
Hardware 
Implementation

Hardware 
Implementation

Pascal Gautron
Post- Doctoral Researcher

France Telecom R&D Rennes

France



Radiance Cache Splatting
Pascal Gautron, Jaroslav Krivanek, Kadi Bouatouch, Sumanta Pattanaik

In Proceeding of Eurographics Symposium on Rendering 2005
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• Irradiance Caching: ray tracing and octrees

• A reformulation for hardware implementation

• Irradiance Cache Splatting

• GPU-Based hemisphere sampling



(Ir)Radiance Caching(Ir)Radiance Caching

R

Weighting function

The irradiance caching algorithm is based on sparse sampling and 
interpolation of indirect diffuse lighting at visible points. Each irradiance record 
contributes to the indirect lighting of points within its zone of influence. The 
size of this zone is adapted according to the mean distance R to the 
surrounding objects using the irradiance weighting function [Ward88]. 



(Ir)Radiance Caching(Ir)Radiance Caching

(Ir)Radiance Gradients

The irradiance value at points within the zone of influence of a record can be
extrapolated using irradiance gradients [Ward92, Krivanek05a, Krivanek05b].



(Ir)Radiance Caching(Ir)Radiance Caching

When the zones of influence of the records cover the entire zone visible from
the viewpoint, the image representing the indirect lighting can be rendered. 
The irradiance caching algorithm is then divided into three steps:
-The computation of the records
-The records storage
-The estimation of the indirect lighting using nearby records



Record ComputationRecord Computation Ray Tracing

E(P) ∫ Li(P, ωi)= *cos(θ)dωi

Monte Carlo Integration

P

The computation of the irradiance value at a given point P requires the 
evaluation of the integral of the lighting over the surrounding hemisphere. This 
integral is typically estimated by Monte Carlo integration. Since the irradiance
caching algorithm reuses the value of irradiance records over many pixels, the 
irradiance value of the record is computed with high precision, typically by 
tracing several hundreds to thousands rays.

Once the irradiance value is computed, a record is created. This record 
contains the corresponding position, normal, irradiance, gradients, and mean
distance to the surrouding objects.



Cache StorageCache Storage
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Octree

The records are then stored in an octree, which allows for fast spatial queries. 
Note that the octree is a recursive data structure, which construction involves
many conditional statements.



Irradiance at P?Irradiance at P?
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Octree Traversal

The irradiance at a point P can then be estimated efficiently by querying the 
octree for nearby records. However, this involves a traversal of the structure, 
which also involves many conditional statements.



From CPU to GPUFrom CPU to GPU

CPU GPU

Ray tracing Rasterization

Cache stored in tree 1/2/3D textures

Spatial queries Texture lookups

?

To summarize, the classical irradiance caching algorithm is implemented on 
the CPU, and is based on:
-Ray tracing
-Octrees
-Spatial queries in the octree

However, the GPU does not natively implement those operations: the visibility
tests are performed using rasterization and Z-Buffering, and the only data 
structures available are 1, 2, and 3D textures. Particularly, the GPUs do not 
support pointers, which are the most common way of implementing recursive
data structures.



From CPU to GPU: 2 PossibilitiesFrom CPU to GPU: 2 Possibilities

CPU GPU

Ray tracing Rasterization

Cache stored in tree 1/2/3D textures

Spatial queries Texture lookups

GPGPU

Reformulation

The irradiance caching algorithm cannot be directly mapped to the GPU 
architecture. Two methods can be considered: first, the use of libraries for 
general purpose computations on the GPU (such as Brook for GPU, 
http://graphics.stanford.edu/projects/brookgpu/). An important amount of 
research work has been performed to achieve interactive ray tracing on GPUs
(such as [Purcell02, Purcell03]). A kD-Tree implementation for GPUs has also
been proposed [Foley05].

An other way of performing irradiance caching on graphics hardware is to 
reformulate the algorithm so that only the native features of the GPU are used. 
This would allow us to get the best performance out of the graphics
processors.



Reformulate IC Algorithm: Why?Reformulate IC Algorithm: Why?

Efficiency: Direct use of native GPU features

Ease of implementation: OpenGL API

Optimization: Replace Octrees and 
Ray Tracing by simple operations

More precisely, we chose to reformulate the irradiance caching algorithm for 
three reasons. First, the direct use of native GPU features allow us to use 
each part of the GPU at its best, improving the performance. Second, the 
reformulated algorithm can be implemented directly using at 3D graphics API 
such as OpenGL or DirectX.
Third, this reformulation gives us the occasion of attacking two costly aspects 
of the irradiance caching algorithm: the hierarchical data structure, and the 
irradiance computation using ray tracing. Replacing those by more simple 
operations on the GPU increases the performance, yielding interactive frame 
rates in simple scenes.



Reformulate IC Algorithm: How?Reformulate IC Algorithm: How?

1.
Octree Splatting

2.
RasterizationRay Tracing

The reformulation is divided into two tasks: the replacement of the octree by a 
splatting operation, and the use of rasterization in place of ray tracing.



From Octree to SplattingFrom Octree to Splatting
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The reformulation is based on the irradiance interpolation equation [Ward88, 
Ward92] presented before: the irradiance estimate at a point P is the weighted
average of the contributions of the surrounding records. The contribution of 
each record is computed using irradiance gradients for translation and rotation. 
The set S of contributing records is defined as the set of records for which the 
weigthing function evaluated at P is above a user-defined threshold a.
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From Octree to SplattingFrom Octree to Splatting
Weighting Function
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Distance Normals divergence

The weighting function is very simple, and depends on:
-The distance between the record location and the point P
-The mean distance R to the surrounding objects
-The divergence of the surface normals between the record location and the 
point P



wk(P) = 
1

||P-Pk||
Rk

+ 1-n.nk

From Octree to SplattingFrom Octree to Splatting
Simplified Weighting Function

Distance Normals divergence
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If we assume that the record location and the point P always have the same
normal, the weighting function can be simplified by removing the dependence
to the surface normals.
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Simplified Weighting Function
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This yields a simplified weighting function, which depends only on two factors:
-The distance between the record location and the point P
-The mean distance to the surrounding objects



From Octree to SplattingFrom Octree to Splatting
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Simplified Weighting Function

Using this simplified weighting function, a record k contributes to all points 
located within a sphere centered at the record location, with radius aRk. Hence
this radius depends not only on the user-defined parameter a, but also on the 
mean distance to the surrounding objects. 

Note that the simplified weighting function removes the constraint on the 
surface normals. Therefore, the set of points at which the record actually
contributes (with respect to the full weighting function) is a subset of the points 
located within the sphere.



From Octree to SplattingFrom Octree to Splatting
Principle

wk(P) = 
||P-Pk||

Rk > 1/a ~

The sphere can be splatted onto the image plane. Hence the covered pixels 
correspond to the visible points at which the record may contribute.



From Octree to SplattingFrom Octree to Splatting
Principle

Let us consider the image plane, on which the sphere has been splatted. The 
splatted sphere encloses all the visible points at which the considered record 
may contribute (with respect to the full weighting function). Our goal is now to 
select the points for which the condition on the full weighting function is 
satisfied, that is 
wk(P) > 1/a .



From Octree to SplattingFrom Octree to Splatting

wk(P)>1/a ?

Principle

For the convenience of implementation, we use a quadrilateral tightly 
enclosing the splatted sphere. For each point visible through the pixels of the 
quadrilateral, the full weighting function is evaluated, and tested against the 
user-defined threshold. If the condition is not satisfied, the pixel is discarded.



From Octree to SplattingFrom Octree to Splatting
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Principle

This yields a set of pixels, corresponding to the set of visible points at which 
the record actually contributes. At those points, we compute separately the 
weighted contribution of the record (with respect to the full weighting function 
and to the irradiance gradients) and the weight of the contribution. This 
information can be easily stored within floating point RGBA pixels, using RGB 
for the weighted contribution, and the alpha channel for the weight value.



From Octree to SplattingFrom Octree to Splatting
Principle

When splatting an other record, the same operations are to be done. However, 
the zones of influence of the two records overlap.



From Octree to SplattingFrom Octree to Splatting
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Principle

In this case, we first compute the weighted contribution and weight of the 
second record as described before. Then, the built-in alpha blending of 
graphics processors adds the contributions and weights together in the 
overlapping area. 

Then, each pixel contains both the weighted sum of the contributions, and the 
sum of the contribution weights.



From Octree to SplattingFrom Octree to Splatting
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Final Image Generation

Once all the necessary records have been splatted, the result of the irradiance 
interpolation equation can then be obtained by dividing the weighted sum of 
contributions by the sum of the weights. This operation can be easily 
performed within a fragment shader, by dividing the RGB components (that is, 
the weighted sum of contributions) by the alpha channel (the sum of weights).



From Octree to SplattingFrom Octree to Splatting
Example

To summarize, let us consider an example. At the beginning of the algorithm, 
the cache contains no records. Hence the generated image only features 
direct illumination. Then, we add a record on the back wall. This record 
contributes to the points within its neighborhood. When adding a second 
record, the zones of influence overlap. For the pixels within the overlapping 
area, the estimated irradiance is calculated using the weighted average of the 
contributions. Other records are successively added to the cache, until the 
entire visible area of the scene is covered by the zones of influence of the 
records. The resulting image features both direct and indirect lighting for every 
visible point. 

Note that for explanation purposes, the reconstruction of the indirect lighting is 
very coarse to highlight the zones of influence of each record. Also, the 
gradients are not used. As with the classical irradiance caching algorithm, high 
quality can be obtained by using irradiance gradients and setting an 
appropriate value for the user-defined parameter a.



Reformulate IC Algorithm: How?Reformulate IC Algorithm: How?

1.
Octree Splatting

2.
RasterizationRay Tracing



From Ray Tracing to RasterizationFrom Ray Tracing to Rasterization

CPU

∫

In classical irradiance caching, the irradiance at a point is estimated by Monte 
Carlo ray tracing: random rays are traced through the scene, gathering the
lighting incoming from the surrounding environment. This estimate is usually
computed on the CPU.



From Ray Tracing to RasterizationFrom Ray Tracing to Rasterization

≈∫

GPU
Vertex
Shader

Fragment
Shader

Simple plane sampling

A well-known approximate method for hemisphere sampling on the GPU is the
simple plane sampling: a virtual camera with a large aperture is placed at the
point of interest. The scene is then rendered on graphics hardware, yielding an 
image of the surrounding objects. On recent graphics hardware, this data can
be computed in high dynamic range (HDR) using floating-point render target
and programmable shaders. The shadowing effects can be efficiently
accounted for using fast shadowing techniques such as shadow mapping
[Wil78].

The solid angle subtended by a pixel p is defined as Ωp=A*cos(θ)/(d*d) where:
•A is the surface of a pixel
•θ is the angle between the direction passing through the pixel and the surface 
normal
•d is the distance between the point of interest and the image plane



From Ray Tracing to RasterizationFrom Ray Tracing to Rasterization

≈∫

GPU
Vertex
Shader

Fragment
Shader

Simple plane sampling



From Ray Tracing to RasterizationFrom Ray Tracing to Rasterization

GPU
Vertex
Shader

Fragment
Shader

Simple plane sampling

However, the aperture of the camera cannot allow us to sample the entire
hemisphere: a perspective camera is represented by a perspective projection 
matrix which is applied to the visible contents of the scene. In OpenGL, such a 
camera is modeled using the gluPerspective function, whose values are 
calculated using the field of view (FOV) of the camera. More precisely, a key
value in this matrix is f = cot(FOV/2), which is undefined for FOV=180°. 
Furthermore, using a very large aperture such as 179.999° leads to important 
perspective deformation and sampling problems. 

In [LC04], Larsen et al. show that an aperture of 126.87° is sufficient for 
capturing 86% of the incoming directions. However, the remaining 14% are 
unknown and must be compensated to avoid a systematic underestimation of
the incoming radiance. Furthermore, this compensation must respect the
directional information of the incoming radiance to allow for a later
implementation of radiance caching for global illumination computation on 
glossy surfaces.



From Ray Tracing to RasterizationFrom Ray Tracing to Rasterization

GPU
Vertex
Shader

Fragment
Shader

Simple plane sampling

Incoming radiance loss



From Ray Tracing to RasterizationFrom Ray Tracing to Rasterization

≈∫

GPU
Vertex
Shader

Fragment
Shader

Our plane sampling

We propose a very simple compensation method, in which the border pixels 
are virtually « extended » to fill the parts of the hemisphere which have not
been actually sampled. To this end, border pixels are considered as covering a 
solid angle of:
Ωborder= Ωp + cos(θborder) *δΦ
Where:
•Ωp is the solid angle subtended by the pixel
•θ border is the largest θ covered by the aperture of the camera
•δΦ is the interval of Φ spanned by the pixel



From Ray Tracing to RasterizationFrom Ray Tracing to Rasterization

GPU
Vertex
Shader

Fragment
Shader

Our plane sampling

Compensation of incoming radiance loss

This allows us to compensate the missing information by extrapolating the
radiance values at the extremities of the sampling plane. This extrapolation 
provides a plausible estimate of the missing radiances, hence making it
suitable for radiance caching also. 
It must be noted that other techniques can be used, such as the full hemicube
sampling (which requires several passes), or a hemispherical parametrization
of the hemisphere in vertex shaders.



Reformulate IC Algorithm: How?Reformulate IC Algorithm: How?

1.
Octree Splatting

2.
RasterizationRay Tracing

Now the algorithm has been reformulated for implementation on graphics
hardware. Next section will present the entire algorithm for global illumination 
computation using irradiance splatting.



AlgorithmAlgorithm
Step 1 : information generation

GPU
Vertex
Shader

Fragment
Shader

The first step of the algorithm consists in obtaining basic information about the
points visible from the user point of view. In particular, this information includes
the position and normal of the visible points. This data can be easily generated
in one pass on the GPU using floating-point multiple render targets and
programmable shaders.
In the next step, the algorithm transfers this data into the main memory. The
CPU is then used to traverse the image and detect where new records are 
required to render the image.
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Octree-Based RenderingOctree-Based Rendering

?

Usually, the detection is performed by querying the irradiance cache (hence the octree) for 
each pixel as follows:
•For each visible point P with normal N corresponding to pixel p

•W = GetSumOfContributions(P,N)
•If (W < a)

•R = CreateNewRecord(P,N)
•IrradianceCache.StoreRecord(R)
•p.radiance = R.irradiance*SurfaceReflectance(P)

•Else
•E = EstimateIrradiance(P,N)
•P.radiance = E*SurfaceReflectance(P)

•EndIf
•EndFor

While this algorithm ensures the presence of a sufficient number of records, such records are 
not used in an optimal way: when record 2 is created, the algorithm only propagates the 
contribution of 2 to the pixels which have not been checked yet. The previous pixels remain 
unchanged, even though record 2 may contribute to their radiance. If the image is traversed 
linearly, disturbing artifacts may appear: in this example the image is traversed from bottom to 
top. Therefore, the records contribute only to the points located above them in the image. This 
problem is usually compensated by using other traversal algorithms, typically based on a 
hierarchical subdivision of the image.



1 2 3
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Splatting-Based Rendering Splatting-Based Rendering 

No constraint on traversal order

When using irradiance splatting, the detection code becomes:
•For each visible point P with normal N corresponding to pixel p

•W = GetSumOfContributions(P,N)
•If (W < a)

•R = CreateNewRecord(P,N)
•IrradianceCache.StoreRecord(R)
•SplatRecord(R)
•p.radiance = R.irradiance*SurfaceReflectance(P)

•Else
•// Nothing to do: the radiance value depends of surrounding records and may 
be updated

•EndIf
•EndFor

In our method, the records are splatted onto their entire zone of influence: even pixels which 
have been previously checked can be updated by the addition of a novel record. Hence this 
method removes the constraint on the image traversal order. In the example image, we used a 
simple linear traversal. The zone of influence of each record is completely accounted for by our 
splatting method.



AlgorithmAlgorithm
Step 3 : display

GPU
Vertex
Shader

Fragment
Shader

Vertex
Shader

Matrices

Record information

Once all records have been computed, each record must be rendered on the
GPU. Let us consider a record located at point P with normal N, and with an 
harmonic mean distance to surrounding objects H. The zone of influence of
the record is contained within a screen-aligned square. Let us consider the
vertices of a square such that:
v0 = (1.0, 0.0, 0.0)
v1 = (1.0, 1.0, 0.0)
v2 = (0.0, 1.0, 0.0)
v3 = (0.0, 0.0, 0.0)

Each vertex can be transformed into screen space using the following function:
float4 TransformVertex(Vertex v)
{

float4 projPos = ModelViewMatrix*P; // Transform the point into
camera space

float scale = projPos.w;
float4 projPos /= projPos.w;

float radius = a*H; // Radius of the zone of influence in camera 
space



AlgorithmAlgorithm
Step 3 : display

GPU
Vertex
Shader

Fragment
Shader

Fragment
Shader

Record information

The fragment shader then computes the actual value of the weighting function
for each point within the quadrilateral, using the formula defined in [Ward88]. If 
the record is allowed to contribute to the lighting of a visible point, its
contribution is computed using irradiance gradients such as in [Ward92]. The
output of the shader for the corresponding fragment is a HDR RGBA value, 
where RGB represents the weighted contribution of the record, and A 
represents the weight of the record’s contribution.

When several records are rendered, their RGBA values are simply added
together using the floating-point alpha blending of graphics hardware 
(glBlendFunc(GL_ONE, GL_ONE)). This yields a sum of weighted
contributions in the RGB components, and a sum of weights in the A 
component. 



AlgorithmAlgorithm
Step 3 : display

GPU
Vertex
Shader

Fragment
Shader

Fragment
Shader

In a final step, a texture containing the RGBA values discussed above is used
in a final render pass. This pass renders a single screen-sized quadrilateral. 
For a given pixel the fragment shader fetches the corresponding RGBA value, 
and outputs RGB/A to perform the irradiance estimation described in 
[Ward88].



Algorithm: SummaryAlgorithm: Summary

No spatial data structure

Spatial queries replaced by splatting

Interpolation by blending

No quality loss compared to (Ir)Radiance Caching

No order constraint for image traversal

Can be implemented using native GPU features



ResultsResults

Sibenik Cathedral (80k tri.) Sponza Atrium (66K tri.)

Those videos were rendered on a GeForce 6800. The scene being static, the
irradiance cache is reused across frames. Hence the first frame has been 
computed in approximately 20s, while the other frames took approximately 1s 
to render.



Results: Comparison with RadianceResults: Comparison with Radiance

Sponza AtriumSibenik Cathedral
Radiance

Time

Our
Renderer

Time

Speedup

645 s425 s

13,7 s14,3 s

47,129,7

A comparison between our GPU-based method and the Radiance Software.



Results: IC to RC, Venus (24K tri.)Results: IC to RC, Venus (24K tri.)

This method can be straightforwardly extended to glossy global illumination 
using radiance caching.
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(Ir)Radiance Caching(Ir)Radiance Caching

R

Spatial Weighting function

As explained in the previous parts of this course, the zone of influence of a 
given irradiance record is defined by a spatial weighting function. 



(Ir)Radiance Caching(Ir)Radiance Caching

Spatial (Ir)Radiance Gradients

The contribution of a record within its zone of influence is estimated using
irradiance gradients [Ward92].



(Ir)Radiance Caching(Ir)Radiance Caching

The lighting of the visible points is then computed explicitly at the location of 
the records, and extrapolated for all the other visible points.



(Ir)Radiance Caching(Ir)Radiance Caching

Record Location GI Solution

In a single image, this method provides high quality results even when using a 
very sparse sampling. However, since the estimated lighting is generally
obtained through extrapolation from the location of the records, the result
depends on the distribution of the records. 



(I)RC in Dynamic Scenes(I)RC in Dynamic Scenes

In dynamic scenes, the indirect lighting must be changes in each frame. A 
simple method for animation rendering using irradiance caching is the entire
recomputation of the global illumination solution for each frame. The camera 
and objects being dynamic, the distribution of records is likely to change 
across frames, yielding flickering artifacts. A video illustrating this method can
be found on [MyWebSite]. 

Furthermore, the indirect lighting tends to change slowly across frames. The 
indirect lighting computed at a given frame may thus be reused in several
subsequent frames without degrading the quality. However, the lighting may
change very quickly in some areas of the scene, and be nearly-static
elsewhere. The method described in this course leverages these observations 
by assigning a distinct lifespan to each record in the cache.



(I)RC in Dynamic Scenes(I)RC in Dynamic Scenes
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Base IdeaBase Idea

Dynamic
Object

k

Hemisphere
sampling

Explicit strata storage

Selective stratum update

The base idea of this paper is the explicit storage and update of all the
incoming radiance samples used to estimate the irradiance value of a record. 
In a dynamic scene, only the stratum corresponding to dynamic objects have 
to be updated in the course of time, hence reducing the computational cost
compared to the classical approach, in which all records are entirely
recomputed for each frame of an animation.



Photon TracingPhoton Tracing

Dynamic
Object

k

Per-frame photon tracing

Use Quasi Monte Carlo for 
temporal coherence

For each frame, a photon map is computed by tracing random photons using
Quasi Monte Carlo method. Using this method, the paths of the photons are 
likely to be similar across frames, hence increasing the temporal coherence of
the photon map.



Record ComputationRecord Computation

Dynamic
Object

k

Create anchor point
Store irradiance
Link with stratum
Anchor irradiance updated

for each frame

When creating an irradiance record, a ray is traced for each stratum of the
hemisphere. At the intersection point of this ray, an anchor point is created. 
The anchor structure stores the location, the normal, and the irradiance at the
intersection point. This anchor irradiance is simply estimated by density
estimation on the photon map.
Then, the stratum of the record is explicitly linked to the anchor point.
Note that the location of anchor points is persistent over time. However, their
irradiance value is recomputed at each frame using the photon map.



Record ComputationRecord Computation

Dynamic
Object

k

Link stratum with nearby anchor
Selection heuristics:

-Surface normal
-Visibility

If the intersection point corresponding to the stratum is close to an existing
anchor points, the stratum can be directly linked to the anchor point. Several
heuristics have been proposed to estimate the suitability of the link to an 
existing anchor. Among them, the surface at the intersection point and at the
anchor point must have similar normals. Also, the visibility between the record 
location and the anchor point is explicitly tested by tracing a shadow ray.



Record UpdateRecord Update

Dynamic
Object

k

Need to update the stratum!

The most important problem to solve in this method is the detection of
occlusion changes: when the red sphere crosses the ray between the record 
and the anchor point, the radiance value of the stratum must be updated
accordingly.



OutlineOutline

Detection of occlusion changes

Anchor density management

Cache update
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Detection of occlusion changes

Anchor density management

Cache update



Occlusion DetectionOcclusion Detection

k

Step 1:
Project dynamic objects

Dynamic
Object

The occlusion detection is performed in 4 steps, and may be performed using
graphics hardware.
In the first step, the dynamic objects only are projected onto the hemisphere
above the record. 



Occlusion DetectionOcclusion Detection

Dynamic
Object

k

Step 1:
Project dynamic objects

Step 2:
Flag “dynamic” strata

D D

This projection of the dynamic objects allows us to flag the corresponding
strata as « dynamic strata », e.g. strata for which the incoming radiance is due 
to a dynamic object.



Occlusion DetectionOcclusion Detection

Dynamic
Object

k

Step 1:
Project dynamic objects

Step 2:
Flag “dynamic” strata

Step 3:
Trace rays for those strata

For those strata, rays are traced to estimate the incoming radiance. Note that
anchor points are not created on dynamic objects. Instead, the irradiance at
each intersection point is computed by density estimation in the photon map. 
Combined with the existing information contained in « static » strata, the
irradiance of the record can be easily deduced.



Occlusion DetectionOcclusion Detection

Dynamic
Object

k

Step 1:
Project dynamic objects

Step 2:
Flag “dynamic” strata

Step 3:
Trace rays for those strata

Step 4 (next time step):
Trace rays for those strata

At the next time step, the « dynamic strata » will also be explicitly sampled by 
ray tracing to update their values.



OutlineOutline

Detection of occlusion changes

Anchor density management

Cache update

The anchor data structure allows us to reduce the number of density 
estimations to render an animation. However, the efficiency of the method lies 
in an adaptive distribution of anchors.



Maximum Search RadiusMaximum Search Radius

Anchor density = photon map sampling density

Adapt the anchor density to 
the importance in the image

“Global Importons”

The density of anchor points directly impacts the quality of the lighting 
estimate. In particular, the distribution of anchor points should be very dense 
at points which highly contribute to the lighting of visible points. This density is 
controlled by the maximum search radius used when looking for an anchor 
nearby an intersection point. If this radius is small, the queries in the anchor 
structure may not find any suitable nearby anchor. Therefore, a small radius 
increases the anchor density. Converserly, a large radius decreases the 
anchor density.
The authors use “global importons” to adapt the density of anchors.



“Global Importons”“Global Importons”

The “global importons” are obtained by tracing rays from the camera, and 
storing the second bounce of the ray in the scene.



“Global Importons”“Global Importons”

High density High sampling rate Low maximum search radius

The zones containing many “global importons” are zones which highly 
contribute to the indirect lighting of visible points. Therefore, the anchor density 
should be raised to ensure the image quality. Therefore, the maximum search 
radius is lowered.



“Global Importons”“Global Importons”

Low density Low sampling rate High maximum search radius

Conversely, zones with very few importons do not contribute much to the 
indirect lighting of visible points. Therefore, the sampling rate is kept low to 
increase the rendering speed. The maximum search distance is then set to a 
high value.



Maximum Anchor DensityMaximum Anchor Density

Goal: avoid having more anchors than photons

Link each anchor to its nearest photon

For each stratum, look for the nearest photon

If the photon is linked to an anchor
Attach the stratum to the anchor

One of the goals of this work is the reduction of the photon searches during 
global illumination computation. Therefore, if the structure contains more 
anchors than photons, the algorithm would become very inefficient. The 
method described in this slide ensures that there cannot be more anchors than 
photons



Anchor Density ManagementAnchor Density Management

No density management With density management

(Images courtesy of Miloslaw Smyk et al.)
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Detection of occlusion changes

Anchor density management

Cache update



Record UpdateRecord Update

Dynamic
Object

Rec1

Rec2

Rec1 lies on dynamic object 
DISCARDED

Rec2 lies on static object 
Recompute only strata 

corresponding to dynamic objects

The irradiance value of the records must be updated across frames. Several 
cases can happen: records located on dynamic objects are discarded for each 
frame. Records on static objects undergo adaptive strata replacement as 
explained previously. 



ResultsResults

See videos on http://www.mpi-inf.mpg.de/resources/anim/EG05/ 

Reduction of flickering artifacts

Up to 5x speedup compared to per-frame computation

(Images courtesy of Miloslaw Smyk et al.)

The resulting animations exhibit a significant reduction of flickering, while 
reducing the computational cost by a factor up to 5.
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Temporal weighting
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Temporal gradients
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Temporal weighting
function

Temporal gradients

Fast estimate of 
future indirect lighting

More precisely, the method described in this course is an extension of the 
irradiance caching interpolation scheme to the temporal domain. To this end, 
we devise a temporal weighting function to determine the lifespan of a record, 
e.g. the number of frames in which a record can be reused without degrading
the rendering quality. The contribution of a record within its lifespan is
estimated using temporal irradiance gradients.



Temporal Weighting FunctionTemporal Weighting Function
Estimate the temporal change rate of indirect lighting

The spatial weighting function described in [Ward88] is based on an estimate
of the change of indirect lighting with respect to displacement and rotation. The 
temporal weighting function is thus based on an estimate of the temporal 
change of indirect lighting across frames.



Temporal Weighting FunctionTemporal Weighting Function
Estimate the temporal change rate of indirect lighting

≈
Et-Et+1

δt

∂E
∂t

(t0)

= E0( -1)

= Et+1/Et

Let us consider the irradiance Et at current frame, and the irradiance Et+1 at
next frame. The temporal change of indirect lighting can be estimated by a 
numerical estimation of the temporal derivative of the lighting. We define the 
value τ as the ratio of the future and current lighting.



Temporal Weighting FunctionTemporal Weighting Function
Inverse of the temporal change rate of indirect lighting

= Et+1/Et

(   -1)(t-t0) 
1

wk
t(t) = > 1/at

Problem : 
Lifespan is determined when the record is created

Using a derivation similar to [Ward88], we obtain a temporal weighting function
defined as the inverse of the change of indirect lighting over time. The lifespan
of a record is thus adapted to the local change of indirect lighting: fast
changes yield a short lifespan, while records can be reused across many
frames if the temporal changes are slow. The user-defined threshold value at

conditions the temporal accuracy of the computation: a high value leads to 
long lifespans, hence reducing the rendering time at the detriment of the 
quality. Conversely, a small value ensures frequent updates at the expense of 
rendering time. 

At the end of its lifespan, a record is discarded and replaced by a new record 
located at the same point. This method strenghtens the temporal coherence of 
the distribution of records, hence avoiding flickering artifacts due to changes of 
record distribution.

However, the lifespan is determined using the indirect lighting at current and 
next frames only. Therefore, later changes do not affect this lifespan, hence
harming the reactivity of the algorithm. An overestimation of the lifespan yields
residual global illumination effects known as « ghosting artifacts ».



Lifespan ThresholdingLifespan Thresholding

P

At point P and time t:
Static environment

= Et+1/Et = 1

wk
t(t) = ∞ for all t

Infinite Lifespan

Let us consider an example: at a point P and time t and t+1, the environment
is static. Therefore, the indirect lighting is considered constant. In this case, 
the value of the temporal weighting function is infinite for any frame. The 
lifespan of the record is then considered infinite.



Lifespan ThresholdingLifespan Thresholding

P

At point P and time t:
Static environment

= Et+1/Et = 1

wk
t(t) = ∞ for all t

Infinite Lifespan

wk
t(t) = 0 if t-tk>δtmax

However, it is easy to show that the lighting at P may change afterwards. 
Since the weighting function returns an infinite value regardless of the frame, 
the value of the lighting at P will never be updated, yielding ghosting artifacts. 
We do not solve this problem, but we simply ask the user to define a maximum 
lifespan δtmax for all records. This maximum lifespan ensures the update of the 
ligthing at least after δtmax frames.



Temporal Weighting FunctionTemporal Weighting Function

Determines the lifespan of the records

Lifespan depends on the local change of incoming radiance

If the environment is static, threshold the lifespan to a maximum value

= Et+1/Et

Requires the knowledge of future irradiance

However

The temporal weighting function is used to determine the lifespan of each
record based on the local change of incoming radiance over time. The length
of the lifespan is shortened or lengthened with respect to the magnitude of the 
change of indirect lighting. However, the estimate of this change is based on 
the knowledge of the indirect lighting at next frame, Et+1. Since this value is
generally unknown, next section will devise a method for fast estimation of the 
future incoming without actual sampling.
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Temporal weighting
function

Temporal gradients

Fast estimate of 
future indirect lighting



Future Incoming LightingFuture Incoming Lighting

P P

≈
Time t Time t+1

E(P, t) = E(P, t+1) = 

This approach is based on the following observation: between time t and t+1, 
the change of lighting is low. Based on the knowledge of the dynamic
properties of surrounding objects, we propose a method based on reprojection
to estimate the future incoming lighting using only the data available at current
frame.



ReprojectionReprojection

k

Et

Et+1

Assumption: Animation is predefined

Future transformation matrices are known

Our reprojection method is similar to the one used in the Render Cache 
[Walter99]. However, in the Render Cache, the reprojection is used to avoid
tracing primary rays from the camera. In our case, the reprojection is only used
to estimate the future incoming radiance at the location of a record.

Let us consider a point k at which we want to create a record.



ReprojectionReprojection

t+1t

k

Et OK

Et+1

Hemisphere
sampling

The first step is the computation of the incoming radiance in k at time t. This is
performed by sampling the hemisphere above k either using ray tracing or 
GPU rasterization as explained in the previous chapter.

Assuming the animation is known in advance, the position of the red sphere at
time t+1 is known.



ReprojectionReprojection

t+1

? ?

Et OK

Et+1

Reprojection

This future position of the red sphere is used to reproject the radiance samples
corresponding to the sphere to the new position. This reprojection yields
missing information at the former location of the sphere, and overlapping
values at the novel position.



ReprojectionReprojection

Et OK

Et+1
Hole
filling

t+1

? ?
Depth
culling

A depth culling step chooses the closest value in the case of overlapping
radiance values. In this case, the background values are culled.
A simple hole-filling is applied in strata where information is missing. Since we
only deal with small movements (1 frame), we simply fill the holes using the 
closest neighboring value.



ReprojectionReprojection

Et OK

Et+1

t+1
OK

After depth culling and hole filling, our method provides a reliable estimate of 
the future incoming lighting. The lifespan of the record created in k is thus
completely defined.



Temporal InterpolationTemporal Interpolation

k

Et = 

At this point, we know that the value of record k can be reused across n 
frames. 



Temporal InterpolationTemporal Interpolation

k

Et = 
Recompute
Irradiance

At the end of the record lifespan, a new record is computed, containing an up-
to-date irradiance value. In this case the red sphere got closer to k, hence the 
irradiance at time t and t+n are noticeably different. A consequence of this
brutal replacement is sudden changes in the color of image portions, known as 
« popping » artifacts.
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Extrapolated GradientsExtrapolated Gradients

k

Et
extra = E0 = Computed

E1 = Estimated Et
actual = 

Et
actual-Et

extra = 

First, we propose to use the estimate of the future incoming lighting to 
extrapolate the lighting over the entire lifespan of the record. While this method
reduces the gap between the extrapolated and the actual irradiance values, 
the difference is still not negligible. As a consequence, some popping artifacts
will remain visible.
This method has one major advantage: the indirect lighting can be computed
and displayed on the fly, as the animation is played. Particularly, such
gradients could be used in the context of interactive global illumination 
computation.



Interpolated Gradients: Pass 1Interpolated Gradients: Pass 1

k

E0 = Computed

Et
actual = 

Interpolated gradients completely avoid the popping artifacts by temporally
interpolating the irradiance. In a first pass, records are generated as explained
previously: each record is used within its lifespan, and new records are 
computed as the lifespans expire. Let us consider a record R0 computed at
time t0 and located at point k. When this record expires after n frames, it is
replaced by a new record R1 also located at point k. The temporal gradient of
R0 is then deduced from (ER1-ER0)/n.

This gradient approximates the change of lighting within the lifespan of a 
record by linearly interpolating the irradiance at the beginning and at the end of
the lifespan. While completely removing popping artifacts, this linear
approximation may smooth out high frequency changes that may happen
during the lifespan of the record. Accounting for such changes either require a 
reduction of at and δtmax, or the definition of a higher order interpolation 
scheme.



Interpolated Gradients: Pass 2Interpolated Gradients: Pass 2

k

Et
inter = E0 = Computed

Et = Computed Et
actual = 

Et
actual-Et

inter = 



Results: Flying KiteResults: Flying Kite

Videos illustrating the interpolated gradients and the adaptive record lifespan
in different scenes can be found in [MyWebSite].



Results: SpheresResults: Spheres

This method can be straightforwardly extended to nondiffuse interreflexions
using radiance caching.



ConclusionConclusion

Temporal radiance interpolation scheme

Reuse records across frames

Quality improvement Speedup

Easily integrates within (ir)radiance caching-based renderers
GPU Implementation

Dynamic objects, light sources, viewpoint

The method described in this part is based on the reuse of irradiance records 
across frames. While reducing the computational cost of animation rendering, 
the flickering artifacts are drastically reduced. This method supports any type 
of dynamic scene components, and can be easily integrated in existing
renderers.

Future work will consider the elimination of the maximum lifespan δtmax. Also, 
we would like to devise methods for higher order temporal interpolation to 
account for sharp changes of indirect lighting.
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