Extended Path Integral Formulation for Volumetric Transport

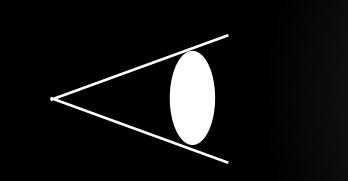
- T. Hachisuka I. Georgiev W. Jarosz J. Křivánek D. Nowrouzezahrai
- The University of Tokyo Solid Angle Dartmouth College Charles University in Prague McGill University

[Jensen and Christensen 1998]

[Křivánek et al. 2014]

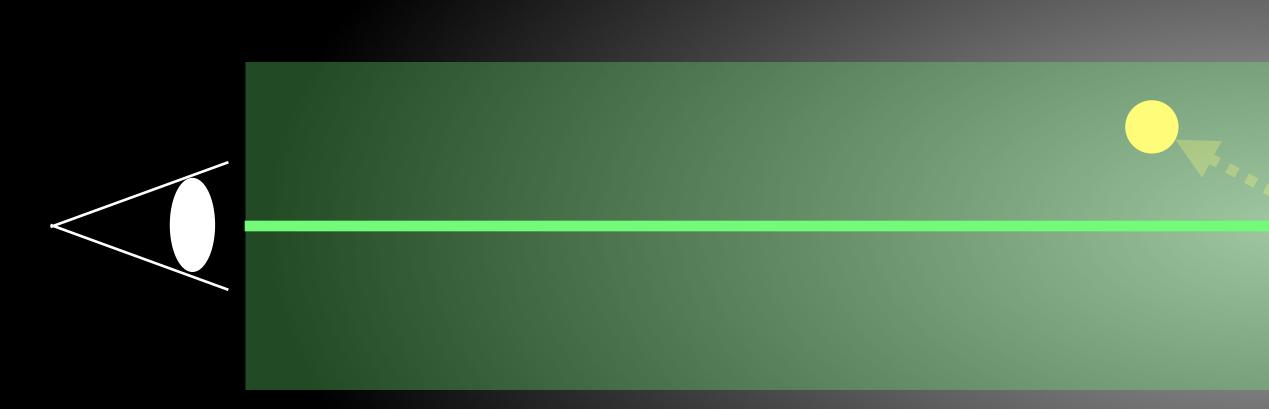
[Pauly et al. 2000]

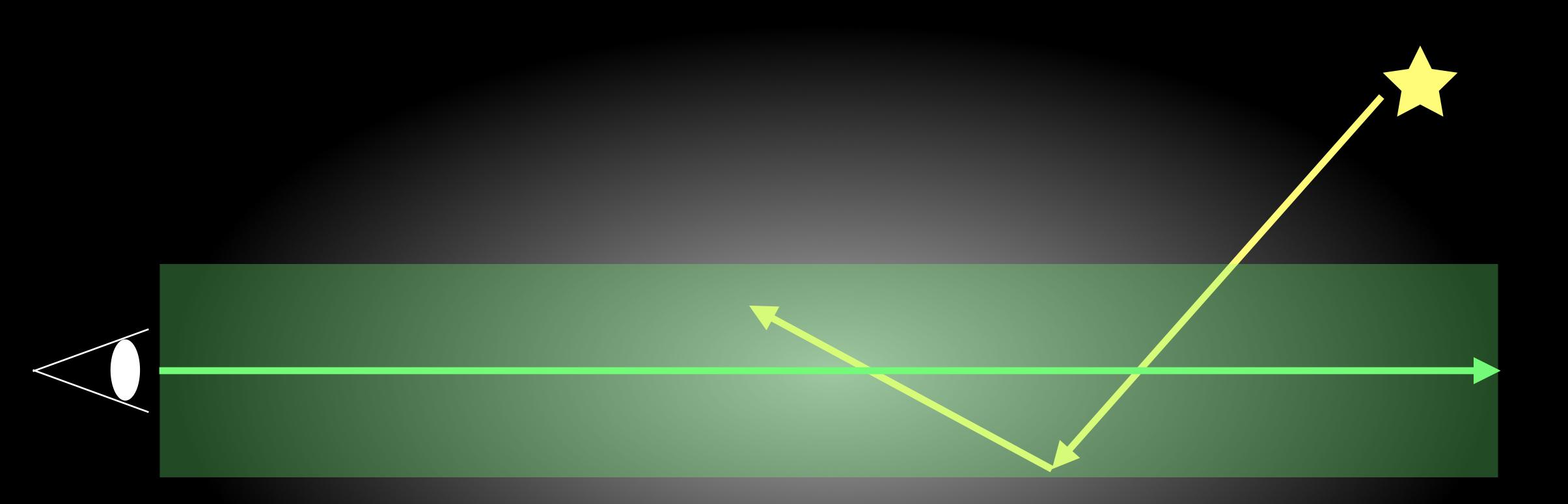
[Jarosz et al. 2011]



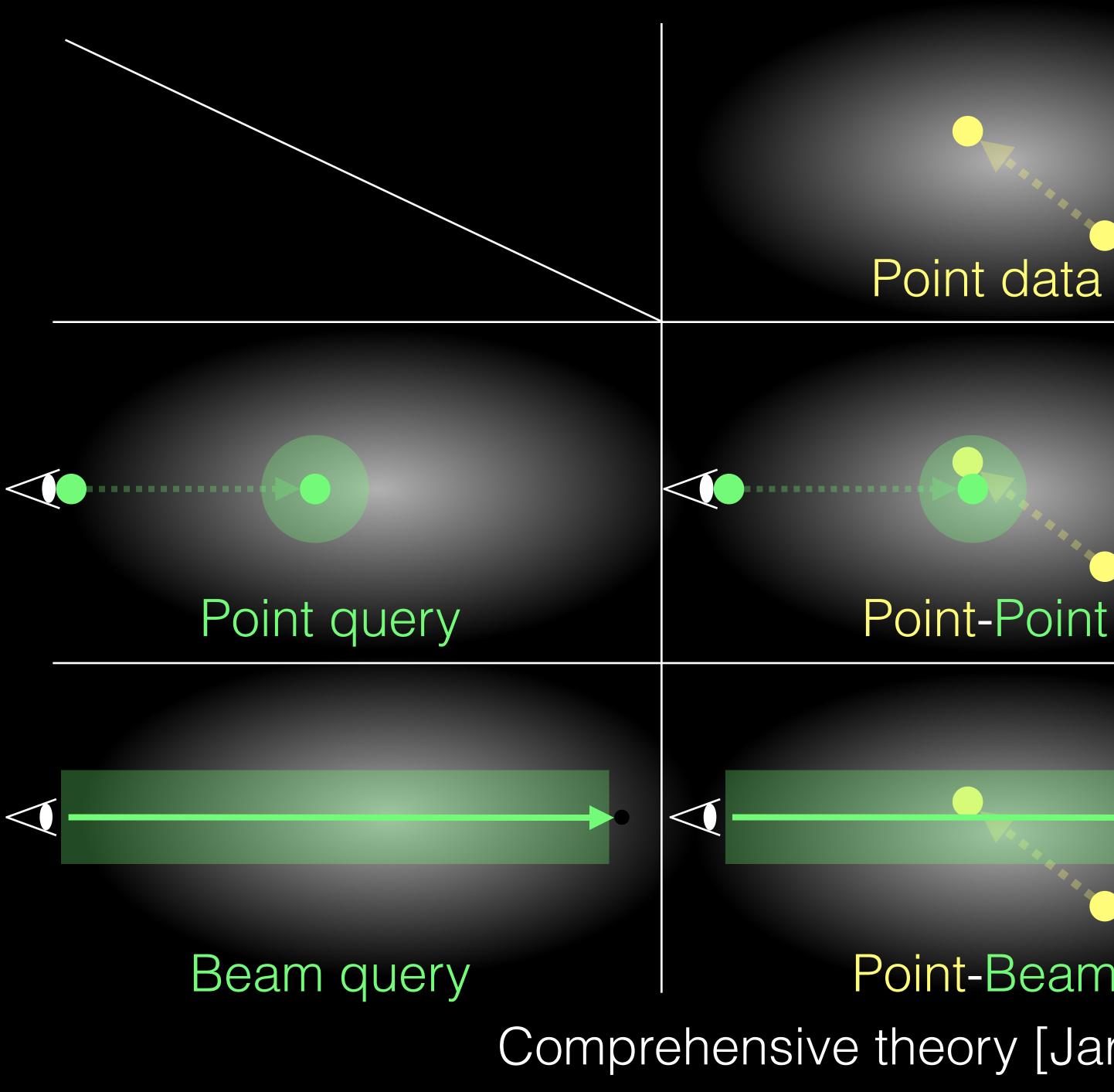
Bidirectional path tracing [Pauly et al. 2000]

Volume photon mapping [Jensen and Christensen 1998]





Photon beams [Jarosz et al. 2011]



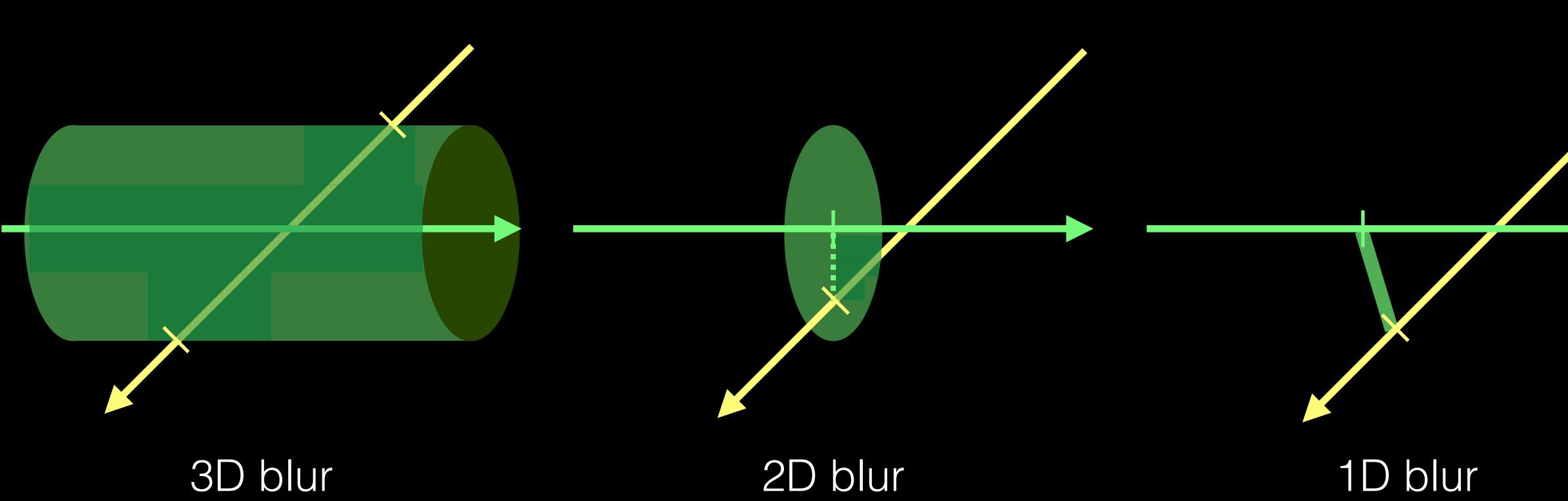
Point data

Beam data

Beam-Point

Beam-Beam

Point-Beam Comprehensive theory [Jarosz et al. 2011]



Comprehensive theory [Jarosz et al. 2011]

UPBP formulation

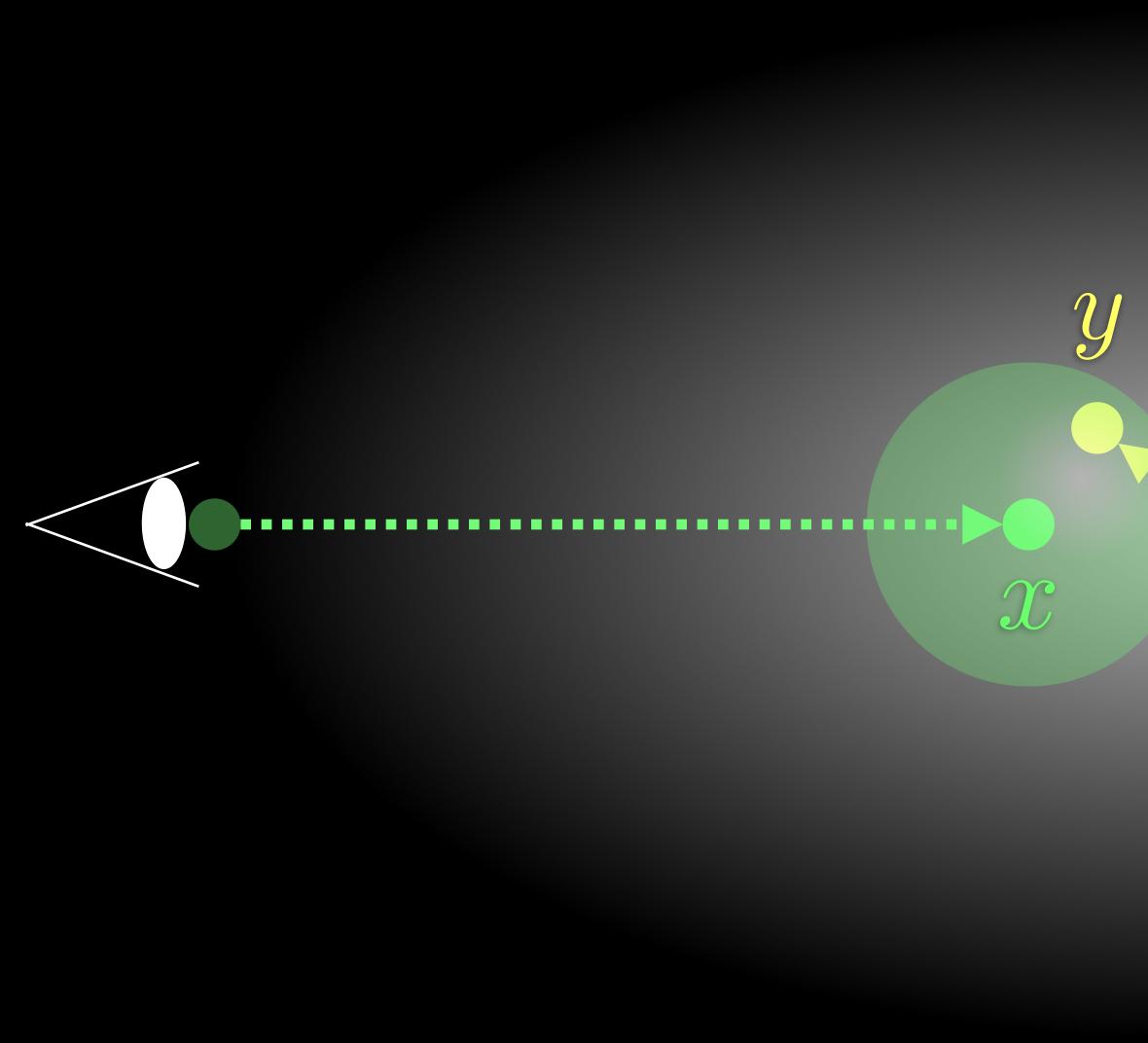
Unified points, beams, and paths as sampling techniques for volumes

Dimensionality of paths

Path integral: Four vertices

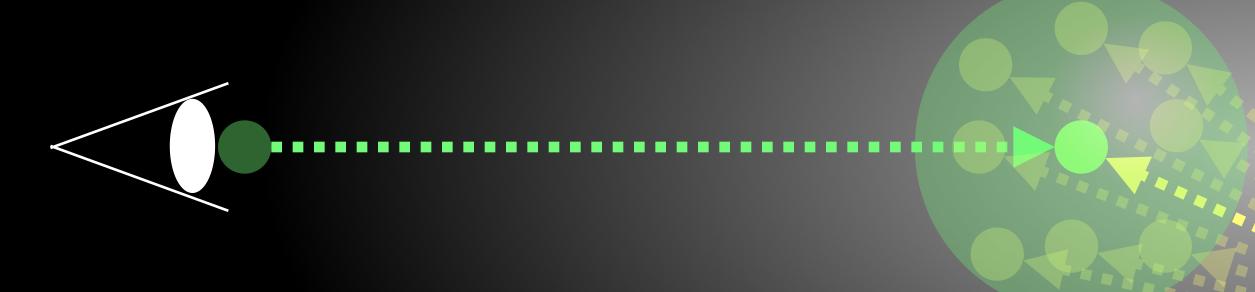
Density estimation: Five vertices

Same path length

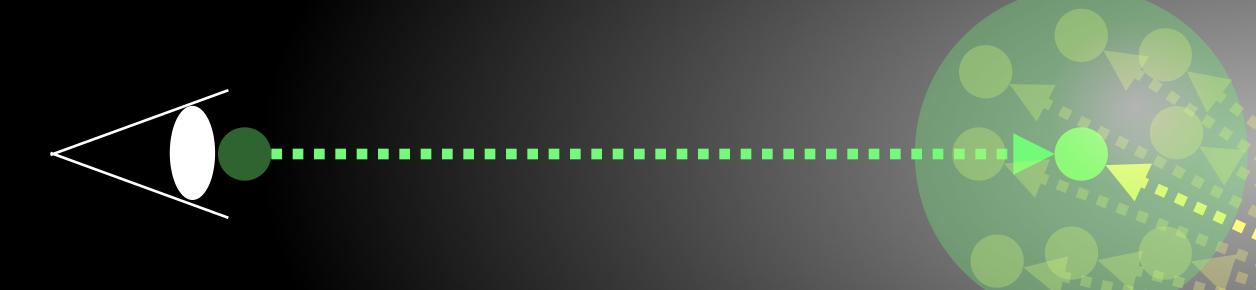


Merge vertices

 $x \equiv y$.



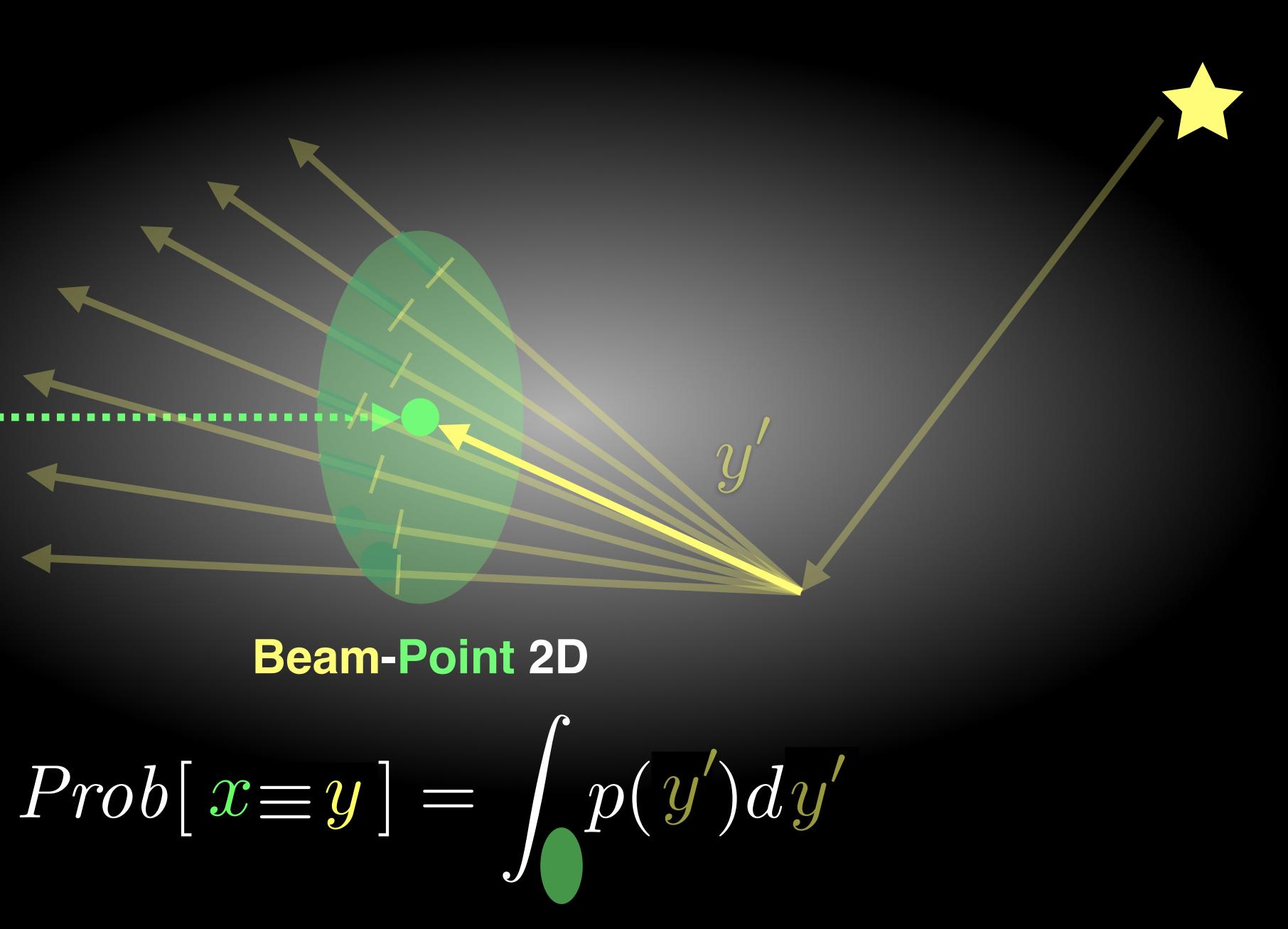
Consider all the paths which result in the same merged path

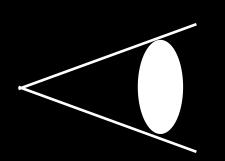


Accept according to the probability of merging

 $Prob[x \equiv y] = \int p(y')dy'$

Beam-Point 2D





Beam-Beam 1D

$Prob[x \equiv y] = \int p(y') dy'$

UPBP formulation

- Three steps to match with BDPT
 - 1. Merge subpaths

 - 3. Accept the path with the probability of merging

Beam-Beam 1D $Prob[x \equiv y] = \int p(y') dy'$

2. Consider all the paths which result in the same merged path

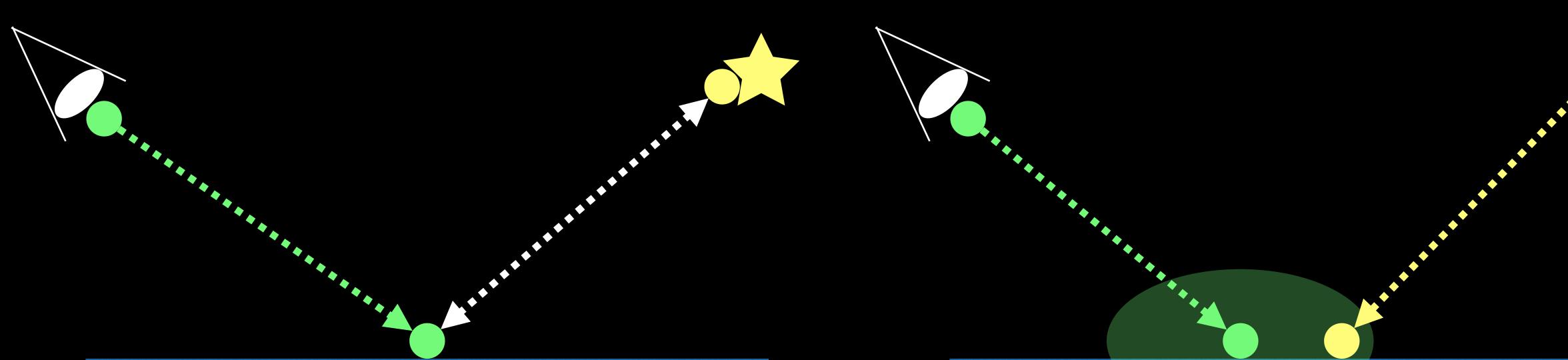
Corresponds to contraction of density estimation path space

UPS/VCM formulation

Unified path integration and photon density estimation for surfaces

Vertex Connection and Merging

Contract the space of density estimation into the original path space

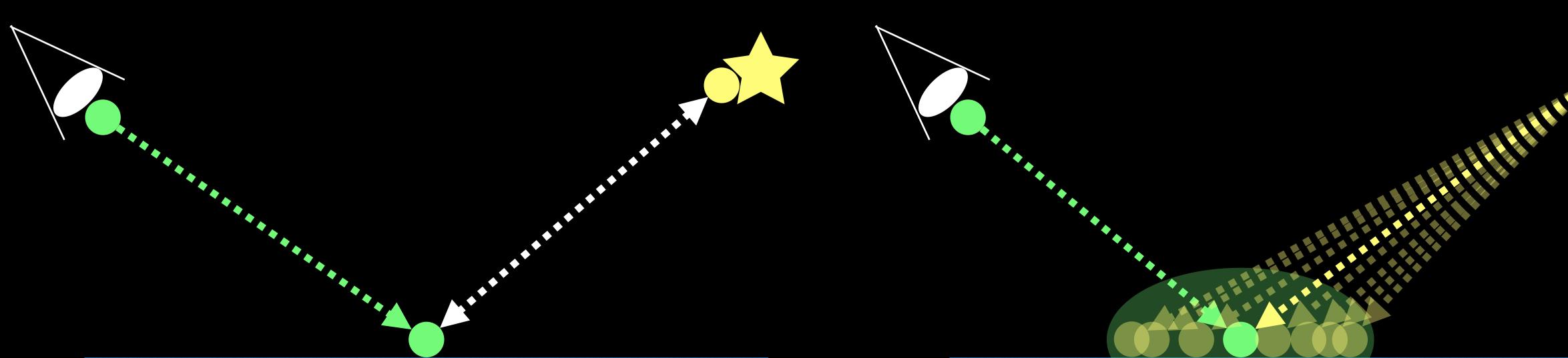


Path integration

Photon density estimation

Vertex Connection and Merging

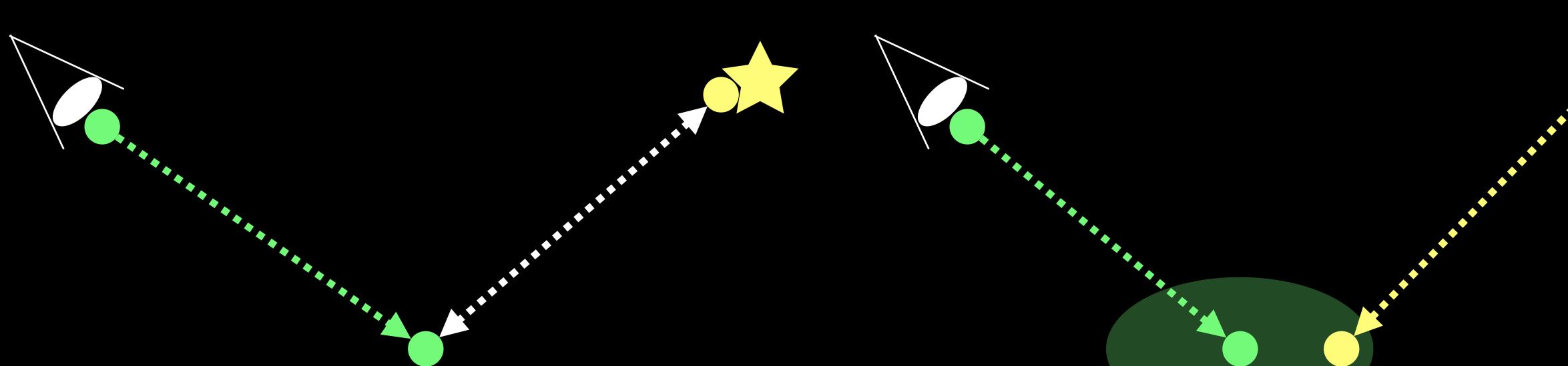
Contract the space of density estimation into the original path space



Path integration

Vertex merging

Unified Path Sampling

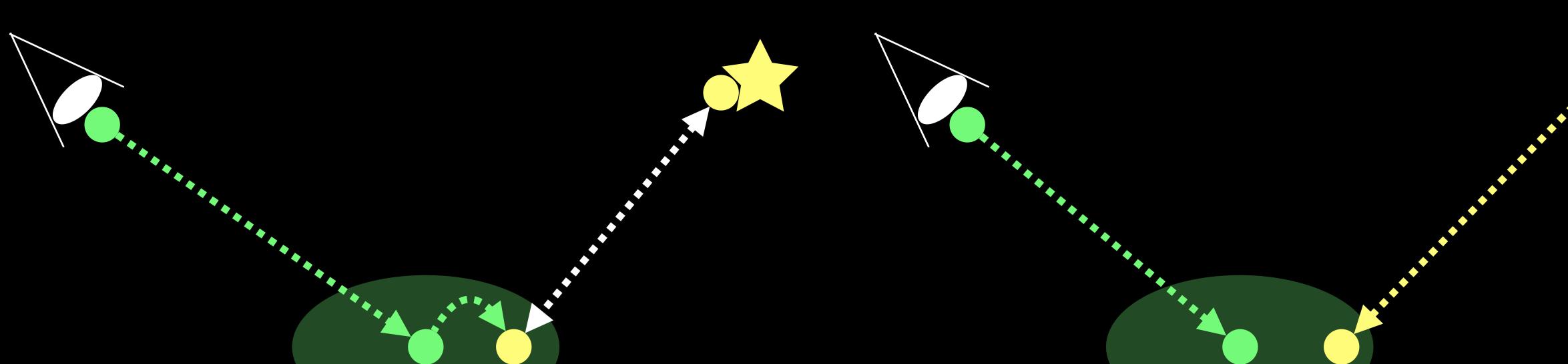


Path integration

• Extend the original path space to include photon density estimation

Photon density estimation

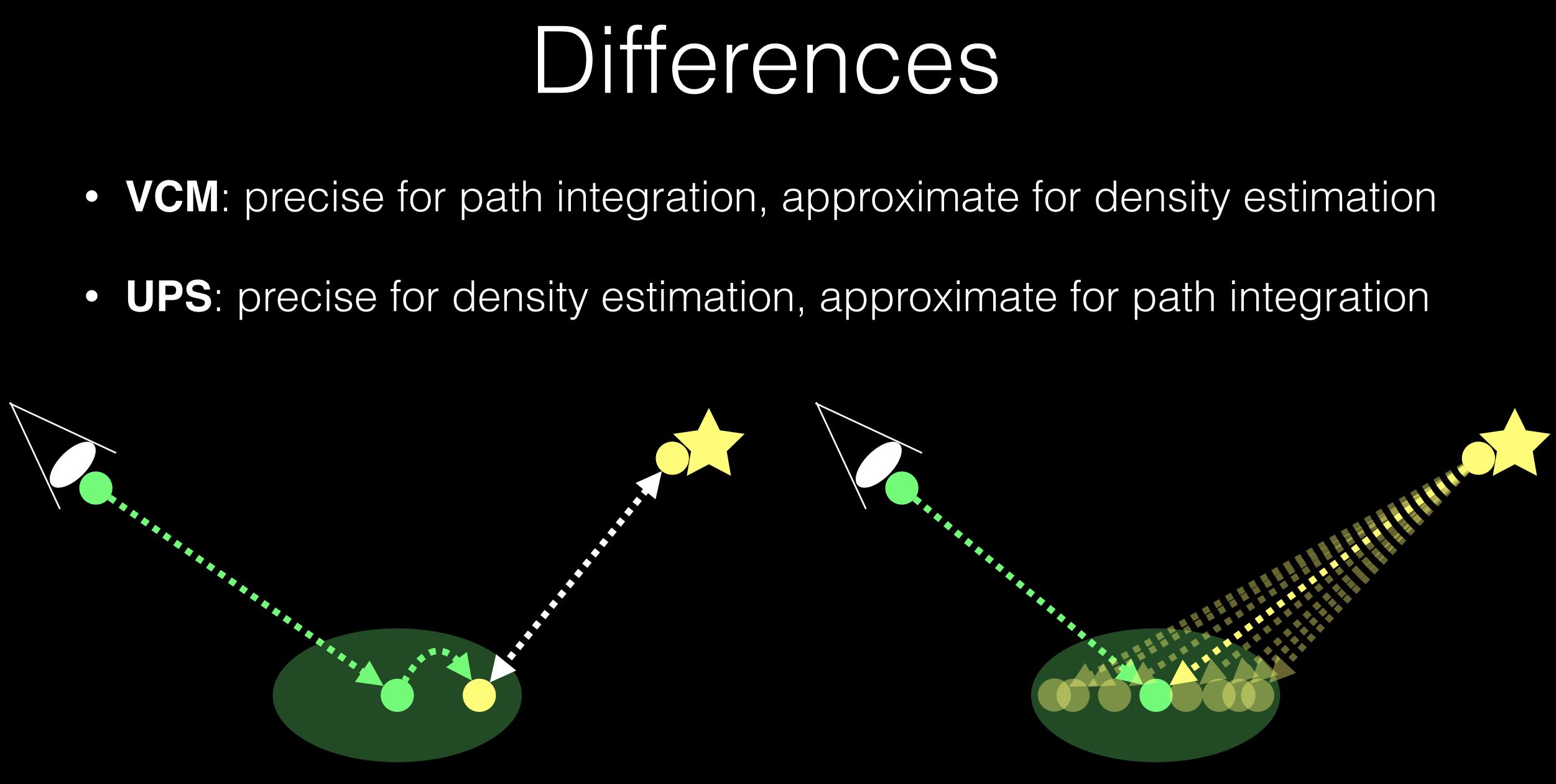
Unified Path Sampling

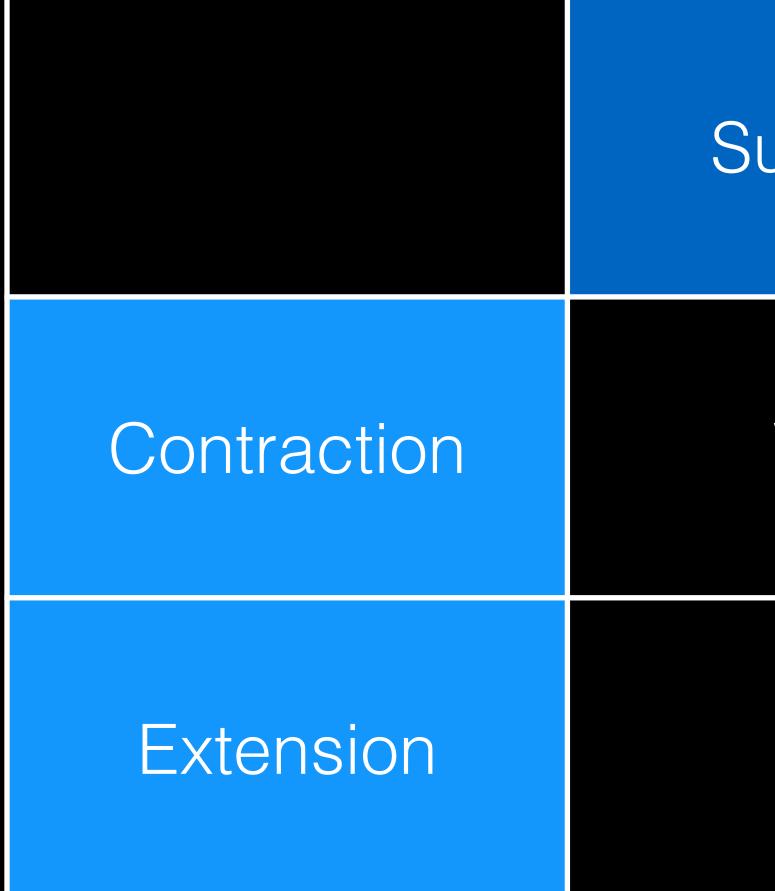


Vertex perturbation

• Extend the original path space to include photon density estimation

Photon density estimation



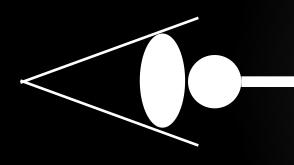


urfaces	Volumes
VCM	UPBP
UPS	Ours (UVPS)

Unified Volumetric Path Sampling

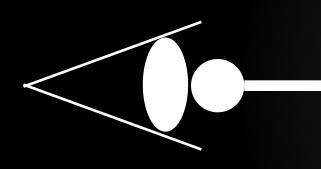
Path integral formulation

Vertices are fully connected



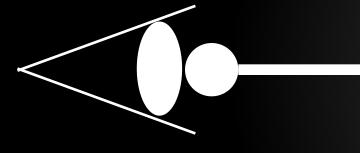
Extended path integral formulation

Allow disconnected vertices

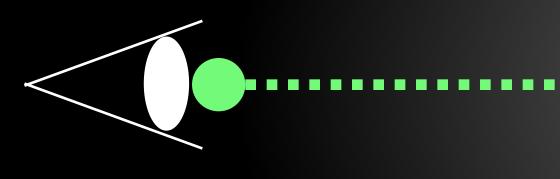


Extended path integral formulation

Blurring kernel as throughput of disconnected vertices



Point-Point 3D

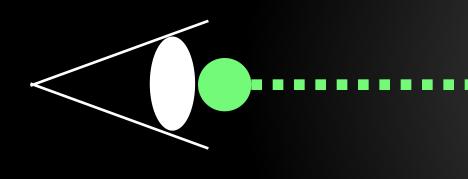


$K_{3D}(x,y)$

Precisely models photon density estimation

$K_{3D}(x,y)$

3D blur to 2D blur

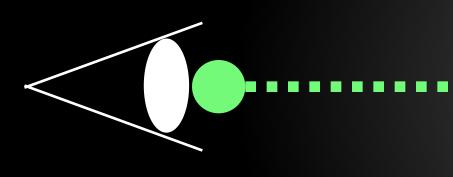


$K_{2D}(x,y) = K_{3D}(x,y)\delta(x_t - t_K)$

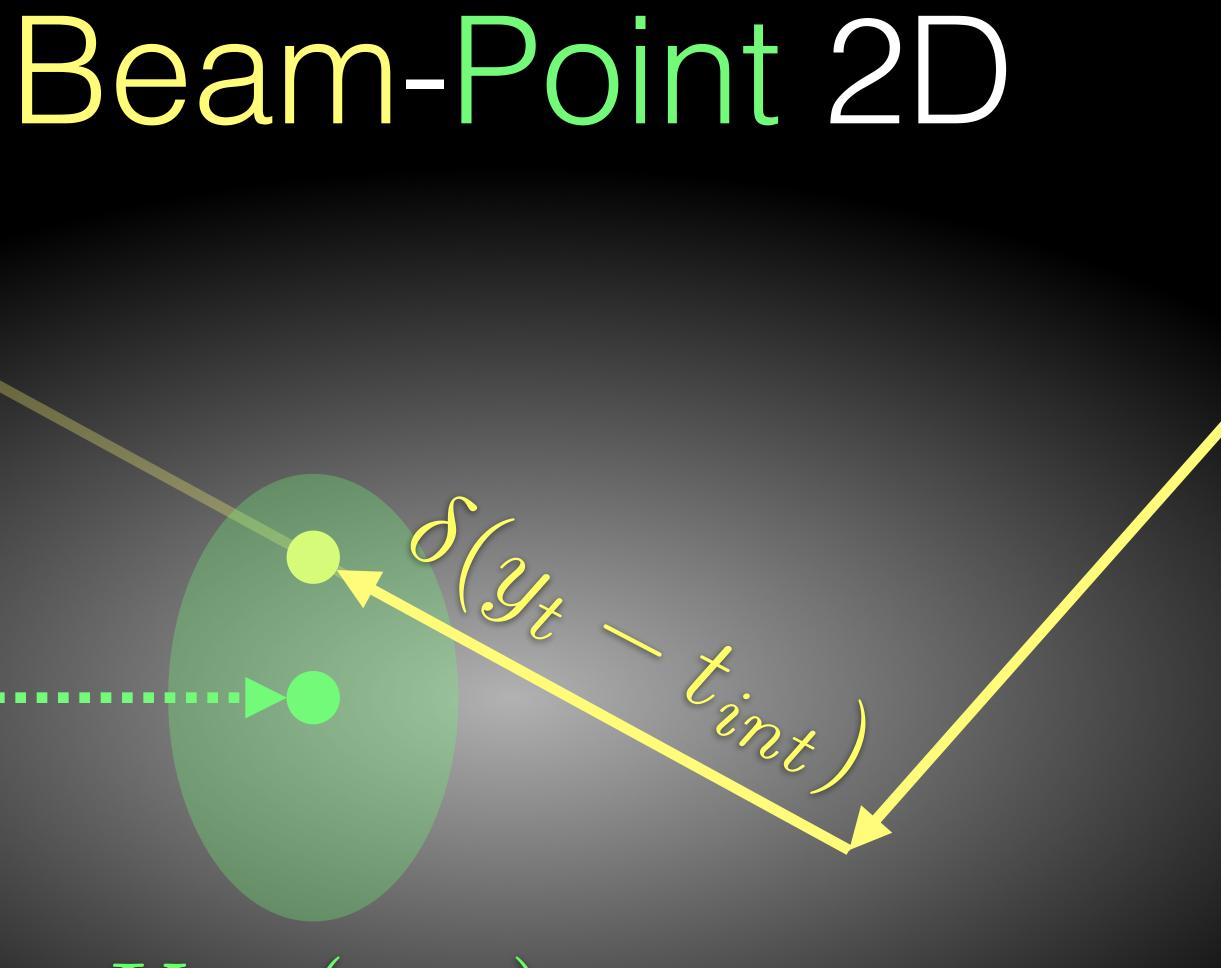
3D blur to 2D blur

Flatten a sphere into a disc

 $K_{2D}(x,y)$



$K_{2D}(x,y)$



Beam-point 2D = deterministic sampling of one distance

$K_{2D}(x,y)$

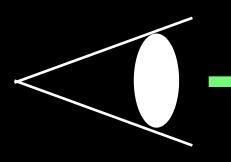
2D blur to 1D blur

$K_{1D}(x,y) = K_{2D}(x,y)\delta(x_t - t'_K)$

2D blur to 1D blur

Flatten a disc into a line

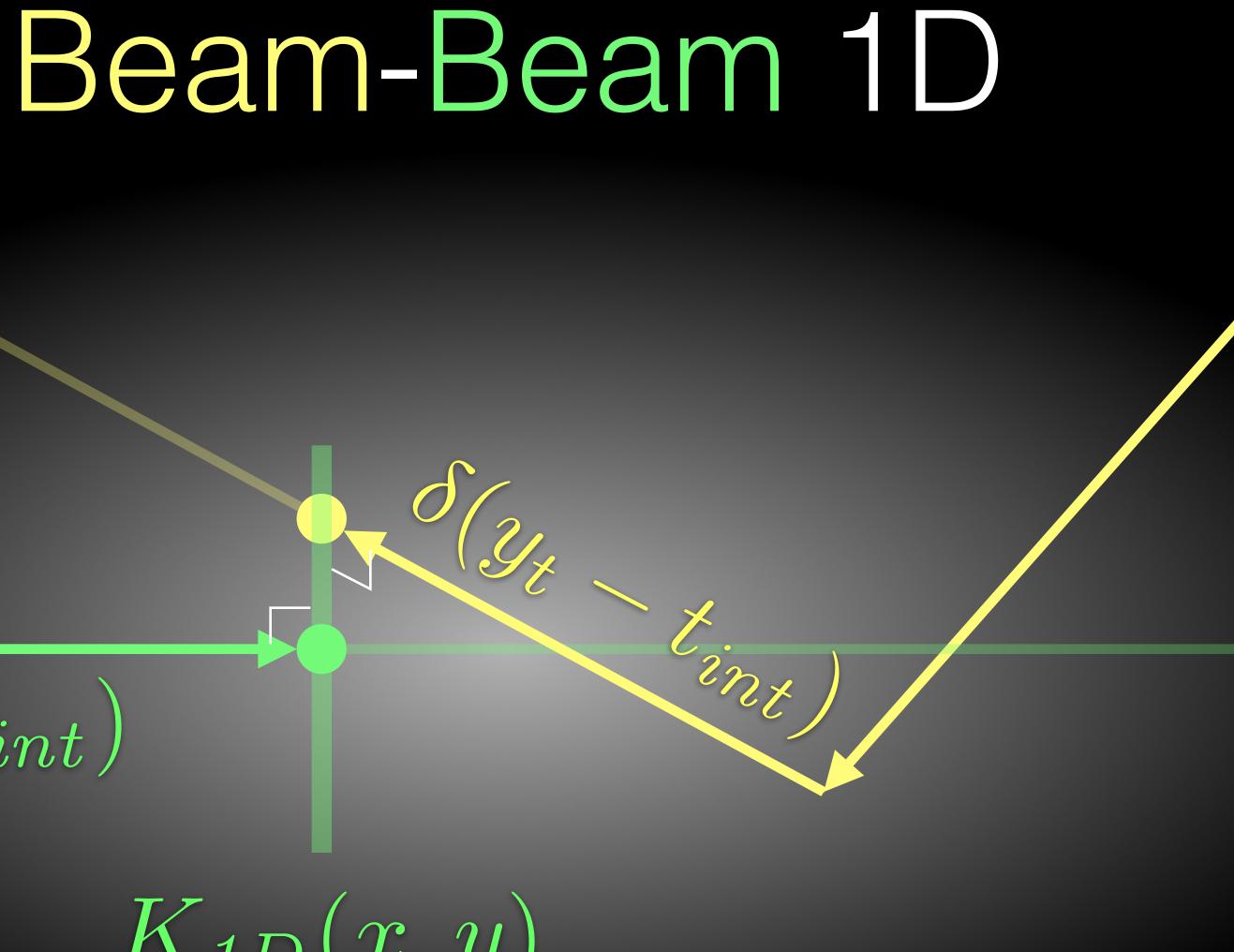
Beam-Beam 1D



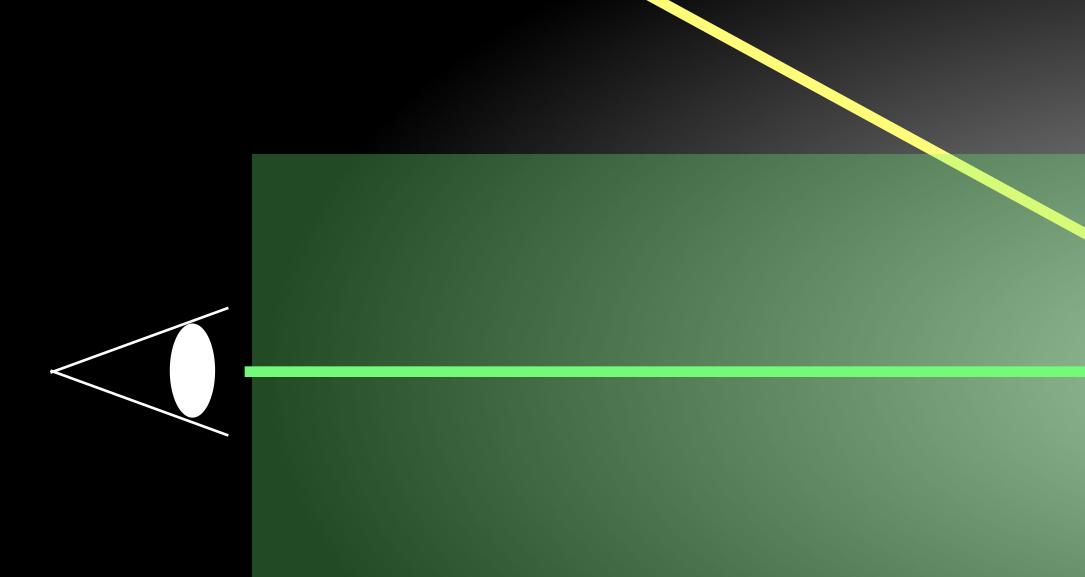
$K_{1D}(x,y)$

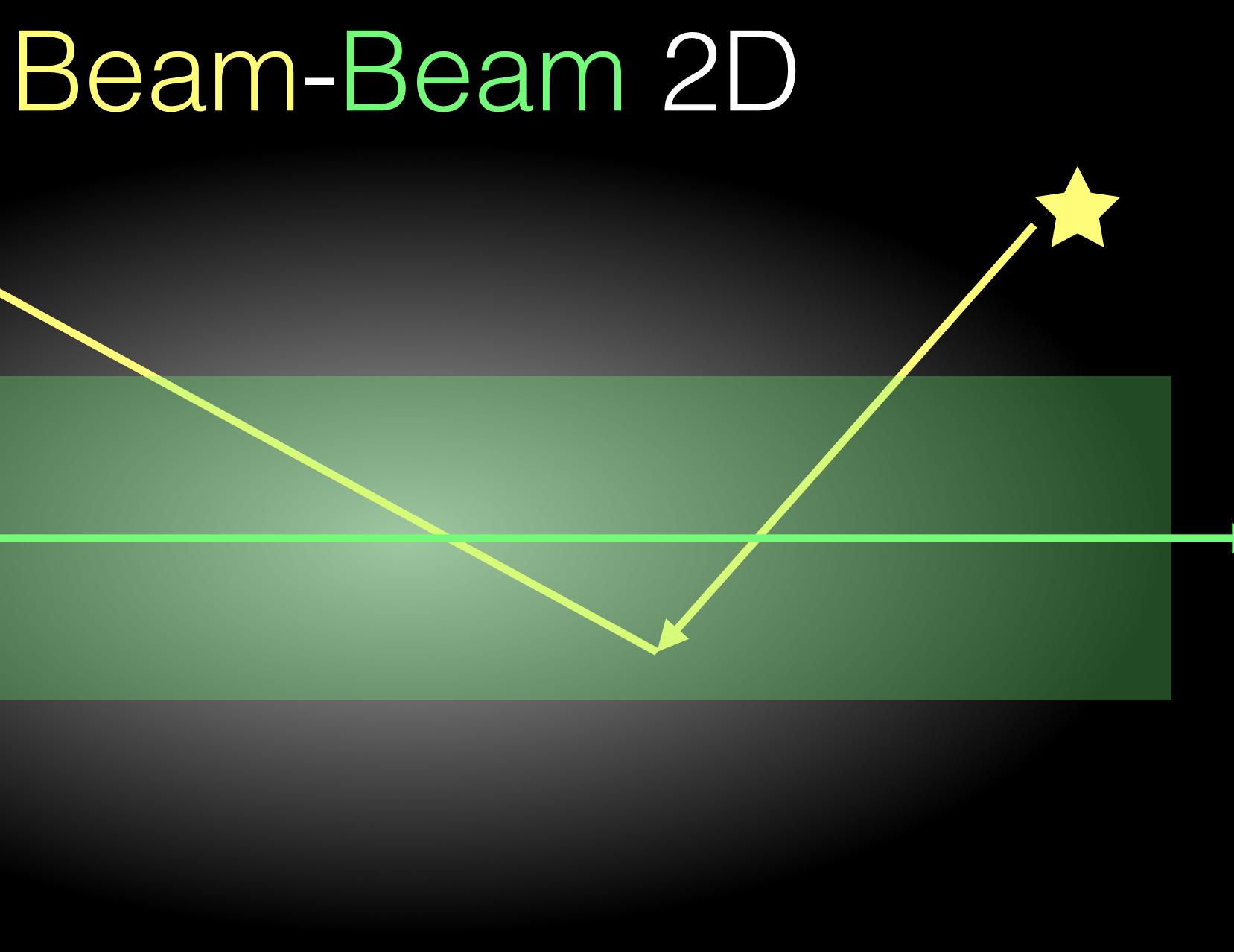
 $\delta(x_t - t_{int})$

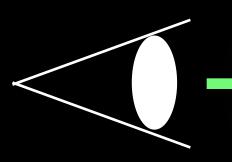
 $K_{1D}(x,y)$

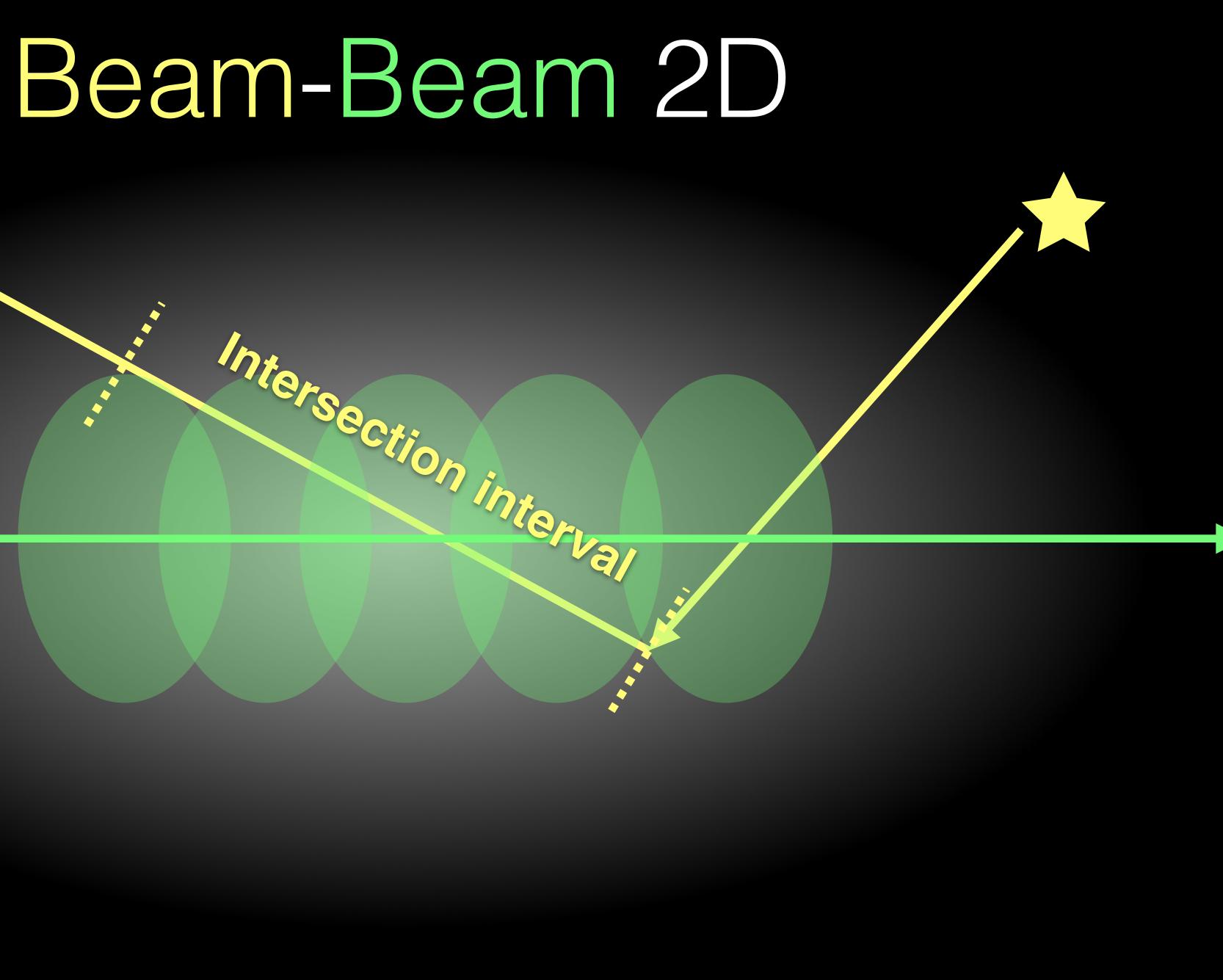


Beam-beam 1D = deterministic sampling of two distances

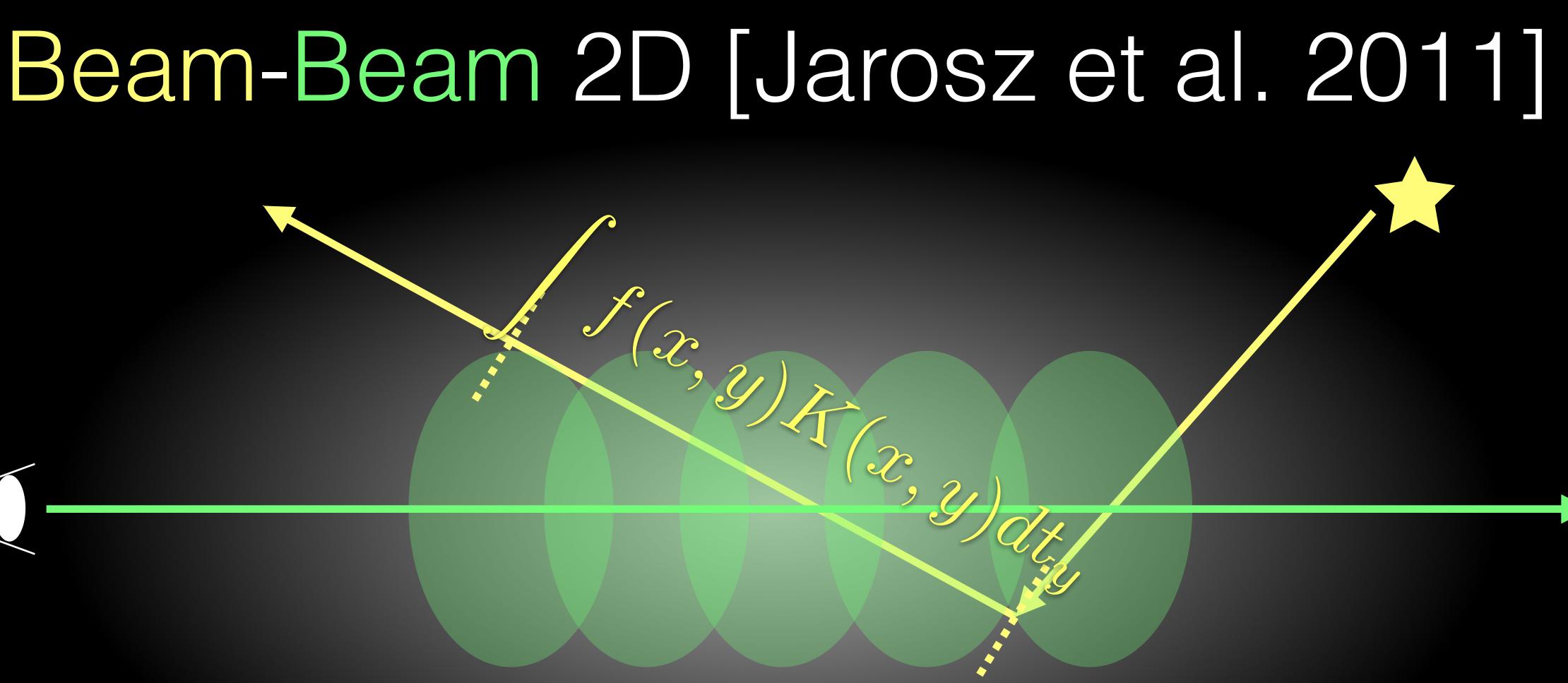








Integral over the intersection interval



Beam-Beam 2D

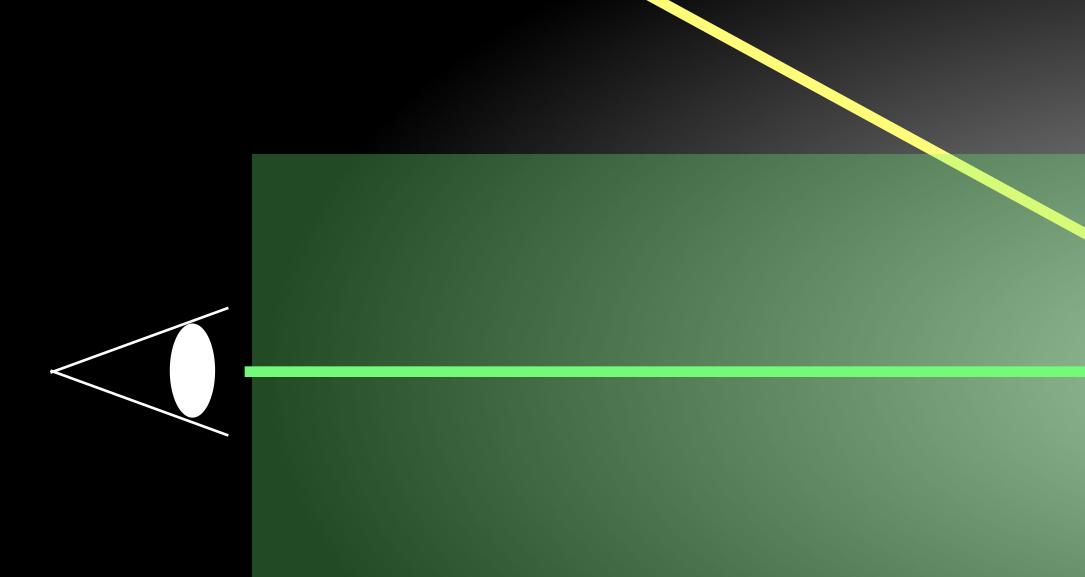
Di

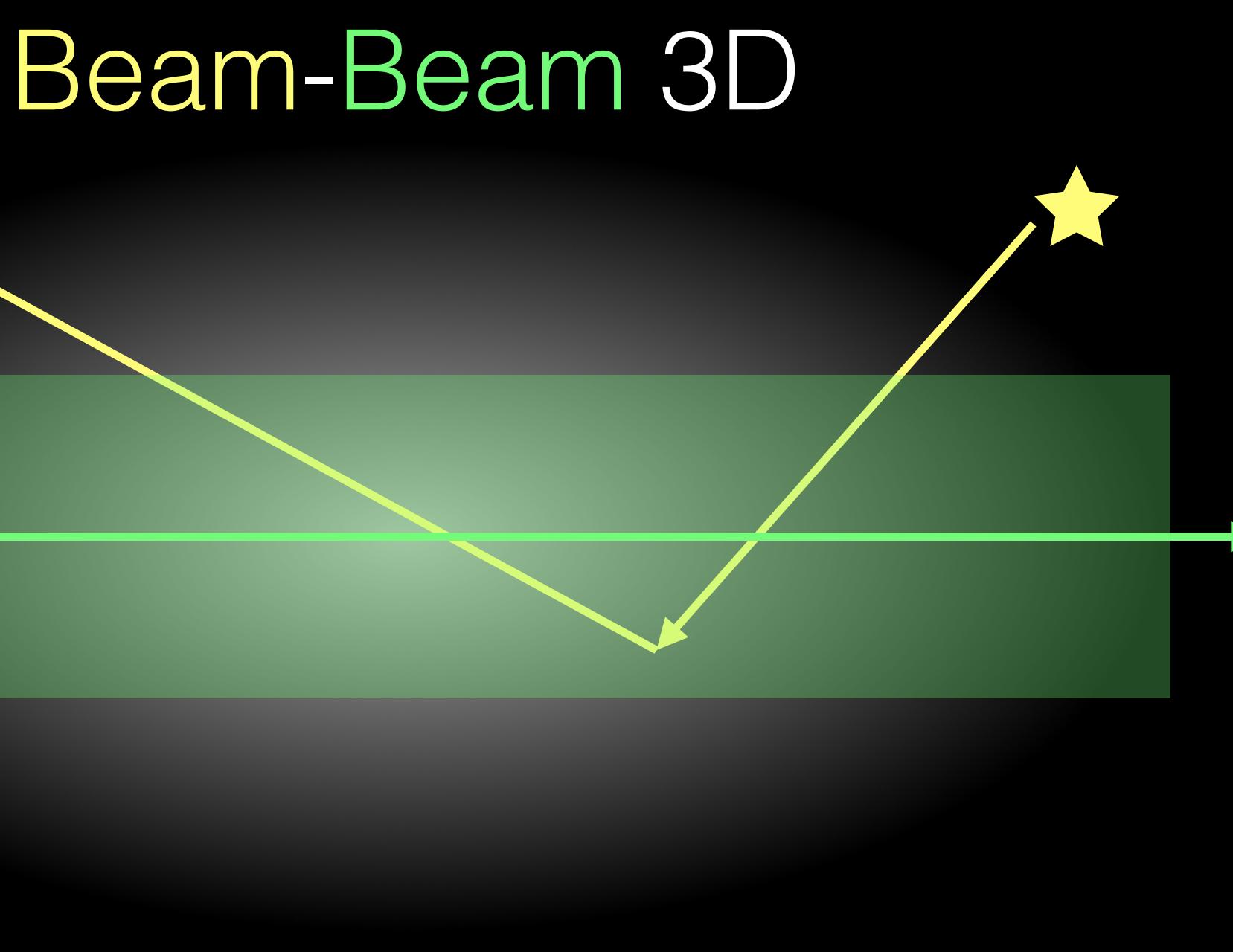
$\delta(t_x - t(y_{proj}))$

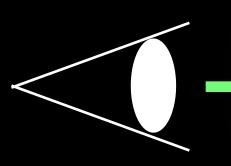
Beam-Beam 2D

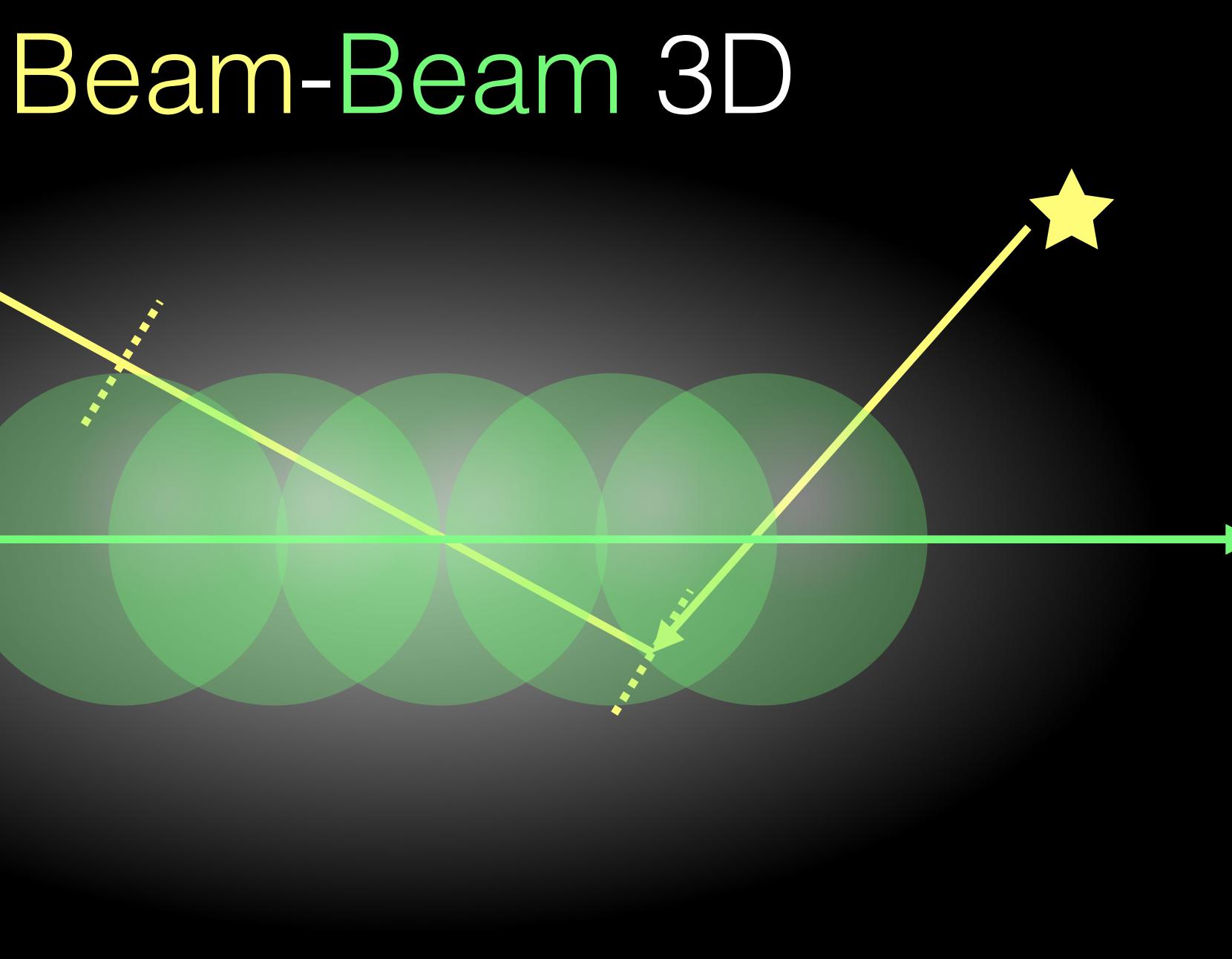
$\delta(t_x - t(y_{proj}))$

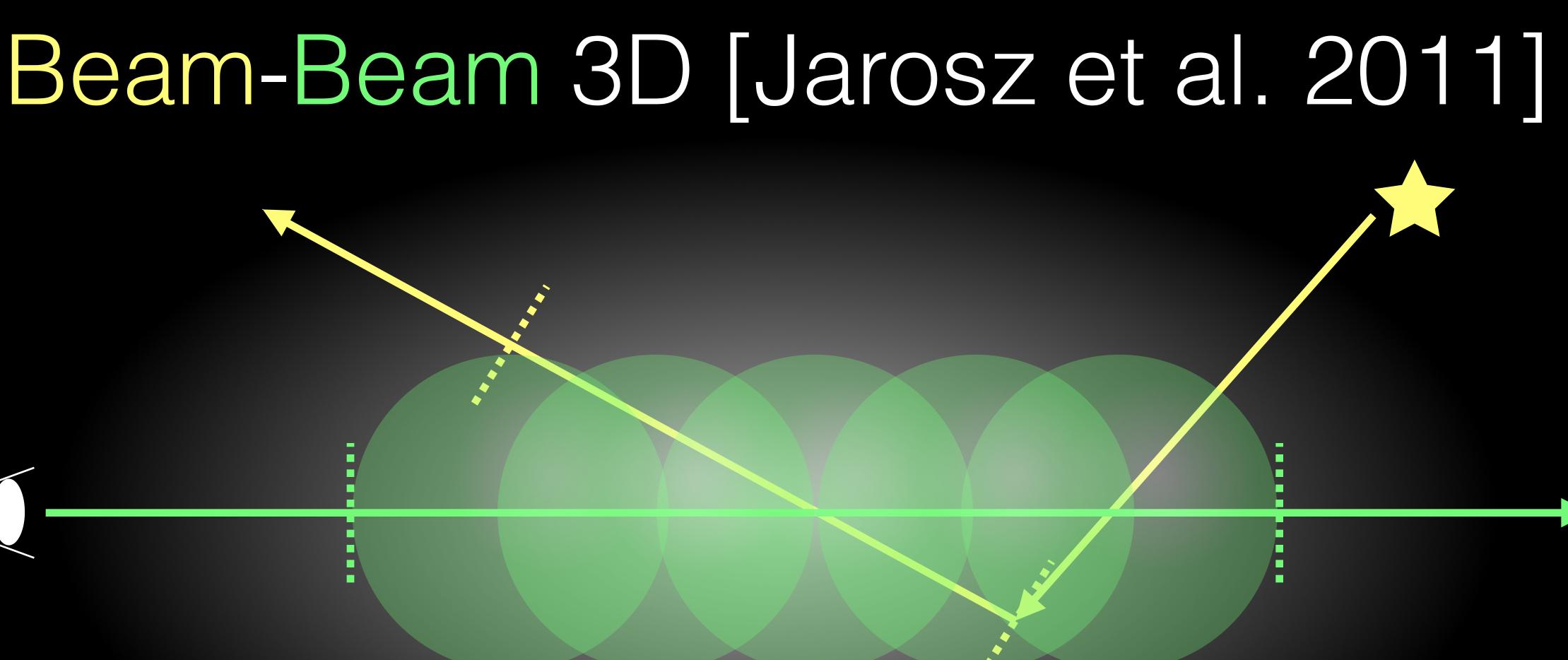
 $K_{2D}(x,y)$ Same 2D kernel as beam-point 2D





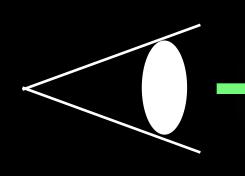


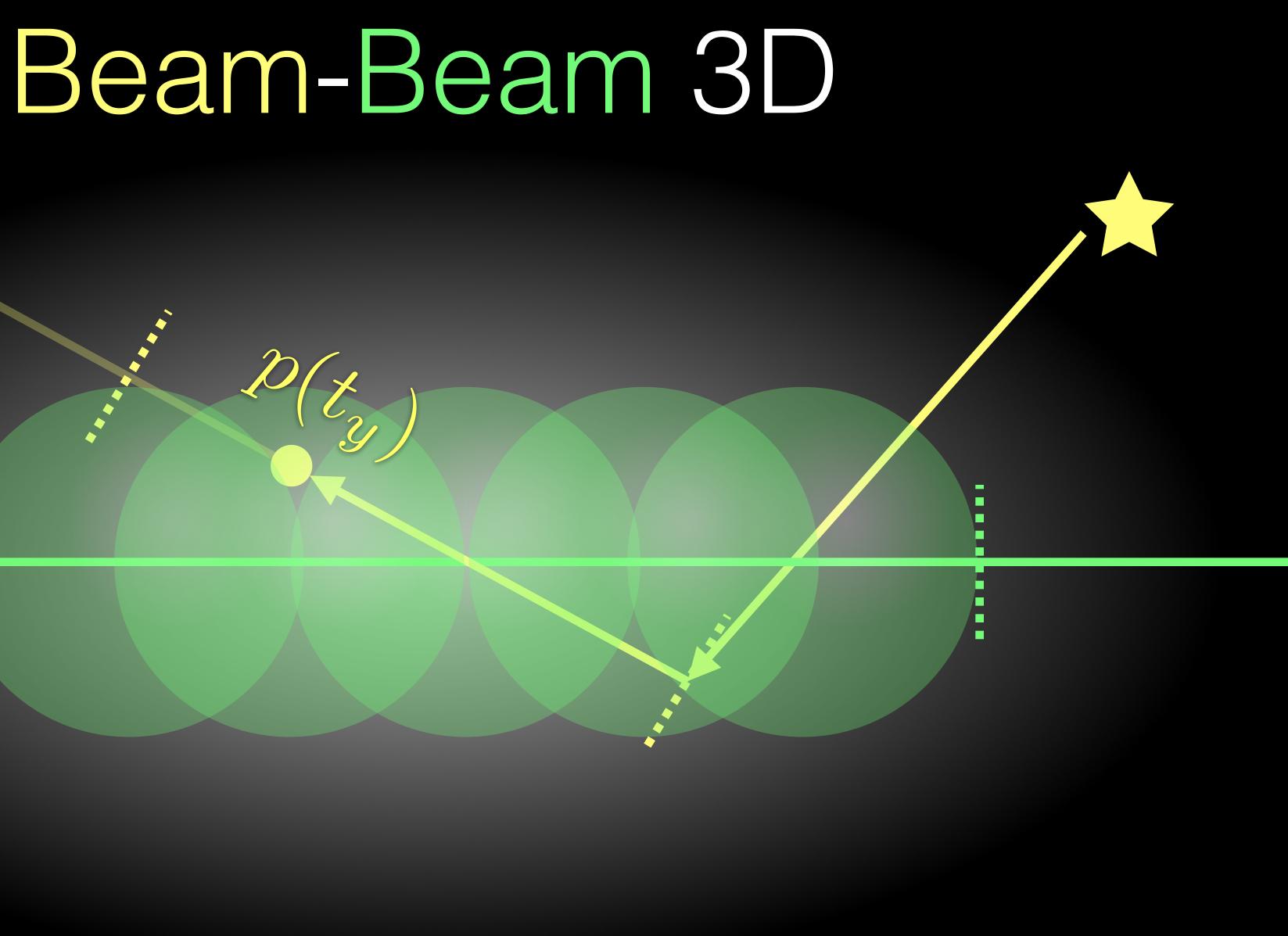


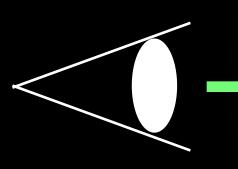


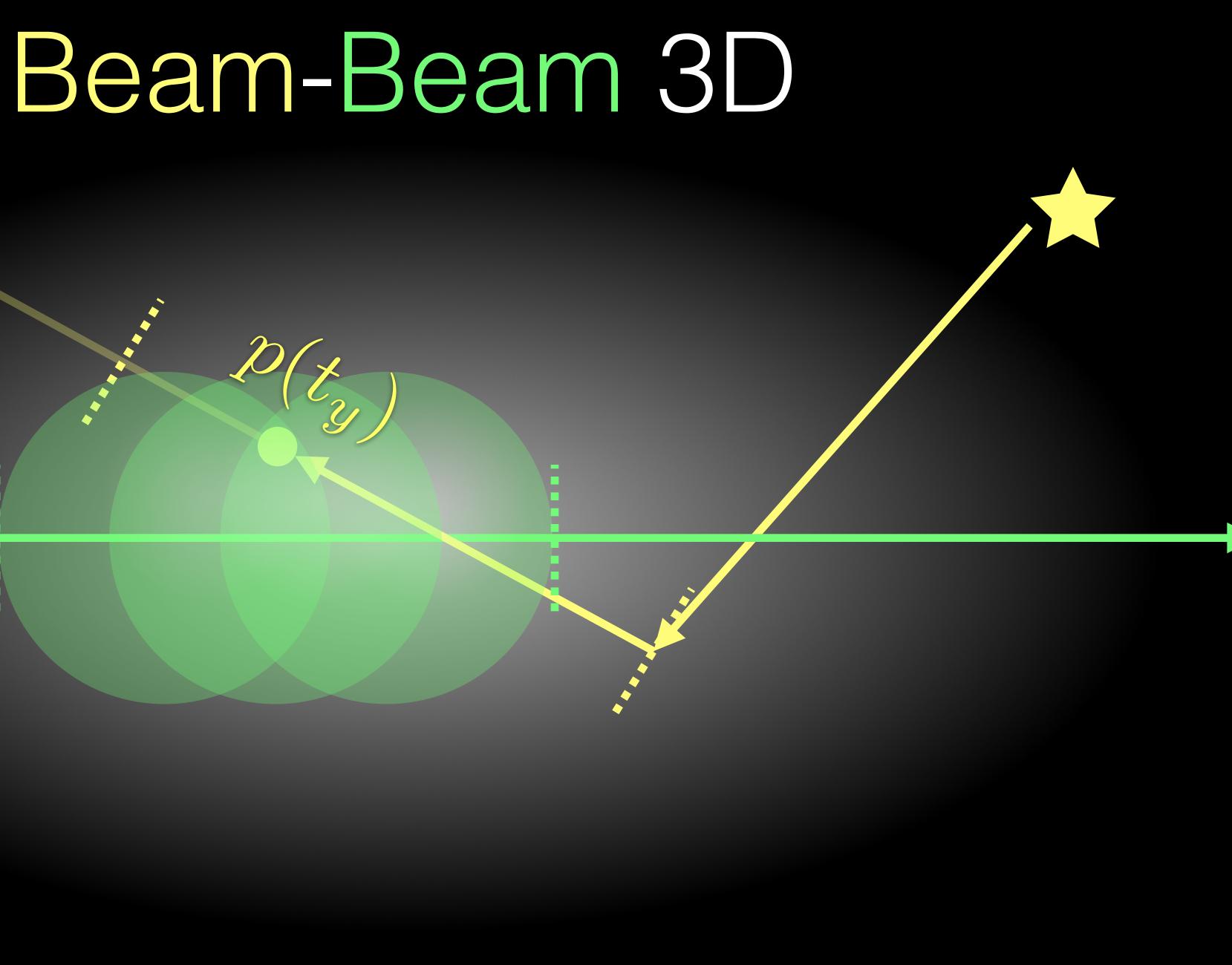
 $f(x, y)K(x, y)dt_ydt_x$

Double integral over the intersection intervals (usually intractable)









Beam-Beam 3D

Ux

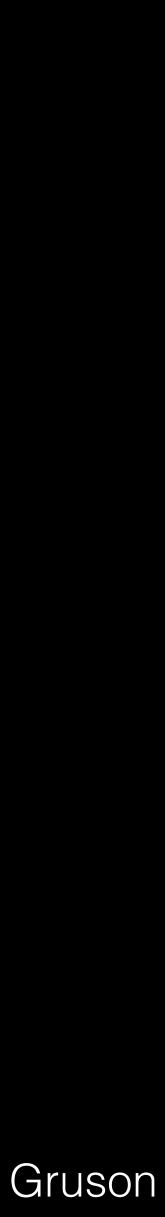
$K_{3D}(x,y)$ Same 3D kernel as point-point 3D

Beam-Beam 3D

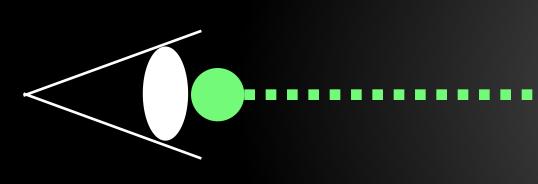
1x $K_{3D}(x,y)$ Simple Monte Carlo path sampling (no longer intractable)

Beam-Beam 3D

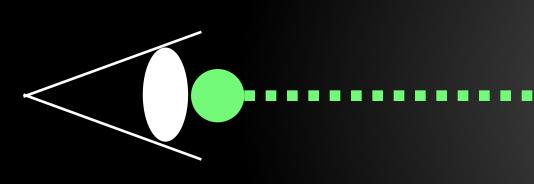
Courtesy of Adrien Gruson



Beam-Point 3D



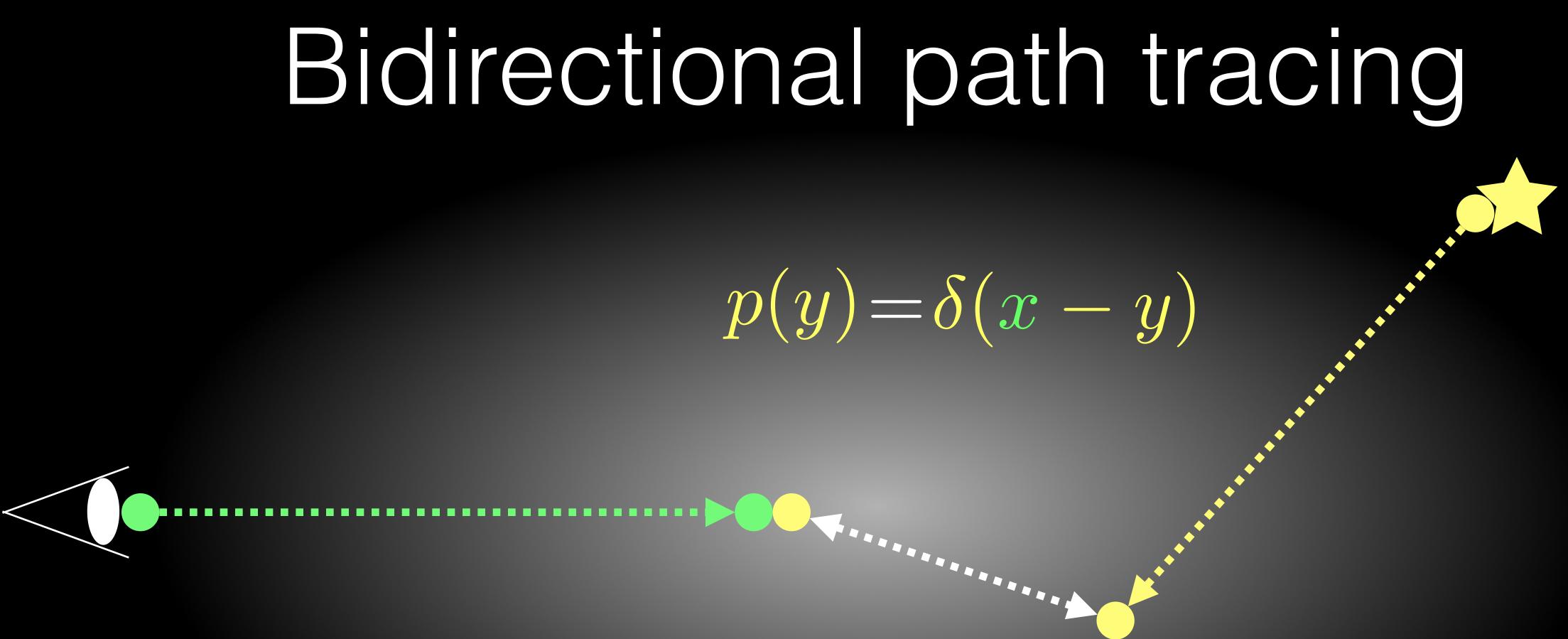
Beam-Point 3D



Beam-Point 3D

$K_{3D}(x,y)$ Same 3D kernel as point-point 3D

Bidirectional path tracing TITI



Duplicate a vertex

Bidirectional path tracing $p(y) = \delta(x - y)$ $K_{3D}(x,y) = \delta(x-y)$

Delta kernel leads to the original path integral formulation

Biased bidirectional path tracing

$K_{3D}(x,y) \neq \delta(x-y)$

Take disconnected vertices via blurring kernel

 $p(y) \neq \delta(x - y)$

Virtual perturbation

$K_{3D}(x,y) \neq \delta(x-y)$

Approximate the implementation of biased BDPT by regular BDPT

 $p(y) \approx \delta(x - y)$

Conclusion

- Extension of the path space for volumetric light transport
 - Better explains density estimation compared to merging
 - Formulate beam as Monte Carlo distance sampling
 - Enables a practical beam-beam 3D estimator

Fills a theoretical gap in the unified formulation for volumes