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Approximation rapide de la rotation d’harmoniques sphériques
Résumé : La rotation de fonctions représentées par des harmoniques sphériques est une opération importante dans les
algorithmes de calcul d’éclairage en temps réel et de simulation d’éclairage global. Pour certains algorithmes, une rotation
est effectuée pour chaque somment ou même chaque pixel. Cette procédure doit donc être efficace en terme de temps
de calcul. Malheureusement les procédures existantes ne permettent pas de répondre aux exigences des algorithmes de
calcul d’éclairage parce qu’elles sont coûteuses en terme de nombre d’opérations. Dans ce rapport, nous proposons une
approximation efficace de la rotation d’harmoniques sphériques, cette approximation étant applicable dans le cas de petits
angles de rotation. Nous remplaçons la matrice générale de rotation d’harmoniques sphériques par son développement
en série de Taylor au premier ou au seconde ordre, ce qui réduit la complexité de calcul de façon significative. Cette
approximation réduit aussi la complexité asymptotique de la rotation. En effet, plus l’ordre des harmoniques sphériques
sera élevé, plus l’approximation est rapide. Nous appliquons l’approximation proposée au cas de l’éclairage global et à
celui du calcul en temps réel de l’éclairage à l’aide de cartes d’environnement.

Mots clés : rotation d’harmoniques sphériques, éclairage à l’aide d’harmoniques sphériques, cache de luminance, carte
d’environnement, carte de normales
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1 Introduction
When using spherical basis functions (e.g. spherical harmonics or wavelets) for real-time shading with environment
lighting [KSS02, SKS02, LK03, SHHS03, WTL04, LSSS04, NRH04], one has to face the problem of aligning the envi-
ronment lighting (represented in the global coordinate frame) with the reflectance function, or BRDF (represented in the
local coordinate frame at each surface point). The alignment is achieved through a rotation of a (hemi)spherical function.
Kautz et al. [KSS02] perform the rotation of the environment lighting represented by spherical harmonics for each vertex
during real-time rendering and report that the rotation is the bottleneck. Ng et al. [NRH04] avoid the rotation by storing
the BRDF multiple times, pre-rotated to the global frame for different surface normal directions. This approach wastes
memory, prohibits the use of high frequency BRDFs and does not allow anisotropic BRDFs. Precomputed radiance trans-
fer [SKS02, LK03, SHHS03, WTL04, LSSS04] avoids the rotation problem for smooth surfaces since the alignment is
included in the transfer matrix stored per-vertex. However, in the case of normal mapped surfaces, a per-pixel rotation
is needed even for precomputed radiance transfer. Also for global illumination computation, efficiency of hemispherical
function rotation can be critical [KGPB05].

To our knowledge, no simple rotation procedure exists for wavelet representation. Functions represented by spherical
harmonics can be rotated by a linear transformation of the representation coefficients [Gre03], but the existing procedures
[IR96, IR98, CIGR99, KSS02] are too slow for per-pixel rotation in real-time.

In this paper we address the rotation of functions represented by spherical harmonics. We propose an efficient ap-
proximation of the spherical harmonic rotation based on replacing the general spherical harmonic rotation matrix with its
Taylor expansion. We show that our approximation has lower computational complexity in terms of spherical harmonic
order than the previous methods. Our method is also faster and we show that a rotation can be performed in real-time on a
per-pixel basis. We apply the proposed rotation in global illumination and real-time lighting with environment maps. The
ability to perform the SH rotation per-pixel allows us to decouple the illumination quality from the number of vertices.
We demonstrate this by rendering normal mapped objects illuminated by environment maps in real-time.

The next section provides the background on spherical harmonic rotation, Section 3 describes our rotation approxi-
mation. Applications and results are presented in Section 4 and Section 5 concludes the work.

2 Background
2.1 Spherical Harmonics
Any spherical function L(ω) can be approximated in terms of spherical harmonics as L(ω) = ∑n−1

l=0 ∑l
m=−l λ m

l Y m
l (ω),

where ω is a direction in 3D, Y m
l are the spherical harmonics (abbreviated SH) [Gre03] and n is the SH approximation

order. Coefficients λ m
l constitute the representation of L(ω) with respect to the SH basis. There are n2 coefficients in the

approximation of order n. Spherical harmonics of equal l index form a band, with one harmonic in the first band (m = 0),
three in the second band (m = −1,0,1), five in the third band (m = −2,−1,0,1,2), etc. Although the coefficients have
two indices l and m, they are stored in a one dimensional array [λ 0

0 ,λ−1
1 ,λ 0

1 ,λ 1
1 , . . .], indexed by i = l(l + 1)+ m. This

layout is used in the example code in this paper.

2.2 Spherical Harmonic Rotation
Problem Statement. Given a vector of SH coefficients Λ = {λ m

l } representing a spherical function L(ω)= ∑n−1
l=0 ∑l

m=−l λ m
l Y m

l (ω),
find a vector of coefficients ϒ = {υm

l } representing the rotated function L(R−1(ω)) = ∑n−1
l=0 ∑l

m=−l υm
l Y m

l (ω), where R

is the desired rotation.
Rotation of any function represented by SH of order n can be exactly represented by SH of order n. The rotation can

be carried out as a linear transformation ϒ = RΛ with a block-sparse rotation matrix R (Figure 1). Note that coefficients
between different SH bands do not interact. The problem is how to construct R for a desired 3D rotation and order n.
Different ways of solving this task are described in [Gre03]. Our approach to SH rotation, described in Section 3, avoids
explicit construction of R. We compare our approach with the methods of Ivanic and Ruedenberg [IR96, IR98] and the
ZXZXZ decomposition of Kautz et al. [KSS02].

Ivanic and Ruedenberg [IR96, IR98] construct R recurrently, starting from R1 continuing over R2 up to Rl for any
given l. Elements of the block Rl are computed from elements of Rl−1 and R1 using rules summarized in [IR98, Gre03].
The procedure is relatively efficient, but too slow to be used for each pixel or even each vertex in real-time.

A more efficient SH rotation can be achieved with the method of [KSS02] that we call here the ZXZXZ decomposition.
A general 3D rotation is first decomposed into ZYZ Euler angles (α,β ,γ). The rotation around Y by angle β is then
expressed as a rotation around X by π/2, a general rotation around Z by β and a rotation around X by −π/2. The angle
of the two rotations around X is fixed, therefore the rotation matrices for them can be pre-computed. The number of non

PI n ˚ 1728
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1 0 0 . . .
0 R1 0 . . .
0 0 R2 . . .
...

...
...

. . .











Figure 1: Form of the SH rotation matrix. (After [Green 2003]).

zero elements in those matrices is only a fourth of that of a general SH rotation matrix and a general rotation around Z is
very simple (see Appendix C), thus the efficiency of this method.

Direct3D API [Mic04] provides the D3DXSHRotate() call that rotates a function represented by spherical harmonics.
The implementation is probably based on explicit formulas for the elements of the rotation matrix in terms of Euler angles
[SKS02], since it only works for orders up to n = 6. It is slower than the method of Ivanic and Ruedenberg [IR96, IR98].

Choi et al.’s method [CIGR99] performs the rotation in complex space and then converts the results back to real space
(our spherical harmonics and coefficient vectors are real). According to [Gre04] this procedure is slower than the method
of Ivanic and Ruedenberg [IR96, IR98]. The source code for these two methods is available online [Wil04].

None of the listed methods is fast enough to allow per-pixel rotation, which inspired us to develop our fast rotation
approximation.

3 Our Contribution: Fast Rotation Approximation
This section describes our fast approximation of the SH rotation using the Taylor expansion of the rotation matrix. We
show that the approximation decreases the rotation complexity from O(n3) to O(n2), where n is the order.

According to Euler’s rotation theorem, any rotation may be described using three angles. We decompose rotations
using the ZYZ convention and express them as three subsequent rotations around Z, Y and Z axes by angles α , β and γ ,
respectively, i.e. R = RZ(α)RY (β )RZ(γ).

The rotation around Z is simple and efficient (Appendix C). It remains to find the rotation matrix RY (β ). Our main
contribution consists in replacing this matrix by its Taylor expansion at β = 0:

RY (β ) ≈ I+β
dRY

dβ
(0)+

β 2

2
d2RY

dβ 2 (0).

where I is the identity matrix. Computation of the derivative matrices is described in Appendix A. The first derivative
matrix dRY

dβ (0) has nonzero elements only on the super- and subdiagonals and the second derivative matrix d2RY
dβ 2 (0) has

non-zeros only on the main diagonal and on the diagonal just below the subdiagonal and just above the superdiagonal
(Figure 2). Therefore, the resulting rotation matrix approximation is very sparse. The rotation matrix RY (β ) does not
have to be explicitly constructed at all because we know where the nonzero elements are.

In practice we use a “1.5-th order” Taylor expansion, where any non-diagonal elements of the second derivative matrix
are ignored. The C code below shows how the Y rotation is carried out using the “1.5-th order” Taylor expansion.

Irisa
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dRY

dβ
(0) =





















0 0 0 0 . . .

0 dR1
Y

dβ (0) 0 0 . . .

0 0 dR2
Y

dβ (0) 0 . . .

0 0 0 dR3
Y

dβ (0) . . .

...
...

...
...

. . .





















,

where

dR1
Y

dβ
(0) =





0 0 0
0 0 −1
0 1 0





dR2
Y

dβ
(0) =











0 1 0 0 0
−1 0 0 0 0
0 0 0 −1.73 0
0 0 1.73 0 −1
0 0 0 1 0











dR3
Y

dβ
(0) =



















0 1.22 0 0 0 0 0
−1.22 0 1.58 0 0 0 0

0 −1.58 0 0 0 0 0
0 0 0 0 −2.45 0 0
0 0 0 2.45 0 −1.58 0
0 0 0 0 1.58 0 −1.22
0 0 0 0 0 1.22 0



















d2RY

dβ 2 (0) =





















0 0 0 0 . . .

0 d2R1
Y

dβ 2 (0) 0 0 . . .

0 0 d2R2
Y

dβ 2 (0) 0 . . .

0 0 0 d2R3
Y

dβ 2 (0) . . .

...
...

...
...

. . .





















,

where

d2R1
Y

dβ 2 (0) =





0 0 0
0 −1 0
0 0 −1





d2R2
Y

dβ 2 (0) =











−1 0 0 0 0
0 −1 0 0 0
0 0 −3 0 1.73
0 0 0 −4 0
0 0 1.73 0 −1











d2R3
Y

dβ 2 (0) =



















−1.5 0 1.94 0 0 0 0
0 −4 0 0 0 0 0

1.94 0 −2.5 0 0 0 0
0 0 0 −6 0 3.87 0
0 0 0 0 −8.5 0 1.94
0 0 0 3.87 0 −4 0
0 0 0 0 1.94 0 −1.5



















Figure 2: First (left) and second (right) derivative of the Y rotation matrix at β = 0. (Numbers are rounded to three
significant digits.)

/** Rotate around Y using the 1.5-th order Taylor expansion
@param beta angle of rotation around Y
*/

void shRotYdiff15(int order, float* dest, const float* src,
const float* dySubDiag, const float* ddyDiag,
float beta) {

float bbeta = 0.5f*beta*beta;
dest[0] = src[0];
for(int i=1; i<order*order-1; i++) {
dest[i] = src[i] * (1.0f + bbeta*ddyDiag[i]) +
beta * (dySubDiag[i]*src[i-1] - dySubDiag[i+1]*src[i+1]);

}
dest[i] = src[i] * (1.0f + bbeta*ddyDiag[i]) +

beta * dySubDiag[i] * src[i-1];
}

The arrays dySubDiag and ddyDiag contain the subdiagonal of dRY
dβ (0) and the diagonal of d2RY

dβ 2 (0) respectively. They
are computed just once at the start-up of the application and remain constant throughout the run-time. The superdiagonal
of dRY

dβ (0) does not have to be stored, since the first derivative matrix is, like any other infinitesimal rotation matrix,
antisymmetric [Wei04].

All components for the full rotation R = RZ(α)RY (β )RZ(γ) are now available. The rotation proceeds as follows:

1. Decompose rotation into the ZY Z Euler angles α , β and γ .

2. Rotate around Z by α (see Appendix C) .

3. Use shRotYdiff15() to rotate around Y by β .

4. Rotate around Z by γ .

It has to be emphasized that the described procedure only approximates the rotation and is usable only if the angle of
rotation around Y is small. An application using our approximation has to assure that this condition holds. Section 3.2
compares the approximation error for the first, “1.5-th” and second order Taylor expansions.

3.1 Complexity
We compare the complexity of Ivanic and Ruedenberg’s rotation [IR96, IR98] and rotation by ZXZXZ decomposi-
tion [KSS02] with the complexity of our approximation. The complexities are expressed in terms of order n.

Ivanic and Ruedenberg’s method. The number of non-zero elements in a general SH rotation matrix (Figure 1)
for order n is Nnz(n) = ∑n

i=1(2i− 1)2 = n(4n2 − 1)/3. Computation of each element of the matrix using Ivanic and
PI n ˚ 1728



6 Křivánek, Konttinen, Pattanaik & Bouatouch

Ruedenberg’s method [IR96, IR98] is a constant-time operation, therefore the complexity of the SH rotation matrix
construction is O(n3). Complexity of transforming a SH coefficient vector with the matrix is also O(n3).

ZXZXZ Decomposition. One Z rotation involve NZ(n) = 2n(n − 1) multiplications; the cost of one X rotation is
NX (n) = ∑n

i=1(i
2 − i+1) = n(n2 +2)/3. Rotation of one SH vector with the ZXZXZ decomposition thus costs 3NZ(n)+

2NX (n) = n(2n2 +18n−14)/3 ∈ O(n3) multiplications. This is only about a half of the number of multiplications needed
for transforming a vector by a full SH rotation matrix R and there is no explicit construction of the matrix.

Our rotation approximation. There are NdY (n) = 5n2 multiplications in rotYdiff15(). The total cost of our rotation
2NZ(n)+NdY (n) = 9n2 −4n ∈ O(n2) is asymptotically lower than the previous methods. The advantage of our method in
terms of speed becomes more pronounced as the order n increases, the downside being the lower accuracy for higher n.

3.2 Error Analysis.
Let RY (β ) be the correct matrix for rotation around Y by β and let R′

Y (β ) be our approximation. For a given coefficient
vector Λ, the approximation error E(β ) is given by the L2 norm

E(β ) = ‖RY (β )Λ−R′
Y (β )Λ‖ = ‖(RY (β )−R′

Y (β ))Λ‖ = ‖D(β )Λ‖

Maximum of E(β ) over all unit length Λ is the L2 norm of the matrix D(β ), which is equal to the greatest singular value
of D(β ). Average E(β ) over all unit length Λ is the average singular value of D(β ). Figure 3 shows the maximum and
average error E(β ) and also the actual measured E(β ) for a Phong lobe cos7(θ). Although the maximum error grows
very quickly with β , the results for the Phong lobe show good accuracy up to β = 25◦.

Figure 3: Approximation error E(β ) as a function of β for spherical harmonics of order 5 (left) and 8 (right). The plots
in the first row show the maximum error for any unit length vector, the second row shows the average error over all unit
length vectors and the third row shows the actual error for a Phong lobe cos7(θ). Error is expressed as the Euclidean
distance between the coefficient vectors. Each plot shows the error for the 1st-, 1.5th-, and 2nd order Taylor expansion.

Irisa
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4 Applications and Results

4.1 Real-time Environment Lighting
In this section we extend the technique of Kautz et al. [KSS02] with normal mapping through the use of our rotation
approximation. A brief review of the original technique is as follows. Kautz et al. use spherical harmonics to perform
real-time shading of surfaces with arbitrary BRDFs due to low-frequency environment lighting. The BRDF is represented
as a 2D table, whose each element stores the SH coefficients of the BRDF for one fixed outgoing (viewing) direction.
Environment lighting is also represented by spherical harmonics. The lighting integral for a given viewing direction is
computed as a dot product of lighting coefficients and BRDF coefficients for that outgoing direction. In this technique,
the variation of incident lighting due to surface orientation is limited by the number of vertices in the mesh. The rendering
algorithm proceeds as follows:

1. [Per-vertex, CPU] Rotate the lighting coefficients to the local coordinate frame of vertex vp. Send the rotated
coefficient as vertex data to the GPU.

2. [Per-pixel, GPU] Look up the BRDF coefficients for the viewing direction transformed to the local coordinate frame.

3. [Per-pixel, GPU] Compute the dot product of local lighting and BRDF coefficients.

Our extension decouples the lighting computation from the number of vertices and allows modulating the surface
normal on a per-pixel basis by a normal map. We achieve this by modifying the original rendering algorithm in the
following way (new steps are in italics):

1. [Per-vertex, CPU] Rotate the lighting coefficients to the local coordinate frame of vertex vp. Send the rotated
coefficient as vertex data to the GPU.

2. [Per-pixel, GPU] Look up the normal map (normal map represents the modulation of the local coordinate frame at
the pixel with respect to the frame given by the interpolated per-vertex normals).

3. [Per-pixel, GPU] Look up the BRDF coefficients for the viewing direction transformed to the modulated local
coordinate frame.

4. [Per-pixel, GPU] Use our SH rotation approximation to rotate the BRDF coefficients from the modulated local frame
to the interpolated per-vertex local frame.

5. [Per-pixel, GPU] Compute the dot product of local lighting and BRDF coefficients.

The modulation of the surface normal by the normal map is usually limited to rather small angles; we can therefore
safely use our rotation approximation. Moreover, thanks to the approximation simplicity, we were able to implement the
per-pixel rotation in a pixel shader of the graphics hardware.

The above extension leads to a significant improvement of visual quality as illustrated in Figures 4 and 5. It also
allows using meshes with lower number of vertices than the original technique, which improves the overall rendering
performance. Similar approach can also be used to augment visual richness of the spherical harmonics-based precomputed
radiance transfer techniques [Sloan 2002, Kautz 2002], by applying the per-pixel rotation on the transferred radiance.

To simplify the normal mapping one can ignore the per-pixel rotation (step 4) and use the normal map only to modulate
the local frame for the BRDF look-up. Unlike our method, this simplified normal mapping generates flat looking surfaces
and it also does not capture color variations on the surface bumps that stem from the modulated surface normal.

Results. Figures 4 and 5 compare our results with the simplified normal mapping. We used spherical harmonics of order
n=5 (25 coefficients). The rotation approximation used the “1.5-th order” Taylor expansion for bands l=1 to l=3 and the
first order Taylor expansion for band l=4. Due to the limited pixel shader instruction count we had to use four passes to
accommodate 25 coefficients. The frame rates for these images at resolution 800×600 are:

Simplified Ours
Vase (891 vertices) 46 fps 58 fps
Sphere (560 vertices) 54 fps 65 fps
Plane (25 vertices) 56 fps 75 fps

These figures were measured on a 2.26GHz Pentium IV PC with ATI Radeon 9800 Pro GPU. The drop in the frame
rate due to the rotation is more pronounced for the very low-frequency mesh, where the rendering time is determined
mostly by fragment processing.

PI n ˚ 1728



8 Křivánek, Konttinen, Pattanaik & Bouatouch

Figure 4: Detail of a normal mapped vase rendered with our SH rotation (right) and with the simplified normal mapping
(left). Normal mapping with our SH rotation is more successful at conveying the shape approximated by the normal map.
The vase is illuminated by the St Peter’s Basilica environment map; the BRDF comes from a measurement of a brushed
metal [Wes].

4.2 Radiance Caching
Here we briefly review the radiance caching algorithm and describe how we have applied our rotation approximation.
Radiance caching [KGPB05] is a generalization of Ward et al.’s [WRC88] irradiance caching algorithm. It accelerates
indirect illumination computation on glossy surfaces by sparsely sampling, caching and interpolating the incoming radi-
ance. The incoming radiance at a point is a hemispherical function represented by spherical or hemispherical harmonics
[GKPB04] coefficients stored in the radiance cache. For a ray hitting a glossy surface at a point p, radiance cache is
queried. If no cached radiance record is found near p, hemisphere above p is sampled and the incoming radiance co-
efficients are stored in the radiance cache. If cached records are found near p, the incoming radiance coefficients are
interpolated with the formula:

Λ(p) =
∑S (RiΛi)wi(p)

∑S wi(p)
(1)

No translation gradients are used here. Weight of the i-th cache record with respect to point p is given by wi(p) =
(‖p−pi‖/Ri +

√
1−n ·ni)

−1, where pi is the position of the i-th cache record, ni is the normal at pi, Ri is the harmonic
mean length of rays sampling the hemisphere above pi, n is the normal at p, S = {i|wi(p) > 1/a} and a is a user defined
allowed error. The important thing here is the rotation Ri that has to be used to align the coordinate frames at pi and p:
the cached incoming radiance has to be rotated before the interpolation is possible (Figure 6). This means that there is
one or more rotation for each interpolation (each pixel on a visible glossy surface).

Due to the interpolation criterion the normals at pi and p are always similar (if they were not, pi would not be used for
interpolation at p). Angle of rotation around the Y axis in the Euler ZYZ decomposition of Ri corresponds to the angle
between normals ni and n and hence it is always small. We can therefore safely use our rotation approximation.

We use the approximated rotation for β < βlim and the more costly ZXZXZ decomposition otherwise. If we kept
βlim constant, increasing the radiance caching error a would lead to more frequent use of the ZXZXZ decomposition
for rotation and the interpolation would slow down. This is certainly not what the user expects from increasing allowed
caching error. To rectify this, we set the limiting angle to βlim = 1.25a (derivation in Appendix B), which allows more
error in rotation if the user allows more error in interpolation. As a consequence, the percentage of ZXZXZ rotations
is constant regardless of a in a given scene, which is what the user expects. In this setting, our approximation and the
ZXZXZ rotation may not meet in a visually continuous fashion at βlim if a is high (a > 0.3 in our scenes). Is such case,
however, the caching artifacts are more pronounced and the rotation artifacts go unnoticed.

Results. For results in this section we used the “1.5-th Taylor expansion” of the Y rotation matrix (all non diagonal
elements of the second derivative matrix are ignored). When using our rotation approximation, we set the limiting angle
βlim so that it is never exceeded.

In Figure 7 we compare the results of radiance caching obtained by the correct and the approximated rotation. Instead
of a side-by-side comparison, in which the results are visually indistinguishable, we show a color coded difference between
the two methods. Image areas exhibiting the maximum error are usually very curved, and the artifacts, if any, are well
masked.

Irisa



Fast Spherical Harmonic Rotation 9

Figure 5: More results of the normal mapping with our SH rotation (right) compared to the simplified normal mapping
(left). The BRDFs used were (from top to bottom) Lambertian, Phong, Ward isotropic, Ward anisotropic. The objects
are illuminated by the Grace Cathedral environment map. Note the color variations on the surface bumps captured by
our method. For the Lambertian surface (top), the simplified normal mapping does not work since the BRDF is view
independent. Our method is also more successful at revealing the effects of BRDF anisotropy (bottom).

Table 1 shows the rendering times for the flamingo and the sphere (Figure 7 left) with radiance caching. The rendering
time only includes the interpolation from the cache. For SH order n = 6, our method is 4 times faster than the ZXZXZ
decomposition; for n = 10 it is 6 times faster.

5 Conclusion
We presented a fast technique for rotating functions represented by spherical harmonics. We approximated the spherical
harmonic rotation matrix by its Taylor expansion which increases its sparsity. Our technique decreases the rotation
complexity and is faster than previous rotation algorithms. Although our rotation approximation is accurate only for small
rotation angles, we have demonstrated its practical usefulness in real-time and off-line rendering. The rotation algorithm
is simple enough to fit in the pixel shader of standard graphics hardware, which allows to apply the rotation on a per-

PI n ˚ 1728



10 Křivánek, Konttinen, Pattanaik & Bouatouch

Figure 6: Rotation Ri aligns the coordinate frame at pi and p before interpolation is possible in radiance caching. (After
[Křivánek et al. 2004].)

Order 6 10
RT TPR RT TPR

Flamingo
Ignore 10.3 s — 11.2 s —

Our method 12.8 s 0.68 µs 16.9 s 1.54 µs
ZXZXZ 21.2 s 2.96 µs 47.4 s 9.83 µs
Ivanic 47.3 s 10.1 µs 192 s 49.1 µs

DirectX 76.4 s 17.9 µs — —
Sphere

Ignore 3.30 s — 3.96 s —
Our method 4.28 s 0.65 µs 6.13 s 1.44 µs

ZXZXZ 7.08 s 2.51 µs 16.8 s 8.57 µs
Ivanic 17.8 s 9.63 µs 75.8 s 47.8 µs

DirectX 30.3 s 17.9 µs — —

Table 1: Rendering times for the flamingo and sphere images (Figure 7 left) with radiance caching. The rendering
time only includes interpolation from the cache. Various rotation methods are used for interpolation: Ignore (rotation is
ignored), our method, ZXZXZ decomposition, the method of Ivanic and Ruedenberg and the DirectX rotation. ‘RT’ is
the frame rendering time and ‘TPR’ is the time per rotation. There were 1,226,917× 3 = 3,680,751 rotations for the
flamingo and 501,420×3 = 1,504,260 rotations for the sphere.

pixel basis in real-time. We demonstrated this by shading normal mapped surfaces with arbitrary BRDFs by environment
lighting. We have also applied our rotation approximation in global illumination computation on glossy surfaces.

In future work, we would like to extend our rotation-based normal mapping to precomputed radiance transfer. We also
believe that a similar approach can be used to approximate rotation of functions represented by wavelets.
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A SH Rotation Matrix Derivative
Here we describe the computation of the k-th derivative matrix dkRY

dβ k . The algorithm is based on Ivanic and Ruedenberg’s

rotation matrix construction [IR96, IR98] and retains its structure. Elements of the derivative matrix block dkRl
Y

dβ k are

indexed by m1 and m2 and we denote them R(k)
Y (l,m1,m2). We start with bands l = 0 and l = 1:

R(k)
Y (0, 0, 0) = 1(k)

R(k)
Y (1, −1, −1) = 1(k)

R(k)
Y (1, −1, 0) = 0

R(k)
Y (1, −1, 1) = 0

R(k)
Y (1, 0, −1) = 0

R(k)
Y (1, 0, 0) = cos(k)(β )

R(k)
Y (1, 0, 1) = −sin(k)(β )

R(k)
Y (1, 1, −1) = 0

R(k)
Y (1, 1, 0) = sin(k)(β )

R(k)
Y (1, 1, 1) = cos(k)(β )

where β = 0 and 1(k) is the derivative of one (1(k) = 1 if k = 0 and 1(k) = 0 if k > 0). For higher bands, we compute
simultaneously the zero-th, first, second, . . . maxderiv-th derivative:

for l = 2 . . .n−1 do
for k = 0 . . .maxderiv do

for m1 = −l . . . l do
for m2 = −l . . . l do

R(k)(l,m1,m2) := ul
m1m2

·dU (k)(l,m1,m2)+

vl
m1m2

·dV (k)(l,m1,m2)+

wl
m1m2

·dW (k)(l,m1,m2)
end for

end for
end for

end for
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Numerical coefficients ul
m1m2

, vl
m1m2

and wl
m1m2

are the same as in the original paper [IR98]. Functions dU , dV and
dW are defined as:

dU (k)(l,m1,m2) = dP(k)(l,m1,m2,0)

dV (k)(l,m1,m2) =



















































dP(k)(l,m1 −1,m2,1)−
dP(k)(l,−m1 +1,m2,−1)

if m1 > 1
√

2dP(k)(l,0,m2,1) if m1 = 1
dP(k)(l,1,m2,1)+

dP(k)(l,−1,m2,−1)
if m1 = 0

√
2dP(k)(l,0,m2,−1) if m1 = −1

dP(k)(l,−m1 −1,m2,−1)+

dP(k)(l,m1 +1,m2,1)
if m1 < −1

dW (k)(l,m1,m2) =















dP(k)(l,m1 +1,m2,1)+

dP(k)(l,−m1 −1,m2,−1)
if m1 > 0

dP(k)(l,m1 −1,m2,1)−
dP(k)(l,−m1 +1,m2,−1)

otherwise

with

dP(k)(l,m1,m2, i) =























dT (k)(1, i,0, l −1,m1,m2) if |m2| < l
dT (k)(1, i,1, l −1,m1, l −1)−
dT (k)(1, i,−1, l −1,m1,−l +1)

if m2 = l

dT (k)(1, i,1, l −1,m1,−l +1)+

dT (k)(1, i,−1, l −1,m1, l −1)
if m2 = −l

and

dT (k)(l,m1,m2, l′,m′
1,m

′
2) =

k

∑
i=0

(

k
i

)

R(k)
Y (l,m1,m2) ·R(k−i)

Y (l′,m′
1,m

′
2).

Function dT implements the product derivative rule ( f g)(k) = ∑k
i=0

(k
i

)

f (i)g(k−i), where f (k) denotes the k-th derivative.

B Rotation Approximation Limiting Angle
The decision whether a radiance cache record i will be included in the interpolated value at p depends on its weight as
a > 1/wi(p) (a is the user defined allowed error). Weight is a function of the distance ‖p−pi‖ and the angle between
normals β = 6 (n,ni). Consider a constant curvature surface with the osculating circle radius r. Then ‖p−pi‖ = 2r sin β

2

and therefore the weight is only a function of β , i.e. 1/wi(p) = f (β ) = 2r
Ri

sin β
2 +

√

1− cosβ , where Ri is the harmonic
mean distance. The aim is to find for a given a and fixed r the value of βlim such that for all accepted radiance cache
records, the normal divergence is never more than βlim. To this end we need the inverse function of f , which is impossible
to find analytically. Instead we take the first order Taylor expansion of f at β = 0 which is f (β ) ≈ β (1/

√
2+ r

Ri
) and we

find β < a(1/
√

2 + r
Ri

)−1. We choose r
Ri

= 0.1 and we get βlim = 1.25a (in degrees βlim = 70.1a). The choice r
Ri

= 0.1
means that all surfaces of curvature 10/Ri or smaller will be rendered without exceeding βlim.

C SH Rotation around Z-axis
The Z-rotation is computed efficiently without constructing the rotation matrix RZ(α) using the following procedure:

for l = 0 . . .n−1 do
υ0

l := λ 0
l

for m = 1 . . . l do
υ−m

l := λ−m
l cos(mα)−λ m

l sin(mα)
υm

l := λ−m
l sin(mα)+λ m

l cos(mα)
end for

end for
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The sines and cosine of multiple angles can be computed with the recurrence formula:

sin(mα) = 2sin((m−1)α)cos(α)− sin((m−2)α)

cos(mα) = 2cos((m−1)α)cos(α)− cos((m−2)α)

The number of multiplications in the rotation procedure is NZ(n) = 2n(n−1) thus the complexity is O(n2).
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