Introduction

Jaroslav Křivánek
Czech Technical University in Prague
Our Topic: Irradiance Caching

• Global illumination – Diffuse Interreflections
• Converge to physically correct results
• No image artifacts
• Smooth integration with a ray tracer
• Efficient (often)
Our Topic: Irradiance Caching

- 20 years ago!
- Reincarnation with
 - photon mapping
 - faster computers

70 hours, VAX 11/780
Course on Irradiance Caching: WHY?

• Widely used in practice
• Recent research on
 – making it faster
 – making it more general
• Surprisingly, people liked the course last year 😊
Course Overview

1. (08:30 – 08:35 / 05 min) Introduction (*Křivánek*)
2. (08:35 – 08:55 / 20 min) Stochastic Ray Tracing (*Křivánek*)
3. (08:55 – 09:20 / 25 min) Irradiance Caching Algorithm (*Ward*)
4. (09:20 – 09:35 / 15 min) Irradiance Caching in RADIANCE (*Ward*)
5. (09:35 – 09:55 / 25 min) Implementation Details (*Křivánek*)
6. (09:55 – 10:15 / 20 min) Photon Mapping (*Jensen*)
 (10:15 – 10:30 / 15 min) Break
Course Overview

7. (10:30 – 10:45 / 15 min) Glossy Reflections (Křivánek)
8. (10:45 – 11:05 / 20 min) Hardware Implementation (Gautron)
9. (11:05 – 11:20 / 15 min) Temporal Caching (Gautron)
10. (11:20 – 11:55 / 35 min) IC at PDI/DreamWorks (Tabellion)
11. (11:55 – 12:15 / 35 min) IC at Pixar (Christensen)
12. (12:15 – 12:30 / 15 min) Discussion (All)
The term “global illumination” embraces many lighting effects encountered in real world. Some of them are shown on this slide.
Simulating global illumination can reproduce the visual richness of real world. It is also useful for predictive rendering, such as architecture or illumination engineering. In these applications, it is essential to simulate light transport accurately so that the simulation results can be predictive of what the actual construction would look like.
The focus of this course is on irradiance caching – an algorithm for fast computation of global illumination on diffuse surfaces. The algorithm gains its efficiency by performing the costly global illumination computation on a sparse set of locations, caching the results and using them to interpolate illumination elsewhere.