Path Integral Methods for Light
Transport Simulation: Theory & Practice

Introduction to Markov Chain and

Sequential Monte Carlo



Markov Chains



Markov Chain

» Random walk implies a transition probability for each move
P(xpyr =Jjlx, =10) = Pi_,;

" At each move the chain forms a posterior distribution over state
space

— A histogram of all visited states up to move n

* Detailed balance defined as P;_,; = P;_,;



Markov Chain

Posterior converges to the target Burn-in
I N . ‘ I area

distribution if the detailed balance
obeyed and all states are reachable
(ergodicity)

*With “bad” initial state x, the
start-up bias (burn-in phase) can
be significant




Metropolis-Hastings
Algorithm



Metropolis-Hastings (MH) Algorithm @

Goal: Random walk according to a desired function f

Define conditional rejection sampling probability
o T 1
=T

— a;,j 1s acceptance probability at state i for proposal state j

Detailed balance is affected as a;_,;P;_,; = a;5;Pj;

Posterior distribution is then proportional to f

— Accurate to a scaling factor = normalization constant



Metropolis-Hastings: Example
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Metropolis-Hastings: Example
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Metropolis-Hastings: Example
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Metropolis-Hastings: Example
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Metropolis-Hastings: Example




Metropolis-Hastings: Example




Metropolis-Hastings: Example
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Metropolis-Hastings: Example

n =200
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Metropolis-Hastings: Example

n=2000
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Importance Sampling for M-H @

= Cannot fetch proposals directly from f

» Generate a proposal j from some proposal distribution T
— Similar to importance sampling in Monte Carlo
— T can depend on the current state i: T;_,;
— New transition probability P;_, i = aisiTis;

= Acceptance probability is then (from detailed balance):

(] f;
aacy <TM> / (Tjﬂ)




Correspondence Table

Ordinary Monte Carlo

Markov chain Monte Carlo

Convergence rate, usually O (\/iﬁ)

Mixing rate, depends on multiple factors,
can be geometric 0(y"),y € (0;1)

Convergence to an expected value

Convergence of the posterior to the target
distribution (e.g., in total variation)

Importance sampling distribution p(x)

Proposal distribution T,

Variance of the estimate

Acceptance rate, correlation of samples

Number of samples

Number of moves (mutations)




Metropolis Light Transport



1

Image Generation G

» Reduce per-pixel integrals to a single integral
— Each pixel has an individual filter function then

= Compute the distribution over the image plane
— Bin this distribution into corresponding pixels

= Walk over the image plane
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Metropolis Light Transport

= State space = space of full paths, path space
» What is the function f for light transport?

» Interested in flux arriving at image plane
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Measurement Contribution

= Measurement contribution f for k-length path
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Measurement Contribution
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Comparing Paths

= MH needs to compare two states (paths)
— Use flux through the infinitesimal path beam
= Directly comparable for equal-length paths
— Compare flows of energy through each path
» For different lengths the measure is different

— Always compare fluxes going through each path
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Path Integral

» For path of length k: I, = fﬂkf(f)duk (%)

= Combine all path lengths into a single integral

— Use unified measure for all paths

(00)

du(D) = Zkzldukw N Q)

— Compare paths of different length

— Compare groups of paths

= Use f in Metropolis-Hastings!
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Metropolis Light Transport

I

A S

Generate initial path i, using PT/BDPT

Mutate with some proposal distribution T %i-%j
Accept new path X; with probability A%
Accumulate contribution to the image plane

Go to step 2




Advantages

= More robust to complex light paths
— Remembers successful paths

= Utilizes coherence of image pixels
— Explores features faster

* Cheaper samples
— Correlated

» Flexible path generators (mutations)
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Energy redistribution path tracing [Clineo5s] -

* Run many short Markov chains for each seed
= Adaptive number of chains according to path energy

» In spirit of Veach’s lens mutation




Normalization
and Start-up Bias in MLT



Differences to MCMC

* We do have a good alternative sampler
— Path tracer / bidirectional path tracer
— Easy to compute normalization constant

= No start-up bias, start within the equilibrium
— Start many chains stratified over path space

— Scales well with massively parallel MLT

@/
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Mutation Strategies and
Their Properties



Good Mutation Criteria @

» Lightweight mutation: change a few vertices
= Low correlation of samples

— Large steps in path space
" Good stratification over the image plane

— Hard to control, usually done by re-seeding

» It’s OK to have many specialized mutations
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Existing Mutation Strategies



Veach Mutations

= Minimal changes to the path
— Lens, caustics, multi-chain perturbations

= Large changes to the path

— Bidirectional mutation
o BDPT-like large step

— Lens mutation

o stratified seeding on the image plane

Lens
perturbation

Caustics
perturbation

Bidirectional
mutation




Kelemen Mutation

» Mutate a “random” vector that maps to a path
» Symmetric perturbation of “random” numbers

= Use the “random” vector for importance pdfs
— Primary space: importance function domain

— Assume the importance sampling is good

@/



Kelemen Mutation, Part I1

= Acceptance probability a;_,; = ( filp j) /(fi/pi)
— Easy to compute: just take values from PT/BDPT
= Large step: pure PT / BDPT step

— Generate primary sample (random vector) anew
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Manifold Exploration Mutation

= Works in the local parameterization of current path
= Can connect through a specular chain

» Freezes integration dimensions

— Tries to keep f constant by obeying constraints




Combinations

* Manifold exploration can be combined
— With Veach mutation strategies in MLT
— With energy redistribution path tracing
» Combine Kelemen’s and Veach’s mutations?

— Possible, yet unexplored option

1

&2
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Population Monte Carlo
Light Transport



Population Monte Carlo Framework

= Use a population of Markov chains
— Can operate on top of Metropolis-Hastings
= Rebalance the workload
— Weakest chains are eliminated
— Strongest chains are forked into multiple
= Use mixture of mutations, adapt to the data

— Select optimal mutation on the fly
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Population Monte Carlo ERPT [Laio7] @

= Spawn a population of chains with paths

— Do elimination and reseeding based on path energy
= Use many mutations with different parameters

— Reweight them on-the-fly based on the efficiency

— Lens and caustics perturbations in the original paper

= We will show PMC with manifold exploration
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Thank You for Your attention.

Part one questions?



