
Fast Approximation to Spherical Harmonic Rotation

Jaroslav Křivánek∗

Czech Technical University

Jaakko Konttinen†

Univ. of Central Florida

Sumanta Pattanaik‡

Univ. of Central Florida

Kadi Bouatouch§

IRISA/INRIA Rennes

Jiřı́ Žára¶

Czech Technical University

Abstract

Rotation of functions represented by spherical harmonics is an im-
portant part of many real-time lighting and global illumination al-
gorithms. For some of them a per-vertex or even per-pixel rotation
is required, which implies the necessity of an efficient rotation pro-
cedure. The speed of any of the existing rotation procedures is,
however, not able to meet the requirements of real-time lighting
or fast global illumination. We present an efficient approximation
of the spherical harmonic rotation applicable for small rotation an-
gles. We replace the general spherical harmonic rotation matrix
by its truncated Taylor expansion, which significantly decreases the
computation involved in the rotation. Our approximation decreases
the asymptotic complexity of the rotation—the higher the order of
spherical harmonics, the higher the speed-up. We show applica-
tions of the proposed rotation approximation in global illumination
and real-time shading. Although the rotation approximation is ac-
curate only for small rotation angles, we show this is not a serious
limitation in our applications.

CR Categories: I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism—Shading, Shadowing

Keywords: spherical harmonics rotation, global illumination, ra-
diance caching, environment mapping, normal mapping

1 Introduction

When using spherical basis functions (e.g. spherical harmonics or
wavelets) for real-time shading with environment lighting , one has
to face the problem of aligning the environment lighting (repre-
sented in the global coordinate frame) with the reflectance func-
tion, or BRDF (represented in the local coordinate frame at each
surface point). The alignment is achieved through a rotation of a
(hemi)spherical function. Kautz et al. [2002] perform the rotation
of the environment lighting represented by spherical harmonics for
each vertex during real-time rendering and report that the rotation
is the bottleneck. Ng et al. [2004] avoid the rotation by storing the
BRDF multiple times, pre-rotated to the global frame for differ-
ent surface normal directions. This approach is memory demand-
ing, prohibits the use of high frequency BRDFs and does not al-
low anisotropic BRDFs. Pre-computed radiance transfer (PRT) on
rigid objects with smooth surfaces [Sloan et al. 2002; Lehtinen and
Kautz 2003; Sloan et al. 2003; Wang et al. 2004; Liu et al. 2004;

∗xkrivanj@fel.cvut.cz
†jaakko@cs.ucf.edu
‡sumant@cs.ucf.edu
§kadi@irisa.fr
¶zara@fel.cvut.cz

Wang et al. 2005] avoids the rotation problem since the alignment
is included in the transfer matrix stored per-vertex. However, in
the case of non-smooth surfaces, where the surface normal is mod-
ulated by a texture, a per-pixel rotation is needed even for PRT.
Also for global illumination computation, the efficiency of rota-
tion of functions represented by spherical harmonics can be critical.
Namely in radiance caching [Křivánek et al. 2005; Křivánek 2005],
the speed of the spherical harmonics rotation procedure determines
the efficiency of illumination interpolation.

To our knowledge, no simple rotation procedure exists for wavelet
representation. Functions represented by spherical harmonics can
be rotated by a linear transformation of the representation coeffi-
cients [Green 2003], but the existing procedures [Ivanic and Rue-
denberg 1996; Ivanic and Ruedenberg 1998; Choi et al. 1999; Kautz
et al. 2002] are slow and therefore cause a bottleneck in rendering
algorithms. Representation by Zonal harmonics [Sloan et al. 2005]
or by a sum of Gaussians [Green et al. 2006] can be rotated effi-
ciently, but the slow non-linear optimization needed to fit a given
function limits their use only to scenarios where a lengthy pre-
computation is tolerable.

In this paper we address the rotation of functions represented by
spherical harmonics. We propose an efficient approximation of the
spherical harmonic rotation based on replacing the general spher-
ical harmonic rotation matrix with its truncated Taylor expansion.
The proposed rotation approximation is faster and has a lower com-
putational complexity in terms of spherical harmonic order than
previous methods. Unfortunately, our approximation is accurate
only for small rotation angles. Yet, we show that this is not a seri-
ous restriction in our applications.

We employ our rotation in two rendering applications: (1) global
illumination computation and (2) real-time shading with environ-
ment lighting. In the former case, the fast rotation is used in radi-
ance caching for coordinate-frame alignment in radiance interpola-
tion [Křivánek et al. 2005; Křivánek 2005]. In the latter application,
the ability to perform our fast rotation in real-time on a per-pixel
basis on graphics hardware is employed to enhance Kautz et al.’s
shading algorithm [Kautz et al. 2002] with normal mapping. The
real-time per-pixel rotation, and, consequently, the possibility to use
normal maps to represent surface detail, allows us to decouple the
illumination quality from the number of vertices.

The rest of this paper is organized as follows. The next section
provides the background on spherical harmonic rotation; Section
3 describes our rotation approximation. Applications in radiance
caching and in real-time shading are presented in Sections 4 and 5,
respectively. Finally, Section 6 concludes the work.

2 Background

2.1 Spherical Harmonics

Any spherical function L(ω) can be approximated in terms of
spherical harmonics as L(ω) = ∑

n−1
l=0 ∑

l
m=−l λ m

l Y m
l (ω), where ω is

a direction in 3D, Y m
l are the spherical harmonics (abbreviated SH)

[Green 2003] and n is the SH approximation order. Coefficients λ m
l

constitute the representation of L(ω) with respect to the SH basis.

There are n2 coefficients in the approximation of order n. Spherical
harmonics of equal index l form a band, with one harmonic in the
first band (m = 0), three in the second band (m = −1,0,1), five in
the third band (m = −2,−1,0,1,2), etc. Although the coefficients
have two indices l and m, they are stored in a one-dimensional ar-
ray [λ 0

0 ,λ−1
1 ,λ 0

1 ,λ 1
1 , . . .], indexed by i = l(l + 1)+ m. This layout

is used in the example code in this paper.

2.2 Spherical Harmonic Rotation

Problem Statement. Given a vector of SH coefficients Λ = {λ m
l }

representing a spherical function L(ω) = ∑
n−1
l=0 ∑

l
m=−l λ m

l Y m
l (ω),

find a vector of coefficients ϒ = {υm
l } representing the rotated func-

tion L(R−1(ω)) = ∑
n−1
l=0 ∑

l
m=−l υm

l Y m
l (ω), where R is the desired

rotation.

A rotated version of any function represented by the spherical har-
monics coefficients Λ of order n can exactly be represented by an-
other set of coefficients ϒ, also of order n. The rotation can be
carried out as a linear transformation ϒ = RΛ with a block-sparse
rotation matrix R (Figure 1). The rotation matrix R is composed of
blocks Rl , each corresponding to one band. Note that coefficients
between different SH bands do not interact. The problem is how to
construct R for a desired 3D rotation and order n. Different ways
of solving this task are described in [Green 2003]. Our approach to
SH rotation, described in Section 3, avoids explicit construction of
R. We compare our approach with the methods of Ivanic and Rue-
denberg [1996; 1998] and the zxzxz-rotation of Kautz et al. [2002].

R =



1 0 0 0 0 0 0 0 0 . . .

0 X X X 0 0 0 0 0 . . .

0 X X X 0 0 0 0 0 . . .

0 X X X 0 0 0 0 0 . . .

0 0 0 0 X X X X X . . .

0 0 0 0 X X X X X . . .

0 0 0 0 X X X X X . . .

0 0 0 0 X X X X X . . .

0 0 0 0 X X X X X . . .

...
...

...
...

...
...

...
...

...
. . .



=


1 0 0 . . .

0 R1 0 . . .

0 0 R2 . . .

...
...

...
. . .



Figure 1: Form of the SH rotation matrix. (After [Green 2003]).

Ivanic and Ruedenberg [1996; 1998] construct R recurrently, start-
ing from R1 continuing over R2 up to Rl for any given l. Elements
of the block Rl are computed from elements of Rl−1 and R1 using
rules summarized in [Ivanic and Ruedenberg 1998; Green 2003].
(See Figure 1 for the composition of matrix R from the sub-blocks.)

A more efficient spherical harmonics rotation can be achieved with
the method of Kautz et al. [2002] that we call the zxzxz-rotation.
A general 3D rotation is first decomposed into zyz Euler angles
(α,β ,γ). The rotation around y by angle β is then expressed as
a rotation around x by π/2, a rotation around z by β and a rotation
around x by −π/2. The angle of the two rotations around x is fixed;
therefore, the rotation matrices for them can be pre-computed. The
number of non-zero elements in the x rotation matrices is only
a fourth of that of a general spherical harmonics rotation matrix.
Additionally, a general rotation around z is very simple (see Ap-
pendix B), therefore the zxzxz-rotation is more efficient than Ivanic
and Ruedenberg’s rotation.

Direct3D API [Microsoft 2004] provides the D3DXSHRotate() call
that rotates a function represented by spherical harmonics. The

implementation is probably based on explicit formulas for the el-
ements of the rotation matrix in terms of Euler angles [Sloan et al.
2002], since it only works for orders up to n = 6. It is, furthermore,
slower than the method of Ivanic and Ruedenberg [1996; 1998].1

Choi et al.’s method [1999] performs the rotation in the complex
domain and then converts the results back to the real domain. (Our
spherical harmonics and coefficient vectors are real.) According
to [Green 2004], this procedure is slower than the method of Ivanic
and Ruedenberg [1996; 1998].

Since none of the above methods is fast enough for per-pixel rota-
tion, we have developed the fast rotation described below.

3 Fast Rotation Approximation

This section describes our fast approximation of the spherical har-
monics rotation using a truncated Taylor expansion of the rotation
matrix.

According to Euler’s rotation theorem, any rotation in 3D space
can be described by three angles. We decompose rotations using
the zyz convention and express them as three subsequent rotations
around z, y, and z axes by angles α , β , and γ , respectively, i.e.
R = Rz(α)Ry(β)Rz(γ).

Spherical harmonics rotation around z is simple and efficient (see
Appendix B). It remains to find the rotation matrix Ry(β). We
replace this matrix by its truncated Taylor expansion at β = 0:

Ry(β) ≈ I+β
dRy

dβ
(0)+

β 2

2
d2Ry

dβ 2 (0),

where I is the identity matrix. Computation of the derivative matri-
ces is described in Appendix A and they are depicted in Figure 2.
The first derivative matrix dRy

dβ
(0) has non-zero elements only on

the superdiagonal and the subdiagonal. The elements of the second

derivative matrix d2Ry

dβ 2 (0) are non-zero only on the main diagonal
and on the diagonal just below the subdiagonal and just above the
superdiagonal. Therefore, the resulting rotation matrix approxima-
tion is very sparse. The rotation matrix Ry(β) does not have to be
explicitly constructed at all because we know where the non-zero
elements are.

In practice we use a so called “1.5th order” Taylor expansion, where
any non-diagonal elements of the second derivative matrix are set to
zero. The “1.5th order” expansion is only slightly less accurate than
the second order expansion, but incurs less computation. The fol-
lowing C code shows how simple the y rotation is using the “1.5th
order” Taylor expansion.

/** Rotate around y using the 1.5th order Taylor expansion

@param beta angle of rotation around y

*/

void shRotYdiff15(int order, float* dest, const float* src,

const float* dySubDiag, const float* ddyDiag, float beta)

{

float bbeta = 0.5f*beta*beta;

dest[0] = src[0];

for(int i=1; i<order*order-1; i++) {

dest[i] = src[i] * (1.0 + bbeta*ddyDiag[i]) +

beta * (dySubDiag[i]*src[i-1] - dySubDiag[i+1]*src[i+1]);

}

dest[i] = src[i] * (1.0 + bbeta*ddyDiag[i]) +

beta * dySubDiag[i] * src[i-1];

}

1Measured on the October 2004 release. According to Peter-Pike Sloan,
DirectX has recently got a faster rotation.

dRY

dβ
(0) =



0 0 0 0 . . .

0 dR1
Y

dβ
(0) 0 0 . . .

0 0 dR2
Y

dβ
(0) 0 . . .

0 0 0 dR3
Y

dβ
(0) . . .

...
...

...
...

. . .


,

where

dR1
Y

dβ
(0) =

 0 0 0
0 0 −1
0 1 0



dR2
Y

dβ
(0) =


0 1 0 0 0
−1 0 0 0 0
0 0 0 −1.73 0
0 0 1.73 0 −1
0 0 0 1 0



dR3
Y

dβ
(0) =



0 1.22 0 0 0 0 0
−1.22 0 1.58 0 0 0 0

0 −1.58 0 0 0 0 0
0 0 0 0 −2.45 0 0
0 0 0 2.45 0 −1.58 0
0 0 0 0 1.58 0 −1.22
0 0 0 0 0 1.22 0



d2RY

dβ 2 (0) =



0 0 0 0 . . .

0 d2R1
Y

dβ 2 (0) 0 0 . . .

0 0 d2R2
Y

dβ 2 (0) 0 . . .

0 0 0 d2R3
Y

dβ 2 (0) . . .

...
...

...
...

. . .


,

where

d2R1
Y

dβ 2 (0) =

 0 0 0
0 −1 0
0 0 −1



d2R2
Y

dβ 2 (0) =


−1 0 0 0 0
0 −1 0 0 0
0 0 −3 0 1.73
0 0 0 −4 0
0 0 1.73 0 −1



d2R3
Y

dβ 2 (0) =



−1.5 0 1.94 0 0 0 0
0 −4 0 0 0 0 0

1.94 0 −2.5 0 0 0 0
0 0 0 −6 0 3.87 0
0 0 0 0 −8.5 0 1.94
0 0 0 3.87 0 −4 0
0 0 0 0 1.94 0 −1.5



Figure 2: First (left) and second (right) derivative of the Y rotation matrix at β = 0. (Numbers are rounded to three significant digits.)

Arrays dySubDiag and ddyDiag contain the subdiagonal of dRy
dβ

(0)

and the diagonal of d2Ry

dβ 2 (0), respectively. They are computed just
once at the start-up and remain constant throughout run-time. The
superdiagonal of dRy

dβ
(0) does not have to be stored, since the first

derivative matrix is, like any other infinitesimal rotation matrix, an-
tisymmetric [Weisstein 2004].

All components for the full rotation R = Rz(α)Ry(β)Rz(γ) are,
now, available. The rotation proceeds as follows:

1. Decompose the desired rotation into the zyz Euler angles α , β

and γ .
2. Rotate around z by α (see Appendix B) .
3. Use shRotYdiff15() to rotate around y by β .
4. Rotate around z by γ .

It has to be emphasized that the described procedure only approx-
imates spherical harmonics rotation and is usable only if the angle
of rotation around y is small. An application using our approxi-
mation must make sure that this condition holds. The next section
compares the approximation error for the first, the “1.5th”, and the
second order Taylor expansions.

3.1 Error Analysis

Let Ry(β) be the correct matrix for rotation around y by β and let
R′

y(β) be our approximation. The error caused by rotating a coef-
ficient vector Λ using our approximation is given by the following
L2 norm:

ε(β) = ‖Ry(β)Λ−R′
y(β)Λ‖= ‖(Ry(β)−R′

y(β))Λ‖= ‖D(β)Λ‖.

Maximum of the error ε(β) over all unit length Λ is given by the
L2 norm of the matrix D(β), which is equal to the greatest singular
value of D(β). Average error ε(β) over all unit length Λ is given by
the average singular value of D(β). Figure 3 shows the maximum

and the average error ε(β) and also the actual measured ε(β) for
a Phong lobe cos7(θ). Although the maximum error grows quite
fast with β , the results for the Phong lobe show good accuracy up
to β = 25◦.

3.2 Complexity

In this section we compare the complexity of Ivanic and Rueden-
berg’s rotation [1996; 1998] and the zxzxz-rotation [Kautz et al.
2002] with the complexity of our approximation. The complexi-
ties are expressed in terms of order n.

Ivanic and Ruedenberg’s method. The number of non-zero ele-
ments in a general spherical harmonics rotation matrix for order n
is Nnz(n) = ∑

n
i=1(2i−1)2 = n(4n2−1)/3. Computation of each el-

ement of the matrix using Ivanic and Ruedenberg’s method [1996;
1998] is a constant-time operation, therefore the complexity of the
spherical harmonics rotation matrix construction is O(n3). Com-
plexity of transforming a spherical harmonics coefficient vector
with the matrix is also O(n3).

zxzxz-Rotation. One z-rotation involves Nz(n) = 2n(n− 1) multi-
plications; the cost of one x-rotation is Nx(n) = ∑

n
i=1(i

2 − i + 1) =
n(n2 + 2)/3. Rotation of one spherical harmonics vector with
the zxzxz-rotation, thus, costs 3Nz(n) + 2Nx(n) = n(2n2 + 18n−
14)/3∈O(n3) multiplications. This is only about a half of the num-
ber of multiplications needed for transforming a vector by a full
spherical harmonics rotation matrix R. Additionally, the rotation
matrix itself does not have to be constructed in the zxzxz-rotation.

Our rotation approximation. There are Ndy(n) = 5n2 multiplica-
tions in rotYdiff15(). The total cost of our rotation 2Nz(n) +
Ndy(n) = 9n2 −4n ∈ O(n2) is asymptotically lower than that of the
previous methods. The advantage of our method in terms of speed
becomes more pronounced as the order n increases, the downside
being the lower accuracy for higher n.

Figure 3: Rotation approximation error ε(β) as a function of angle
β for spherical harmonics of order 5 (left) and 8 (right). The plots in
the first row show the maximum error for any unit length vector, the
second row shows the average error over all unit length vectors, and
the third row shows the actual error for a Phong lobe cos7(θ). Error
is expressed as the Euclidean distance between coefficient vectors.
Each plot shows the error for the 1st, the “1.5th”, and the 2nd order
Taylor expansion.

4 Application in Radiance Caching

In this section we describe the application of our fast rotation ap-
proximation in radiance caching for global illumination computa-
tion. We start by briefly reviewing the radiance caching algorithm.

4.1 Radiance Caching Overview

Radiance caching [Křivánek et al. 2005; Křivánek 2005] general-
izes Ward et al.’s [1988] irradiance caching algorithm for the use
on glossy surfaces.2 It accelerates indirect illumination computa-
tion by reusing previously computed and cached incoming radiance
values through interpolation over glossy surfaces.

Whenever a ray hits a glossy surface at a point p, the radiance
cache is queried for cached nearby incoming radiance values (or
records). If no cached incoming radiance record is found near p,
radiance cache-based interpolation cannot be used. Therefore, the
hemisphere above p is sampled by secondary rays, the sampled di-
rectional distribution of incoming radiance at p is projected onto
spherical or hemispherical harmonics [Gautron et al. 2004], and the
resulting coefficient vector Λi is stored with a new record in the
radiance cache.

2Irradiance caching only supports view independent, diffuse surfaces.

Figure 4: Rotation Ri aligns the coordinate frame at the record lo-
cation pi with the coordinate frame at the point of interpolation p
to make interpolation possible.

If, on the other hand, cached records are found near p, the cached
incoming radiance coefficient vectors Λi are interpolated with the
weighted average:3

Λ(p) = ∑S (RiΛi)wi(p)
∑S wi(p)

. (1)

Weight of the i-th cache record with respect to point p is given by

wi(p) =
(
‖p−pi‖

Ri
+
√

1−n ·ni

)−1
, where n is the normal at the

point of interpolation p, pi is the location of the i-th cache record,
and ni is the normal at pi. The harmonic mean distance, Ri, to the
objects visible from pi, is computed from the ray lengths during
hemisphere sampling and stored in the cache. The set S of records
used for interpolation is defined as S = {i|wi(p) > 1/a}, where a
is a user defined maximum allowed interpolation error.

The important thing here is the rotation Ri that has to be used to
align the coordinate frames at the point of interpolation p and the
record location pi: the cached incoming radiance has to be rotated
before the interpolation is possible (Figure 4). This means that there
is one or more rotations per interpolation.

4.2 The Use of our Rotation in Radiance Caching

Due to the interpolation criterion based on the weight wi(p), the
normals at the record location pi and the point of interpolation p
are always similar (if they were not, the record at pi would not be
used for interpolation at p, because of the

√
1−n ·ni term in the

definition of wi(p)). The angle of rotation around the y-axis in the
Euler zyz decomposition of Ri corresponds to the angle between the
two normals ni and n, hence it is always small. We can therefore
safely apply our rotation approximation for the coordinate frame
alignment.

Rotation Approximation Limiting Angle. To keep the error
caused by the rotation approximation low, we use the approxima-
tion only for angles β = 6 (n,ni) smaller than a threshold βlim. The
accurate, but more costly, zxzxz-rotation is used if β > βlim. We
set the limiting angle to βlim = 1.25a (derivation in Appendix C),
where a is the user specified maximum allowed interpolation error
of radiance caching. This allows higher error in rotation if the user
allows higher error in interpolation. Additionally, setting βlim to
a multiple of a has for consequence that the percentage of zxzxz-
rotations in a given scene is constant, no matter what value the user
specifies for a.

3Only a simplified version of the actual formula, omitting translational
gradients, is shown here.

Figure 5: Left: Radiance caching renderings obtained with our ap-
proximate rotation. The flamingo is assigned a Phong BRDF with
the exponent of 7 (top) or 15 (middle) and the glossy sphere has
an anisotropic Ward BRDF [Ward 1992] with αx = 0.15, αy = 0.5.
Spherical harmonics order n = 10 is used for all renderings. Right:
Color coded difference between images with approximated and cor-
rect rotation, measured on a [0,1] RGB scale. The difference is
below the visual threshold of 1% for most pixels.

If, on the other hand, we kept βlim independent of the caching er-
ror a, increasing a would lead to a more frequent use of the zxzxz-
rotation. This would actually slow down the interpolation—an un-
expected effect of increasing the allowed caching error.

Our rotation approximation and the zxzxz-rotation may not meet in
a visually continuous fashion at βlim if a is high (a > 0.3 in our
scenes). However, in such a case, the caching artifacts are more
serious anyway and the rotation artifacts go unnoticed.

4.3 Radiance Caching Results

For the results in this section we used the “1.5th Taylor expansion”
of the y rotation matrix (all non diagonal elements of the second
derivative matrix are ignored). In Figure 5 we compare the results
of radiance caching obtained by the correct and the approximated
rotation. Instead of a side-by-side comparison, in which the results

are visually indistinguishable, we show a color coded difference
between the results of the two methods. Image areas exhibiting
the maximum error are usually very curved. In those areas, visual
artifacts, if any, are well-masked.

Table 1 shows the rendering times for the flamingo and the sphere
(Figure 5 left) with radiance caching. The rendering time only in-
cludes the interpolation from the cache. For SH order n = 6, our
method is 4 times faster than the zxzxz-rotation; for n = 10 it is 6
times faster.

Order 6 10
RT TPR RT TPR

Flamingo
Ignore 10.3 s — 11.2 s —

Our method 12.8 s 0.68 µs 16.9 s 1.54 µs
zxzxz 21.2 s 2.96 µs 47.4 s 9.83 µs
Ivanic 47.3 s 10.1 µs 192 s 49.1 µs

DirectX 76.4 s 17.9 µs — —
Sphere

Ignore 3.30 s — 3.96 s —
Our method 4.28 s 0.65 µs 6.13 s 1.44 µs

zxzxz 7.08 s 2.51 µs 16.8 s 8.57 µs
Ivanic 17.8 s 9.63 µs 75.8 s 47.8 µs

DirectX 30.3 s 17.9 µs — —

Table 1: Rendering times for the flamingo and sphere images in
Figure 5 with radiance caching. The rendering time includes only
interpolation from the cache. Various rotation methods are used
for interpolation: Ignore (rotation is ignored), our method, zxzxz-
rotation, the method of Ivanic and Ruedenberg and the DirectX ro-
tation. ‘RT’ is the frame rendering time and ‘TPR’ is the time per
rotation. There were 1,226,917× 3 = 3,680,751 rotations for the
flamingo and 501,420×3 = 1,504,260 rotations for the sphere.

5 Application in Real-time Shading

To demonstrate the use of our fast rotation approximation in real-
time shading, we extend the rendering method of Kautz et al. [2002]
to compute shading on objects with a per-pixel modulated normal.
We start by giving a short overview of the original algorithm.

5.1 Fast, Arbitrary BRDF Shading for Low-
Frequency Lighting

Kautz et al. [2002] uses graphics hardware to perform real-time
shading of surfaces with arbitrary BRDFs illuminated by low-
frequency environment lighting. By environment lighting we un-
derstand the light incident at an object from the whole sphere of
directions. Shadowing is ignored and an assumption is made that
the lighting is spatially invariant. Therefore, each point on an object
surface receives the same illumination.

Spherical harmonics are used to represent both the environment
lighting and BRDFs. A BRDF is represented as a 2D table, whose
each element stores the spherical harmonics coefficient vector of
the BRDF lobe for one fixed outgoing (viewing) direction. The
lighting integral for a given viewing direction is computed as a dot
product of the environment lighting coefficients and the BRDF co-
efficients for that outgoing direction. The rendering algorithm pro-
ceeds as follows:

Figure 6: Detail of a normal mapped vase rendered with our SH rotation (right) and with the simplified normal mapping (left). Normal
mapping with our SH rotation is more successful at conveying the shape approximated by the normal map. The vase is illuminated by the St
Peter’s Basilica environment map; the BRDF comes from a measurement of a brushed metal [cite westin00lafortune].

1. [Per-vertex, CPU] Rotate the lighting coefficients to the local
coordinate frame of vertex vp. Send the rotated coefficient as
vertex data to the GPU.

2. [Per-pixel, GPU] Look up the BRDF coefficients for the view-
ing direction transformed to the local coordinate frame.

3. [Per-pixel, GPU] Compute the dot product of the BRDF coef-
ficients and the rotated lighting coefficients.

In this technique, the shading variance due to surface orientation is
limited by the number of vertices in the mesh. A very fine mesh
must be used for detailed shading. Our extension of the algorithm,
presented in the next section, removes this restriction by allowing
to modulate the surface normal by a texture (normal mapping).

5.2 Shading on Normal-Mapped Surfaces through a
Per-Pixel Rotation

Normal maps modulate surface normals by a texture in order to
represent small surface variations, for which an explicit geometry
representation would be too bulky. Our extension of the shading al-
gorithm of Kautz et al. allows to use normal mapping on an object
illuminated by environment lighting, thereby decoupling the possi-
ble shading details from the number of mesh vertices.

We modify the original rendering algorithm in the following way
(new steps are in italics):

1. [Per-vertex, CPU] Rotate the lighting coefficients to the local
coordinate frame of vertex vp. Send the rotated coefficient as
vertex data to the GPU.

2. [Per-pixel, GPU] Look up the normal map (normal map repre-
sents the modulation of the local coordinate frame at the pixel
with respect to the frame given by the interpolated per-vertex
normals).

3. [Per-pixel, GPU] Look up the BRDF coefficients for the view-
ing direction transformed to the modulated local coordinate
frame.

4. [Per-pixel, GPU] Use our fast spherical harmonics rotation
approximation to rotate the BRDF coefficients from the mod-
ulated local frame to the interpolated per-vertex local frame.

5. [Per-pixel, GPU] Compute the dot product of local lighting
and BRDF coefficients.

Modulation of surface normals by a normal map is usually limited
to rather small angles; we can therefore safely use our rotation ap-
proximation. Thanks to the approximation simplicity, we were able
to implement the per-pixel rotation in a pixel shader of the graphics
hardware.

Our extension leads to a substantial improvement of visual qual-
ity as illustrated in Figures 6 and 7. It also allows using meshes
with lower number of vertices than the original algorithm, which
improves the overall rendering performance.

Simplified Normal Mapping. To simplify normal mapping, one
can ignore the per-pixel rotation (step 4) and use the normal map
only to modulate the local frame for the BRDF lookup. Unlike
our method, this simplified normal mapping generates flat looking
surfaces and does not capture color variations on the surface bumps
due to multicolored environment lighting.

5.3 Results

Figures 6 and 7 compare the results obtained with our rotation to
the results of the simplified normal mapping. We used spherical
harmonics of order n = 5 (25 coefficients). The rotation approxi-
mation used the “1.5th order” Taylor expansion for bands l = 1 to
l = 3 and the first order Taylor expansion for band l = 4. Due to the
limited pixel-shader instruction-count we had to use four passes to
accommodate 25 coefficients. The frame rates for these images at
resolution 800×600 were:

Simplified Rotation
Vase (891 vertices) 58 fps 46 fps
Sphere (560 vertices) 65 fps 54 fps
Plane (25 vertices) 75 fps 56 fps

These figures were measured on a 2.2 GHz Pentium IV PC with ATI
Radeon 9800 Pro GPU. The drop in the frame rate due to the rota-
tion is more pronounced for low polygon count meshes, for which
the rendering time is determined mostly by fragment processing.

Although those results are outdated by the power of recent graphics
hardware, the presented algorithm is useful as a demonstration of
the possible uses of our fast rotation approximation.

Simplified Our rotation
Figure 7: More results of the normal mapping with our SH rota-
tion (right) compared to the simplified normal mapping (left). The
BRDFs used were (from top to bottom) Lambertian, Phong, Ward
isotropic, Ward anisotropic. The objects are illuminated by the
Grace Cathedral environment map. Note the color variations on
the surface bumps captured by our method. For the Lambertian
surface (top), the simplified normal mapping does not work since
the BRDF is view independent. Our method is also more successful
at revealing the effects of BRDF anisotropy (bottom).

6 Conclusion

We presented a fast algorithm for rotating functions represented by
spherical harmonics. The main idea is to replace a general spher-
ical harmonics rotation matrix by its truncated Taylor expansion.
The algorithm has lower complexity and is faster than previous ap-
proaches. Although the rotation approximation is accurate only for
small rotation angles, we have demonstrated its practical usefulness
in global illumination computation (radiance caching) and real-time
rendering. The rotation algorithm is simple enough to fit in the pixel
shader of standard graphics hardware, which allows to apply the ro-
tation on a per-pixel basis in real-time. We took advantage of this by
shading normal mapped surfaces with arbitrary BRDFs illuminated
by environment lighting.

We believe that an approach similar to that presented in this paper
could be used to approximate rotation of functions represented by
wavelets, which is the main avenue of future work. Our fast rota-
tion can also be used to extend normal mapping in pre-computed
radiance transfer [Sloan 2006] to view-dependent BRDFs.

Acknowledgements

This work was supported by France Telecom R&D, Rennes, France
and by the Ministry of Education of the Czech Republic under the
the research program LC-06008 (Center for Computer Graphics).

References

CHOI, C. H., IVANIC, J., GORDON, M. S., AND RUEDENBERG, K. 1999. Rapid and
stable determination of rotation matrices between spherical harmonics by direct
recursion. J. Chem. Phys. 111, 19, 8825–8831.

GAUTRON, P., KŘIVÁNEK, J., PATTANAIK, S. N., AND BOUATOUCH, K. 2004.
A novel hemispherical basis for accurate and efficient rendering. In Rendering
Techniques 2004, Eurographics Symposium on Rendering, 321–330.

GREEN, P., KAUTZ, J., MATUSIK, W., AND DURAND, F. 2006. View-dependent
precomputed light transport using nonlinear gaussian function approximations. In
Proceedings of ACM 2006 Symposium in Interactive 3D Graphics and Games.

GREEN, R. 2003. Spherical harmonic lighting: The gritty details. In Game Develop-
pers’ Conference.

GREEN, R., 2004. Personal communication.

IVANIC, J., AND RUEDENBERG, K. 1996. Rotation matrices for real spherical har-
monics. direct determination by recursion. J. Phys. Chem. 100, 15, 6342–6347.

IVANIC, J., AND RUEDENBERG, K. 1998. Additions and corrections : Rotation
matrices for real spherical harmonics. J. Phys. Chem. A 102, 45, 9099–9100.

KAUTZ, J., SLOAN, P.-P., AND SNYDER, J. 2002. Fast, arbitrary BRDF shading
for low-frequency lighting using spherical harmonics. In Proceedings of the 13th
Eurographics workshop on Rendering, Eurographics Association, 291–296.

KŘIVÁNEK, J., GAUTRON, P., PATTANAIK, S., AND BOUATOUCH, K. 2005. Radi-
ance caching for efficient global illumination computation. IEEE Transactions on
Visualization and Computer Graphics 11, 5.

KŘIVÁNEK, J. 2005. Radiance Caching for Global Illumination Computation on
Glossy Surfaces. PhD thesis, Université de Rennes 1 and Czech Technical Univer-
sity in Prague.

LEHTINEN, J., AND KAUTZ, J. 2003. Matrix radiance transfer. In Proceedings of the
2003 symposium on Interactive 3D graphics, ACM Press, 59–64.

LIU, X., SLOAN, P.-P., SHUM, H.-Y., AND SNYDER, J. 2004. All-frequency pre-
computed radiance transfer for glossy objects. In Proceedings of the Eurographics
Symposium on Rendering, 337–344.

MICROSOFT, 2004. Directx 9.0 SDK update, October.

NG, R., RAMAMOORTHI, R., AND HANRAHAN, P. 2004. Triple product wavelet
integrals for all-frequency relighting. ACM Trans. Graph. 23, 3, 477–487.

SLOAN, P.-P., KAUTZ, J., AND SNYDER, J. 2002. Precomputed radiance trans-
fer for real-time rendering in dynamic, low-frequency lighting environments. In
Proceedings of the 29th annual conference on Computer graphics and interactive
techniques, ACM Press, 527–536.

SLOAN, P.-P., HALL, J., HART, J., AND SNYDER, J. 2003. Clustered principal
components for precomputed radiance transfer. ACM Trans. Graph. 22, 3, 382–
391.

SLOAN, P.-P., LUNA, B., AND SNYDER, J. 2005. Local, deformable precomputed
radiance transfer. ACM Trans. Graph. 24, 3, 1216–1223.

SLOAN, P.-P. 2006. Normal mapping for precomputed radiance transfer. In Proceed-
ings of ACM 2006 Symposium in Interactive 3D Graphics and Games.

WANG, R., TRAN, J., AND LUEBKE, D. 2004. All-frequency relighting of non-
diffuse objects using separable BRDF approximation. In Proceedings of the Euro-
graphics Symposium on Rendering, 345–354.

WANG, R., TRAN, J., AND LUEBKE, D. 2005. All-frequency interactive relighting
of translucent objects with single and multiple scattering. ACM Trans. Graph. 24,
3, 1208–1215.

WARD, G. J., RUBINSTEIN, F. M., AND CLEAR, R. D. 1988. A ray tracing solution
for diffuse interreflection. In Proceedings of SIGGRAPH ’88, 85–92.

WARD, G. J. 1992. Measuring and modeling anisotropic reflection. In Proceedings of
SIGGRAPH, ACM Press, 265–272.

WEISSTEIN, E. W., 2004. Infinitesimal rotation. From MathWorld–A Wolfram Web
Resource. http://mathworld.wolfram.com/InfinitesimalRotation.html.

WESTIN, S. H. Lafortune BRDF for RenderMan.
http://www.graphics.cornell.edu/ westin/lafortune/lafortune.html.

A SH Rotation Matrix Derivative

Here we describe the computation of the k-th derivative matrix
dkRY
dβ k . The algorithm is based on Ivanic and Ruedenberg’s rotation

matrix construction [1996; 1998] and retains its structure. Elements
of the derivative matrix block dkRl

Y
dβ k are indexed by m1 and m2 and

we denote them R(k)
Y (l,m1,m2). We start with bands l = 0 and l = 1:

R(k)
Y (0, 0, 0) = 1(k)

R(k)
Y (1, −1, −1) = 1(k)

R(k)
Y (1, −1, 0) = 0

R(k)
Y (1, −1, 1) = 0

R(k)
Y (1, 0, −1) = 0

R(k)
Y (1, 0, 0) = cos(k)(β)

R(k)
Y (1, 0, 1) = −sin(k)(β)

R(k)
Y (1, 1, −1) = 0

R(k)
Y (1, 1, 0) = sin(k)(β)

R(k)
Y (1, 1, 1) = cos(k)(β)

where β = 0 and 1(k) is the derivative of one (1(k) = 1 if k =
0 and 1(k) = 0 if k > 0). For higher bands, we compute si-
multaneously the zero-th, first, second, . . . maxderiv-th deriva-
tive:

for l = 2 . . .n−1 do
for k = 0 . . .maxderiv do

for m1 = −l . . . l do
for m2 = −l . . . l do

R(k)(l,m1,m2) := ul
m1m2

·dU (k)(l,m1,m2)+
vl

m1m2
·dV (k)(l,m1,m2)+

wl
m1m2

·dW (k)(l,m1,m2)
end for

end for
end for

end for

Numerical coefficients ul
m1m2

, vl
m1m2

and wl
m1m2

are the same as in
the original paper [Ivanic and Ruedenberg 1998]. Functions dU ,
dV and dW are defined as:

dU (k)(l,m1,m2) = dP(k)(l,m1,m2,0)

dV (k)(l,m1,m2) =



dP(k)(l,m1 −1,m2,1)−
dP(k)(l,−m1 +1,m2,−1)

if m1 > 1
√

2dP(k)(l,0,m2,1) if m1 = 1
dP(k)(l,1,m2,1)+
dP(k)(l,−1,m2,−1)

if m1 = 0
√

2dP(k)(l,0,m2,−1) if m1 = −1
dP(k)(l,−m1 −1,m2,−1)+
dP(k)(l,m1 +1,m2,1)

if m1 < −1

dW (k)(l,m1,m2) =


dP(k)(l,m1 +1,m2,1)+
dP(k)(l,−m1 −1,m2,−1)

if m1 > 0

dP(k)(l,m1 −1,m2,1)−
dP(k)(l,−m1 +1,m2,−1)

otherwise

with

dP(k)(l,m1,m2, i)=


dT (k)(1, i,0, l−1,m1,m2) if |m2| < l
dT (k)(1, i,1, l−1,m1, l−1)−
dT (k)(1, i,−1, l−1,m1,−l +1)

if m2 = l

dT (k)(1, i,1, l−1,m1,−l +1)+
dT (k)(1, i,−1, l−1,m1, l−1)

if m2 = −l

and

dT (k)(l,m1,m2, l′,m′
1,m

′
2)=

k

∑
i=0

(
k
i

)
R(i)

y (l,m1,m2)·R
(k−i)
y (l′,m′

1,m
′
2).

Function dT implements the product derivative rule (f g)(k) =
∑

k
i=0

(k
i
)

f (i)g(k−i), where f (k) denotes the k-th derivative.

B SH Rotation around z-Axis

The Z-rotation is computed efficiently without construct-
ing the rotation matrix RZ(α) using the following proce-
dure:

for l = 0 . . .n−1 do
υ0

l := λ 0
l

for m = 1 . . . l do
υ
−m
l := λ

−m
l cos(mα)−λ m

l sin(mα)
υm

l := λ
−m
l sin(mα)+λ m

l cos(mα)
end for

end for

The sines and cosine of multiple angles can be computed with the
recurrence formula:

sin(mα) = 2sin((m−1)α)cos(α)− sin((m−2)α)
cos(mα) = 2cos((m−1)α)cos(α)− cos((m−2)α)

The number of multiplications in the rotation procedure is NZ(n) =
2n(n−1) thus the complexity is O(n2).

C Derivation of the Limiting Angle

This section justifies setting the limiting angle βlim in radiance
caching to a multiple of the maximum caching error a (see Sec-
tion 4.2). A radiance cache record i is included in interpolation at a

point p if a > 1/wi(p). Weight wi(p) =
(
‖p−pi‖

Ri
+
√

1−n ·ni

)−1

is a function of the distance ‖p− pi‖ and the angle between nor-
mals β = 6 (n,ni). Consider a constant curvature surface with the
osculating circle radius r. Then ‖p−pi‖ = 2r sin β

2 and therefore
the weight is only a function of β , i.e.

1/wi(p) = f (β) =
2r
Ri

sin
β

2
+

√
1− cosβ ,

where Ri is the harmonic mean distance.

Our aim is to find for a given a and a fixed r the value of βlim such
that for all accepted radiance cache records, the normal divergence
is never more than βlim. This can be done by inverting function f ,
which is unfortunately impossible to do in a closed form. Instead
we take the first order Taylor expansion of f at β = 0, which is
f (β) ≈ β (1/

√
2 + r

Ri
), and we find βlim = a(1/

√
2 + r

Ri
)−1. We

choose r
Ri

= 0.1 and get βlim = 1.25a (in degrees βlim = 70.1a).
The choice r

Ri
= 0.1 means that all surfaces of curvature 10/Ri or

smaller will be rendered without exceeding βlim. To conclude, by
setting βlim = 1.25a, the slower zxzxz-rotation will be used only on
surfaces of curvature higher than 10/Ri, regardless of the value of a.

