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Å In the real world, light sources emit light particles, which travel in space, 

scatter at objects (potentially multiple times) until they are absorbed.  

Å On their way, they might hit the sensor of the camera which will record the 

light contribution. 
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Å The light particles travel along trajectories that we call ñlight transport pathsò. 

Å In an environment consisting of opaque surfaces in vacuum, these paths are 

polylines whose vertices correspond to scattering (reflection) at surfaces, and 

the straight edges correspond to light travelling the in free space. 
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Å The final response of the camera is due to all the light particles ï travelling 

over all possible paths ï that hit the camera sensor during the shutter open 

period. 
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Å The path integral formulation of light transport formalizes this idea by writing 

the camera response (which, in image synthesis will be the value of a pixel) as 

an integral over all light transport paths of all lengths in the scene. 

Å The integrand of this integral is the so called ñmeasurement contribution 

functionò. 

Å The measurement contribution function of a given path encompasses the 

ñamountò of light emitted along the path, the light carrying capacity of the path, 

and the sensitivity of the sensor to light brought along the path. 
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Å Let us now look at a more formal definition of the measurement contribution 

for a light path. 

Å As I already mentioned, a light transport path is a polyline with vertices 

corresponding to light scattering on surfaces. 

Å We write the path simply as a sequence of vertices, in the order of the light 

flow. So the first vertex corresponds to light emission at the light source and 

the last vertex to light measurement at the sensor. 

Å The measurement contribution function f(x) for a path x of length k is defined 

as the emitted radiance Le at the first vertex, times the sensitivity (or ñemitted 

importanceò) We at the last vertex, times the path throughput T(x). The 

throughput is defined as the product of the geometric G and scattering terms 

associated with the path edges and interior vertices, respectively. 

 

6 



Å The geometry term, or point-to-point form factor, of a path edge expresses 

the throughput of the edge due to geometry configuration of the scene, and is 

given by the product of the inverse-squared-distance, cosine factor at the 

vertices and the visibility term. 
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Å Back to the path integralé 

Å We now know the meaning of the integrand ï the path contribution function ï 

but the integration domain ñall pathò needs more clarification. 
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Å The path integral actually hides an infinite sum over all possible path lengths. 

Å Each summand of this sum is a multiple integral, where we integrate the path 

contribution over all possible positions of the path vertices. 

Å So each of the integrals is taken over the Cartesian product of the surface of 

the scene with itself, taken k+1 times (=number of vertices for a length-k path.) 

Å The integration measure is the area-product measure, i.e. the natural surface 

area, raised to the power of k+1. 
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Å We now have a formula for pixel values that has a form of a simple (though 

infinite-dimensional) integral. 

Å To render images, we need to numerically evaluate this integral for all 

image pixels. 
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Å So the next section of this presentation well be devoted to numerical 

evaluation of the path integral. 
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Å We will use Monte Carlo integration for this purpose. 
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Å Let me briefly review the basic elements of MC integration. 

Å Suppose we are given a real function f(x) and we want to compute the 

integral Int f(x) dx over some domain (in this example we use the interval [0,1] 

for simplicity, but the domain can be almost arbitrary.) 

Å The Monte Carlo integration procedure consists in generating a ósampleô, that 

is, a random x-value from the integration domain, drawn from some probability 

distribution with probability density p(x). In the case of path integral, the x-

value is an entire light transport path. 

Å For this sample xi, we evaluate the integrand f(xi), and the probability density 

p(xi). 

Å The ratio f(xi) / p(xi) is an estimator of the integrand. To make the estimator 

more accurate (i.e. to reduce its variance) we repeat the procedure for a 

number of random samples x1, x2, é, xN , and average the result as shown in 

the formula on the slide. 

Å This procedure provides an unbiased estimator of the integrand, which 

means that ñon averageò, it produces the correct result i.e. the integral that we 

want to compute. 
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Å Thanks to the formal simplicity of the path integral formulation, applying 

Monte Carlo integration is really a more-or-less mechanical process. 

Å For each pixel, we need to repeatedly evaluate the estimator shown at the 

top right of the slide and average the estimates. 

Å This involves the following three steps: 

Å First, we need to draw (or sample, or generate ï all are synonyms) a 

random light transport path x in the scene (connecting a light source to 

the camera). 

Å Then we need to evaluate the probability density of this path, and the 

contribution function. 

Å Finally, we simply evaluate the formula at the top of the slide. 

Å Evaluating the path contribution function is simple ï we have an analytic 

formula for this that takes a path and returns a number ï the path contribution. 

Å However, we have not discussed so far how paths can be sampled and how 

the PDF of the resulting path can be evaluated. 
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