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The human visual system is sensitive to relative differences in luminance,
but light transport simulation algorithms based on Metropolis sampling of-
ten result in a highly nonuniform relative error distribution over the rendered
image. Although this issue has previously been addressed in the context of
the Metropolis light transport algorithm, our work focuses on Metropolis
photon tracing. We present a new target function (TF) for Metropolis photon
tracing that ensures good stratification of photons leading to pixel estimates
with equalized relative error. We develop a hierarchical scheme for progres-
sive construction of the TF from paths sampled during rendering. In addition
to the approach taken in previous work, where the TF is defined in the image
plane, ours can be associated with compact spatial regions. This allows us to
take advantage of illumination coherence to more robustly estimate the TF
while adapting to geometry discontinuities. To sample from this TF, we de-
sign a new replica exchange Metropolis scheme. We apply our algorithm in
progressive photon mapping and show that it often outperforms alternative
approaches in terms of image quality by a large margin.
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1. INTRODUCTION

The recent widespread adoption of Monte Carlo (MC) light trans-
port simulation in the practice of realistic rendering has revealed
several limitations of the existing algorithms. One of the most press-
ing issues is their low efficiency in scenes with complex visibility,
where just a small fraction of emitted light contributes to the image,
often only after multiple interactions with surfaces. Such scenes
are difficult, especially for algorithms employing photon density
estimation [Hachisuka and Jensen 2009]. Although such methods
often excel at dealing with complex light transport, a good sampling
strategy for subpaths originating from the light sources is critical
to their success. Indeed, when their sampling is blind to the cam-
era location, most computation effort may be wasted on processing
paths that make no image contribution [Hachisuka and Jensen 2011;
Vorba et al. 2014].

Our work focuses on improving light subpath sampling for pho-
ton density estimation. Specifically, we use Metropolis sampling to
guide light subpaths toward the camera. Although some previous
works have taken this route [Fan et al. 2005; Chen et al. 2011;
Hachisuka and Jensen 2011], the existing algorithms usually result
in a highly nonuniform distribution of the generated path vertices,
or “photons”, producing a nonuniform image error. This is undesir-
able, as a few high-error regions force the rendering calculation to
continue for a long time.

To address this problem, we propose a target function (TF)
(i.e., nonnormalized target distribution) for a Metropolis photon
sampler that aims to equalize relative error over several radiance
measurements. Whereas a similar strategy has previously been used
in Metropolis light transport (MLT) [Veach 1997; Hoberock and
Hart 2010], our work focuses specifically on photon tracing in pro-
gressive photon mapping [Hachisuka and Jensen 2009]. By using
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Fig. 1. We propose a new TF for Metropolis photon tracing that distributes relative error (bottom row) roughly uniformly over the image plane. It produces
images of superior quality than state-of-the-art methods such as Hachisuka and Jensen [2011] in scenes with complex visibility and high dynamic range of
indirect illumination. As shown in this equal-time comparison (30 minutes), our new spatial formulation of the TF (second row) produces superior results to
the more common image-based TF (third row).

our TF for Metropolis sampling of light subpaths, the generated
photons cover the regions of interest more evenly and in turn yield a
roughly uniform distribution of relative error (i.e., perceived noise).
Equalizing relative—as opposed to absolute—error is desirable be-
cause the human visual system is sensitive to relative differences
in luminance. Furthermore, the uniformity of noise is beneficial for
image filtering (denoising) algorithms [Zwicker et al. 2015]. Let us
emphasize that our method is designed to equalize error on diffuse
surfaces, although the error will usually still vary on glossy ones.

Our TF is given by the inverse of the expected number of photons
contributing to each measurement (e.g., a pixel value). Such a TF
is unknown at the outset, and computing it is as hard as rendering
the image itself. To address this issue, we develop a hierarchical
scheme for progressively constructing the TF from paths generated
during rendering.

Although the TF can be calculated in image space as in previous
work [Veach 1997; Hoberock and Hart 2010], we show that defin-
ing it over spatial regions organized in a spatial hierarchy yields
improved results, as illustrated in Figure 1. The spatial TF benefits
from the fact that illumination is often more coherent over compact
spatial regions than over image regions; this in turn yields more
accurate TF estimates.

Excessive sample correlation could result from using the basic
Metropolis algorithm to sample from our TF because of its mul-
timodal shape and relatively high dynamic range. To ensure good
exploration without “getting trapped” in the TF peaks, we design
a new replica exchange [Neal 1996] Metropolis scheme following
multiple parallel Markov chains.

We apply our tracing algorithm in progressive photon map-
ping [Hachisuka and Jensen 2009] and show that it often
outperforms the existing photon tracing algorithms, as well as the
multistage MLT [Hoberock and Hart 2010] algorithms, by a large
margin. Our main contributions are the following:

—A theoretical derivation of a TF that ensures an approximately
equal distribution of relative error among a number of MC esti-
mators that share a common set of samples (i.e., paths)

—A heuristic TF for light subpath tracing in photon density esti-
mation, motivated by the preceding derivation

—A scheme for estimating the TF progressively during rendering
based on either a spatial or image-based hierarchy

—A robust replica exchange design for Metropolis-based sampling
of paths according to the estimated TF.

2. RELATED WORK

The specific problem treated in this paper – equalizing the distri-
bution of error in the image – has not received much attention in
the rendering research dealing with photon mapping or Metropolis
sampling. We therefore review works from a wider area, that is,
algorithms designed to handle scenes with difficult visibility, while
focusing on approaches based on Metropolis sampling.

Metropolis Light Transport. MLT [Veach and Guibas 1997]
was the first use of the Metropolis-Hastings (MH) algorithm
[Hastings 1970] in light transport simulation. A major advantage
of the MH algorithm is its ability to generate samples (light paths)
proportionally to an arbitrary scalar TF (i.e., nonnormalized target
distribution), which may include the otherwise difficult-to-sample
path visibility. This unique feature theoretically makes MLT and re-
lated methods well suited to rendering large and/or highly occluded
scenes.

The MH algorithm generates a Markov chain of samples (in
our case, a sequence of paths), where a new sample is generated
by mutating the current one. Intricate path mutation strategies have
been devised to help the MLT algorithm deal with complex light
transport, such as specular-diffuse-specular interactions. But even
the most advanced mutation strategies known to date [Jakob and
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Marschner 2012; Hanika et al. 2015] often fail to converge to the
desired result in acceptable time [Vorba et al. 2014].

Equalizing Image Error in MLT. Veach and Guibas [1997] use
a TF given by the luminance value of the pixel contribution of a full
transport path. A well-known problem of this TF is a low number
of paths contributing to dim image regions, resulting in their large
relative error. Veach [1997] addressed this issue with his two-stage
MLT, where a low-resolution image is rendered first and the inverse
of the pixel luminance values is then used to rescale the original
TF for the actual rendering. The idea is that if all pixels receive the
same expected number of samples, relative error will be equalized.
The results of our derivation in the context of photon tracing are in
line with the preceding Veach observation.

Hoberock and Hart [2010] pointed out some important deficien-
cies of two-stage MLT that may deteriorate the image quality com-
pared to plain MLT. They propose a multistage MLT algorithm,
where an estimate of the rendered image is continually refined dur-
ing the rendering and used to progressively update the TF. Our work
is based on a similar idea, but we address the case of photon den-
sity estimation, which provides improved robustness to complex
transport thanks to its inherent subpath reuse and regularization
properties [Kaplanyan and Dachsbacher 2013b]. Furthermore, we
show that by defining our TF over scene surfaces, as opposed to
the image plane, we can better benefit from illumination coherence
for more accurate progressive TF calculation. Consequently, our
approach outperforms the multistage MLT in the majority of our
test scenes (see Section 5).

Various other TFs for MLT have been developed. In gradient-
domain MLT [Lehtinen et al. 2013], gradient of path contributions
is used as the TF so that image discontinuities are explored bet-
ter than flat areas. Multiplexed MLT [Hachisuka et al. 2014] uses
a TF given by the path contribution modulated by the multiple
importance sampling (MIS) weight [Veach 1997] of the sampling
technique used to generate the path. That way, appropriate sampling
techniques are selected more often.

Metropolis Sampling in Photon Density Estimation. We have
chosen photon density estimation as the basis of our approach to
be able to benefit from its robustness to complex light transport.
As discussed in Section 1, a good photon tracing strategy is crit-
ical for good performance of photon density estimation, and ours
is not the first work to apply MH sampling for this purpose. Fan
et al. [2005] ran the original MLT algorithm and used selected ver-
tices of the sampled paths as photons. More closely related are the
works of Hachisuka and Jensen [2011], Chen et al. [2011], and
Zheng and Zheng [2015]. All of these algorithms are designed for
use in stochastic progressive photon mapping (SPPM) [Hachisuka
and Jensen 2009], and their purpose is to guide light subpaths to-
ward a set of measurement points distributed on scene surfaces.
Our work follows this general scheme. These methods differ mostly
by the TF for the MH sampler. Hachisuka and Jensen [2011] use
the path visibility—that is, a binary variable indicating whether or
not the path contributes to any of the measurement points. Chen
et al. [2011] modulate the visibility by a somewhat arbitrary func-
tion constructed by filtering and nonlinear remapping of local pho-
ton density estimated in a pilot photon tracing pass. Zheng and
Zheng [2015] additionally modulate the visibility by a quantity rep-
resenting visual importance [Christensen 2003] so that salient areas
receive more photons. A major shortcoming of these methods is
their tendency to generate paths that lead to a highly varying error
of radiance estimates at the measurement points. Our TF also incor-
porates path visibility, but we modulate it to ensure a more uniform
relative error distribution.

Hachisuka and Jensen [2011] introduce important optimizations
of the MH sampler itself, namely adaptive mutation size [Rosenthal
2011] and replica exchange [Neal 1996; Kitaoka et al. 2009], which
we adopt and extend in our work. Gruson et al. [2014] improve
on the photon tracing algorithm of Hachisuka and Jensen [2011]
by employing different Markov chains—each with its own adaptive
mutation size—for user-specified sections of the scene, such as
interiors and exteriors.

Metropolis Sampling for Virtual Point Lights. A related prob-
lem to photon tracing is the distribution of virtual point lights (VPLs)
for many-lights rendering algorithms [Dachsbacher et al. 2014]. In
this context, Segovia et al. [2007] propose the use of multiple-try
Metropolis to guide VPLs toward the camera.

Local Path Sampling. Metropolis sampling is not the only ap-
proach to guide light subpaths toward the camera. Another option
is to devise suitable local sampling probability density functions
(pdfs) for constructing light subpaths vertex by vertex. These pdfs
can be constructed adaptively based on the observed contributions
of previously generated paths [Dutré and Willems 1995] or by using
directional density estimation from importance particles distributed
in the scene in a preprocessing phase [Jensen 1995; Peter and Pietrek
1998; Bashford-Rogers et al. 2014]. We compare our results to a
state-of-the-art work from the latter category [Vorba et al. 2014] in
Section 5. Christensen [2003] provides a comprehensive survey of
the use of importance in rendering.

3. ACHIEVING UNIFORM RELATIVE ERROR

The objective of our work is to develop a photon tracing algorithm
that produces uniform relative error of radiance estimates on a set
of measurement points distributed on scene surfaces. We build on
the works of Hachisuka and Jensen [2011] and Chen et al. [2011],
where the MH algorithm generates samples in the primary-sample
space U [Kelemen et al. 2002], which are then transformed into the
path space � to produce the actual photon subpaths. We achieve the
desired uniform error distribution by importance sampling in the
primary-sample space using a suitably defined scalar TF T̂ : U →
R for the MH sampler.

In the rest of this section, we give a derivation of a canonical
TF that ensures an approximately equalized distribution of relative
error among several radiance estimates on diffuse surfaces. The
result of this derivation is then used, in Section 4, as a basis for a
heuristically defined TF employed in our rendering algorithm.

3.1 Problem Statement

Photon Mapping in the Path Space. We consider photon tracing
in the context of SPPM [Hachisuka and Jensen 2009], where our
goal is to evaluate radiance measurements Ik at a number of mea-
surement points Gk . The latter are created by tracing subpaths from
the camera until a sufficiently diffuse surface is encountered, where
a measurement point is then deposited. The measurements are given
by integrals of the form

Ik =
∫

�

hk(x̄)f (x̄)dμ(x̄), (1)

where x̄ is a subpath starting from a light source and hk(x̄)f (x̄) is
the measurement contribution of that subpath. The function f (x̄),
common to all of the measurements, is given by the product of
the emitted radiance at the first path vertex, scattering terms at the
interior vertices, and geometry and visibility terms for the path
edges [Veach 1997]. The functions hk(x̄), which are specific to each
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measurement, are the density estimation kernels centered at the
measurement points Gk .1

Photon Mapping in the Primary-Sample Space. We employ a
formulation in the primary-sample space U = ∪∞

i=1[0, 1)i [Kelemen
et al. 2002] (the union over i considers paths of different lengths),
where the measurements Ik are given by

Ik =
∫
U

ĥk(ū)f̂ (ū)

∣∣∣∣dμ(x̄)

dū

∣∣∣∣ dū =
∫
U

ĥk(ū)f̂ (ū)

p̂(ū)
dū. (2)

The mapping x̄ = P −1(ū), ū ∈ U from the primary-sample space
to the path space is given by the inverse cumulative distribution
function (cdf) of the probability distribution used for path sampling
on the path space. The corresponding path pdf p is the product
of local pdfs for light emission sampling, BRDF sampling, and
Russian roulette, used to generate the path vertices from a vector
of “random numbers” ū. Here we have introduced the notation
ĥk(ū) = hk(P −1(ū)) that we employ also for functions f̂ and p̂.

Objective. Our goal is to construct MC estimators 〈Ik〉 of the
radiance measurements so that their relative error, or normalized
standard deviation (NSD) nsd(〈Ik〉) =

√
var(〈Ik〉)/I 2

k , is the same
for all k.

3.2 The Canonical TF

To ensure a uniform relative error, we use the MH algorithm to gen-
erate samples ū from a distribution proportional to the unnormalized
TF T̂ that we seek to derive.

General Case. As shown in Appendix A, under the assumption
that the density estimation kernels at the measurement points do
not overlap (i.e., have disjoint supports), we arrive at a piecewise
constant TF T̂ given by

T̂k ∝ E[〈Ik〉2
uni]

I 2
k

. (3)

Here, T̂k is the (constant) TF value over the support of the kernel
ĥk , and E[〈Ik〉2

uni] is the second moment of the estimator 〈Ik〉 that
uses uniform sampling on the primary-sample space:

E[〈Ik〉2
uni] =

∫
supp(ĥk )

[
ĥk(ū)f̂ (ū)/p̂(ū)

]2
dū. (4)

Simplified Formulation. For our practical implementation, we
further simplify the general result in Equation (3) by making two
assumptions:

(1) We assume that photons are emitted proportionally to the emit-
ted radiance and scattered or absorbed proportionally to the
BRDF (i.e., the common strategy used for photon tracing). The
path space pdf p of this strategy is roughly proportional to
the contribution function (i.e., p̂(ū) ≈ f̂ (ū)/c), where c is the
“flux” of the resulting photons.

(2) Furthermore, we assume piecewise constant density estimation
kernels (i.e., ĥk(ū) = 1/sk , with sk = πr2

k ) for ū such that
the last vertex of the corresponding path x̄ = P −1(ū) is within
the radius rk from the measurement point Gk and ĥk(ū) = 0
otherwise.

1Note that for the TF derivation, we make a simplifying assumption that the
BRDF at the measurement points is not a part of the measurement itself.
As a result, our TF does not adapt to the BRDF, and measurements on
glossy surfaces will have higher errors than on diffuse surfaces, due to the
additional variance from BRDF evaluation that is not importance sampled.
Generalizing our derivation to directional BRDFs is left for future work.

With these assumptions, the second moment given by Equa-
tion (4) becomes equal to c2/s2

k

∫
supp(ĥk )dū, and from Equation (1)

we have I 2
k = (c/sk

∫
supp(ĥk )dū)2. Equation (3) then simplifies to

T̂k ∝ 1

P uni
k

with P uni
k =

∫
supp(ĥk )

dū. (5)

Here, P uni
k is actually the probability that a path generated by uni-

form sampling in the primary-sample space will make a nonzero
contribution to the estimate at the point Gk . This becomes appar-
ent if we write the preceding integral for P uni

k directly in the path
space: P uni

k = ∫
supp(hk ) p(x̄) dμ(x̄). The net result of sampling in

the primary-sample space proportionally to TF given by the inverse
of P uni

k (Equation (5)) is that all measurement points get an equal
probability of receiving a nonzero contribution. In other words,
equalizing relative error corresponds to equalizing the number of
contributions.

3.3 Discussion

One could argue that none of the two preceding assumptions hold in
practice (i.e., p̂ is rarely exactly proportional to f̂ , and kernels may
have some overlap). Nonetheless, we show empirically in Section 5
that the heuristic TF built on the result derived earlier still achieves
approximately uniform error distribution.

Some algorithms utilize a path space importance sampling strat-
egy for which the pdf p̂ is not even approximately proportional
to the contribution function f̂ . An example is found in the work
of Vorba et al. [2014], where light subpaths are guided toward the
camera by modifying the path space pdf p̂. The use of light portals
for photon emission would be another example. In such a case, no
direct relation between the relative error and the number of contri-
butions exists, as the measurement variance is not only due to the
varying number of contributions but also due to the varying photon
fluxes, given by the ratio f̂ /p̂. The utility of the more general result
in Equation (3) consists of its applicability even when such a more
general path sampling strategy is used. Nonetheless, our algorithm,
described in the next section, relies on a heuristic TF based on the
result in Equation (5), whereas we leave the combination of our
approach with alternative path sampling strategies for future work.

The simplified result in Equation (5) is in line with the argument
that Veach [1997] made in the context of MLT: uniform relative
error on pixels is achieved by equalizing the number of contributing
paths. Although our derivation might appear as a lengthy way of
arriving at a similar result, its value lies in clearly identifying the
involved assumptions while also deriving the more general result in
Equation (3).

Finally, although our derivation relies on the primary-sample
space formulation, equivalent results can be achieved directly in the
path space. As such, the derived formulas are not limited to the use
with primary-sample space–style mutations.

4. ALGORITHM

In this section, we develop a heuristic TF based on the result derived
in the previous section, along with an algorithm for estimating the
TF in the course of rendering (Sections 4.1 through 4.3). Further-
more, we develop a replica exchange method for robustly sampling
light subpaths according to this heuristic TF (Section 4.4).

The basis for our heuristic TF is the canonical TF given by the
inverse of the expected number of photons contributing to each
measurement point (Equation (5)). This quantity is unknown at
the outset, and we estimate it from statistics of the generated path
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Fig. 2. Regions used to maintain the statistics for the TF estimation are
defined by the nodes of a spatial hierarchy constructed prior to rendering.
The regions can be defined either in world space (spatial TF, left) or on the
image plane (image-based TF, right). For any given algorithm iteration, the
current set of regions is given by a cut through the hierarchy (highlighted in
orange).

vertices (photons) maintained over a hierarchy of spatial or image
regions. The statistics are subject to variance, especially in early
stages of calculation. To obtain robust TF estimates despite the
variance, we initially average the statistics over large regions, which
are then adaptively refined.

Algorithm Overview. The algorithm works in iterations and
refines the TF estimates as it progresses. Iteration i uses the TF T̂i

for sampling light subpaths, whereas updating MC estimators will
be used to calculate an updated TF T̂i+1 for the next iteration. In this
way, the TF approaches the desired TF given by Equation (5). Note
that the TF is only used to sample light subpaths (i.e., photons),
whereas the camera subpaths used to distribute the measurements
points always use an independent MC sampler.

To calculate the TF according to Equation (5), we need to es-
timate, for each measurement point Gk , the probability P uni

k of
receiving a photon under uniform sampling in the primary-sample
space. The estimates of P uni

k need to be carried over from one iter-
ation to another so that their variance can eventually vanish. This
is complicated by the fact that each iteration uses a new, indepen-
dently generated set of measurement points. SPPM [Hachisuka and
Jensen 2009] solves this by maintaining statistics associated with
image pixels.

Spatial and Image Regions. We adopt the idea of statistics
maintained over the iterations, but we depart from SPPM in that
we associate these statistics to hierarchically organized regions C.
These are defined either in the 3D space (spatial regions) or on the
image plane (image regions) as illustrated in Figure 2. A spatial
region is defined by an axis-aligned 3D box, and a measurement
point belongs to a given region if it is contained by the associated
box. An image region is defined by an axis-aligned rectangle on
the image plane: a measurement point belongs to a region if it
was generated by tracing a camera subpath through the associated
rectangle. Further details on the region construction and their use
will be given in Section 4.2.

We refer to a TF calculated using statistics from the spatial regions
as a spatial TF, whereas a TF calculated using statistics from image
regions is referred to as an image-based TF. As shown in Figure 1,
the spatial TF is more robust to illumination changes caused by
geometry discontinuities because it averages statistics over compact
spatial regions, where illumination can more likely be expected to be
coherent. On the other hand, the image-based TF averages statistics
over image regions that may encompass spatially distant locations
with completely different illumination (see Figure 2). This in turn
can negatively impact the accuracy of the estimated TF.

4.1 TF Calculation

To calculate the TF, we associate with each spatial or image region
C a statistic κ(C), which is a running estimate of the probability
P uni

k averaged over the measurement points Gk that have so far
been generated in this region. The statistic κ(C) persists across the
iterations and is continually updated.

Let us start by estimating the probability P uni
k = ∫

supp(ĥk )dū (Equa-
tion (5)) for a single measurement point. We use the photons gen-
erated in iteration i to evaluate ψi(Gk), an MC estimator of the
probability P uni

k for each measurement point Gk . If we used uni-
form sampling in the primary-sample space, this could be calculated
simply as a fraction of paths that make a nonzero contribution to
Gk . However, this would be a bad estimator because such paths are
extremely scarce in the highly occluded scenes that we consider. We
can obtain a more accurate estimate by using paths sampled by the
Metropolis sampler using path visibility as the TF T̂ V

i [Hachisuka
and Jensen 2011]. Using these paths, ψi(Gk) is a standard impor-
tance sampling estimator of the probability P uni

k ,

ψi(Gk) = 1

N

∑
ūj ∈Sk

1

T̂ V
i (ūj )/bi

, (6)

because the paths are sampled from the pdf given by T̂ V
i (ūj )/bV

i

(i.e., the normalized TF). The normalization by bV
i = ∫

T̂ V
i (ū)dū

is carried out at the end of the iteration, as bV
i is not known earlier.

The calculation of the normalization factor is detailed in Section 4.4
and in the supplemental document. In the preceding formula, N is
the number of light subpaths sampled in each iteration, and the sum
runs over the paths that fall into the support of the kernel at Gk (i.e.,
Sk = {ūj | P −1(ūj ) ∈ supp(hk)}).

To estimate the overall probability P uni for a region C, we sum
ψi(Gk) over all measurement points in that region:

ψi(C) =
∑
Gk∈C

ψi(Gk). (7)

Finally, the estimator κ for the next iteration is calculated as

κi+1(C) = [κi(C) + ψi(C)]
si+1(C)

si(C)
. (8)

Here, si(C) is the sum of the kernel sizes sk = πr2
k at the measure-

ment points contained by the region C in iteration i:

si(C) =
∑
Gk∈C

sk. (9)

Equation (8) is a recursive form of a weighted sum of the estimators
ψi(C) over the iterations, similar to SPPM [Hachisuka and Jensen
2009]. The fraction si+1(C)/si(C) accounts for the fact that a spa-
tial region may contain a different number of measurement points
in each iteration and that the measurement point radii rk may be
reduced as the calculation progresses.
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A normalized estimate of the overall probability P uni
i (C) for a

region C at iteration i can be obtained by dividing κi(C) by Ni(C),
the number of iterations in which the region C contained at least
one measurement point: P uni

i (C) = κi(C)/Ni(C). This normaliza-
tion disregards iterations in which the region C did not contain
any measurement points, because such iterations cannot make any
contribution to κi(C) despite the region C possibly being reachable
by light subpaths. Considering such iterations in the normalization
would make the estimate P uni

i (C) biased.
Two Components of the TF. We could now use Equation (5)

to define the TF as an inverse of the per-region probability P uni
i (C)

defined earlier. But because P uni
i (C) is constant in each region, the

resulting TF would be piecewise constant as well, which would be a
poor approximation of the desired TF, especially for large regions.
We now show how to take advantage of the region statistics without
forcing the TF to be constant in each of them. This provides a more
accurate TF approximation.

We use the fact that the probability P uni
k at any measurement point

can be approximated as a product of the local area density of photons
Duni(Gk) (under uniform sampling in the primary-sample space) and
the kernel size sk (i.e., P uni

k = Duni(Gk)sk). Since the kernel sizes
sk are known, they can be factored out in the TF calculation and
provide the desired modulation within each region, which yields
nonconstant per-region TF.

The local density Duni(Gk) at any measurement point is approx-
imated by the average density Duni(C) over the spatial region con-
taining Gk . At iteration i, the average density in a region can be
calculated as

Duni
i (C) = P uni

i (C)

si(C)
= 1

Ni(C)

κi(C)

si(C)
. (10)

As before, Ni(C) is the number of iterations in which the region C
contained at least one measurement point.

TF for a Measurement Point. We could now calculate the TF
Ti(Gk) at any measurement point as the inverse of Duni(Gk)sk . How-
ever, both the local density Duni(Gk) and the kernel size sk can have
a very high dynamic range. Using them directly could result in a
TF that would be difficult to explore for the Metropolis algorithm.
For this reason, we compress the dynamic range of both the inverse
density and the inverse kernel size. The final formula for the TF at
a measurement point Gk then reads as follows:

Ti(Gk) =

⎡
⎢⎣ε1

1
Duni

i
(C(Gk ))

maxl {Duni
i

(Cl )} + ε1

⎤
⎥⎦

︸ ︷︷ ︸
inverse average density in region

·

⎡
⎢⎣ε2

1
sk

maxl {sl } + ε2

⎤
⎥⎦

︸ ︷︷ ︸
inverse kernel size

. (11)

Here we have used C(Gk) to denote the region that contains
the measurement point Gk . Dividing by the maxima is used to
normalize the range of the respective quantities: maxl{Duni

i (Cl)}
is the maximum of all region densities, and similarly, maxl{sl}
is the maximum kernel size over all measurement points. Both
of these maxima consider only regions and measurement points
in the current iteration. The parameters ε1 and ε2 ensure that the
range of the respective component of the TF remains within the
interval [ε/(1 + ε), 1], where ε ∈ {ε1, ε2}. The use of ε1 serves as
a protection against paying unnecessary attention to insignificant
absolute errors in dim regions (which would have extremely large
TF if ε1 were not used). We use ε1 = ε2 = 10−4 in all of our results.
Figure 3 illustrates the two components of the TF.

TF for a Full Path. To compute the TF Ti(x̄) of an entire
light subpath x̄, we take the maximum of the TF values for the

Fig. 3. The TF T̂ (Gk) for a measurement point (a) is given by the product
of two components: the inverse of the average photon density in the spatial
region that contains the measurement point (b) and the inverse of the density
estimation kernel size at that point (c). The images show the TF for mea-
surement points associated with the image pixels for the scene from Figure 7
(top). Before display, each of the three images is normalized independently
by its maximum.

Fig. 4. Top row: Our method produces mostly uniform distribution of
relative error across the image plane (a), whereas the error distribution is
highly nonuniform in the images generated with the methods of Hachisuka
and Jensen [2011] (b) and Vorba et al. [2014] (c). The relative error is
calculated as an absolute difference from a reference image divided by the
same reference image. Bottom row: The average number of contributions
received by the measurement points. We see that the relative error is indeed
roughly inversely proportional to this quantity. The images are based on
10 minutes of rendering.

measurement points K impacted by the path vertices. Taking the
maximum is motivated by the preference for exploring difficult
regions:

Ti(x̄) = max
k∈K

{Ti(Gk)}. (12)

Discussion. Several factors contribute to the fact that our final
estimated TF does not exactly correspond to the desired TF given by
Equation (5). These are namely the variance of the TF estimation,
averaging over regions, range compression in Equation (11), and
taking the maximum over path vertices in Equation (12). However,
we show in Figure 4 that the resulting TF still equalizes the relative
error well.

4.2 Hierarchy of Spatial and Image Regions

Statistics in small regions could be subject to high variance, espe-
cially in the early stages of calculation. As a result, the estimated
TF could contain some artificial spikes that would negatively af-
fect its ability to equalize error. We adopt a natural solution where
variance in the early iterations is reduced by averaging the statistics
over larger regions. The regions are then refined as the calculation
progresses.

To define the regions C, we build a hierarchy prior to rendering,
as shown in Figure 2. A 3D-tree over the scene defines the spatial
regions, whereas image regions are defined by a 2D-tree over the
image. Each node of this structure corresponds to one region with
its associated statistic κ(C). The set of regions used to define the
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TF T̂i in iteration i is given by a cut through the tree. The idea
of maintaining photon statistics in a spatial hierarchy bears some
similarity to the work of Jakob et al. [2011], whereas the image-
based TF is closely related to the multistage MLT algorithm of
Hoberock and Hart [2010].

Hierarchy Construction. To construct the hierarchy of spatial
regions, we distribute a pilot batch of measurement points in the
scene by tracing four paths per pixel and construct a kD-tree over
these points in a top-down manner using the median-split rule. The
use of the median split ensures that regions on the same hierarchy
level contain a similar number of measurement points and will
therefore receive a similar number of photons. The 2D-tree of image
regions is simply a regular octree in the 2D image space. The time
spent on constructing the hierarchy is insignificant compared to the
remaining running time.

Region Refinement Strategy. The initial cut of the tree contains
only the root node that groups all of the measurement points. We
refine the regions C as the rendering progresses so as to improve the
accuracy with which the desired TF is represented. The goal is to
avoid using regions with a high variance of their κ statistic; other-
wise, our TF would be inaccurate and possibly counterproductive.
We achieve this by estimating a measure of relative error of the κ
statistic for each region using the formula err = |κodd − κeven|/κ,
where κodd and κeven are estimates of κ for the region constructed us-
ing only odd or even samples (paths), respectively [Rousselle et al.
2012]. After each iteration, we refine the spatial subdivision such
that the error for all regions is kept at less than 0.05 and the number
of paths contributing to the region is at least 10,000. The resulting
TF values using this subdivision is illustrated later in Figure 8 and
the supplemental material. This adaptive refinement strategy pro-
duces significantly improved results over a simple refinement based
on the number of iterations.

4.3 TF Calculation Summary

Algorithm 1 gives a summary of our algorithm, where only the
steps related to TF calculation are shown; steps necessary for image
rendering are similar to regular SPPM [Hachisuka and Jensen 2009].
Before the rendering, we build the hierarchy of regions (line 1).
The algorithm then proceeds in iterations, each of which starts by
distributing a new set of measurement points by tracing camera
subpaths through image pixels (line 4). After that, we calculate
the average density Duni

i (C) for all regions (line 5), which allows
evaluation of the TF for all measurement points (line 6). We then run
our replica exchange Metropolis algorithm, described in Section 4.4,

ALGORITHM 1: Overview of Our Algorithm with References to
Equations Used to Calculate the TF

1: CONSTRUCTREGIONHIERARCHY() // Section 4.2
2: for i = 0 . . . Niter − 1 do
3: // Step 1: Initialization
4: DISTRIBUTEMEASUREMENTPTS()
5: UPDATEREGIONDENSITY() // Equation (10)
6: ASSIGNTARGETFUNCTOMP() // Equation (11)
7:
8: // Step 2: Photon tracing
9: RUNMETROPOLISPATHSAMPLING() // Equation (6)

10:
11: // Step 3: Statistics update
12: UPDATEREGIONSTATISTICS() // Equation (8)
13: REFINEREGIONS() // Section 4.2
14: end for

which samples photon paths using the TF T̂i while updating the
statistic ψi(Gk) for the measurement points (line 9). After the path
sampling has finished, we gather the measurement point statistics
and calculate the statistic κi+1(C) for all regions (line 12). Note that
the multiplication by si+1(C) in Equation (8) is carried out at the
beginning of the next iteration, when this value is known. In the final
step, we evaluate our refinement criterion and possibly subdivide
the hierarchy as described in Section 4.2 (line 13).

4.4 Sampling from the TF

We conclude the algorithm description by presenting the variant of
the Metropolis algorithm that we use for sampling from our TF. As
shown in Figure 3, the TF has a relatively high dynamic range and
could have several modes. Such functions are hard to explore via ba-
sic Metropolis sampling because the generated Markov chain tends
to get trapped in the modes and produces highly correlated sam-
ples. To ensure good exploration, we design a new replica exchange
Metropolis scheme [Neal 1996; Kitaoka et al. 2009; Hachisuka and
Jensen 2011]. A general idea of replica exchange Metropolis is to
follow several Markov chains in parallel with a probabilistic ex-
change of states between any two chains. Using “tempered” TFs for
some of the chains ensures good exploration with low correlation
even if one of the chains follows a function with a complex shape.
We build on the work of Hachisuka and Jensen [2011], to which we
refer for more details.

Our Four-Chain Replica Exchange Design. Our design fea-
tures four chains. The first chain uses uniform, independent pro-
posals and a constant TF. The TF of the second chain is the path
visibility (a binary variable indicating whether or not the path con-
tributes to any of the measurement points). These two chains behave
in the same manner as in the work of Hachisuka and Jensen [2011].
The third chain uses as its TF the inverse of the kernel size (the sec-
ond factor in Equation (11); also see Figure 3). Samples generated
by this chain are distributed more evenly in the screen projection
of the visible regions than the samples from the second (visibility)
chain. Finally, the fourth chain follows our complete TF given by
Equation (11). The chains with simpler TFs (uniform, visibility)
help to efficiently explore the entire state space, whereas the re-
maining two chains explore local features of their more complex
TFs. Technical details are given in the supplemental document.

There are two major advantages to using this four-chain design
over a simpler one that would combine uniform sampling with sam-
pling from our TF. The first benefit, as already discussed, is lower
sample correlation. A no less important advantage is a more robust
calculation of the normalization factor for the chain correspond-
ing to our TF, bi = ∫

T̂i(ū)ū. Although this integral can be easily
estimated by using paths from the first chain, the estimate often
suffers from a high variance because of the complex shape of our
TF. We instead calculate the normalization factor by using samples
from one chain to estimate the normalization of the next chain as
detailed in the supplemental document. This provides substantially
more stable estimates as shown in Figure 5.

Finally, our four-chain scheme samples paths from several dif-
ferent distributions given by the respective TFs. To use all of these
samples while minimizing the variance of the result, we combine
them using MIS [Veach 1997] as detailed in the supplemental doc-
ument. Figure 6 illustrates the benefits of this approach.

Markov Chain Initialization. No density estimates are avail-
able in the first iteration of our algorithm, so we initialize our TF
to the inverse kernel size (second term in Equation (11)). In this
case, we employ the unbiased initialization technique of Veach and
Guibas [1997] and choose the initial state by importance resampling
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Fig. 5. Comparison of our method using two Markov chains (uniform and
our TF), three chains (uniform, inverse kernel size, and our TF), and all four
chains (uniform, visibility, inverse kernel size, and our TF). Adding more
chains limits the possibility of “getting stuck” in one state, which reduces
image noise (top) and yields more uniform convergence of the RMSE to
noise-free images (bottom left). Furthermore, it also yields lower variance
in the estimated normalization factor value (bottom right).

Fig. 6. Comparison of our method without (left) and with (right) the use
of MIS to combine the contributions of paths generated by the different
chains. MIS helps to reduce the overall noise and suppresses bright spots
in the generated images. The non-MIS image uses a simple average of
contributions from all four chains weighted by the number of samples taken
by each chain.

from among 100,000 uniform samples. In the subsequent iterations,
we simply initialize the chains by their last state from the previous
iteration. Since the TF may change from one iteration to another, we
apply a burn-in period by discarding the first 10,000 samples before
we start accumulating the results. Although this design prevents us
from formally proving unbiasedness or consistency of our method,
the plots shown later in Figure 8 provide empirical evidence of the
method’s convergence.

5. RESULTS

Figure 7 compares the results of SPPM to different methods for sam-
pling photon paths: the state-of-the-art methods of Hachisuka and
Jensen [2011] and Vorba et al. [2014], and ours. We implemented
the methods in the Mitsuba renderer [Jakob 2010]. The three al-
gorithms share the same code for distributing and looking up the
measurement points, the photon search radius is initialized using ray
differentials to approximate the projected pixel size, and then it is
kept constant (i.e., no radius reduction is used). The pixel-size radius
is small enough to avoid any objectionable blurring, and the fact that
the radius is not reduced preserves the asymptotic convergence rate
of MC algorithms. We emit 10 million photon paths per iteration for
all methods and generate one measurement point per image pixel.
All scenes were rendered for 1 hour at a resolution of 960×540 on a
2×Intel Xeon CPU E5640 with 2.67GHz using eight logical threads.
Since we use photon mapping to render all images, we left out
paths with only highly glossy vertices, which cannot be efficiently
handled by photon mapping. These paths can be added by brute-
force MC path tracing or by specialized algorithms [Velázquez-
Armendáriz et al. 2015]. In the supplemental material available
at the http://cgg.mff.cuni.cz/∼jaroslav/papers/2016-stf/, we provide
our code, scripts to regenerate some of the results, and additional
results.

In the Dinner hall scene, only the entrance hall far from the
camera is strongly illuminated. This poses a problem to the previous
algorithms, as they expend most of the sample budget on these
distant bright areas—at the expense of the visually important dim
parts of the scene. The Villa interior scene showcases a common
setup in architectural visualization where the camera sees a brightly
lit exterior but most of the image is occupied by the much dimmer
interior. Again, prior algorithms leave the dim interior very noisy,
whereas our algorithm ensures that image error is reduced equally in
the whole image. The Underwater and Canyon scenes feature a high
range of depth from the camera and—in Canyon—an extremely
high dynamic range of illumination. In such cases, our method
delivers an almost noise-free image, which is not the case with
prior algorithms.

Figure 8 shows the TF and the RMSE and NSD convergence
plots for the four scenes in Figure 7. Our method has a significantly
lower RMSE and NSD across all scenes except the diffuse Canyon,
where the method of Vorba et al. [2014] achieves a lower RMSE.
Nonetheless, the NSD of our method is lower even in this case.

Spatial Versus Image-Based TF. Figure 1 showcases the advan-
tage of our spatial TF over the image-based one. Due to specular
reflections, many regions in the image-based formulation mix to-
gether statistics over measurement points from extremely differently
illuminated parts of the scene. As a result, the image-based TF is
unable to guide paths to appropriate scene areas because it only
captures average behavior over the image regions. Our proposed
spatial TF formulation, on the other hand, deals with this situation
gracefully, as the spatial regions are well localized and exhibit more
illumination coherence.

The Villa interior and Underwater scenes serve as worst-case
scenarios for the spatial TF. Due to their large physical size, a deep
spatial hierarchy is necessary to focus on the region observed by
the camera. The supplemental material shows that even in such
cases, the spatial TF yields only a negligibly higher NSD than the
image-based TF.

Comparison to MLT and Multistage MLT. In Figure 9,
we compare our algorithm to the primary-sample space MLT
(PSSMLT) [Kelemen et al. 2002] and MLT with Manifold explo-
ration (MEMLT) [Jakob and Marschner 2012] in their original and
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Fig. 7. Equal-time comparison (1 hour) of SPPM with three different photon tracing algorithms: our method with the spatial TF, Hachisuka and Jensen [2011],
and Vorba et al. [2014].

multistage variants [Hoberock and Hart 2010]. From the positive-
negative difference images in the insets, we can see that the MLT
images are far from being converged, irrespective of whether or not
the multistage variant is employed. This is true even for the MEMLT
images that appear to be noise free. Of all of our test scenes, only
in the diffuse Canyon scene (shown in the supplemental material)
does the MLT algorithm outperform our method. In the other scenes,
MLT presumably suffers from insufficient path space exploration
due to complex specular transport and/or complex visibility. Our al-
gorithm does not suffer from this problem thanks to the four-chain
replica exchange design together with the path-space regularization
afforded by the use of photon density estimation.

Performance in Simple Scenes. Advanced photon tracing meth-
ods such as ours are not necessary in simple scenes where most of
the paths generated by uniform sampling in primary-sample space
already contribute to the image. Although our method has some

computational overhead and increased variance due to sample cor-
relation over plain SPPM [Hachisuka and Jensen 2009], we show
in Figure 10 that it does not significantly impair performance even
in an extremely simple case.

Handling of Glossy Surfaces. Measurements points are de-
posited on the first surface encountered by a camera subpath with
BRDF roughness above a user-specified threshold (RD). Figure 11
shows the results of our method and Hachisuka and Jensen [2011]
with different threshold values in a highly glossy scene. Although
our method does not achieve uniform relative error on glossy sur-
faces, it still produces better results than those of Hachisuka and
Jensen [2011]. A low roughness threshold (first row, RD = 0.05)
results in noisy images because measurement points are directly
deposited on the glossy surfaces, which yields high variance of the
photon map radiance estimates. The threshold value actually used in
our results (second row, RD = 0.39) produces less noise. However,
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Fig. 8. The top row shows the spatial TF associated with our method after 1 hour of rendering for the scenes in Figure 7. In the bottom two rows, we give
log-log plots of the evolution of the root mean square error (RMSE) and NSD over 1 hour of rendering. The plots for the method of Vorba et al. [2014] are
offset from the time axis origin because of the training phase.

Fig. 9. Equal-time (1-hour) comparison of our algorithm to PSSMLT [Kelemen et al. 2002] and MEMLT [Jakob and Marschner 2012] in their original and
multistage variants [Hoberock and Hart 2010]. To discount the effect of incorrectly estimated normalization factors, the PSSMLT and MEMLT images have
been rescaled to match the average luminance of the reference image. The positive (green)/negative (red) difference images in the insets have been created
using HDRITools (https://bitbucket.org/edgarv/hdritools). In this comparison, we have added to the results of our algorithm purely specular paths calculated
with brute-force path tracing in an additional 10 minutes (included in the 60-minute total rendering time of our method).

transport along paths with all vertices below the roughness thresh-
old is completely missing from the images. The missing energy can
be recovered using brute-force path tracing (bottom left).

Additional Results. Due to space limitations, we only show
a small selection of our results in the article. A more complete
dataset is shown in the supplemental material, available through

the TOG editorial office. For all scenes, we show the results of
our method with the spatial and image-based TF, as well as the TF
based only on the inverse kernel size (second term in Equation (11)).
Furthermore, we provide results of the following algorithms: photon
tracing with the TF of Hachisuka and Jensen [2011] and Chen
et al. [2011], guided photon tracing [Vorba et al. 2014], path tracing,
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Fig. 10. Our method does not significantly impair the performance of plain
SPPM in extremely simple scenes, where most of the paths generated by
uniform sampling in the primary-sample space contribute to the image. To
generate these images, we ran SPPM and our method for 5 minutes.

Fig. 11. Comparison of our method and Hachisuka and Jensen [2011] in
a highly glossy scene. The first and second rows show rendering results for
different roughness threshold (RD) after 1 hour of rendering. The bottom
left image shows the energy missing from the second row results, calculated
by path tracing in 10 minutes.

bi-directional path tracing [Lafortune and Willems 1993; Veach
1997], PSSMLT [Kelemen et al. 2002] and MEMLT [Jakob and
Marschner 2012] in their original and multistage [Hoberock and
Hart 2010] variants, and energy redistribution path tracing [Cline
et al. 2005]. We conclude that our algorithm outperforms all of
these methods except in the mostly diffuse Canyon scene, where
MLT performs better because there is no complex glossy or specular
transport.

6. LIMITATIONS AND FUTURE WORK

In our current implementation, statistics from differently illumi-
nated parts of the scene—such as interior and exterior—can be
averaged in one spatial region. This could negatively affect the abil-
ity of the TF to equalize error. Considering surface orientation or
using a spatial subdivision that better aligns with the scene geometry
to define the regions would alleviate this problem.

We currently calculate an independent estimate of the normaliza-
tion factor in each rendering iteration, which can only be done by

sampling a high number of photon paths per iteration. Devising a
progressive normalization factor estimate would enable running a
higher number of “smaller” iterations, thus improving sampling of
effects that rely on camera subpaths such as glossy reflections.

As mentioned earlier, our TF derivation disregards view-
dependent BRDFs on the measurement points, which results in
increased error on glossy surfaces (see Figure 11). Extending the
TF to take the BRDF into account would resolve this issue.

A combination of our method and adaptive progressive photon
mapping (APPM) [Kaplanyan and Dachsbacher 2013a] could fur-
ther improve efficiency. An interesting issue associated with this
would be overcoming the assumption of independent and identi-
cally distributed photons on which the adaptive bandwidth selection
in APPM relies, and which is not fulfilled in our method.

Finally, the objective of equalizing relative error is well suited
when the individual measurements are directly related to the result-
ing pixel values, as in progressive photon mapping. However, this
criterion is certainly not optimal when the light subpaths are used
in a more complex way, such as in combined bi-directional algo-
rithms [Georgiev et al. 2012; Hachisuka et al. 2012]. It would be
interesting to investigate suitable sampling distributions that would
equalize relative pixel error in such algorithms.

7. CONCLUSIONS

We have presented a new TF for Metropolis photon tracing along
with a robust scheme for calculating the function during rendering.
Its objective is to equalize the relative error of several radiance
measurements estimated using a shared set of photon paths. We have
identified the assumptions under which this goal can be achieved
by making the number of contributions to each measurement equal.
But our derivation also exposes a more general form of the TF with
potential application in advanced importance sampling schemes.

Additionally, we have proposed an approach for progressive re-
finement of the TF estimates in the course of rendering. We have
shown that a spatial, as opposed to image-based, definition of the TF
provides an important advantage in certain cases. Finally, we have
developed a new replica exchange Metropolis algorithm that can
sample from the TF without excessive sample correlation. We have
shown that this approach outperforms most existing MC-rendering
algorithms in scenes with difficult visibility and high luminance
range.

APPENDIX

A. TARGET FUNCTION DERIVATION

We derive the general form of the target function (TF) given by
Equation (3). To achieve uniform error, we importance sample in
the primary-sample space by using random variables Ū from the
probability density function (pdf) T̂ (ū)/b with b = ∫

T̂ (ū)dū. Here,
T̂ is the (unnormalized) TF that we seek to derive, and the division
by b ensures that T̂ (ū)/b is a properly normalized pdf. This yields
a classic one-sample Monte Carlo (MC) estimator of the measure-
ments Ik:

〈Ik〉 = ĥk(Ū )f̂ (Ū )/p̂(Ū )

T̂ (Ū )/b
. (13)

We now derive T̂ such that the relative error given by nsd(〈Ik〉) =√
var(〈Ik〉)/I 2

k is the same for the estimators of all the measurements
Ik . The variance of 〈Ik〉 is given by var(〈Ik〉) = E[〈Ik〉2] − I 2

k .
Because we assume that the functions ĥk have disjoint supports
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and that the TF T̂ is constant in the support of the individual ĥk’s
(i.e., T̂ (ū) = T̂k for ū ∈ supp(ĥk)), the second moment simplifies
to

E[〈Ik〉2] = 1

T̂k/b

∫
supp(ĥk )

[
ĥk(ū)f̂ (ū)/p̂(ū)

]2
dū︸ ︷︷ ︸

E[〈Ik 〉2
uni]

. (14)

In other words, E[〈Ik〉2] is equal to a rescaled version of E[〈Ik〉2
uni],

the second moment of the MC estimator that uses uniform sampling
on the primary-sample space. The relative error now becomes

nsd(〈Ik〉) =
√

1

T̂k/b

E[〈Ik〉2
uni]

I 2
k

− 1. (15)

Setting the TF according to Equation (3) ensures that the relative
error is indeed equal for all measurements.
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