimator with a known α vector (solid

black). Interestingly, the behavior in the uncorrelated case (dashed

lines) is vastly different, as both estimators perform much worse

than in the correlated case. We hypothesize that the correlation

between ⟨A⟩ and ⟨b⟩ is the key to a good performance of both

estimators, though a full understanding of this effect remains for

future work.
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Fig. 5. a) MSE of the Progressive and Direct estimators versus the overall
number of iterations plotted on the log-log scale, when used to estimate the
first (top row) and second (bottom row) integration problem from Fig. 2a.
The black line represents the analytically computed variance of MIS es-
timator with the optimal weights divided by N iterations. b) Bias of the
Direct estimator on the log-log scale. The black line corresponds to 1/N ,
where N is a number of iterations on the horizontal axis. For both (a) and
(b) cases we show the correlated and uncorrelated estimator variants.

The Direct estimator is biased. In Fig. 5b, we can observe that

both the correlated and uncorrelated versions are consistent, with

the bias diminishing roughly at aO(N−1) rate with the total number

of iterations.
5
Similarly to the MSE, the bias is much lower in the

correlated case. As discussed above, the Progressive estimator is

unbiased, which we have verified experimentally.

7.5 Discussion of related work
Interestingly, the optimal estimator (16) has the same form as the

control variate estimator analyzed by Owen and Zhou [2000]. They

start off by postulating this form, using the mixture of sampling

pdfs as a control variate, and then they estimate the optimal mixing

parameters α for this stated estimator form. We, on the other hand,

show that both the form and the parameters of this estimator natu-

rally emerge by direct minimization of the MIS estimator’s variance,

and that it provides the optimal solution in the MIS family.

Owen and Zhou estimate α using linear regression on observed

samples. For that they have to solve a (singular) linear system, but

they also propose solving an equivalent (regular) truncated system,

obtained by skipping some regressors. Though derived in a different

way, their proposedα estimator (denoted as
ˆβ in their Sec. 3), even in

its truncated form, is in fact equivalent to our ⟨α ⟩, provided that the
components of our technique matrix A and the contribution vector b
are estimated with the balance heuristic as described in Sec. 7.1. Hence,
their approach can be seen as one particular way of approximating

the optimal solution given by Theorem 5.2. Our result is more

general as it is amenable to alternative strategies to approximate

the optimal A, b, and α . See Sec. 3 in the Supplemental for details.

5
Bias is computed as the average absolute error of 1000 independent estimator realiza-

tions, each obtained using the number of samples on the horizontal axis.

8 APPLICATIONS AND RESULTS
In this sectionwe apply the optimal weights to light transport, specif-

ically to direct illumination estimation. We show that they perform

particularly well when used for defensive sampling. Subsequently,

we introduce new sampling techniques that further increase the

efficiency when mixed by the optimal weights. Furthermore, we

compare the performance of the Progressive and Direct estimators.

8.1 Implementation
Our applications are implemented in PBRT [Pharr et al. 2016], and

the implementation source code is provided in Sec. 5 in the Supple-

mental material. All scenes were rendered on a machine with an

Intel Core i7-5820K CPU (6 cores, 12 threads) and 64GB of RAM.

We implement the Progressive and Direct estimators as defined

in Sec. 7. Calculation proceeds pixel-by-pixel, in each pixel the

respective algorithm from Fig. 4 is called and its output is stored in

the pixel. We take one sample per techniques per iteration, i.e., ni =
1, i = 1, . . . ,N ,N = 2 and setmaxIterations to the target number of

samples per technique per pixel. For an equal-time comparison we

setmaxIterations individually for each estimator so they all render

for roughly the same time.

In Sec. 8.2 and Sec. 8.3 we compare our Direct estimator to the

balance and power heuristic combinations for two different applica-

tions. In Sec. 8.4 we compare the Direct and Progressive approaches.

8.2 Application I: Defensive sampling
One application where the optimal MIS weights have a particularly

strong impact is defensive sampling. It is typically employed by

adaptive approaches that construct sampling distributions based

on previous samples [Georgiev et al. 2012b; Herholz et al. 2016].

The trained sampling technique is then mixed with one or more

defensive techniques (e.g., uniform) to prevent bias and artifacts

due to noise from the previous samples. Ideally, the trained tech-

nique has low variance across the majority of the domain, which is

likely to trigger the low-variance problem discussed by Veach and

Guibas [1995]. However, the power, maximum, and cutoff heuristics,

proposed to address this case, still underperform [Georgiev et al.

2012b]. While the heuristics improve robustness, they also increase

variance where the trained technique works well.

Our optimal MIS weights are particularly effective at solving this

issue: the optimal combination of multiple sampling techniques can

never be worse than a single technique on its own.
6
Therefore, no

ad-hoc solutions are required and combinations with any number

of defensive techniques is straightforward. We demonstrate this

on a synthetic example as well as on a practical problem of light

selection in direct illumination computation.

Synthetic example. Our simple example in the first row in Fig. 2

shows a combination of the almost ideal techniquep2 with defensive
techniques p1 and p3. We can see that while the balance and power

heuristic combinations produce more variance than thep2 technique
alone, with the optimal weights the variance is actually decreased.

6
Using a single technique on its own is identical to a weighting strategy assigning unit

weight to that technique and zero to all other techniques.
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Power heuristic
MSE 10 (baseline)

Time 12.2 s

Optimal weights
MSE 3.8 (2.7x)
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MSE 8 (1.3x)
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MSE 1 (9.9x)
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MSE 9.0 (1.1x)
(App. I & II)
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(App. II)
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MSE 750 (.01x)
(App. I)
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Techniques: Trained + Uniform

Application II: New technique
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App. I
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Fig. 6. Equal-sample comparison (20 per technique per pixel) of different combination strategies for a trained light selection technique (Trained) and defensive
techniques (Uniform, NoMax). In contrast to the power heuristic, the optimal MIS weights are never worse than any of the techniques alone. The false
color insets correspond to average weights per pixel for the three techniques. The MSE improvement in parentheses is with respect to the power heuristic
combination of the Trained and Uniform techniques. See the Supplemental material for full-size images.

Light selection. MC estimation of the direct illumination often

contributes a significant amount of noise to the image [Vévoda

et al. 2018]. Direct illumination is computed as an integral FDI =∫
A LeBVG dy (we omitted arguments for brevity), where Le is the
emitted radiance, B the BRDF,V the visibility,G the geometry factor,

and the domain A is the set of all emissive surfaces. A standard ap-

proach to design a direct illumination estimator is to first randomly

select one light according to a light selection distribution and then

sample a point on the selected light. A good light selection tech-

nique would select a light proportionally to its actual contribution

to the integral. Unfortunately, this quantity cannot be computed

analytically, especially because of the possibly complex visibility

factor. It can, however, be estimated. While the resulting light selec-

tion technique is often close to ideal, error in the estimation may

significantly increase variance or introduce bias. To prevent this,

any such technique has to be combined with a defensive one (e.g.,

uniform light selection).

We demonstrate this approach on a particular light selection

technique implemented in PBRT [Pharr et al. 2016]. It divides the

scene using a regular grid, estimates the unoccluded contribution

of all lights in each of its cells, and then uses these estimates as

the light selection probabilities. We call this technique Trained. It is
close to optimal on unoccluded surfaces but causes significant noise

in shadows and must be combined with a defensive Uniform light

selection technique.

Fig. 6 shows the results in the Staircase II scene lit by several

small area light sources. All images using the optimal weights were

rendered by the Direct estimator (Sec. 7) using the same number of

samples per technique per pixel (20 samples). The Trained technique

performs well on unoccluded surfaces but produces more noise

than the Uniform technique in shadows. Intuitively, we would like

to combine both techniques in the shadows and use the Trained
technique alone on the unoccluded surfaces. However, the false color

insets show that the power heuristic gives the uniform technique

a positive weight everywhere, improving the performance in the

shadows, and degrading the quality on the unoccluded surfaces. On

the other hand, the optimal weights are zero or even negative on the
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Fig. 7. a) Schematics illustrating the optimal combination of techniques
Trained and NoMax for the light selection application, which can well ap-
proximate the integrand at both points A and B . b) Schematics for the
light sampling application illustrating the optimal combination of tech-
niques Spherical, Uniform area, and Parallel. At point B , where the surface
is not parallel to the light, the optimal combination Spherical + Uniform area
approximates the integrand much worse, while the optimal combination
Spherical + Parallel is still good. The displayed quantities are in the solid
angle measure, their derivations can be found in Sec. 2 in the Supplemental.

unoccluded surfaces. As a result, the optimal weights maintain the

good properties of both techniques everywhere and thus achieve

2.7× lower mean-squared error per sample. See the Supplemental

material for complete results including the balance heuristic which

performs 1.2× worse than the power heuristic.

8.3 Application II: Design of new sampling techniques
As discussed in Sec. 6, the optimal weights form a control variate

as a linear combination of the sampling pdfs i.e., as

∑N
i=1 αipi . We

have shown that the closer the control variate approximates the

integrand, the lower the variance. Introducing a new, properly de-

signed technique (even a biased one!) can vastly expand the space of

possibilities for the optimal weights to form a control variate closer

to an integrand, and therefore can greatly improve the performance.
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Fig. 8. Equal-sample comparison (40 per pixel in total) of combinations of standard light sampling techniques (Uniform area, Spherical) and a new one
(Parallel) motivated by properties of the optimal MIS weights. The combination with the new technique using the optimal weights performs best. The MSE
improvement in parentheses is with respect to 40 samples from the Spherical technique alone. The false color insets show weights of the Uniform area and
Parallel techniques. See the Supplemental material for full size images.

We first revisit the light selection problem for direct illumination

computation from Sec. 8.2 and introduce a new technique that sub-

stantially lowers the variance. Then, we show new techniques that

improve sampling of a single light source.

New technique for light selection. The Trained light selection tech-

nique from Sec. 8.2 neglects visibility. In shadows, the technique’s

pdf does not match the integrand well, and variance goes up.

We illustrate that in Fig. 7a. For the point A, the Trained technique
(green) is a good fit to the integrand (gray), and performs well. For

the point B, however, the actual integrand has no contribution from

the closest light due to occlusion, and there is a mismatch between

the pdf of the Trained technique and the integrand itself.

To solve the issue at the point B, we construct a new technique

with a pdf that matches the integrand well specifically for that case.

Then we leave it up to the optimal weights for a particular image

pixel to decide which of the two cases has occurred (A or B), and

to form the optimal control variate from pdfs of both techniques. It

is easy to construct such a technique from the pdf of the Trained
technique: it is the same except it samples the strongest light with a

zero probability. We call this technique NoMax (orange in Fig. 7a).

We demonstrate that in the Staircase II scene (Fig. 6). All images

with optimal weights were rendered by the Direct estimator (Sec. 7)

using the same number of samples per technique per pixel (20

samples). We see that using the NoMax technique alone causes a

significant bias. But when optimally weighted with the Trained
technique, it is is much better than any other result in Fig. 6. Note

that the power heuristic is unable to create such a combination:

It improves in shadows, but increases variance in the rest of the

scene in comparison to Trained as well as to the power heuristic

combination of Trained andUniform. That gives the optimal weights

9.9× lower MSE per sample. Moreover, the optimal combination of

the Trained and NoMax techniques improves 3.7× over the optimal

combination of Trained and Uniform.

One special case, when the combination of the Trained technique

and the Uniform technique works particularly well is when we have

exactly two lights in the scene. We illustrate that on Staircase I scene
in Fig. 1. In that case a linear combination of the Trained andUniform
techniques can approximate virtually any distribution, which results

in 9.6× lower MSE per sample than the power heuristic.

The Supplemental provides complete results including the balance

heuristic, which performs similarly to the power heuristic.

New techniques for light area sampling. While light selection con-

tributes most direct illumination variance in scenes with many small

lights, careful sampling of the point on the light source becomes

important in the presence of larger light sources. Fig. 7b shows a

schematic of a scene where a lambertian area light source illumi-

nates a point on a diffuse surface. The figure plots the sampling

densities of various techniques over the part of the hemisphere that

receives illumination, as well as the integrand itself (in black), which

in this case becomes LeG, where Le is the emitted radiance and G
the geometry term. A typical technique is the uniform sampling of

the light surface, we denote it Uniform area (Fig. 7b, orange), but

it is not a good approximation to the integrand as it neglects G.
A better idea is to uniformly sample the light projection onto the

unit sphere around the illuminated point [Arvo 1995], and we call

this technique Spherical (Fig. 7b, green). But even better performs

a linear combination of the Uniform area and Spherical techniques
(shown in red), found by the optimal weights. That is, as long as the

light is parallel to the illuminated surface.

If the light is not parallel, the shape of the Uniform area technique
deforms (see the point B in Fig. 7b) and even the combination found

by the optimal weights is worse than Spherical alone. We now re-

place the Uniform area technique with a new one: uniform sampling

of the light projection onto a plane parallel to the surface, denoted
Parallel (Fig. 7b, blue). Its pdf is similar to that of Uniform area, but
does not depend on the light orientation.

We demonstrate these techniques in theDining room scene (Fig. 8)

lit by one large area light from above. All images were rendered

by the Direct estimator (Sec. 7) using the same total number of

samples per pixel (40 samples). As expected, the Spherical technique
alone generally performs better than the other two. Therefore, their

combination using the power heuristic will always be worse than

relying only on the samples from this technique. However, if com-

bined using the optimal weights the result is much better. While

the combination with Uniform area decreases variance mainly on

the table, the combination with Parallel further improves the result

also on surfaces not parallel to the light (e.g., the wall) and provides

2.1× lower MSE than the Spherical technique alone. Note the nega-
tive value of the optimal weights of the Uniform area and Parallel
techniques in the improved regions.

Let us underline that the methods introduced in Sec. 8.3 are not

meant to be ready for production use. They serve as a proof of

concept showing that this approach to construction of sampling

techniques has an interesting potential.
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Table 1. Performance statistics of the Direct and Progressive estimators, the latter with different values of the update step U (Sec. 7.3). Speedup and
equal-sample improvement are ratios of the mean-squared error. The overhead is the relative increase of the rendering time with the same total number of
samples. The baseline for these values is the power heuristic combination, except for the Dining room which also compares to using the spherical projection
sampling alone. See the Supplemental for the corresponding images.

Staircase I
Techniques: Train + Uni

Baseline: Power Train + Uni

Staircase II
Techniques: Train +M

Baseline: Power Train + Uni / Power Train +M

Dining room
Techniques: Par + Sp

Baseline: Sp / Power Par + Sp

Veach
Techniques: BSDF + Light

Baseline: Power BSDF + Light

Equal-time

speedup

Equal-sample

improvement

Overhead

Equal-time

speedup

Equal-sample

improvement

Overhead

Equal-time

speedup

Equal-sample

improvement

Overhead

Equal-time

speedup

Equal-sample

improvement

Overhead

Direct 8.89 9.56 6.20% 8.86 / 7.53 9.90 / 7.83 9.93% / 2.54% 3.40 / 9.99 2.12 / 10.05 -30.53% / 5.94% 1.02 1.02 5.02%

ProgressiveU = 1 3.01 4.37 33.02% 5.25 / 4.46 6.68 / 5.29 35.32% / 26.23% 1.87 / 5.48 1.27 / 6.00 -12.17% / 33.92% 0.77 1.03 38.24%

ProgressiveU = 2 2.76 3.42 19.32% 4.81 / 4.09 5.35 / 4.23 24.07% / 15.73% 1.87 / 4.92 1.03 / 4.88 -20.43% / 21.33% 0.86 1.04 20.88%

ProgressiveU = 4 2.03 2.33 12.44% 3.82 / 3.25 3.90 / 3.09 17.64% / 9.73% 1.50 / 4.40 0.74 / 3.50 -26.09% / 12.70% 0.94 1.03 14.71%

Legend: Train = Trained, Uni = Uniform,M = NoMax, Par = Parallel, and Sp = Spherical

Reference Balance (5.1) Power (4.9) Optimal (4.8)Method (MSE)

Fig. 9. Equal-sample comparison of the optimal MIS weights with the bal-
ance and power heuristics in the classic light vs. BSDF sampling scenario in
the Veach’s scene. The MSE values (in parantheses) are computed after 10
samples per light per technique per pixel. See Sec. 8.4 for details and the
Supplemental material for full size images.
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Fig. 10. The insets along with MSE plots for the Staircase II scene rendered
with an increasing number of samples with the Direct and Progressive esti-
mators and the method of Fan et al. with either the Uniform (solid) or the
Trained (dashed) technique skipped. See Sec. 8.4 for details.

8.4 Additional results
Optimal weights for BSDF and light techniques. We investigated

the behavior of the optimal weights for an MIS combination of the

light area and BSDF sampling techniques. For that we rendered the

classic Veach’s scene [Veach and Guibas 1995]. Following Veach, we

estimate illumination from individual lights separately, combining

light area and BSDF sampling, and we add the contributions together.

We combine the samples using the optimal weights and compare

the result with the balance and power heuristics in Fig. 9. In this

setting, the power heuristic appears to be close to the optimum, but

the optimal weights still slightly improve the result.

Overhead. We have so far focused on equal-sample comparisons

to clearly show the effect of the combination strategies unaffected

by the implementation. For the sake of completeness, equal-time

comparisons are provided in the Supplemental material and summa-

rized in Table 1. The overhead of the Direct estimator (caused mainly

by the ⟨A⟩, ⟨b⟩ updates) is at most 10%, making the equal-sample

MSE improvement close to the equal-time speedup. Note that when

comparing to the Spherical technique in the Dining room scene the

overhead is negative; sampling the perfect spherical projection is

considerably more expensive than the other techniques.

Regarding memory overhead, we need to store estimates for the

technique matrix for each pixel and estimates for the contribu-

tion vector for each pixel and color channel, which in our cases

meant storing 2
2 + 3 · 2 = 10 floats per pixel. When rendering the

image by blocks, one pixel in a block at a time, the memory overhead

is practically negligible.

Direct vs. Progressive estimators. All our results shown in Sec. 8.2

and Sec. 8.3 were obtained by the Direct estimator. Its bias and vari-

ance with respect to the Progressive estimator could be a concern.

We provide both their equal-time and equal-sample comparisons in

the Supplemental material with a summary in Table 1. In agreement

with our synthetic tests from Sec. 7, the equal-sample MSE improve-

ment of the Progressive estimator is always smaller (about 30%-40%),

except for the Veach’s scene, where both estimators perform equally.

In Fig. 10, we show insets and MSE plots of the renderings using an

increasing number of samples per technique (from 2 to 64) in the

Staircase II scene. The Progressive estimator (blue) is unbiased but

gains a spiky noise in the initial iterations, from which it takes long

to recover. The Direct estimator (yellow) is biased only for a low

number of samples (<16) and practically zero afterward, which is

also in line with our synthetic tests.

As expected, the overhead of the Progressive estimator is higher

than the Direct one because of the repeated solving of the linear

system. As the update step U increases (Sec. 7.3), the overhead

decreases from almost 40% for U = 1 to 15% for U = 4. But since

the equal-sample MSE improvement also decreases, the equal-time

speedup is actually worse as well. The best compromise seems to

be usingU = 2, yielding up to 5× speedup in our scenes.

Comparison to Fan et al. In Fig. 10 we compare our approach to

Fan et al. [2006], who adopted the approach by Owen and Zhou for

rendering. They estimate α by solving a truncated system obtained
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by skipping regressors corresponding to a particular sampling tech-

nique from the data matrix. For a particular skipped technique their

method is the same as our biased Direct estimator, except for two

differences: First, they do not perform the estimation per pixel but

by averaging per point estimates computed from fixed-sized batches,

which makes their method not consistent. Second, they introduce a

regularization strategy which can decrease variance at the cost of

increased bias. For clarity, we provide pseudocode of our adaptation

of their method in Sec. 4 in the Supplemental.

We set the batch size in their method to 8 samples (the same

total number of samples as 4 iterations of our method) and ren-

dered the Staircase II scene with an increasing number of batches.

The green lines in the plot show their method when skipping the

Uniform (solid) and Trained (dashed) technique, respectively. When

the Uniform technique is skipped, their method behaves similarly

to ours, and their regularization slightly reduces the noise in some

parts of the image. When the Trained technique is skipped, the sub-

stantial bias of their method due to the computation in batches is

further amplified by their regularization approach, resulting in a

visibly darker image. As the performance of their method depends

on a skipped technique, it might be difficult to predict the optimal

technique for skipping for a given integration problem. Without

the regularization, their method produces identical results to our

Direct estimator for any technique skipped, but only for the first

batch (with increasing number of batches the bias in their method

does not diminish). A more in-depth discussion is provided in the

Supplemental.

9 LIMITATIONS AND FUTURE WORK
Applications. While we believe that a derivation of optimal MIS

weights is an important theoretical result, their application in prac-

tice is more complicated than for the traditional balance or power

heuristics. Estimation and solution of the linear system results in

computational overhead that grows super-linearly with the number

of combined techniques. While the overhead in our tests was almost

negligible, especially for the Direct estimator, this could become an

issue as the number of sampling techniques increases.

Our rendering applications provide a proof of concept, but are far

from being production-ready and leave space for further investiga-

tion. An obvious next step would be to integrate the optimal weights

into a full global illumination solution. One interesting direction

is the optimal combination of sampling techniques in bidirectional

path tracing and derived methods [Georgiev et al. 2012a; Hachisuka

et al. 2012; Veach and Guibas 1995], though handling the relatively

high number of available sampling techniques could be challenging.

Another class of algorithms that could greatly benefit from the opti-

mal MIS weights is path guiding [Herholz et al. 2016; Müller et al.

2017; Vorba et al. 2014], where the necessity for defensive sampling

limits the achievable improvements.

The MIS framework. A serious limitation of the MIS framework

itself is its somewhat wasteful approach: samples are first taken

but the contribution of many of them may be weighted almost to

zero. Our optimal weights do not address this issue. More work is

needed on optimizing the sample counts for different techniques

(and whether or not some techniques should be included in the mix

at all), while maintaining the estimator’s robustness. Furthermore,

we have shown that the optimal weights motivate the design of

new sampling techniques, and this is is another direction that may

benefit from further investigation.

10 CONCLUSION
Wehave presented optimal weighting functions for themulti-sample

model of multiple importance sampling. In deriving the optimal

weights, we have pointed out, for the first time, an unnecessary

assumption on the non-negativity of weighting functions under-

pinning the previous claims concerning variance bounds for the

balance heuristic. We have shown that this assumption effectively

prohibited exploration of an entire class of efficient combination

strategies, among which the optimal one.

We have shown the connection of the optimal weights to control

variates, yielding interesting observations on the relation of vari-

ance of the optimal weights and balance heuristic. In particular, the

optimal weights are a good choice for defensive sampling, where

the balance heuristic is particularly inefficient. Our proof of concept

applications in direct illumination estimation have shown that new

sampling strategies motivated by the variance properties of the opti-

mal weights yield further benefits. We believe that our work opens

up new directions for improving efficiency of combined estimators.
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A CALCULUS OF VARIATIONS
Our derivation of the optimal weights relies on the calculus of vari-
ations [Aubert and Kornprobst 2006], the basic elements of which

we now informally review. It is typically used to find extrema of a

functional – a mapping from some space of functions Ω onto real

numbers. In our case, the functional of interest – the variance –

conforms to a general form F(h) =
∫
F̂ (h(x)) dx, where h ∈ Ω is a

function (in our case the weights) and F̂ is some operation on h.
A basic tool used to locate extrema of a functional F is its func-

tional derivative ∂F
∂h , i.e., the rate of change of F with infinitesimally

small perturbations of the function h. Similar to classic calculus,

the extrema are given by the function(s) h for which the functional

derivative equals to zero i.e.,
∂F/∂h(x) = 0.

Calculation of the functional derivative can be transformed to

classic differentiation from ‘ordinary’ calculus using the relation〈
∂F
∂h
, δ

〉
=

d

dε

���
ε=0

F(h + εδ ), (25)

where δ ∈ Ω is a variation (a function), while ε ∈ IR is a number. To

obtain the functional derivative, we 1) replace any occurrence of h
in the functional by h + εδ , 2) take derivative wrt ε , 3) set ε = 0.

This yields an expression that is, by the relation (25), equal to the

inner product of the variation δ and the functional derivative
∂F/∂h

that we seek to find, i.e., to the integral

∫
D

∂F
∂h δ dx . The last step is

therefore to extract the part of the expression corresponding to the

functional derivative.

As in classic calculus, Lagrange multipliers can be used to handle

constraints. To find extrema of F satisfying a constraint д(h(x))=0,
we formulate a constraint functional G(h) =

∫
λ(x)д(h(x)) dx , where

λ ∈ Ω is the Lagrange multiplier. We then locate extrema of the

Lagrangian L(h, λ) = F(h) − G(h, λ) both in terms of h and λ.

B PROOF OF THEOREM 5.2: OPTIMAL WEIGHTS
We prove Theorem 5.2 by construction. To do that, we seek weight-

ing functionswi , i = 1, . . . ,N that minimize the variance functional

V [w1, . . . ,wN ], given by Eq. (7), constrained by

∑N
i=1wi (x) = 1 and

pi (x) = 0 ⇒ wi (x) = 0. To simplify the derivation, we leave out

the latter constraint, and verify it at the end. Dropping the function

arguments, the solution is given by the minimum of the Lagrangian

L = V [w1, . . . ,wN ] −

∫
D
λ

(∑N
i=1wi − 1

)
dx, (26)

in terms of the weightswi and the Lagrange multiplier λ : D → IR.

To find the minimum, we set all the partial functional derivatives

∂L/∂wi and
∂L/∂λ to zero. Using the relation (25), we find

∂L/∂wi as

∂

∂ε

���
ε=0

L(. . . ,wi + εδi , . . .) =
���
ε=0

[
2

ni

∫
D

(wi + εδi )f
2δi

pi
dx−

2

ni

∫
D
(wi + εδi )f dx

∫
D
δi f dx −

∫
D
λδi dx

]
=

∫
D

(
2wi f

2

pini
−
2f

ni

∫
D
wi f dx − λ︸                               ︷︷                               ︸

∂L/∂wi

)
δi dx . (27)

We proceed in a similar way to find
∂L/∂λ. This gives us a set of

equations forwi and λ:

wi −
pi
f

∫
D
wi f dx =

ni
2

λ
pi

f 2
,

∑N
i=1wi = 1 (28)
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The equation on the left can be rewritten as

wi = αi
pi
f
+
ni
2

λ
pi

f 2
, with αi =

∫
D
wi f dx . (29)

Plugging the above equation forwi into the constraint
∑N
i=1wi = 1,

(i.e.,
∂L/∂λ = 0), we can solve for the multiplier λ:

λ = 2

f 2 − f
∑N
i=1 αipi∑N

i=1 nipi
. (30)

The final form of the optimal weights wo
i (x), given by Eq. (13), is

now obtained by plugging (30) back into (29), left.

Our next step is to find the αi , i = 1, . . . ,N . Plugging the optimal

weights (13) into (29), right, we obtain a set of equations for α j∫
D
nipi

f −
∑N
j=1 α jpj∑N

k=1 nkpk
dx = 0, i = 1 . . .N , (31)

which can be rearranged into

N∑
j=1

α j

∫
D

pipj∑N
k=1 nkpk

dx =

∫
D

pi f∑N
k=1 nkpk

dx . (32)

This can be written in a matrix form as Aα = b, where A and b are

the technique matrix and contribution vector from Definition 5.1

and α = (α1, . . . ,αN )
⊺
.

From (29) we can see that whenever pi (x) = 0, we getwi (x) = 0,

which validates out second constraint. This completes the proof.

C SOLUTION EXISTENCE AND UNIQUENESS
Here we discuss the existence and uniqueness of the optimal weights

from Theorem 5.2, and show that there are infinitely many values

of α yielding the same optimal weights.

Existence and uniqueness. The optimal weights exist whenever

the linear system (12) is consistent. To prove the consistency, we

would need to show that if two rows i, j of A are the same, then also

bi = bj , which we have not yet been able to do.

Nonetheless, it holds that whenever one sampling strategy is a

convex combination of other strategies, i.e., pi =
∑
j,i c jpj , then

the i-th row of A becomes the same linear combination of the other

rows, and bi =
∑
j,i c jbj . In such cases the linear system becomes

singular (but remains consistent) and there are infinitely many

solutions for α , each yielding possibly different MIS weights, but

producing an MIS estimator with the same variance. This is because
α ∈ {u + v|Au = b ∧ v ∈ Null(A)}, and (42) is the same for all

such α . If the linear system is non-singular, the α vector and the

resulting weights are unique.

Full solution for α . Adding a term sn, where s ∈ IR and n =
(n1, . . . ,nN )

⊺
, toα produces the sameweights, despite the modified

vector α not being a solution to the system (12). This is because

the offset sn cancels out when the modified α is plugged into the

weights (13). Therefore all α̃ = A−1b + sn yield the same optimal

weights and we refer to α̃ as to the full solution for α .

D PROOF OF THE RELATIONSHIP (18)
The variance of the optimal estimator (16) can be expanded as

V[⟨F ⟩o] = V[⟨F ⟩b ] + V[⟨G⟩b ] − 2Cov[⟨F ⟩b , ⟨G⟩b ]. (33)

We now express the variance V[⟨G⟩b ] and covariance Cov[⟨F ⟩b , ⟨G⟩b ]
from (33) in terms of the technique matrix, contribution vector and

α . Using the shorthand notation q = (
∑N
i=1 nipi )

−1
and dropping

the function arguments, we obtain

V[⟨G⟩b ] =

∫
D
q

( N∑
i=1

αipi
)
2

dx −
N∑
i=1

ni
( ∫

D
q pi

N∑
j=1

α jpj dx
)
2

, (34)

Because the elements of A are given by aik = ⟨pi , pk q⟩, we can
rewrite the first term in (34) as:∑N

i=1
∑N
k=1 αiaikαk = α⊺Aα . (35)

The second term in (34) can be transformed in a similar fashion:

N∑
j=1

nj
(∑N

i=1 αiai j
) (∑N

k=1 ajkαk

)
= α⊺ANAα , (36)

with N being a diagonal N × N matrix with the sample count ni
along the diagonal. Putting together (35), (36), and factoring out α ,

we obtain

V[⟨G⟩b ] = α⊺ (A − ANA)α . (37)

Now, we express the covariance Cov[⟨F ⟩b , ⟨G⟩b ]. Denoting ⟨F ⟩bi j
and ⟨G⟩bi j the parts of the MIS estimators for i-th technique and j-th

independent sample, the covariance becomes

Cov[⟨F ⟩b , ⟨G⟩b ] =
N∑
i=1

niCov[⟨F ⟩
b
i1, ⟨G⟩

b
i1]. (38)

That is because ⟨F ⟩bi j and ⟨G⟩
b
kl are independent whenever i , k

and j , l , and thus their covariance is zero. Again, using q =

(
∑N
i=1 nipi )

−1
, the relation (38) can be further expanded

N∑
i=1

niCov[⟨F ⟩
b
i1, ⟨G⟩

b
i1] =

∫
D
q f

∑N
i=1 αipi dx −

−

N∑
i=1

ni

(∫
D
q pi f dx

) (∫
D
q pi

∑N
j=1 α jpj dx

)
.

(39)

The first term in (39) equals to b⊺α where b is the contribution vec-

tor. The second term could be expanded as:

N∑
i=1

nibi
(∑N

k=1 aikαk

)
= b⊺NAα . (40)

Subtracting (40) from b⊺α yields the desired relation for the covari-

ance:

Cov[⟨F ⟩b , ⟨G⟩b ] = b⊺(I − NA)α . (41)

Finally, expanding (33) using the relationships (37) and (41), we

obtain:

V[⟨R⟩b ] = V[⟨F ⟩b ] + α⊺ (A − ANA)α − 2b⊺(I − NA)α . (42)

By using b⊺ = α⊺A and simplifying, we obtain the desired relation-

ship (18).
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