Product Importance Sampling for Light Transport Path Guiding

Sebastian Herholz1 \hspace{1cm} Oskar Elek2 \hspace{1cm} Jiří Vorba2,3
Hendrik Lensch1 \hspace{1cm} Jaroslav Křivánek2

1University Tübingen \hspace{1cm} 2Charles University Prague \hspace{1cm} 3Weta Digital
Motivation
Reference
(4 weeks)
BDPT
(1hr)
Our
(1hr)

Vorba2014
(1hr)
Our (1hr) vs Vorba2014 (1hr)

VCM (3 weeks)

Reference
Light Transport: Rendering Equation

\[L_o = L_e + \int_{\Omega} f_r \cdot L_i \cdot \cos\theta \cdot d\vec{w}_i \]

emission + direct + indirect = combined
Light Transport: Rendering Equation

\[L_0 = L_e + \int_\Omega f_r \cdot L_i \cdot \cos \theta \cdot d\omega_i \]

\(L_R \)
Bidirectional Reflectance Distribution Function (BRDF)

\[L_R = \int_{\Omega} f_r \cdot L_i \cdot \cos \theta \cdot d\omega_i \]
Incomming Illumination

\[L_R = \int_{\Omega} f_r \cdot L_i \cdot \cos\theta \ d\omega_i \]
Reflectance Integral

\[L_R = \int_{\Omega} f_r \cdot L_i \cdot \cos \theta \cdot d\omega_i \]
BRDF-based Sampling

\[p_{fr}(\omega_i|\omega_o, x) \propto f_r(x, \vec{\omega}_o, \vec{\omega}_i) \]
Guided Illumination Sampling

\[p_L(\omega_i|\omega_o, x) \propto L_i(x, \vec{w}_i) \cdot \cos\theta \]
Optimal (Product) Sampling

$$p_{opt}(\omega_i | \omega_o, x) \propto f_r(x, \vec{\omega}_o, \vec{\omega}_i)L_i(x, \vec{\omega}_i) \cdot \cos \theta$$
Related Work

[CAM08]: Practical product importance sampling for direct illumination

[TCE05]: Importance resampling for global illumination

[CJAMJ05]: Wavelet importance sampling: efficiently evaluating products of complex functions

[JCJ09]: Importance sampling spherical harmonics

S. Herholz: Product Importance Sampling for Light Transport Path Guiding
Product Importance Sampling
BRDF GMM Representation

\[p_{f_r}(\omega_i | \omega_o, x) \approx G_{f_r}(y, \Theta) \]
Illumination GMM Representation

\[p_L(\omega_i | \omega_o, x) \approx G_L(y, \Theta) \]
Gaussian Mixture Model (GMM)

\[G(\mathbf{y}, \Theta) = \sum_{i=1}^{K} \pi_i N(\mathbf{y}, \mu_i, \Sigma_i) \]

\[\Theta = \{\pi_0 \ldots, \mu_0 \ldots, \Sigma_0 \ldots\} \]
Gaussian Mixture Model (GMM)

\[
G(y, \Theta) = \sum_{i=0}^{K} \pi_i N(y, \mu_i, \Sigma_i)
\]

\[
\Theta = \{\pi_0, \mu_0, \Sigma_0\}
\]
Gaussian Mixture Model (GMM)

\[G(y, \Theta) = \sum_{i=1}^{K} \pi_i N(y, \mu_i, \Sigma_i) \]

\[\Theta = \{\pi_0, \mu_0, \Sigma_0, \ldots\} \]
Gaussian Mixture Model (GMM)

\[G(y, \Theta) = \sum_{i=1}^{K} \pi_i N(y, \mu_i, \Sigma_i) \]

\[\Theta = \{ \pi_0 \ldots, \mu_0 \ldots, \Sigma_0 \ldots \} \]
Product of two Gaussians is a Gaussian

\[
\pi_i N(y, \mu_i, \Sigma_i) \cdot \pi_j N(y, \mu_j, \Sigma_j) = \pi_{ij} N(y, \mu_{ij}, \Sigma_{ij})
\]
Product of two Gaussians is a Gaussian

\[
\pi_i N(y, \mu_i, \Sigma_i) \cdot \pi_j N(y, \mu_j, \Sigma_j) = \pi_{ij} N(y, \mu_{ij}, \Sigma_{ij})
\]
Product of two Gaussians is a Gaussian

\[\pi_i N(y, \mu_i, \Sigma_i) \cdot \pi_j N(y, \mu_j, \Sigma_j) = \pi_{ij} N(y, \mu_{ij}, \Sigma_{ij}) \]
Product of two Gaussians is a Gaussian

\[\pi_i N(y, \mu_i, \Sigma_i) \cdot \pi_j N(y, \mu_j, \Sigma_j) = \pi_{ij} N(y, \mu_{ij}, \Sigma_{ij}) \]

• Full GMM product contains \(K^2 \) components
Product GMM Representation

\[p_{fr} \otimes p_L \approx G_{fr} \otimes G_L = G_{\otimes}(y, \Theta) \]
Product GMM Representation

S. Herholz: Product Importance Sampling for Light Transport Path Guiding
Pipeline

Pre-Processing
- Illum. Fit
- BRDF Fit

Rendering
- Path Tracer
 - GuidedProduct BRDF
 - Weight Window RR
S. Herholz: Product Importance Sampling for Light Transport Path Guiding
S. Herholz: Product Importance Sampling for Light Transport Path Guiding
Pipeline

Pre-Processing
- Illum. Fit
- BRDF Fit

Rendering
- Path Tracer
 - GuidedProduct BRDF
 - Weight Window RR
S. Herholz: Product Importance Sampling for Light Transport Path Guiding
Illumination Fit: [Vorba2014]

GMM Illumination caches

[S. Herholz: Product Importance Sampling for Light Transport Path Guiding]
BRDF Fitting and Caching
Fitting BRDF GMM

Weighted EM

• Weighted MAP EM [Vorba2014]

• Sample BRDF (N=512)

• \(w_i = \frac{f_r(x, \omega_i, \omega_o)}{p(\omega_o)} \)

• Init components using K BRDF samples (QMC sampler)

CERES

• Non-linear optimization

• Init with weighted EM

• Objective function:

\[
\sum_{i}^{N} \left[1 - \frac{\tilde{f}_r(\omega_i)}{G(y|\Theta)} \right]^2
\]
Fitting BRDF GMM

Weighted EM

• Weighted MAP EM [Vorba2014]

• Sample BRDF (N=512)

\[w_i = \frac{f_r(x, \omega_i, \omega_o)}{p(\omega_o)} \]

• Init components using K BRDF samples (QMC sampler)

CERES

• Non-linear optimization

• Init with weighted EM

• Objective function:

\[\sum_{i=1}^{N} \left[1 - \frac{\hat{f}_r(\omega_i)}{G(y|\Theta)} \right]^2 \]
S. Herholz: Product Importance Sampling for Light Transport Path Guiding

wEM vs CERES

$\text{rough conductor } \alpha = 0.3$

$K = 8$
wEM vs CERES

rough conductor $\alpha = 0.3$

$K = 8$
wEM vs CERES

\[\begin{align*}
\text{rough conductor } & \alpha = 0.3 \\
& K = 8
\end{align*} \]
wEM vs CERES

rough conductor $\alpha = 0.15$

$K = 8$
Caching

- Isotropic
 - 512 different elevation angles

- Anisotropic
 - 4096 spherical Fibonacci points [KISS15]
Isotropic

Caching
Caching

- Isotropic
Caching

• Isotropic
• Isotropic
• Isotropic
GMM Component Reduction
Component Reduction

\[c_{i,j} = d_{KL}(\{(\pi_i, \mu_i, \Sigma_i), (\pi_j, \mu_j, \Sigma_j)\}, (\pi_{ij}, \mu_{ij}, \Sigma_{ij})) \]
Component Reduction

\[c_{i,j} = d_{KL}(\{(\pi_i, \mu_i, \Sigma_i), (\pi_j, \mu_j, \Sigma_j)\}, (\pi_{ij}, \mu_{ij}, \Sigma_{ij})) \]
Component Reduction

\[c_{i,j} = d_{KL}(\{(\pi_i, \mu_i, \Sigma_i), (\pi_j, \mu_j, \Sigma_j)\}, (\pi_{ij}, \mu_{ij}, \Sigma_{ij})) \]
Component Reduction

\[c_{i,j} = d_{KL}(\{(\pi_i, \mu_i, \Sigma_i), (\pi_j, \mu_j, \Sigma_j)\}, (\pi_{ij}, \mu_{ij}, \Sigma_{ij})) \]

- Adapted from [Runnals2007], used also in [Jacob2011]

- Kullback-Leibler discrimination: \(d_{KL} \)
Component Reduction

Cumulative cost

Component count: 8
Cost: 0.000 (0.000%)
Component Reduction

Cumulative cost

Component count: 7
Cost: 0.083 (3.364%)
Component Reduction

Cumulative cost

Component count: 6
Cost: 0.174 (7.062%)
Component Reduction

Cumulative cost

Component count: 4
Cost: 0.498 (20.210%)
Component Reduction

Cumulative cost

Component count: 3
Cost: 0.931 (37.773%)
Component Reduction

Cumulative cost

Component count: 2
Cost: 1.443 (58.549%)
Component Reduction

Cumulative cost

Component count: 1
Cost: 2.464 (100.000%)
Component Reduction

Cumulative cost

Component count: 6
Cost: 0.174 (7.062%)
Component Reduction

Reduction

- BRDF:
 - Full $K = 8$

- Illumination
 - Full $K = 8$

- Product GMM:
 - Avg. $K_{ij} = 64$
Component Reduction

Reduction

- **BRDF:**
 - Full $K = 8$
 - Red. avg. $K = 2$

- **Illumination**
 - Full $K = 8$
 - Red. 50% to 4 comp.

- **Product GMM:**
 - Avg. $K_{ij} = 64$
 - Red. avg. $K_{ij} = 12$

Cumulative cost
<table>
<thead>
<tr>
<th>Motivation</th>
<th>Product Importance Sampling</th>
<th>BRDF Fitting</th>
<th>Component Reduction</th>
<th>Results</th>
<th>Future Work</th>
</tr>
</thead>
<tbody>
<tr>
<td>S. Herholz: Product Importance Sampling for Light Transport Path Guiding</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Reference
equal time 1hr
Path Tracer

4736 / 2.1830

Reference

SPP / MSE

equal time 1hr
Path Tracer Vorba2014 Reference

4736 / 2.1830 882 / 0.0331 SPP / MSE

equal time 1hr
S. Herholz: Product Importance Sampling for Light Transport Path Guiding

Results:

- **Path Tracer:** 4736 / 2.1830
- **Vorba2014:** 882 / 0.0331
- **Our:** 1128 / 0.0211
- **Reference:**

NOTE: Equal time 1hr
equal time 1hr

Path Tracer Vorba2014 Our Reference

4335 / 0.0081 1528 / 0.0025 1322 / 0.0007 SPP / MSE

S. Herholz: Product Importance Sampling for Light Transport Path Guiding

Reference

Vorba2014
S. Herholz: Product Importance Sampling for Light Transport Path Guiding

<table>
<thead>
<tr>
<th>Method</th>
<th>Samples</th>
<th>MSE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Path Tracer</td>
<td>4335</td>
<td>0.0081</td>
</tr>
<tr>
<td>Vorba2014</td>
<td>1528</td>
<td>0.0025</td>
</tr>
<tr>
<td>Our</td>
<td>1322</td>
<td>0.0007</td>
</tr>
<tr>
<td>Reference</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

equal time 1hr

SPP / MSE
S. Herholz: Product Importance Sampling for Light Transport Path Guiding

Reference

3120 / 0.9715
1616 / 0.006
712 / 0.007
SPP / MSE

equal time 1hr
Average Path Lengths

Vorba: 9.8 Ours: 4.9

normalized per-path segment contribution

LivingRoom
Average Path Lengths
Vorba: 9.8 Ours: 4.9

normalized per-path segment contribution

LivingRoom

path depth
Average Path Lenghts

Vorba: 9.8
Ours: 4.9

normalized per-path segment contribution

LivingRoom

path depth

S. Herholz: Product Importance Sampling for Light Transport Path Guiding
Average Path Lengths

Vorba: 6.5
Ours: 9.0

normalized per-path segment contribution

Kitchen

- **Contribution**
- **Vorba**
- **Ours**

path depth
Discussion / Future work
Discussion / Future Work

• Path Length and Russian Roulette
 - Adjoint-driven RR and Splitting [Vorba2016]
Discussion / Future Work

- SVBRDFs
 - Enlarge BRDF caches
 - Direct function transform BRDF-\(\rightarrow\)GMM

<table>
<thead>
<tr>
<th>Scene</th>
<th># BRDFs</th>
<th># Caches</th>
<th>Avg. # comp.</th>
<th>Mem.</th>
</tr>
</thead>
<tbody>
<tr>
<td>LivingRoom</td>
<td>41</td>
<td>15k</td>
<td>2.5</td>
<td>7.7 MB</td>
</tr>
<tr>
<td>Kitchen</td>
<td>72</td>
<td>2.5k</td>
<td>1.8</td>
<td>10 MB</td>
</tr>
<tr>
<td>Jewelry</td>
<td>6</td>
<td>1.5k</td>
<td>1.44</td>
<td>0.7 MB</td>
</tr>
</tbody>
</table>
Discussion / Future Work

- Extension to other MC-algorithms
 - BDPT
 - MCMC
 - Gradient domain
GD-PT (full)

Reference

GD-BDPT (full)
GD-PT (estimate)

Reference

GD-BDPT (estimate)
S. Herholz: Product Importance Sampling for Light Transport Path Guiding

Our

Reference
Discussion/Future Work

- Optimizing Illumination caches
 - Poorly fitted illumination caches cause inconsistent convergence rates
Product Importance Sampling for Light Transport Path Guiding

Sebastian Herholz1 Oskar Elek2 Jiří Vorba2,3
Hendrik Lensch1 Jaroslav Křivánek2

1University Tübingen 2Charles University Prague 3Weta Digital

Thanks to:
- Martin Šík, Ivo Kondapaneni, Ludvík Koutný, Anton Kaplanyan, Johannes Hanika
- Anonymous reviewers
- You!

S. Herholz: Product Importance Sampling for Light Transport Path Guiding
Backup
wEM vs CERES
Gradient Domain

<table>
<thead>
<tr>
<th>GD-PT Est.</th>
<th>GD-PT Rec.</th>
<th>GD-BDPT Est.</th>
<th>GD-BDPT Rec.</th>
<th>Our</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>[Image]</td>
<td>[Image]</td>
<td>[Image]</td>
<td>[Image]</td>
<td>[Image]</td>
<td>[Image]</td>
</tr>
</tbody>
</table>
Reference

Uncorrected Corrected Standard
Table 1: *Timings for the cache fitting stages (in minutes).*

<table>
<thead>
<tr>
<th>Scene</th>
<th>Illumination</th>
<th>BRDF wEM</th>
<th>Ceres</th>
</tr>
</thead>
<tbody>
<tr>
<td>LIVINGROOM</td>
<td>14.0</td>
<td>0.31</td>
<td>25.5</td>
</tr>
<tr>
<td>KITCHEN</td>
<td>20.1</td>
<td>0.44</td>
<td>42.3</td>
</tr>
<tr>
<td>JEWELRY</td>
<td>6.1</td>
<td>0.04</td>
<td>6.3</td>
</tr>
</tbody>
</table>
Statistics:

Table 2:

Left and middle: BRDF and illumination caching statistics for the scenes in Fig. 8. Right: Overhead of the product sampling relative to illumination-only sampling, without (‘naïve’) and with the reduction of the BRDF and illumination mixtures.

<table>
<thead>
<tr>
<th>Scene</th>
<th>BRDF caching</th>
<th></th>
<th>Mem.</th>
<th>Illumination caching</th>
<th></th>
<th>Mem.</th>
<th>Sampling overhead [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td># BRDFs</td>
<td># Caches</td>
<td>Avg. # comp.</td>
<td>7.7 MB</td>
<td># Caches</td>
<td># Reduced</td>
<td>192.9 MB</td>
</tr>
<tr>
<td>LIVINGROOM</td>
<td>41</td>
<td>15k</td>
<td>2.5</td>
<td>7.7 MB</td>
<td>82k</td>
<td>57 %</td>
<td>192.9 MB</td>
</tr>
<tr>
<td>KITCHEN</td>
<td>72</td>
<td>2.5k</td>
<td>1.8</td>
<td>10 MB</td>
<td>107k</td>
<td>62 %</td>
<td>236.9 MB</td>
</tr>
<tr>
<td>JEWELRY</td>
<td>6</td>
<td>1.5k</td>
<td>1.44</td>
<td>0.7 MB</td>
<td>16k</td>
<td>33 %</td>
<td>19.5 MB</td>
</tr>
</tbody>
</table>