

 [1/39]

It’s all about usability

Ondra Karlík
Charles University in Prague
http://corona-renderer.com
ondra@corona-renderer.com

These are slides for the presentation „It's all about
usability“ given by Ondra Karlík on 2014/08/12 at
SIGGRAPH 2014 in Vancouver.

It is a part of the course „Recent Advances in Light
Transport Simulation: Some Theory and a lot of
Practice“.

 [2/39]

● Photorealistic renderer
● Production-ready: archviz, product viz

Corona is a photorealistic ray tracer, used by
computer graphic artists for the final frame production
rendering. It is focused on architectural and product
visualization.

 [3/39]

3ds max integration

Corona is fully integrated in 3ds max, but there is
also a standalone application version. Plugins for
other software are on the way.

 [4/39]

The Corona project

Corona is currently free to use, and the first
commercial release is being prepared at the moment.

The project started five years ago as a one-man
show, but now there is a team of three working on it,
and it had attracted thousands of users, and a lot of
attention in the archviz industry.

 [5/39]

The secret?

Usability!

I believe that there is one secret responsible for this
success: usability.

 [6/39]

Usability

● The ease of use

● Determines user satisfaction, performance

→ Competitive advantage

● Important, underestimated factor in rendering

Usability means how easy is the software to use in
practice. Corona is not the fastest, most physical, or
most feature-complete renderer on the market, but I
believe it is the simplest one to work with.

Usability is what ultimately determines artist
satisfaction and performance. This is always true, but
it is especially important when dealing with people
with little or no technical background.

It is important to note that this factor is extremely
underestimated in rendering.

 [7/39]

Making Corona
practical & usable

I will go over some specific problems we had to solve
in Corona to make it really practical and usable.

 [8/39]

Algorithm choices

First is the issue with the biggest software design
impact – what rendering algorithm should Corona
use.

 [9/39]

Users' scenes: complex geometry

It is important to first take a look at the scenes users
produce.

Most of the archviz scenes are very complex, but
only from the geometry point of view. What is
interesting is that they contain mostly diffuse
materials and direct lighting.

 [10/39]

Full GI:

Here is an example from another shot of the
cathedral project. This is the end result with full global
illumination solution.

 [11/39]

Direct light only:

This is the direct light only. Even though global
illumination si clearly needed, it does not dominate
the image.

This makes the scene extremely simple to render
with just the simple path tracing.

 [12/39]

Archviz circle of path tracing

users optimize
for path tracing

renderers are
path tracers

In the visualization field, there is a vicious circle: most
renderers are only path tracers with multiple
importance sampling. To get acceptable render times,
users have learned to optimize their scenes for path
tracing. Which in turn makes path tracing the best
algorithm choice to implement for new renderers.

This cycle prevents introducing newer, advanced
algorithms to practice.

 [13/39]

Algorithm choices

● Performance in simple scenes crucial
– Advanced algorithms: disadvantage

● Path tracing: fastest development

● Corona: path tracer

If one would introduce some advanced algorithm, say
Vertex Connection and Merging (VCM), users would
inevitably compare it to path tracing in scenes
optimized for path tracing. That is not a „fair“
comparison and VCM would lose.

This, together with the fact that users demand a lot of
artistic and nonphysical features that do not work well
with advanced algorithms, is the reason that Corona
is almost exclusively path tracer, even though it has
the advanced algorithms (including VCM)
implemented.

 [14/39]

Default settings

Next issue is probably the most overlooked one: the
default render settings.

 [15/39]

Default settings

● Good defaults: error prevention, fast setup
● Influencing user choices, workflow

Each parameter in UI has to have some default
value. It is extremely important for this value to work
well in most cases, because novice users won't know
which parameters they are supposed to change and
how. Even expert users don't like having to tweak
many parameters every time they create a new
scene as it slows them down.

There is also a second very important effect: different
defaults can greatly influence the way people use the
software. Many have realized this before, and are
widely using it. A very prominent example is common
software installing additional unwanted spyware by
default.

 [16/39]

Defaults: examples

● Wrong defaults: bad results
● Common problem: wrong input/output gamma

If the defaults are wrong, inexperienced users (who
make the majority of user base) will make mistakes
because of it.

For example: common problem in some 3D tools is
incorrect handling of input and output gamma in
some image formats (JPG, PNG, ...). 3ds max has
the option to do it correctly (using gamma 2.2), but
this was turned off by default, and had to be enabled
in settings. It takes only about 10 seconds, but many
inexperienced users do not know they have to do it
before they start working.

Because of this, they often produce wrong pictures
with oversaturated textures, and burned-out whites
(right image), and blame the software for it.

 [17/39]

Defaults: examples

● Speeding up rendering: turn caching on

Caching on: 2 minutesCaching off: 6 minutes

Next example: when the option to use partial
irradiance caching was first added to Corona, it was
off by default. We recommended to enable it for
interior scenes, where it produces a decent speedup.

Later it was switched to on-by-default to save some
clicking when setting up scenes, as most Corona
scenes are interiors.

But what actually happened was that the Corona
forum got filled with posts saying the renderer is now
3-4 times faster. Ordinary users simply were not
aware that this feature even existed. This illustrates
that even the best algorithm is completely useless if
users don't know how to set it up.

 [18/39]

Firefly removal

Next issue is how to get rid of fireflies.

 [19/39]

Firefly removal

● Fireflies always occur (especially with path tracing)

Fireflies are the extremely bright pixels that appear
every time when rendering with a Monte Carlo-based
algorithm.

In this image is a scene featuring heavy caustics that
the path tracer is not able to resolve. It produces just
a lot of fireflies. But even advanced algorithms like
VCM produce fireflies sometimes.

The universal industry solution for this is removing
some energy from the picture to obtain biased, but
noise-free image.

 [20/39]

Firefly removal

● Traditional solution: excluding caustics light paths

The traditional solution to this problem is to remove
entire classes of light paths that form caustics. This
produces heavily biased result – the shadow is very
dark.

 [21/39]

Firefly removal

● Our solution: Max Sample Intensity
● Energy clamping: secondary rays

E = min(E, MSI)

The previous solution is inadequate, as it removes
even easy-to-compute caustics. We have replaced it
with a method we call Max Sample Intensity.

It is very simple: for all secondary (global illumination)
rays, we clamp their returned intensity (radiance) to
be at most some user-defined constant. This is
similar to VPL clamping.

This automatically removes all fireflies while keeping
most of the computable light transport in the image,
resulting in more plausible results.

 [22/39]

Firefly removal

● Excluding caustics light paths - again

This is again the result of removing all caustic light
paths.

 [23/39]

Firefly removal

● Max sample intensity clamping

This is the result with max sample intensity. All
fireflies are gone, and the shadow is not as dark as
before.

 [24/39]

Firefly removal

● Reference

But there is still room for improvement. This is the
reference image rendered with VCM.

 [25/39]

Energy clamping: usability

● Essential for error prevention

● Extra parameter
– Well-defined meaning: accuracy/speed

● Bias: Tolerated by users

From the usability point of view it is essential that this
is turned on by default. Because users have no
knowledge of the algorithms, they do not know how
to avoid fireflies by changing scene setup.

The method introduces an extra parameter, which is
usually a bad thing. But this parameter has a very
well-defined meaning: it is the ratio between
rendering speed and rendering accuracy - so it adds
flexibility for power users while not being confusing.

It of course produces bias, but users don’t mind the
bias; they actually don’t even call this biased. As long
as there are no splotches or missing shadows, they
consider the result unbiased.

 [26/39]

Material setup

Next dilemma is how material controls should look
like.

 [27/39]

Material setup

● How to define materials?

● Artists think about:

Color, roughness, glossiness

● Researchers think about:
Layers, microfacet distribution, BRDF

After doing some research amongst users, we noted
that there was a common problem of having the
inputs too physical.

Sadly, Corona users are not physicists. They think
about how the material looks: what is its color,
roughness, transparency, etc. But researchers think
about why the material looks how it looks: what is its
BRDF, microfacet distribution, IOR, etc.

 [28/39]

Physical materials

● Do not overcomplicate it
● Ideal material:

– Perceptual controls
– Intuitive
– Flexible
– Fast to set up

So while there is of course nothing wrong about using
physically based BRDFs, their controls should always
respect users' point of view.

According to our experience, most users prefer
having one “main” universal material for 95% of
situations, which has perceptual controls, is simple,
flexible, and fast to set up.

This makes the repetitive task of setting and tweaking
basic materials intuitive and fast.

 [29/39]

Physical materials

● Example use case: making material glossy

Let's illustrate the difference between intuitive and too
technical controls on the use case of making a
material slightly glossy. This is a task users may need
to do hundred times a day.

 [30/39]

Physical materials

● Example use case: making material glossy

In a good UI, it would be a matter of adjusting one
spinner.

 [31/39]

Physical materials

● Example use case: making material glossy

In an overcomplicated GUI one would need to add
new layer to the material and adjust its properties,
which requires too many steps and is unintuitive.

 [32/39]

Nonphysical light
transport

The final issue is implementing nonphysical light
transport.

 [33/39]

Nonphysical light transport

● „Fakes“
● Problems with bidirectional algorithms
● Necessity for production

Nonphysical light transport is also called „fakes“.
Many fakes are notoriously hard to implement with
advanced algorithms such as bidirectional path
tracing or VCM, but they are absolutely necessary for
production. There is not a single successful renderer
in archviz that does not support them.

 [34/39]

Nonphysical light transport

1) Artistic control fakes

There are two main categories of fakes. First are the
ones providing users with artistic control.

To illustrate why they are necessary, here is an image
rendered with VCM. Althought it is physically correct,
every artist's first instinct would be to somehow
remove the weird „square shadow corner“ (circled),
even though it is actually a physically correct
reflection.

Just because it is physically correct does not mean it
is visually pleasing and desired. This is why features
such as disabling shadows, direct visibility, or
overriding reflection environment are necessary even
in modern physical workflows.

 [35/39]

Nonphysical light transport

2) Performance cheats
● Fake glass (thin glass approximation, glass

without caustics)

The second category are the fakes that make it
possible for the used algorithm to render scenes in
reasonable time.

The most prominent example from this category is
the fake glass, also called thin glass approximation.

It is a material that acts as a regular glass when
viewed directly, but is transparent to indirect rays,
meaning it does not block light or create caustics
(image on left).

It is used with path tracing, when caustics would have
to be clamped otherwise (image on right).

 [36/39]

Nonphysical light transport

2) Performance cheats – crucial for path tracer

Fake glass:

This is what powers the vicious circle of path tracing
shown before, as it can make the light transport
simple in most scenes. It is typically used in windows.

Without it this scene would be impossible to render
just with path tracing.

 [37/39]

Nonphysical light transport

2) Performance cheats – crucial for path tracer

True glass: sun removed by MSI clamping

This is the result with true glass for comparison. The
sun illumination has to be clamped away.

 [38/39]

Nonphysical light transport

● Artistic control fakes improve usability
● Having to use performance fakes decreases usability

– Performance fakes: only when 100% necessary

There is a fundamental difference between the two
categories: artists use the artistic control fakes
because they want to, and the performance fakes
because they have to. So while the first category
improves the usability, being forced to use
performance fakes decreases usability.

As a result, while we have implemented many artistic
control fakes, we always thoroughly search for a
better solution than resorting to a performance fake,
and we have refused to implement many traditional
performance fakes, such as different BRDFs for
direct and global illumination.

 [39/39]

Conclusion

● Just good algorithms are not enough
● Listen and adapt to your users
● Details matter: defaults, naming

● Rendering usability research?

The take-home message is that just implementing
newest papers is not the whole story of making
usable software. Fine tuning the details is also
necessary.

Even small things like default values or naming of
features can make a huge difference. Even the best
GI algorithm is useless if the user does not know how
to set it up.

There is also a lot of open problems in the usability of
rendering, for example on the already mentioned
problem of making physically based materials easier
to use.

	Snímek 1
	Snímek 2
	Snímek 3
	Snímek 4
	Snímek 5
	Snímek 6
	Snímek 7
	Snímek 8
	Snímek 9
	Snímek 10
	Snímek 11
	Snímek 12
	Snímek 13
	Snímek 14
	Snímek 15
	Snímek 16
	Snímek 17
	Snímek 18
	Snímek 19
	Snímek 20
	Snímek 21
	Snímek 22
	Snímek 23
	Snímek 24
	Snímek 25
	Snímek 26
	Snímek 27
	Snímek 28
	Snímek 29
	Snímek 30
	Snímek 31
	Snímek 32
	Snímek 33
	Snímek 34
	Snímek 35
	Snímek 36
	Snímek 37
	Snímek 38
	Snímek 39
	Snímek 1
	Snímek 2
	Snímek 3
	Snímek 4
	Snímek 5
	Snímek 6
	Snímek 7
	Snímek 8
	Snímek 9
	Snímek 10
	Snímek 11
	Snímek 12
	Snímek 13
	Snímek 14
	Snímek 15
	Snímek 16
	Snímek 17
	Snímek 18
	Snímek 19
	Snímek 20
	Snímek 21
	Snímek 22
	Snímek 23
	Snímek 24
	Snímek 25
	Snímek 26
	Snímek 27
	Snímek 28
	Snímek 29
	Snímek 30
	Snímek 31
	Snímek 32
	Snímek 33
	Snímek 34
	Snímek 35
	Snímek 36
	Snímek 37
	Snímek 38
	Snímek 39

