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Figure 1: Our fast mesh sampling algorithm can place up to 78 million random sample points per second on a triangle mesh.
We can use the algorithm, for example, to interactively distribute hair roots on a surface (a) or for sampling illumination from a
complex luminaire, such as a projected HDR image, where uniform sampling produces a noisy image (b).

Abstract
We present a simple and fast algorithm for generating randomly distributed points on a triangle mesh with proba-
bility density specified by a two-dimensional texture. Efficiency is achieved by resampling the density texture on an
adaptively subdivided version of the input mesh. This allows us to generate the samples up to 40× faster than the
rejection sampling algorithm, the fastest existing alternative. We demonstrate the algorithm in two applications:
fast placement of hair roots on a surface and sampling of illumination from a complex luminaire. Part of our mesh
sampling procedure is a new general acceleration technique for drawing samples from a 1D discrete probability
distribution whose utility extends beyond the mesh sampling problem.

Categories and Subject Descriptors (according to ACM CCS): I.3.5 [Computer Graphics]: Computational Geom-
etry and Object Modeling—Surfaces and object representations I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism—Color, shading, shadowing, and texture

1. Introduction
Surface sampling has a number of uses in computer graph-
ics including remeshing, point-based graphics, and textur-
ing. In this paper, we consider applications such as Monte
Carlo rendering that require the generated samples to be
random and follow a specified probability density. Previous
work on this problem focuses on the quality of point dis-
tributions [BWWM10, CCS12]. However, such approaches
are limited in performance, especially for non-uniform den-
sities, which precludes their use in interactive applications
and in efficient Monte Carlo rendering.

We propose a simple and fast algorithm for generating
randomly distributed points on a triangular mesh with prob-
ability density specified by a two-dimensional image texture
mapped on the surface. Efficiency is achieved by resampling
the density texture on an adaptively subdivided input mesh.
Doing so allows us to achieve a speedup of up to 40 times
compared to the rejection sampling algorithm, the fastest ex-
isting alternative. Since efficiency is our primary concern,
we do not ensure regularity of the generated samples by
stratification or by enforcing the Poisson-disk property. We
demonstrate our algorithm in two applications: fast place-
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ment of hair roots on a surface and sampling of illumination
from a complex luminaire in Monte Carlo rendering (Fig. 1).

Important for the efficiency of our approach is a new gen-
eral acceleration technique for generating samples from a
1D discrete probability distribution that uses a lookup table
to speed up the search in the cumulative distribution func-
tion (CDF). This technique achieves a 2× to 14× speedup
over the traditional approach based on a binary search in the
CDF [PH10]. Thanks to its generality, the utility of this tech-
nique goes beyond mesh sampling, as we demonstrate on
the problem of sampling illumination from a high-resolution
high dynamic range (HDR) environment map.

2. Related Work
A number of papers have addressed generation of point
distributions (see [LD08, EMP∗12] for an overview), how-
ever, relatively little research has focused on random sam-
pling of surfaces embedded in 3D space. Surface sam-
pling has been studied in different contexts such as remesh-
ing [Tur92, QM06], point-based graphics [GP07], textur-
ing [LD05], realistic rendering [JB02], or non-photorealistic
rendering [Mei96]. The goal of these techniques, however, is
not to generate unbiased samples from a prescribed probabil-
ity density. In addition, their performance is usually limited.

Several recent papers have addressed surface sam-
pling with stratification [NS04] or blue-noise proper-
ties [BWWM10, CCS12]. However, the quality of the re-
sulting distribution comes at the cost of relatively low sam-
pling performance. This is an important limitation in appli-
cations where sampling speed is critical, such as sampling
of complex luminaires in Monte-Carlo rendering or interac-
tive placement of hair roots. Another important limitation of
these methods is that they generate uniform samples without
the possibility of controlling the sample density.

Fast unbiased sampling of meshes is discussed in few
papers [OFCD02, CCS12] but these techniques are limited
to uniform distributions. Several existing methods [LRR05,
SSKKC10] can be used for fast sampling of non-uniform
distributions, however they can not be straightforwardly ex-
panded to mesh sampling. A widely known approach to gen-
eralize such techniques to generating samples with any given
density is rejection sampling [PH10, p. 671]. Yet, its perfor-
mance suffers greatly for highly varying densities . Our algo-
rithm overcomes this problem and consistently outperforms
any of the existing alternatives by a large margin, however
in its current state is unable to ensure high-quality distribu-
tion of samples (such as blue-noise distribution) and there-
fore can not be used for some applications such as mesh re-
construction or NPR.

3. Mesh Sampling
In this section we give a detailed description of our new
mesh sampling algorithm.

3.1. Problem Definition
Given a set of n triangles {Ti}n

i=1, Ti ⊂ R3, T = ∪n
i=1Ti, a

density function f : [0,1]2 → R+
0 represented by an image

texture, and a mapping m : T → [0,1]2 that maps points on
T onto the texture domain, we want to draw samples from a
distribution with the probability density function (PDF) p :
T → R+

0 (w.r.t. the surface area measure) given by:

p(x) = f (m(x))∫
T f (m(x′))dA(x′)

(1)

3.2. Possible Approaches
A straightforward solution to the above problem is to use re-
jection sampling:
1) Pick a triangle Ti proportionately to its surface area,
2) Propose a sample x from a uniform distribution on Ti,
3) Generate a random number ξ from uniform distribution
U(0,M), with M = sup{ f (u) | u ∈ [0,1]2},
4) Accept x if ξ < f (m(x)), otherwise go to step 1.
This approach suffers from the usual disadvantages of rejec-
tion sampling. Efficiency degrades rapidly for non-uniform
density f , and the number of random numbers used to gen-
erate one sample cannot be bounded prior to the calculation.

Another alternative would be to carry out the sampling in
the [0,1]2 texture space, where the density function f is de-
fined by an image that can be efficiently sampled [PH10, p.
671], and then transform the samples to the triangles using
the inverse of the m mapping. However, generality of this ap-
proach is compromised by the fact that m is often not invert-
ible (e.g. for a tiled texture) and usually not area-preserving.

3.3. Algorithm Overview
Our approach does not suffer from the performance and gen-
erality issues of the aforementioned alternatives. Consider a
simple case, where the density texture f is constant over the
area of any one triangle. Our sampling problem would then
reduce to choosing a triangle from a suitable discrete distri-
bution and drawing the sample from a uniform distribution
on the triangle. The main idea of our approach is to map the
general problem to this simplified case by subdividing the
triangles of the input mesh until the density texture f can be
considered constant over the sub-triangle area, and resam-
pling the density texture on the subdivided triangles. Doing
so avoids problems due to the incompatibility of the density
texture and triangle mesh domains, and greatly simplifies the
sampling algorithm. This idea is similar to the Mesh Colors
approach for texturing 3D meshes [YKH10], though the pur-
pose is different.

Our algorithm works in two stages. The preprocessing
stage, executed once for a given mesh and density texture,
subdivides the input triangles and creates a piece-wise con-
stant PDF on the sub-triangles that can be efficiently sam-
pled. The sampling stage then draws samples from this
PDF. In order to make the approach practical, we propose a
memory-efficient representation for the subdivided triangles
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Figure 2: In the preprocess, we subdivide each triangle (a) until the sub-triangle size matches the density texture resolution
(b), and subsequently compute a sub-triangle probability Pi by resampling the density texture on the subdivided triangle (c). To
speed up sampling and reduce memory cost, we merge sub-triangles with same sampling probabilities (d). Finally, we compute
a cumulative distribution function (CDF) F as Fi = ∑

i
j=1 Pj and for each sub-triangle i store Fi, sub-triangle index and parent

triangle index (e). In the sampling stage, we randomly select a sub-triangle using the computed CDF F and place a sample on
it (1). We use the stored sub-triangle index to calculate sample location at the parent triangle (2).

and an accelerated procedure for generating surface samples
from this representation. The rest of this section and Sec-
tion 4 describe the technical details of our solution. For full
algorithm overview see Fig. 2.

3.4. Stage 1: Preprocessing
Pseudocode of the preprocessing stage is given in Fig. 3. In
this stage, we subdivide the input triangles and effectively
replace the desired sampling PDF (Eq. 1) by its approxima-
tion p′ that is constant over the area of each sub-triangle.
The PDF value for sub-triangle Di is determined by taking
a (bilinearly filtered) sample fi of the density texture at the
sub-triangle’s barycenter. For x ∈ Di, the approximate PDF
is defined as

p′(x) = fi
∑

ns
j=1 f j |D j|

, (2)

where ns is the total number of sub-triangles and |D j| de-
notes the surface area of sub-triangle D j.

For each mesh triangle:
1. Determine subdivision level for the triangle.
2. Subdivide the triangle up to the determined level.
3. Compute sampling probability P for each sub-triangle.
4. Merge sub-triangles with same sampling probabilities.
5. For each sub-triangle, store probability P, parent triangle

index, and sub-triangle index.

Figure 3: The preprocessing stage of our algorithm.

To make the above PDF approximation accurate, our goal
is to subdivide the input triangles until the density texture
can be safely considered constant inside each sub-triangle.
To achieve this goal, each triangle is subdivided so that its
sub-triangles are smaller than a texel of the density texture
mapped on the triangle. Because the m mapping is affine
over each input triangle (as per linearly interpolated per-
vertex texture coordinates), the subdivision depth can be de-
termined directly from the number of texels mapped on the
triangle. Subsequently, we recursively replace sub-triangles
with the same PDF value by their parent, so that the total
number of resulting sub-triangles is minimized.

Sampling of the piecewise constant PDF p′ involves pick-
ing a sub-triangle with probability Pi =

∫
Di

p′(x)dA(x) =
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Figure 4: Index of a sub-triangle uniquely determines its
position inside the parent triangle.

fi |Di|/∑
ns
j=1 f j |D j|, generating a sample in the sub-triangle,

and mapping it to the original mesh triangle. For this pur-
pose, the preprocessing stage calculates and stores the cu-
mulative distribution function (CDF) Fi = ∑

i
j=1 Pj, and, for

each sub-triangle, a reference to the parent input triangle, as
well as the barycentric coordinates of the sub-triangle inside
the parent triangle. We take advantage of the fact that the
subdivision scheme is the same for all triangles, so a unique
sub-triangle index is sufficient to determine its barycen-
tric coordinates (see Fig. 4). A separate pre-computed ta-
ble accessed by the sub-triangle index stores the actual sub-
triangle barycentric coordinates. This significantly reduces
memory consumption, since for each sub-triangle we only
need to store its CDF value Fi and two indices (parent tri-
angle index and sub-triangle index). The size of the pre-
computed data structure which stores sub-triangle barycen-
tric coordinates is negligible.

3.5. Stage 2: Generating Point Samples
Given the data computed in the preprocessing stage, gener-
ating a random sample is straightforward. First, we choose a
sub-triangle D from the precomputed probability distribu-
tion (Section 4 provides details). We then draw a sample
from a uniform distribution on the selected sub-triangle us-
ing a standard approach [PH10, p. 670] as follows: Given
two random numbers ξ1 and ξ2 from the uniform distribution
U(0,1), the barycentric coordinates of the generated sample
are uD = 1−

√
ξ1 and vD = ξ2 ·

√
ξ1. Finally, we map the

sample to the barycentric coordinates (u,v) w.r.t. the parent
mesh triangle:

u = uD ·u1 + vD ·u2 +(1−uD− vD) ·u3

v = uD · v1 + vD · v2 +(1−uD− vD) · v3

where ui and vi are the barycentric coordinates of the vertices
of sub-triangle D inside its parent mesh triangle. We obtain
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M. Šik & J. Křivánek / Fast Random Sampling of Triangular Meshes

C3

C2

C1

C0

F

C0
begin C0

end C2
begin C2

end=
0

1

Figure 5: A lookup table T built over the codomain of the
cumulative distribution function F .

ui and vi by a lookup in the pre-computed sub-triangle posi-
tion data structure using the sub-triangle index.

4. Fast Sampling from a Discrete 1D Distribution
The first step of the procedure that generates a sample on
the mesh involves drawing a sub-triangle from a 1D discrete
distribution given by the CDF F = [F1, . . .Fns ]. The standard
way to implement this is to use interval bisection to find sub-
triangle Di = argmini {Fi > ξ}, where ξ is a random num-
ber from U(0,1) [PH10, p. 647]. Thanks to its logarithmic
running time, this bisection algorithm is usually considered
efficient for practical purposes. However, the number of sub-
triangles can be large in our case and the logarithmic search
for generating each sample may incur a significant overhead.

We substantially improve the efficiency of sampling from
a 1D discrete distribution by means of a lookup table T
over the codomain of F (i.e. the [0,1] interval) created in
the preprocessing stage (a similar method can be found
in [CRW09]). For each table cell Ck = [Cmin

k ,Cmax
k ] we com-

pute two indices Cbegin
k and Cend

k , as illustrated in Fig. 5.

Cbegin
k = argmini {Fi ≥Cmin

k }
Cend

k = argmini {Fi ≥Cmax
k }

When drawing an element from the distribution (sub-
triangle in our case), we first generate a random number ξ

from U(0,1) as before, then we look up, in constant time,
the table cell Ck for which ξ ∈ Ck, and finally we find the
element using the bisection algorithm limited to the domain
[Cbegin

k ,Cend
k ]. Since Cend

k = Cbegin
k+1 for every k, we can store

only one index per each cell.
Both the table resolution and the characteristic of the

probability distribution influence the performance of this
approach. In our tests, the speedup due to our table-based
search compared to the usual bisection varied between 2 and
14. Please note that this table-based search is a general pro-
cedure for accelerated sampling from a 1D discrete distribu-
tion and may be used in other applications, such as sampling
HDR environment maps as shown in the results section.

5. Results
We test our sampling algorithm on 4 cores with 8 threads of
a 3.07 GHz Intel Core i7-950 PC with 6 GB RAM running

Bunny (70k) Dragon (202k) Buddha (1,087k)

Figure 6: Three different models with 7,000 point samples
distributed uniformly (top row) and according to simple den-
sity textures (bottom row). Triangle counts for each model
are listed in parentheses.
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Figure 7: Sampling rate of our algorithm for different lookup
table sizes (reported as a ratio of the CDF size).

Windows 7 64bit. We use density textures with a resolution
of 1024× 1024 unless noted otherwise. To make full use of
the four available CPU cores, both the triangle subdivision
and sampling are parallelized. Fig. 6 shows sample distribu-
tions generated by our algorithm for the three example mod-
els we use in our tests.

5.1. Lookup Table Performance
We start the evaluation by investigating the influence of
the lookup table size on sampling performance as shown
in Fig. 7. We have used the Bunny model and four different
density textures for this test: uniform, checkerboard, Perlin
noise, and a HDR environment map. The highest sampling
rate is achieved when the number of cells is about four times
higher than the CDF domain size (i.e. the number of sub-
triangles). We use this setting for generating the results in
the remainder of this section.

As an entirely general technique, the table-based CDF
search that we use to speed up our mesh sampling algo-
rithm can be used for any other applications that require sam-
pling from a discrete probability distribution. As an exam-
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Figure 8: Performance of the environment map sampling
with and without our table-based CDF search.

(a) Ennis
(6144×3072)

(b) Grace
(3072×1536)

(c) Pisa
(4096×2048)

(d) Doge
(4096×2048)

Figure 9: HDR environment maps used in our tests. The res-
olution of each environment map is listed in parentheses.

ple, Fig. 8 compares sampling from the environment maps
shown in Fig. 9 with and without the lookup table. In the
tested cases the use of the table led to a speedup between 5
to 14 when considering the environment map as a 1D prob-
ability distribution, and between 2 to 3 for a 2D distribution.

5.2. Sampling Performance and Memory Consumption
We compare the performance and memory consumption of
our mesh sampling algorithm to rejection sampling (as de-
scribed in Section 3.2) because it is the fastest existing al-
ternative. We consider two flavors of our algorithm – with
and without the lookup table optimization described in Sec-
tion 4 – and perform the test for a number of different den-
sity textures: uniform, checkerboard and 2-dimensional Per-
lin noise textures with different frequencies, and two HDR
environment maps from Fig. 9 converted to a 1024× 1024
resolution.

Fig. 10 plots the performance of the compared algorithms.
With a uniform density texture, rejection sampling never re-
jects any samples, therefore the faster sampling rate of our
algorithm is only due to the lookup table. Performance of re-
jection sampling significantly deteriorates for non-uniform
density textures (up to 40 times for the tested HDR textures
and would be even worse for a texture with greater dynamic
range), while our algorithm’s sampling rate drops at most by
35% compared to the sampling rate with a uniform texture.

Break-down of the time our algorithm spends on sam-
pling reveals that 2.5%−51.2% is spent on selecting a sub-
triangle by searching the CDF, while random number gen-
eration takes 16.8%− 33.5%, and the rest (i.e. generating
a sample position in a sub-triangle and transforming it to
the parent triangle) takes 32%− 64% of the time. The fact
that substantial fraction of the time is spent on random num-
ber generation suggests that our algorithm does not leave

Preprocess [ms] Bunny Dragon Buddha
Rejection 6 11 67
Our w/out table 65−68 67−69 68−71
Our w/ table 67−70 68−72 71−74
Memory [MB] Bunny Dragon Buddha
Rejection 4.3 4.8 8.1
Our w/out table 2.8−17.8 4.3−17.8 14.4−17.9
Our w/ table 3.9−23.7 5.5−24.1 21−25

Table 1: Preprocessing time in milliseconds (top) and mem-
ory consumption in megabytes (bottom) for rejection sam-
pling and our algorithm (w/out and w/ lookup table). Same
models and textures as in Fig. 10 were used. The lowest val-
ues were measured for the checkerboard 2× 2 texture and
the highest for the HDR textures.

much space for performance improvement other than micro-
optimization.

Table 1 top shows the time spent on the mesh and density
texture preprocessing. Rejection sampling has the shortest
preprocessing time since it only creates the CDF based on
triangle areas. Our algorithm needs to subdivide triangles,
calculate their probabilities based on the density texture, cre-
ate the CDF, and build the lookup table. The table construc-
tion time is negligible (3− 4%) compared to the rest of the
preprocessing. Since triangle count for the Buddha model
(1,087k) is higher than the texel count of the density texture
(1,024k), only few triangles are subdivided and the prepro-
cessing time for our algorithm is only slightly higher than
for rejection sampling.

Memory consumption of rejection sampling and our algo-
rithm is shown in Table 1 bottom. Even though our algorithm
has higher memory cost in most cases, it is still insignificant
with respect to the usual computer’s memory size.

In summary, our mesh sampling algorithm offers a speed-
up between 3 and 40 compared to rejection sampling and the
usage of the lookup table improves the performance up to 7
times.

5.3. Applications
Hair generation. Our algorithm can be used for fast place-
ment of hair roots on a surface. The high performance of our
algorithm is important especially when hair is procedurally
generated at render-time as is the case in our implementa-
tion. Fig. 1 (a) shows a model with 6 million individual hairs
placed by our sampling algorithm. The complete generation
of hair including hair root placement took only 1.6 seconds.
Our algorithm can also be easily extended to maintain coher-
ence during animation, by simply running the preprocessing
stage for only one frame of the animation.

Monte Carlo rendering with complex light sources. We
can utilize our mesh sampling algorithm for sampling com-
plex light sources represented by a triangle mesh with emis-
sion defined by an HDR texture as shown in Fig. 1 (b), where
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Figure 10: Sampling rate (in million samples per second) for rejection sampling and our algorithm (w/out and w/ lookup table).

an HDR image projected on the wall illuminates the scene.
The images in the figure were rendered using path tracing
in the same time (one hour), except for the reference image
which took 16 hours to compute. Uniform light source sam-
pling produces a highly noisy image and fails to reproduce
the correct reddish tone of the illumination from a HDR map
(which is due to tiny high-intensity street lights that uniform
sampling almost never samples). Light source sampling us-
ing our algorithm, on the other hand, reduces the noise and
reproduces the correct tint of the image early in the progres-
sive computation. Rejection sampling is not a viable option
in this case, since only 1 in about 2500 samples is accepted.

6. Conclusion
We have presented a fast algorithm for generating random
samples on triangular meshes with sample density defined
by a two-dimensional texture. In our tests, the algorithm
achieves a 3 to 40 speedup compared to the fastest avail-
able alternative – rejection sampling. The proposed algo-
rithm is suitable for applications that require fast mesh sam-
pling, such as the placement of roots of procedurally gener-
ated hair or sampling complex light sources for Monte Carlo
rendering. Furthermore, we have described a lookup table
for speeding up sampling from a 1D discrete distribution,
whose utility extends beyond mesh sampling.

An important limitation of our algorithm is the lack of
control of regularity of the generated samples. We believe
some of the ideas presented here could be in the future em-
ployed for fast generation of non-uniform Poisson-disk dis-
tributions over triangular meshes.
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