Point-Based Global Illumination
for Movie Production

.
| I
/ | . |
\ { |
J
G /’ ,
x /vf/l

Per Christensen
Pixar Animation Studios

SIGGRAPH 2010 Course

Overview

e Point-based global illumination
— generating direct illumination point cloud
— rendering GI using point cloud

e Examples of use in movies

e Variations and extensions

¢ \What's next?

Related work

e Method is inspired by Bunnell’s point-based
GPU method

e Related to clustering radiosity and point-
based subsurface scattering

Point-based global illumination

e Fast, low memory, no noise

e Handles complex geometry (including
dense polygon meshes, hair, leaves,
displacement), many light sources,
complex surface shaders, ...

e Movie-production friendly

e Part of Pixar's RenderMan renderer

Point-based global illumination

e Three steps:

e Generate point cloud of directly
illuminated surface colors (radiosity)

e Organize points into octree; larger
noints and spherical harmonics

e Render: compute diffuse/glossy
global illumination at each shading

point

A point cloud

e Each point: position, normal, radius, color
= a colored disk

e

point cloud

point cloud

e Terminology: “point” or “disk” or “surfel™?
PIXAR

Generate point cloud

e Render direct illumination image

e Generate point cloud file at same time

rendered image point cloud, 560K points (various views)
PIXAR

Generate point cloud

e Point cloud files from “Up”

fill lights

Organize points into octree

e Organize points into octree

e Each cluster of points is represented
0y a larger point or a spherical
narmonic representation of directional
ight distribution

3

Compute global illum at a point

e Basic idea: add up color from all other
points!

Compute global illum at a point

e For efficiency: use cluster of points for
distant points

e For higher accuracy: ray trace close
points

7\‘{%

Compute global illum at a point

e Problem: if all points are added up, even
points “hidden” behind other points will
contribute

o SO

Compute global illum at a point

e Solution: rasterize colors contributing to
a point -- world “as seen” by that point

e Raster cube examples:

/./ -

point on ceiling | point on teapot lid

PIXAR

Compute global illum at a point

e Multiply all raster pixel colors by
reflectance function (BRDF); add

e Result is diffuse / glossy reflection at
point

Global illumination result

—
direct illum (9 sec) direct illum + diffuse GI +
glossy GI (21 sec)

PIXAR

Use In movies

e Implemented in Pixar's RenderMan

e Integrated into lighting pipeline at ILM,
Pixar, Disney, DNeg, MPC, ...

Use In movies

e Pirates of the Caribbean 2 & 3, Eragon, Surf’s Up,
Spiderman 3, Harry Potter 5 & 6, Chronicles of
Narnia, Fred Claus, Beowulf, Spiderwick
Chronicles, Ironman 1 & 2, Indiana Jones, 10,000
BC, Batman: Dark Knight, Quantum of Solace,
Cloverfield, Doomsday, Hellboy 2, Inkheart, Wall-E,
Bolt, Star Trek, Terminator 4, The Boat that
Rocked, Fast & Furious 4, Angels and Demons,
Night at the Museum, Up, Transformers 2, 2012,
Sherlock Holmes, Percy Jackson, The Green Zone,
Prince of Persia, Toy Story 3, ...

PIXAR

Sony: “Surf’s Up” ambient occlusion

“Surf’s Up” test (Courtesy of Rene Liﬁib}erger »S;ony)

PIXAR

“Pirates of the Caribbean:
(Courtesy of Industrial Li

Disney: special effects on “Bolt”

(Courtesy of Dale Mayeda, Disney) PIXAR

“Up"” example without global illum

“Up"” example with global illum

“Up” example without global illum

| P

ALY S A #5570 X33 FFEETREL .."..,5"

“Up” example with global illum

NSRSV D33P a RIS

“Toy Story 3" examples

“Toy Story 3" examples

“Toy Story 3" examples

“Toy Story 3" examples

s

“Toy Story 3" examples

\ ‘ &
N "if’ ‘
/ - ,.’\) -

{ -
.

Yy

“Toy Story 3" examples

Variations and extensions

e Area light sources
Environment illumination

Multiple light bounces

Final gather for photon maps
Ambient/directional/reflection occlusion

e \/olumes

Area light sources + soft shadows

e Treat area light sources the same as
surfaces: generate point cloud with color
data

e Light sources can have arbitrary shape and
colors

e Also write (black) points for shadow-casting
objects

Area light sources + soft shadows

area lights

KX

—

A\‘ -~

area light illumination

Environment illumination -- IBL

e Use environment color for raster pixels not
covered by points

HDRI env map

Multiple light bounces

e Run the algorithm n times

e (For efficiency: first n-1 times can be
computed at fewer points)

\ -._L! l

n=23
PIXAR

Final gather for photon mapping

e Final gather step is usually done with ray
tracing; slowest part of photon mapping

e Use point-based method instead

Final gather for photon mapping

irect illum

Special case: Ambient occlusion

e Fraction of hemisphere above a point
that’s covered

® v

e Similar to shadows on overcast day

e \alues between 0 and 1

Ambient occlusion

e Generate point cloud with only position,
normal, radius (no colors)

Ambient occlusion

Ambient occlusion (and reflections)

NEW: Image-based relighting

e [n addition to ambient occlusion, also
compute directional visibility: spherical
harmonic coeffs. at each point

e Compute SH coeffs for environment map

e (Re-)rendering is just multiplying SH
coefficients -- 9 or 25 mults/point. Fast!

NEW ‘Image-based relighting

Special case: reflection occlusion

e As ambient occlusion, but narrow cone of
directions (around reflection direction)

Global illumination in volumes

e Points don't have normals: spheres,
not disks

e [llumination from all directions: entire
raster cube

e surface <« volume

e volume < volume

Global illumination in volumes

surface to volume volume to volume

Optimization: interpolation

e If the color bleeding varies only a little in
an area (<2%), we simply interpolate it

e Technigue known from ray tracing
(“irradiance cache”)

Optimization: interpolation

e Compute color bleeding at the 4 corners of
surface patch
e |s the difference between 4 values small?

— yes: interpolate on patch
— no: split patch in 2; recurse

surface patch
PIXAR

Parallel computation

e Global illumination at each point is
independent

e Ideal for parallel execution

e Observed speedups:
— 4 cores: ~3.6
— 8 cores: ~6.6

More information

e M. Bunnell, "Dynamic ambient occlusion
and indirect lighting”, GPU Gems 2

e P. Christensen, “Point-based approximate

color bleeding”, Pixar tech memo #08-01

e T. Ritschel et al, “"Micro-rendering for
scalable, parallel final gathering”,
SIGGRAPH Asia 2009

Summary

e Point-based diffuse and glossy global
llumination is fast and can handle complex
production scenes

e Also works for area lights, env. map
illumination, multiple bounces, ambient
occlusion, reflection occlusion, volumes

e In Pixar's RenderMan

e Widely used in production

What's next?

e "Up” and "Toy Story 3": 1-bounce PBGI was
used in addition to all the traditional lights

o Next:

— reduce number of traditional lights?
— multiple bounces?

What's next?

e Implementation improvements:
— improved accuracy in rasterization?
— baking micropolygon grids?
— GPU implementation?

Acknowledgments

e RenderMan team: Dana Batali, ...

e Mike Bunnell, Rene Limberger, Christophe
Hery

e Pixar: Max P, P Sumo, JC, Stefan, Guido, ...

e Dale Mayeda (Disney), Philippe Leprince
(DNeg), Anders Langlands (MPC), ...

Thanks!

Questions?

B S P e ¥ R P o)

