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Figure 1: We present a robust light transport simulation algorithm that fuses key ideas behind vertex connection and merging/unified path
sampling (VCM/UPS) [Georgiev et al. 2012; Hachisuka et al. 2012] and Markov chain Monte Carlo methods. It outperforms state-of-the-art
approaches, such as VCM/UPS or Metropolis light transport with manifold exploration (MEMLT) [Jakob and Marschner 2012], especially
in scenes with complex glossy or specular transport and complex visibility. At the same time, the algorithm is substantially simpler than many
of the recent Metropolis light transport variants.

Abstract

Efficiently simulating light transport in various scenes with a single
algorithm is a difficult and important problem in computer graph-
ics. Two major issues have been shown to hinder the efficiency of
the existing solutions: light transport due to multiple highly glossy
or specular interactions, and scenes with complex visibility between
the camera and light sources. While recent bidirectional path sam-
pling methods such as vertex connection and merging/unified path
sampling (VCM/UPS) efficiently deal with highly glossy or spec-
ular transport, they tend to perform poorly in scenes with complex
visibility. On the other hand, Markov chain Monte Carlo (MCMC)
methods have been able to show some excellent results in scenes
with complex visibility, but they behave unpredictably in scenes
with glossy or specular surfaces due to their fundamental issue of
sample correlation. In this paper, we show how to fuse the un-
derlying key ideas behind VCM/UPS and MCMC into a single,
efficient light transport solution. Our algorithm is specifically de-
signed to retain the advantages of both approaches, while alleviat-
ing their limitations. Our experiments show that the algorithm can
efficiently render scenes with both highly glossy or specular materi-
als and complex visibility, without compromising the performance
in simpler cases.
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Figure 2: Two major issues that compromise efficiency of cur-
rent light transport algorithms: (a) Complex visibility – the vis-
ible area (blue) is lit only through multiple reflections and/or
much of the light emitted from the sources never reach the visible
area. (b) Complex glossy and specular transport – light paths with
chains of interactions on highly glossy (or specular) surfaces (e.g.
a specular-diffuse-specular path shown in this figure).

1 Introduction

Monte Carlo light transport simulation has become a de-facto stan-
dard tool for photorealistic rendering. While the existing sim-
ulation algorithms often work well, two major issues have been
shown to still compromise the efficiency of many algorithms: light
transport due to multiple highly glossy or specular interactions,
and scenes with complex visibility between the camera and light
sources (Fig. 2). Carefully avoiding such cases by modifying
the scene can be cumbersome because to do that, the users need to
understand how the algorithms work and when they may fail. De-
veloping robust solutions that work well under various scene con-
figurations has thus received a well-deserved attention.

One widely accepted idea for dealing with glossy and specular
transport is the use of bidirectional path estimators. The key ob-
servation here is that, given a full light transport path between
a light source and the camera, one can construct this path in var-
ious ways, each of which is efficient at capturing different light-
ing effects. Examples of bidirectional estimators include bidirec-
tional path tracing [Veach and Guibas 1994], photon density esti-
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Figure 3: Metropolis light transport with Manifold exploration
(MEMLT) [Jakob and Marschner 2012] suffers from excessive sam-
ple correlation in scenes with specular surfaces, which results in
its irregular, unpredictable convergence (top row). Despite being
based on MCMC sampling, our method (bottom row) shows good
convergence properties typical of regular Monte Carlo algorithms:
unconverged results provide a reliable preview of the final image,
and are amenable to denoising.

mation [Jensen 1996], and combinations of the two [Georgiev et al.
2012; Hachisuka et al. 2012; Křivánek et al. 2014a]. The latter
works have shown that a key to the good efficiency of photon den-
sity estimation is an extensive subpath reuse. Bidirectional esti-
mators themselves, however, do not perform well in scenes with
complex visibility due to low probability of combining two sub-
paths [Popov et al. 2015].

Concerning complex visibility, Markov chain Monte Carlo
(MCMC) algorithms have been able to deliver some excellent re-
sults. The key idea is to sequentially sample a new light transport
path based on the previous one, which then forms a Markov chain
of paths. Since the chain often visits important and unoccluded
paths, this class of algorithms naturally deals with complex visibil-
ity [Veach and Guibas 1997; Hachisuka and Jensen 2011; Jakob and
Marschner 2012; Kaplanyan and Dachsbacher 2013; Hachisuka
et al. 2014]. The MCMC algorithms are, however, also known to
behave unpredictably in scenes with multiple glossy and specular
interactions. Some recent works have indeed highlighted their un-
predictable convergence behavior and various image artifacts due
to the fundamental issue of sample correlation in MCMC [Křivánek
et al. 2014b; Vorba et al. 2014]. Fig. 3 illustrates the problem and
shows that our algorithm is, to a large extent, immune to this issue.

We propose a practical light transport simulation algorithm that
fuses the two key concepts mentioned above into a single solution.
Our algorithm is designed to gracefully handle scenes both with
complex glossy and specular transport as well as complex visibility.
To achieve this goal, we take advantage of bidirectional estimators
and subpath reuse to deal with the glossy/specular transport, while
utilizing Markov chain Monte Carlo to address complex visibility.
While it is natural to expect that fusing these ideas could work well,
a combination of bidirectional estimators and MCMC in fact still
leaves a large design space of different approaches. The first pro-
posal of a practical and efficient combination, based on a number
of algorithmic considerations, is our key contribution.

To be concrete, the final algorithm is built upon the vertex connec-
tion and merging (VCM) [Georgiev et al. 2012], a.k.a. unified path
space sampling (UPS) [Hachisuka et al. 2012] algorithms (referred
to as VCM/UPS from now on). To avoid inheriting the issues of
correlation and unpredictable convergence of MCMC, we propose
to use a mixture of two target functions: one based solely on path
visibility and the other on the path contribution. Doing so makes
the target distribution easier to explore by a Markov chain. Further-
more, we reduce correlation in the image space and improve image-
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Figure 4: Our algorithm does not significantly impair the perfor-
mance of VCM/UPS in simple scenes, where most of the light sub-
paths generated by independent Monte Carlo contribute to the im-
age. We ran both methods for 5 minutes to render these images.

plane stratification by decoupling the sampling of light subpaths
(i.e. subpaths from a light source) and eye subpaths (i.e. subpaths
from the camera), and by sampling the eye subpaths by ordinary
(independent) Monte Carlo.

The results demonstrate that our algorithm is indeed robust with
respect to various scene configurations, see Fig. 1 for an example.
An important practical aspect is that our algorithm has a low over-
head over baseline VCM/UPS; as such it exhibits good performance
even in relatively simple cases, as we show in Fig. 4.

2 Related Work

Bidirectional methods. Robustness in rendering refers to accept-
able efficiency for any practical input scene [Veach 1997]. Veach
and Guibas [1994] developed bidirectional path tracing (BPT), con-
currently with Lafortune and Willems [1993], as a more robust
alternative to simple unidirectional algorithms. The Veach and
Guibas’s variant [1995] is more efficient thanks to the use of multi-
ple importance sampling (MIS) for combining the various bidirec-
tional estimators; our algorithm also relies on MIS.

A different line of research was started by Jensen [1996]; his pho-
ton mapping has became widely used due to its simplicity and
ability to efficiently render the so-called specular-diffuse-specular
(SDS) paths (e.g. indirectly visible caustics) as illustrated in Fig. 2.
The progressive formulation of photon mapping due to Hachisuka
et al. [2008] has subsequently resulted in a renewed interest in pho-
ton density estimation [Hachisuka and Jensen 2009; Knaus and
Zwicker 2011; Jarosz et al. 2011]. Recently, Georgiev et al. [2012]
and Hachisuka et al. [2012] have independently proposed a re-
formulation of photon density estimation and BPT that enables
their combination into an algorithm that we refer to as VCM/UPS.
Křivánek et al. [2014a] later extended these ideas for participating
media. While VCM/UPS is robust with respect to various lighting
conditions including diffuse indirect illumination and SDS paths,
its performance can degrade with complex visibility. In such cases,
the bidirectional estimators in VCM/UPS often fail to sample paths
with a non-zero contribution because light subpath tracing is un-
aware of the camera location [Popov et al. 2015]. Our algorithm
deals with this issue by using Markov chain Monte Carlo to gener-
ate light subpaths that make non-zero contributions to the image.

Markov chain Monte Carlo (MCMC). Veach and Guibas [1997]
proposed Metropolis light transport (MLT) as an application of
Metropolis-Hastings (MH) sampling to path integral estimation.
The MH algorithm belongs to a wider family of Markov chain
Monte Carlo methods [Brooks et al. 2011]. Pauly et al. [2000] ex-
tended MLT to handle participating media. Recent works have fo-
cused on improving local exploration in MLT via mutation strate-
gies that take the differential geometry of the path space into ac-
count [Jakob and Marschner 2012; Hanika et al. 2015; Li et al.
2015]. Kelemen et al. [2002] proposed a primary sample space



formulation of MLT, where MCMC sampling manipulates a set of
“random” numbers that define light transport paths. Multiplexed
MLT [Hachisuka et al. 2014] reformulates the primary sample
space MLT such that suitable path sampling techniques are more
frequently selected by the MCMC sampler.

A fundamental advantage of MCMC algorithms is that a path which
would be blocked (i.e. invisible) is never accepted as a valid sam-
ple. This makes MCMC an excellent approach to deal with complex
visibility. At the same time, though theoretically sound, the use of
MCMC in light transport simulation results in some major issues.
Firstly, MCMC algorithms lose explicit control of stratification over
the image plane. Energy redistribution path tracing [Cline et al.
2005] strives to retain stratification by running many short Markov
chains, but the underlying algorithm is still equivalent to MLT (i.e.
the used mutations and the target functions are the same) and so
the success has been only partial. Secondly, the path contribution
function, which often serves as the target distribution of the MCMC
sampler, has many peaks and discontinuities. This situation leads
to strong correlation artifacts due to high rejection rates and to un-
predictable convergence behavior due to a chain being stuck at one
sample for a long time. The current MCMC algorithms are thus
not suitable for fast pre-visualization of the final images [Hoberock
and Hart 2010; Křivánek et al. 2014b]. Furthermore, unconverged
images generated by MCMC algorithms are not amenable to de-
noising [Zwicker et al. 2015]. An essential aspect of our algorithm
design is to substantially reduce those problems of MCMC render-
ing algorithms.

Several works propose to use MCMC methods for sampling
subpaths, as opposed to full light transport paths. Fan et al. [2005]
run the MLT algorithm and store selected path vertices to be used
for photon density estimation. Segovia et al. [2007] use a simi-
lar idea for sampling virtual point lights [Dachsbacher et al. 2014].
Hachisuka and Jensen [2011] propose a photon tracing algorithm
where the target function of the MCMC sampler is defined as a bi-
nary path visibility function. This function equals to one for light
subpaths that make a contribution to any of a pre-generated set of
eye subpaths by photon density estimators. Such a simple target
function is much easier to explore by the MCMC sampler, which,
in turn, reduces the correlation problems mentioned above. We
follow a similar idea, but our path visibility takes into account
all the VCM/UPS path estimators, not just photon density estima-
tors. The algorithm of Chen et al. [2011] bears similarity to that of
Hachisuka and Jensen, but uses a somewhat arbitrary target func-
tion instead of path visibility.

Replica exchange [Swendsen and Wang 1986] is another important
idea to reduce correlation in MCMC sampling that has been previ-
ously applied in light transport [Kitaoka et al. 2009; Hachisuka and
Jensen 2011]. We also employ replica exchange to further improve
the path space exploration in our MCMC sampler.

Path guiding and probabilistic connections. Apart from
MCMC methods, another option to deal with complex visibility
is importance-driven sampling of light emission and scattering di-
rections, also referred to as path guiding [Jensen 1995; Bashford-
Rogers et al. 2012]. Vorba et al. [2014] have shown that the use
of path guiding in VCM/UPS can significantly improve its perfor-
mance. Another way to handle complex visibility is to importance
sample subpaths for connections [Popov et al. 2015] in order to in-
crease a chance of non-zero contribution. Since path guiding and
importance sampling of connections is orthogonal to MCMC under
the primary sample space formulation, both methods could poten-
tially be combined with our method. As our focus is on exploring
the improvement thanks to MCMC over baseline VCM/UPS, we do
not utilize path guiding or importance sampling of connections in
our experiments.

3 Background

In order to design an algorithm that combines the strengths of bidi-
rectional estimators with path reuse and MCMC sampling, we first
give an overview of the basic elements that these methods build on.

3.1 Bidirectional sampling and VCM/UPS

Path integral formulation. Light transport simulation can be ex-
pressed by the path integral Ij =

∫
Ω
hj(x̄)f(x̄)dµ(x̄), where Ij

is the pixel value of the j-th pixel, Ω is the space of all possi-
ble paths, x̄ ∈ Ω is a full transport path from a light source to
the camera. A path of length k can be represented as a vector
of vertices x̄ = (x0, . . . , xk). The path contribution function f
gives the amount of light energy transported along the path x̄. hj is
the pixel filter of the pixel j [Veach 1997].

Given a path sampling technique (e.g. path tracing or light tracing)
that generates N random paths x̄i according to the probability den-
sity function (pdf) p(x̄i), we can estimate the path integral using
a Monte Carlo estimator 〈Ij〉 = 1

N

∑N
i=1

hj(x̄i)f(x̄i)

p(x̄i)
.

Bidirectional path tracing. Bidirectional path tracing (BPT) em-
ploys a family of different path sampling techniques and combines
their results using multiple importance sampling (MIS) [Veach and
Guibas 1995]. The algorithm repeatedly generates a pair of sub-
paths: an eye subpath from the camera and a light subpath from
a light source. The two subpaths are then connected to form a full
path. The various bidirectional sampling techniques used in BPT
differ by the lengths of the respective eye and light subpaths, and
each is effective at sampling different lighting effects.

VCM/UPS. The VCM/UPS algorithm [Georgiev et al. 2012;
Hachisuka et al. 2012] improves upon BPT by adding a new family
of sampling techniques based on photon density estimation [Jensen
1996]. Georgiev et al. termed them merging, as they can be thought
as welding two spatially close vertices (from light and eye sub-
paths) into one, thereby introducing regularization [Kaplanyan and
Dachsbacher 2013]. The VCM/UPS algorithm shows that the ef-
ficiency of merging techniques relies on path reuse: all the traced
subpaths are reused by each subpath in the opposite direction.

3.2 Markov Chain Monte Carlo in Light Transport

Markov chain Monte Carlo (MCMC) methods can generate sam-
ples according to any target function p∗(x̄) ∝ p(x̄) without know-
ing the normalization constant b =

∫
Ω
p∗(x̄)dx̄. This can be used

to generate paths proportionally to the path contribution function
f(x̄), which, in turn, should minimize the variance of the resulting
path integral estimators.

The Metropolis-Hastings algorithm [Hastings 1970] is a common
MCMC method that generates samples as a history of a Markov
chain. Given a current state x̄i, a candidate state ȳ is proposed us-
ing a mutation according to a proposal distribution q(x̄i → ȳ).
The new state is then set as x̄i+1 = ȳ with the acceptance proba-
bility

a = min

{
1,
p∗(ȳ)q(ȳ → x̄i)

p∗(x̄i)q(x̄i → ȳ)

}
. (1)

Otherwise, the chain repeats the current state, x̄i+1 = x̄i. In
Metropolis Light Transport (MLT) [Veach and Guibas 1997], each
state of the Markov chain corresponds to a full transport path, and
mutations operate directly in the path space.

Primary sample space MLT (PSSMLT). Our algorithm builds
upon primary sample space MLT (PSSMLT) [Kelemen et al. 2002].
PSSMLT simplifies the original MLT by applying mutations on
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Figure 5: Equal-time comparison (1 hour) between our method
and a naı̈ve combination of PSSMLT and VCM/UPS with pho-
tons generated by visibility-driven MCMC [Hachisuka and Jensen
2011]. EV gives the exposure value adjustment used for the insets.

a vector of random numbers (primary space samples) u ∈ U , rather
than directly on paths. The vector u is mapped to a set of paths
through all the path sampling techniques from BPT, while using
the vector u as the “random numbers” for path generation.

Replica exchange. If the target function has peaks and discon-
tinuities, a MCMC sampler may fail to evenly explore the state
space. This results in uneven convergence or even missing out en-
tire state space regions. The replica exchange (a.k.a. parallel tem-
pering) method alleviates such issues by using several interacting
Markov chains [Swendsen and Wang 1986; Kitaoka et al. 2009;
Hachisuka and Jensen 2011]. A common design is to have a main
chain with the original target function and other chains with flatter
target functions that allow easier exploration. The chains interact
by swapping their current states; in this way one chain can help an-
other explore a different part of the state space. The chains generate
samples according to their target function if and only if the swaps
between any two chains are performed with probability

r = min

{
1,
p∗1(x̄2)p∗2(x̄1)

p∗1(x̄1)p∗2(x̄2)

}
. (2)

Here p∗1 and p∗2 are the target functions of the two chains, and x̄1

and x̄2 are their respective current states.

4 Algorithm Design

In this section, we summarize the design decisions that led to our
algorithm and briefly mention possible alternatives.

4.1 Requirements

Our goal is to develop an algorithm that can efficiently render
scenes with various kinds of (indirect) illumination, including com-
plex transport on glossy/specular surfaces. At the same time, the al-
gorithm should maintain good efficiency in scenes with complex
visibility between light sources and the camera, such as natural light
illuminating an interior through a small glass window pane. For
the algorithm to be practical, it must not impair the efficiency of
current state-of-the-art approaches in the simple cases where they
already work well. And it should also be relatively easy to imple-
ment so as to facilitate its adoption in practice.

Eye MCMCEye MC
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Figure 6: Comparison of eye subpath generation by stratified
Monte Carlo sampling (left) and by a visibility-driven MCMC sam-
pler (right) in our algorithm. Eye subpath generation via MCMC
is outperformed by stratified sampling in this, as well as in other
scenes. EV gives the exposure value adjustment used for the insets.

4.2 General Algorithm Design Strategy

We design the new algorithm based on ideas that have individually
been shown to meet some of the above requirements. These include
bidirectional path estimators and their combination via multiple im-
portance sampling (MIS), the vertex merging technique (i.e. photon
density estimation) with its inherent regularization and large-scale
subpath reuse. These ideas are the building blocks of VCM/UPS,
which excels at handling complex glossy/specular transport, un-
like simpler solutions such as path tracing. Furthermore, because
VCM/UPS has been implemented in many popular rendering soft-
ware solutions and our final algorithm is a lightweight extension of
it, using VCM/UPS as a baseline meets our algorithmic simplicity
criterion. The important cornerstone of our design is MCMC path
sampling, which has complementary properties to VCM/UPS with
respect to handling complex materials and visibility.

We pay attention not to inherit the shortcomings of VCM/UPS and
MCMC sampling: bad performance of VCM/UPS in scenes with
complex visibility due to light subpaths not being able to reach visu-
ally important regions; image artifacts and bad convergence behav-
ior of MCMC due to excessive sample correlation; and insufficient
image plane stratification in many existing MCMC approaches.

4.3 Design Choices

We choose VCM/UPS as the basis of our solution while using
a MCMC sampler for path sampling. This high-level idea, how-
ever, leaves a number of unanswered questions: Q1. For which
paths (eye, light, or full paths) should the MCMC sampler be used?
Q2. What specific MCMC sampler should be used and what state
space should it operate in (path space, primary sample space, or
other)? Q3: How should its target function be defined? The specific
design choices we make are directly motivated by the requirements
stated above.

Fig. 5 illustrates the importance of finding suitable answers to these
questions. We compare our method to a naı̈ve algorithm that ex-
tends PSSMLT [Kelemen et al. 2002] by including all the sampling
techniques from VCM/UPS. Light and eye subpaths are generated
and combined as in original PSSMLT, but we use an additional
set of light subpaths pre-generated by visibility-driven photon trac-
ing of Hachisuka and Jensen [2011] to enable the merging tech-
nique. The poor performance of this algorithm compared to our so-
lution shows that even within the relatively narrowed-down scope
of combining VCM/UPS and MCMC sampling, the design choices
can make a big difference in the resulting algorithm’s performance
(Sec.4 of the supplemental material discusses other possible com-
binations that we have considered in our research).

Q1: MCMC sampling of eye, light, or full paths. Previous
work [Hachisuka and Jensen 2011; Segovia et al. 2007] has shown
that using MCMC sampling to steer light subpaths towards visually
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Figure 7: Equal-sample comparison (5 samples per pixel) of ren-
dering uniformly lit rectangle. Ideally, the resulting image should
have uniform color. While MLT uses lens mutations to improve its
image-plane stratification, it still delivers the worst results due to
high sample correlation. While PSSMLT produces a slightly better
result than MLT, our algorithm shows improvement over both MLT
and PSSMLT thanks to our choice of using stratified eye subpaths.

important regions can have tremendous efficiency benefits; we fol-
low this idea. Likewise, one could expect that applying the same
idea to eye subpaths in a combined algorithm – which is essentially
symmetric with respect to the camera and light sources – should
yield a similar benefit. However, we found the contrary to be true,
as shown in Fig. 6. We explain this by the fact that high correla-
tion of eye subpaths due to MCMC sampling compromises one of
our design goals – good image plane stratification. For this reason,
we opt for the use of regular, independent Monte Carlo to sample
the eye subpaths. For the same reason, we also rule out the option
of using MCMC sampling for full paths as in MLT. Fig. 7 illustrates
image plane stratification/sample correlation of different methods.

Q2: MCMC sampling space. Motivated by the goal of algorithmic
simplicity, we choose as our base MCMC algorithm a Metropolis-
Hastings sampler (enhanced via replica exchange), that operates in
the primary sample space. MCMC sampling directly in the path
space would unnecessarily complicate the algorithm and go against
one of our design principles. Furthermore, transformation from
the primary sample space to path space naturally importance sam-
ples BRDFs and geometry terms along the path. Achieving this in
MLT framework requires a rather complex transformation of paths
from the path space to yet another space [Hanika et al. 2015].

Q3: Target function. In designing the target function, we face two
contradicting goals: On the one hand, a target function with a sim-
ple shape (such as path visibility) is easily explored by a MCMC
sampler, which reduces sample correlation and its negative practi-
cal consequences. On the other hand, a target function more similar
to the actual path contribution can potentially reduce variance as
per the importance sampling principle; but it may also lead to ex-
cessive sample correlation. Given the complementary pros and cons
of the two options, we use two Markov chains, one with path con-
tribution and the other with path visibility as their target functions.
We refer to the two chains, respectively, as the contribution chain
and the visibility chain. We let the two chains interact via replica
exchange and we combine the samples produced by the two chains
via MIS. This design contributes to our goal of reduced sample cor-
relation in MCMC. Fig. 8 illustrates the complementary advantages
of the two target functions and the benefit of their combination.

5 Algorithm

This section provides a complete description of our algorithm, start-
ing with an overview shown in Algorithm 1. The algorithm works
in iterations, each of which starts by generating all eye subpaths by
an independent Monte Carlo sampler (line 2). We store all their
vertices so that the merging technique can later be evaluated during
the MCMC light subpath sampling. The eye subpaths are used to
immediately evaluate the contribution of unidirectional path tracing
and path tracing with next event estimation, as these sampling tech-
niques are independent of light subpaths (line 3). We then execute
our MCMC sampler, which is based on PSSMLT, to generate light
subpaths and evaluate the remaining VCM/UPS techniques (line 4).

Algorithm 1 High-level overview of our algorithm.

1: for i = 1 . . .M do
2: E := MCEYESUBPATHSAMPLING(N )
3: image += EVALUATEPATHTRACING(E)
4: image += MCMCLIGHTSUBPATHSAMPLING(E)
5: end for

5.1 Light Subpath Contribution

Contribution definitions. Let us start by formally defining
the light subpath contribution that is used to evaluate the target
function for both the contribution chain and the visibility chain.
A single light subpath x̄light in the VCM/UPS algorithm gives rise
to an entire family of full paths created, respectively, by light trac-
ing, bidirectional connections, and vertex merging [Georgiev et al.
2012]. We thus have multiple full paths generated by a single light
subpath. We define the contribution of x̄light as the sum over the in-
dividual MIS-weighted contributions of all these full paths. Let
P(x̄light) denote the set of such paths with the corresponding path
sampling techniques that created them. The contribution of x̄light

is then

C(x̄light) =
∑

(x̄,t)∈P(x̄light)

f(x̄)wt(x̄)

pt(x̄)
. (3)

Here x̄ is a full path, t is a VCM/UPS sampling technique with
the pdf pt, f is the standard path contribution function (see
Sec. 3.1), and wt(x̄) is our adjusted VCM/UPS multiple impor-
tance sampling (MIS) weight described below (Sec. 5.4). C(x̄light)
is designed to measure the total image contribution due to the sub-
path x̄light. Note that since the contribution of the path tracing
techniques is independent of x̄light, the paths created by these tech-
niques are not in P(x̄light).

Two target functions. We now use the light subpath contribution
C(x̄light) to define the target function for the contribution and vis-
ibility Markov chains, respectively, as

p∗con(C(x̄light)) = lum(C(x̄light)) (4)

p∗vis(C(x̄light)) =

{
1 if C(x̄light) > 0
0 otherwise. (5)

That is, the former is given by the scalar luminance of the subpath
contribution, while the latter is a binary indicator equal to one for
light subpaths that make a non-zero contribution to the image.

Computing contribution. Contribution of a light subpath
C(x̄light) consists of the contributions by bidirectional connections
and by vertex merging. The merging contribution is computed us-
ing all pre-generated eye subpaths E . In order to compute bidirec-
tional connections we pick (at random) one eye subpath from E per
each light subpath. As we already said, we exclude the contribution
by path tracing techniques from C(x̄light). Fig. 9 shows how we
combine the contributions from light and eye subpaths.

5.2 MCMC Sampler Details

We now provide details of our MCMC sampler used to generate
light subpaths.

Initialization. To initialize our Markov chains, we apply the start-
up bias elimination method [Veach and Guibas 1997]. The method
draws an initial state using importance resampling from a small set
(10000) of independent light subpaths.

Mutations. We use primary sample space MCMC, where we mu-
tate a primary space sample u ∈ U using an adaptive mutation
kernel (see the supplemental material for more details). Using u
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Figure 8: Comparison of different target functions in our algorithm. From right to left, a target function based solely on photon visibil-
ity [Hachisuka and Jensen 2011] often yields suboptimal results. Our path visibility definition, which takes into account all the sampling
techniques in VCM/UPS, considerably improves the results, but it may sometimes be outperformed by the target function given by the path
contribution itself. Best overall results are achieved by our combined two-chain approach based on replica exchange.
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Figure 9: Diagram showing how the contributions of light and eye
subpaths are combined to compute the image. Each light subpath
is first splatted onto all eye subpath vertices (merging) and then
connected to a randomly selected eye subpath. The contributions
due to both merging and connections are then combined via MIS
weights and used for accepting/rejecting the light subpath as well
as for computing the image. While the contribution by path trac-
ing techniques is computed outside of the MCMC sampler, it also
undergoes MIS weighting.

as a vector of random numbers we then generate a light subpath
x̄light via local sampling techniques (i.e. light source emission and
BRDF importance sampling). As in PSSMLT, we alternate between
small steps (local mutations) and large steps (independent global
mutations) to ensure good local and global exploration. However,
the large steps are used only in the visibility chain, because replica
exchange between the chains is sufficient to ensure global explo-
ration in the contribution chain. In all scenes, we use the large step
with probability P (largeStep) = 0.3.

Normalization. To estimate light transport using a MCMC sam-
pler, we need the normalization constant bc =

∫
U p
∗
c(C∗(u))du

for both chains. Here, we have introduced the notation C∗(u) =
C(x̄light), where x̄light is the light subpath generated from u.

We compute the normalization using a regular Monte Carlo estima-
tor, which utilizes the large steps of our MCMC algorithm. Given
L large steps, the normalization is estimated as follows

〈bc〉 =
1

L

L∑
j=1

p∗c(C(x̄light,j)). (6)

We keep updating this estimate during the entire rendering process.

Combining the two chains. Using only samples from the con-
tribution chain to render the image would be wasteful as half of
the samples would be thrown away. We therefore combine the con-
tributions of light subpaths generated by our two chains using an-

other set of MIS weights (different from these used for VCM/UPS
in Eq. (3)). The MCMC MIS weight for the given light subpath
x̄light from chain c is defined as

wmcmc(c, x̄light) =

p∗c (C)

bc
p∗vis(C)

bvis
+

p∗con(C)

bcon

, (7)

where we have dropped the argument of C(x̄light) in the interest of
clarity. bc is the normalization constant of the chain c ∈ {con, vis}.
To compute a consistent MIS weights throughout a given iteration,
we use the normalization constants from the beginning of the iter-
ation. Kelemen et al. [2002] use a similar approach, where they
apply MIS to combine samples from a MCMC sampler and inde-
pendently generated samples (i.e. the large steps).

Restarting MCMC chains. Since the contribution C(x̄light) de-
pends on eye subpaths E , both target functions change when we
generate a new set E . To ensure convergence, we restart the MCMC
chain at the beginning of each iteration. We then average the results
of individual iterations to get the final result. The same algorithm
was employed by Hachisuka and Jensen [2011] for photon tracing.

5.3 MCMC Sampler Implementation

Algorithm 2 provides a detailed pseudocode of our MCMC algo-
rithm used to sample light subpaths. It receives the precomputed set
of eye subpaths E , and starts by initializing the two Markov chains
(line 1). The loop generating individual light subpaths starts by
picking (at random) the eye subpath x̄eye (line 3) that the next light
subpath will connect to. After that, we select the Markov chain c
to update (line 4): we alternate between the contribution (con) and
visibility (vis) chains, both receiving the same number of samples.

To propose a candidate u for the selected chain c, we mutate the cur-
rent state uc,j−1 in the primary sample space (line 5). Once we have
the primary sample space candidate u, we map it to a light subpath
x̄light by using a standard photon tracing algorithm that uses u as
a vector of random numbers (line 6). The light subpath contribution
C is then calculated using Eq. (3) (line 7). We then use the contribu-
tion C to evaluate the target function for the proposed light subpath
using Eq. (4) or (5), which is, in turn, used to calculate the accep-
tance probability a (line 8). Based on that probability, we either
accept or reject the proposed light subpath (lines 10–12).

We accumulate the contributions of both the proposed and the cur-
rent light subpath (lines 14–15), as per the use of expected val-
ues [Veach and Guibas 1997]. To combine the contributions from
the contribution and visibility chains, we apply the MCMC MIS
weights defined by Eq. (7). The replica exchange probability



Algorithm 2 Our MCMC algorithm for generating light subpaths.
1: [ucon,0, uvis,0] := INITIALIZECHAINS()
2: for j = 1 . . . N do
3: x̄eye := GETNEXTEYEPATH(E)
4: Select c ∈ {con, vis} // alternate between contrib. and visibility chains
5: u := MUTATE(uc,j−1) // propose candidate via mutation
6: x̄light := TRACELIGHTSUBPATH(u)
7: C := COMPUTESUBPATHCONTRIB(x̄light, x̄eye, E) // Eq. (3)
8: a := CALCACCEPTANCEPROB(p∗c(C), p∗c(Cc,j−1)) // Eq. (1)
9: if a > RANDOM() then

10: [uc,j , Cc,j ] := [u,C] // accept mutation
11: else
12: [uc,j , Cc,j ] := [uc,j−1, Cc,j−1] // reject mutation, keep old state
13: end if
14: imagec += (1− a)×

Cc,j−1
p∗c (Cc,j−1)

× MCMCMISWEIGHT(Cc,j−1)

15: imagec += a× C
p∗c (C)

× MCMCMISWEIGHT(C)

16: r := min

{
1,

p∗con(Cvis,j)

p∗con(Ccon,j)

}
// exchange probability, Eq. (2)

17: if r > RANDOM() then
18: SWAP([uvis,j , Cvis,j ], [ucon,j , Ccon,j ]) // replica exchange
19: end if
20: if largeStep = true then
21: UPDATENORMALIZATION(C) // Eq. (6)
22: end if
23: end for
24: OUTPUT(2 (bvisimagevis+bconimagecon)

NM ) // progressive output

is calculated on line 16 by Eq. (2), simplified by the fact that
p∗vis(C(x̄light)) = 1 for any accepted light subpath. The probabilis-
tic state exchange is then carried out on line 18. Finally, whenever
an independent, large step, is performed, we update normalization
constant estimates 〈bvis〉 and 〈bcon〉, Eq. (6) (line 21). While large
steps are only generated for the visibility chain, we can use them to
progressively update normalization constants of both chains during
the entire rendering process.

After having generated N light subpaths in the current iteration,
we combine their contribution and output the progress of rendering
(line 24), while dividing by the number of iterations M .

5.4 MIS Weight Computation

We now return to the computation of MIS weights for combining
the VCM/UPS path sampling techniques in Eq. (3). A standard
approach is to use the balance heuristic [Veach and Guibas 1995]

wt(x̄) =
p̂t(x̄)∑

t′∈T p̂t′(x̄)
, (8)

where T is the set of all VCM/UPS sampling techniques that can
generate the path x̄. p̂t(x̄) denotes the effective pdf with which
the full path x̄ would be sampled by the path sampling technique t.

Computing exact p̂t(x̄) in our algorithm is unfeasible in practice.
This is a shared limitation with PSSMLT, and has not been reported
by previous work. The issue lies in the fact that any given full
path x̄ can be generated by infinitely many different primary sam-
ples Ux̄ ⊆ U , each of which corresponds to a light subpath with
the same prefix (see Fig. 10). Furthermore, each such u ∈ Ux̄ usu-
ally has a different target function value, since it is given by the sum
of the contributions of all full paths generated by the light subpath.
The exact pdf p̂t(x̄) is therefore given by

p̂t(x̄) = pt(x̄)pU,c(x̄) = pt(x̄)

∫
Ux̄

p∗c(C∗(u))

bc
dπx̄(u). (9)

Here pt(x̄) is the pdf of the path sampling technique t, i.e. the Jaco-
bian of mapping u to x̄, which is the same for all u ∈ Ux̄. pU,c(x̄)

l0

u0 = (a, b, c, . . .)

u1 = (a, b, d, . . .)

l1 l2

l0

l1

l2

e1

e1

e0

e0

Figure 10: A single full path x̄ = (l0, l1, e1, e0) can be gener-
ated by infinitely many different primary samples (u0 and u1 in this
example) that all share the same prefix (a, b). The remaining com-
ponents of each primary sample (c, . . . and d, . . . in this example)
are used to generate the vertices of the light subpath after l1. Those
are not part of the full path, but still affect its pdf.

is the marginalized probability density of sampling u ∈ Ux̄ by
the Markov chain c. p∗c(C∗(u)) is the target function of the chain
c, and bc is the normalization of the chain c. The measure function
πx̄(u) is then a simple volume measure which ignores the common
prefix of all u ∈ Ux̄.

PSSMLT approximates the pdf in Eq. (9) by ignoring pU,c(x̄) (i.e.
p̂t(x̄) ≈ pt(x̄)). While such an approach is suboptimal, because
the MIS weights do not use the actual pdf of the paths, it usually
works well in practice. For this reason, we adopt it for paths gener-
ated by our contribution chain as well.

However, we show that for the visibility chain, we can compute
the exact path pdf and thus improve the algorithm efficiency (see
Fig. 11). While a full path x̄ can be constructed from infinitely
many primary samples Ux̄ of the visibility chain, they all have
the same target function value equal to one. Given the above and
the fact that Ux̄ has a unit volume, the exact pdf p̂t(x̄) is computed
as

p̂t(x̄) = pt(x̄)

∫
Ux̄

dπx̄(u)

bvis
=
pt(x̄)

bvis
. (10)

Please note that the paths generated by the path tracing techniques
are independent of the MCMC process, and thus their pdfs are com-
puted as in bidirectional path tracing (i.e. p̂t(x̄) = pt(x̄)).

6 Results

We have implemented our algorithm and baseline VCM/UPS on
top of the Mitsuba renderer [Jakob 2010]; the code will be released
upon publication. We ran all the experiments on a PC with an Intel
Core i7 at 3.50 GHz with 16 GB RAM using eight logical cores.
The reference images were rendered using the VCM/UPS algorithm
over the course of two weeks.

Exact pdf Approx. pdf
(RMSE 0.332) (RMSE 0.443)

Figure 11: Equal-sample (64 iterations) comparison of results gen-
erated using only the visibility chain with the exact pdfs used for
MIS weights computation (left) and with the approximated pdfs
(right). Using exact pdfs for MIS weights computation decreases
noise in the image due to better weighting of sampling techniques.
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Figure 12: Equal-time comparisons (1 hour) of our method, baseline VCM/UPS, and MLT with manifold exploration (MEMLT). The reported
speedup is calculated as the squared ratio of RMSE values, and gives the expected relative time that the baseline VCM/UPS would take to
attain the RMSE of each respective algorithm. EV is the exposure value adjustment of the insets over the base image. The main text discusses
the important features of the results shown here.

From among the previous MCMC algorithms we have tested, MLT
with manifold exploration (MEMLT) [Jakob and Marschner 2012]
provided the best results which is why we use it for most of our
comparisons in the paper. However, additional results not included
in the paper can be found in the supplemental material. MEMLT
parameters used in Mitsuba have been manually tuned for each
scene to ensure the best performance. We used adaptive mutation
size [Hachisuka and Jensen 2011] for our algorithm, PSSMLT, and
Multiplexed MLT (MMLT) [Hachisuka et al. 2014] with the target
acceptance rate of 23.4%, which is roughly attained in our tests.

Radii for the vertex merging (i.e. photon density estimation) tech-
niques at all the vertices of an eye subpath are determined by
the pixel footprint at the first vertex of the respective subpath. We
have not used any radius reduction [Hachisuka et al. 2008] but we
have experimentally verified that the radius is small enough so that
any bias is numerically and visually negligible in our scenes. Each
iteration of our algorithm and baseline VCM/UPS uses one eye and
light subpath per pixel.

Comparison to VCM/UPS and MLT. Fig. 1 and Fig. 12 show
equal-time (one hour) comparisons of our algorithm, baseline
VCM/UPS, and MEMLT. All three cases represent a typical scene
configuration where an interior is illuminated from the outside via
an opening such as a window. Table 1 summarizes rendering pa-
rameters and statistics. The average replica exchange success rate
of about 27% roughly corresponds to the optimal values reported
in the literature [Atchadé et al. 2010]; this provides an empirical
evidence of the effectiveness of our two-chain design.

Kitchen Living room Classroom
Image resolution 1024× 768 1024× 768 960× 480

#iterations VCM/UPS 675 641 1002
#iterations our algorithm 357 406 525
avg. exchange rate (our algo.) 26.5% 26.4% 27.6%

Table 1: Settings and statistics for scenes in Fig. 1 and 12.
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Figure 13: RMS error plots of our method and MEMLT calcu-
lated for the insets of the Kitchen scene in Fig. 1. While MEMLT
may have lower numerical error than our method in some cases,
its convergence behavior can be highly unpredictable. Our method
predictably converges toward a noise-free solution.

Overall, the performance of baseline VCM/UPS suffers from an in-
sufficient number of light subpaths due to complex visibility. Even
for the Living room scene which features a relatively large win-
dow and is thus easier to render with baseline VCM/UPS, our al-
gorithm achieves a speedup of more than 4×. MEMLT tends to
fail to evenly explore the path space due to the presence of highly
glossy/specular reflections. For example, the insets of the Living
room scene highlight how MEMLT can either completely miss or
over-explore specular-diffuse-specular paths. Our algorithm con-
sistently outperforms both of those state-of-the art algorithms in
these comparisons.
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Figure 14: An equal-time (one hour) comparison of state-of-the-art MCMC-based algorithms in the Kitchen scene. The algorithms shown
are PSSMLT [Kelemen et al. 2002], Multiplexed MLT (MMLT) [Hachisuka et al. 2014], MEMLT with additional regularization [Kaplanyan
and Dachsbacher 2013], and energy redistribution path tracing with manifold exploration (ERPT + ME) [Cline et al. 2005]. The speedup
is calculated as the squared ratio of RMSE values, and gives the expected relative time that the baseline VCM/UPS would take to attain
the RMSE of each respective algorithm. Refer to Fig. 1 for the results of baseline VCM/UPS and our algorithm.

Figure 15: Positive (red)-negative (green) difference of the MEMLT
results in Fig. 12 from the respective references for the Living room
(left) and Classroom (right) scenes.

The Kitchen scene in Fig. 1 features a counter-top of highly
anisotropic metal which often leads to various image artifacts due
to sample correlation in MEMLT. Fig. 13 shows RMSE plots within
the insets of this scene, highlighting MEMLT’s uneven conver-
gence. Our algorithm steadily converges toward the correct solu-
tion within all the insets. We found that our algorithm generally
exhibits this predictable convergence behavior.

While the images rendered by MEMLT tend to be less noisy than
from other algorithms, they are not necessarily converged to the cor-
rect solution. Fig. 15 highlights this problem in the Living room
and Clasroom scenes. While the noise-free image of MEMLT in
Fig. 12 could be mistakenly considered converged, its RMS error
as well as the visualization in Fig. 15 show that the contrary is true.

Comparison to other state-of-the art algorithms. Fig. 14 shows
a comparison of our method to other state-of-the art MCMC-
based algorithms in the Kitchen scene (similar results for other
scenes are included in the supplemental material). Namely, we
compare to PSSMLT [Kelemen et al. 2002], Multiplexed MLT
(MMLT) [Hachisuka et al. 2014], MEMLT with additional regular-
ization [Kaplanyan and Dachsbacher 2013], energy redistribution
path tracing with manifold exploration (ERPT + ME) [Cline et al.
2005]. For ERPT + ME we set the average number of chains per
pixel to one and limit the number of mutations per chain to 100
(default setting in Mitsuba). ERPT + ME strives to improve strat-
ification compared to MEMLT, but its short Markov chains impair
its efficiency. For the regularized MEMLT, we use our own imple-
mentation, which performs regularization of interactions on highly
glossy materials by adjusting their roughness (this idea was sug-
gested in the original paper). While the strength of regularization
differs for each material, the shrinkage parameter is set globally to
10−4. The regularized MEMLT allows easier sampling of some

Our method HSLTRMSE 0.120 RMSE 0.447

Figure 16: An equal-time (one hour) comparison of our method
and half vector space light transport (HSLT) [Hanika et al. 2015]
in the Kitchen scene with isotropic materials. We use this compar-
ison because the HSLT implementation in Mitsuba cannot handle
anisotropic materials. Reference is in the supplemental material.

types of paths, however it does not improve MEMLT’s irregular
convergence. In fact, the results show that all those algorithms suf-
fer from severe image artifacts due to sample correlation in MCMC.

Fig. 16 shows a comparison to half vector space light transport
(HSLT) [Hanika et al. 2015] in a variant of the Kitchen scene. Since
the publicly available implementation of HSLT (in Mitsuba) cannot
handle anisotropic materials, we set all materials to be isotropic for
the sake of this specific comparison. We have set the universal per-
turbation probability in HSLT to get an overall 23.4% acceptance
ratio. While previous work has reported better results for HSLT
than MEMLT, we have not been able to observe any such improve-
ment in our tests (even though we have consulted HSLT settings
with the authors). In this specific example, we see that HSLT shares
the issues of other MCMC methods: it suffers from irregular con-
vergence and fails to explore glossy/specular light transport.

Temporal coherence. To compare temporal coherence of
PSSMLT, MEMLT, VCM/UPS and our algorithm, we have gen-
erated videos (using equal time renderings) showing a short fly-
through of the Kitchen scene (the videos are in the supplemental
material). While PSSMLT and MEMLT exhibit pronounced flick-
ering artifacts, our results are substantially more well-behaved, only
showing the high-frequency noise typical for regular Monte Carlo
rendering. The results of VCM/UPS maintain good temporal co-
herence, however the overall noise level is very high.
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Figure 17: Empirical verification of our algorithm’s convergence
in the Kitchen scene. The figure shows a steadily decreasing plot of
RMSE during 20 hours of rendering.

Consistency and behavior in simple scenes. Fig. 17 plots
the RMSE of our algorithm over 20 hours of rendering in
the Kitchen scene. The RMSE steadily approaches to zero, which
provides an empirical evidence of the convergence of our method.

We have mentioned earlier and shown in Fig. 4 the low overhead
of our algorithm over baseline VCM/UPS in simple scenes. Fig. 18
additionally demonstrates this in a comparison with PSSMLT. Sim-
pler algorithms like path tracing would outperform both our al-
gorithm and VCM/UPS in a very simple scenes, however it is at
the cost of their lower robustness.

Convergence analysis of our algorithm. In order to analyze
which parts of our algorithm are responsible for its robustness and
uniform convergence, we have run our algorithm with three differ-
ent features switched on or off. Fig. 19 describes the different ver-
sions and shows their RMSE plots (the images rendered by the dif-
ferent versions are then shown in Appendix A). We can observe that
some of the plots are not monotonic, which is caused by the algo-
rithm getting stuck in local maxima and thus temporarily diverging
from the reference. Clearly, the versions of our algorithm that com-
bine two chains via replica exchange (green lines) are more robust
to this problem. The plots also show that while using stratified eye
subpaths lowers RMSE compared to using eye subpaths generated
by MCMC, it does not guarantee monotonicity of the convergence
plot. Using all VCM/UPS techniques instead of just bidirectional
path tracing techniques then in most cases results in lower RMSE.
We therefore conclude that the uniform convergence of our algo-
rithm is mainly due to the use of replica exchange.

7 Limitations and Future Work

Though our algorithm robustly handles various scene configura-
tions that are inefficient to render with existing algorithms, there
are several limitations that need to be resolved by further work.

Negative effects of independent eye subpaths. While using
stratified, independently generated eye subpaths is one of the key

PSSMLT Our method
(RMSE 0.035) (RMSE 0.037)

Figure 18: Our method has negligible overhead over PSSMLT in
this simple scene, where the latter algorithm works well. The im-
ages took 2 minutes to render.
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Figure 19: Here we show convergence plots for our algorithm in
the Kitchen scene with three different features switched on or off.
First, we can run our algorithm only with the contribution chain
(orange lines) or with both chains using replica exchange (green
lines). Second, we can either enable all VCM/UPS techniques
(full markers) or enable only bidirectional path tracing (BDPT)
techniques (empty markers). Finally, we can generate eye sub-
paths using a MCMC algorithm (square markers) or independent
Monte Carlo (circle markers). We can observe from the plots
that all components of our algorithm (namely replica exchange,
all VCM/UPS techniques, independent eye subpaths) contribute to
achieving the low RMSE. The plots are further discussed in the text.

ideas behind the efficiency of our algorithm, it can negatively affect
local exploration in our MCMC sampler. Consider a light subpath
that makes a contribution only via a single bidirectional connec-
tion to the currently selected eye subpath. Even when the MCMC
sampler proposes only a slight mutation of the light subpath, our
algorithm still takes a completely independent eye subpath to con-
nect to. As such, the previously successful bidirectional connection
is likely to become invalid. Fortunately, this negative effect is di-
minished by the presence of vertex merging techniques, which do
not depend on the currently selected eye path at all (see Fig. 20).

Sub-optimal MIS weights. Our MIS weight calculation takes
an approximated pdf (as in PSSMLT) for paths generated by
the contribution chain (see Sec. 5.4). Though the practical impact
of this approximation is unknown, since it is unfeasible to compute
the exact pdf, deriving new MIS weights based on true pdfs with
which our algorithm samples the paths would certainly increase its
efficiency. Furthermore, we currently base our MIS weights on bal-
ance heuristic, which has been proven to work well under the condi-
tion of independent samples. This condition is however broken for
MCMC and therefore using balance heuristic might be sub-optimal.

Near-specular paths. One limitation of our algorithm, shared by
other approaches, is handling nearly specular paths. That is, paths

Connections onlyAll techniques
(RMSE 0.058) (RMSE 0.123)

Reference

EV -2 EV -2

Figure 20: Equal-samples comparison (525 iterations) of our
method using all VCM/UPS techniques and using only bidirectional
techniques (connections). Including vertex merging techniques di-
minishes the negative effects of using independent eye subpaths in
the MCMC sampler.
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Figure 21: Equal-time comparison (10 minutes) of rendering
a scene with only purely specular materials. While our algo-
rithm delivers worse results than PSSMLT over unidirectional path-
tracing (PT-PSSMLT), it outperforms MEMLT, which gets stuck in
local maxima of its target function.

that interact only with highly specular materials. Since such paths
can be effectively sampled only by unidirectional path tracing tech-
nique, our algorithm provides no advantage over existing solutions
in handling them (see Fig. 21).

Future Work. In our algorithm, we map each primary sample to
a set of full paths using all the VCM/UPS path sampling techniques.
Hachisuka et al. [2014] have shown that using only one selected
technique per primary sample can be more efficient. Using a similar
approach in our algorithm could potentially increase its efficiency
as well. Another interesting topic of future work would be robust
rendering of participating media. For instance, our approach could
serve as a guideline for applying MCMC sampling to the work of
Křivánek et al. [2014a]. Furthermore, claiming that our work com-
pletely resolves the problem of unpredictable convergence behavior
of MCMC would be an overstatement and there is certainly more
work to be done on this topic.

8 Conclusion

We proposed a light transport simulation algorithm which fuses the
concepts behind VCM/UPS and MCMC into a practical solution
for the first time. Our algorithm can efficiently handle complex
glossy and specular transport and complex visibility by taking ad-
vantage of both VCM/UPS and MCMC. The design of our algo-
rithm is not a mere combination of the two concepts in a trivial
manner. We instead made a number of careful design decisions
based on practical insights on the building blocks of the algorithm.
More specifically, we designed our algorithm to retain the bene-
fits of combined bidirectional estimators, extensive subpath reuse,
and spatial relaxation from VCM/UPS while minimizing the cor-
relation problems of MCMC. The numerical experiments demon-
strate that our algorithm indeed features the advantages of both
VCM/UPS and MCMC, while suppressing their disadvantages in
various scene configurations. Since our algorithm has low overhead
over VCM/UPS and primary sample space MLT, it can practically
substitute those algorithms in many applications and improve the
robustness of light transport simulation.
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AND CANADA, J. 2014. Recent advances in light transport sim-
ulation: Some theory and a lot of practice. In ACM SIGGRAPH
2014 Courses.

LAFORTUNE, E. P., AND WILLEMS, Y. D. 1993. Bi-directional
path tracing. In Proc. of Compugraphics 93.

LI, T.-M., LEHTINEN, J., RAMAMOORTHI, R., JAKOB, W.,
AND DURAND, F. 2015. Anisotropic Gaussian mutations for
Metropolis light transport through Hessian-Hamiltonian dynam-
ics. ACM Trans. Graph. (SIGGRAPH Asia 2015) 34, 6.

PAULY, M., KOLLIG, T., AND KELLER, A. 2000. Metropolis
light transport for participating media. In Proceedings of the
Eurographics Workshop on Rendering Techniques 2000, 11–22.

POPOV, S., RAMAMOORTHI, R., DURAND, F., AND DRETTAKIS,
G. 2015. Probabilistic connections for bidirectional path tracing.
Computer Graphics Forum (Proc. of EGSR) 34, 4.

SEGOVIA, B., IEHL, J.-C., AND PÉROCHE, B. 2007. Metropolis
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A Algorithm components comparison

Fig. 22 shows images rendered by the different versions of our al-
gorithm (see Fig. 19 for the description of the different versions).
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Figure 22: An equal-time (one hour) comparison of different vari-
ants of our algorithm. The final most robust method is marked by
the orange rectangle.


