
Adaptive Environment Sampling 
on CPU and GPU

Asen Atanasov Vladimir Koylazov Blagovest Taskov
Alexander Soklev Vassillen Chizhov Jaroslav Křivánek

Hello everybody!

Welcome to our talk “Adaptive Environment Sampling on CPU and GPU”. Today we 
will share about this project which was jointly developed by V-Ray R&D and V-Ray 
GPU teams. 



Image-based lighting (IBL)

HDR images courtesy of NoEmotion

Image-based lighting is an important tool in rendering. In production, large HDR 
images are used to provide detailed illumination for complex scenes. Here’s one of 
our test scenes lit by three HDRs.



IBL noise

Unfortunately, in heavily occluded scenes, like interiors, IBL is a major source of 
noise.



Portals

Traditionally, this problem has been solved by the introduction of portals. Portals are 
rectangular regions which artists are expected to manually place in their scenes 
around the windows to guide the shadow rays during rendering. 

We used a portal based solution for years and recently efficient portals-based 
solutions have been developed.

This approach brings undesirable disadvantages. Artists need to perform some 
tedious additional work, which can be slow and tricky depending on the scene. They 
must learn how to use portals in order to obtain optimal results. Manual work is 
always prone to mistakes and badly placed portals can even slow the rendering 
down. For instance, artists may have different ideas how to cover circular opening 
with rectangular regions. For the reasons mentioned above we seek a solution that 
doesn’t rely on portals.



Existing solutions

● Rely on portals
● High memory consumption
● Expensive computation
● Complex data structures

Generally, existing solutions have some of the following disadvantages:

- they either rely on portals
- could require high memory consumption
- or need expensive computations
- or use complex data structures

Thus their practicality is limited, especially for GPU rendering of complex production 
scenes.

For instance, we prefer grid-based data structures instead of tree-based. Tree 
traversal results in higher code divergence which decreases the utilization of the GPU 
SIMD architecture.



Guidelines

● Complex production occluded scenes
● CPU and GPU
● Account for visibility
● Lightweight sampling procedure
● No user manual work
● Low memory usage
● Simple to implement

During the development of our algorithm we set up guidelines that motivated our 
engineering decisions.

- First we need a solution that can handle arbitrarily complex production scenes
- We want a unified approach which will improve both our CPU and our GPU 

render engines
- Accounts for visibility to improve partially or heavily occluded scenes, but also 

benefits or at least does not slow down unoccluded scenes.
- We achieve this goal using a lightweight sampling procedure, which requires 

no tree traversals. Note that an approach that improves occluded scenes, but 
slows down other scenes imposes the requirement that the users must know 
when to switch on/off this solution. 

- Requires no portals or any other manual scene-specific adjustments. Have 
few or none control parameters.

- Has modest memory requirements. This is especially important for very heavy 
scenes on the GPU.

- Lastly, algorithms that are simple to implement, integrate, debug and modify 
are always preferable, especially in our production context.



Everything should be 
made as simple as 
possible, but not 
simpler.

~Albert Einstein

During the development process we discussed and experimented with different ideas 
and reached a RELATIVELY SIMPLE solution which follows the desired guidelines 
and works well for us.



Our Adaptive 
Sampling

● Partition the environment map

● The Light Grid
○ Visibility cache
○ In the camera space

● Two-phase approach
○ Learning
○ Rendering

Office scene courtesy of Evermotion

To the right are two of our test scenes. They are chosen for their heavy occlusion.

The basic idea of our adaptive sampling algorithm is to figure out which parts of the 
environment are important to which parts of the scene.

Thus we first partition the environment map into tiles. 

We use a data structure that we call “The Light Grid” to cache visibility information in 
the camera space.
We take two-phase approach: during a brief learning phase we accumulate the 
importance of environment map tiles to different parts of the scene in the Light Grid. 
Then we use this cache during the rendering phase to guide the shadow rays.

Now let’s get into the details:



32 equal-energy tiles

HDR image courtesy of NoEmotion

First we talk about partitioning. We experimented with two natural partitioning 
strategies: equal-energy and equal-sized tiles.

Equal-energy tiles seemed a promising choice, because more small tiles are placed in 
the important high energy regions. Here’s an example.



32 equal-energy tiles

HDR image courtesy of NoEmotion

However, more experiments reveal critical drawbacks. In the very common case of a 
very bright spot in the environment map the tiles become very thin and long. 



32 equal-energy tiles - very thin tiles

HDR image courtesy of NoEmotion

They can easily degenerate for environment maps with bright day sun for example. 
We seek robust and well-localized partitioning in the direction space.



4 x 8 equal-sized tiles

HDR image courtesy of NoEmotion

Here’s an example of 32 equal tiles.



Equal-energy tiles Equal-sized tiles

● Thin and long tiles
● Degenerate tiles around 

bright spots
● Traversal or more memory 

for point-in-tile test

HDR images courtesy of NoEmotion

● Equal square tiles 
● Robust and simple 

partitioning
● Faster point-in-tile test

In summary, here are the important features of the two strategies, relevant to our 
approach.

While equal-energy partitioning is prone to thin or degenerate tiles over bright 
environment map regions, the equal tiles are robust and trivial to compute.

Important advantage of the equal-tile partitioning is that for any point on the map we 
can find the corresponding tile in constant time. This is a key to our lightweight 
sampling. 
On the other hand, equal-energy tiles would require either a tree traversal or 
additional memory.
Thus, we stick to the the equal-tiles partitioning.



The Light Grid

● Gx x Gy spherical grid - Gx = 2Gy
● In the camera space

The Light Grid

The Light Grid is a uniform spherical grid centered at the camera. In this diagram the 
camera is inside a room and there is a window in the right ride.



The Light Grid

● Gx x Gy spherical grid - Gx = 2Gy
● In the camera space
● Each scene point belongs to a Light Grid cell

x

Note that each scene point belongs to exactly one Light Grid cell.
For instance, the point x can be projected to the camera center to figure out its Light 
Grid cell c[x].



The Light Grid

● Gx x Gy spherical grid - Gx = 2Gy
● In the camera space
● Each scene point belongs to a Light Grid cell

x

c[x]

Each Light Grid cell holds one floating point weight for each environment map tile 
which represents the importance of the tile for this cell.



Learning phase
Tiled environment

t0

t1

t2

t3

Now I will explain the learning phase:

In this diagram the room is surrounded by the environment map which is partitioned 
into equal tiles. There is a bright sun in the map, so when we importance sample the 
map many samples fall there, in tile t3. The problem is that this tile is entirely 
occluded, so these samples are wasted.

In the beginning, all Light Grid cells are initialized with zero.



Learning phase

t0

t1

t2

t3

x

c[x]

Then we start to trace camera paths into the scene, and for each path vertex point we 
compute the direct illumination.



Learning phase

t0

t1

t2

t3

x

c[x]

When we importance sample the environment map, we accumulate information for 
the visible tiles and we ignore the occluded.
In this example, the weight of the tile t1 for the Light Grid cell c[x] is updated.



Learning phase

t0

t1

t2

t3

x

c[x]

y

c[y]

We continue the path and apply the same strategy for each path vertex. For this GI 
ray we find the intersection y and its corresponding cell c[y].



Learning phase

t0

t1

t2

t3

x

c[x]

y

c[y]

Then again we importance sample the environment map and update the visible tile 
weights.
In the end of the learning phase we construct a CDF in each Light Grid cell, based on 
the tile weights.



Rendering phase

t0

t1

t2

t3

x

c[x]

y

c[y]

Then during the rendering phase, for each shading point in the scene, we find the 
corresponding Light Grid cell by back projecting it to the camera center. Then we use 
the precomputed probability distributions in the cells to sample tiles according to their 
visible intensity.



Rendering phase

t0

t1

t2

t3

x

c[x]

y

c[y]

When a tile is chosen, then we pick a sample inside it according to the environment 
map intensity.



Results
CPU: x6.6 GPU: x3.8Office

CPU: x2.7 GPU: x2.4Living room
Office scene courtesy of Evermotion

Baseline CPU Baseline GPUOur CPU Our GPU

These are results for two of our test scenes: the “Office scene” in the first row and the 
“Living room scene” in the second. 

In the insets we show both CPU and GPU results - the first two columns and the 
second two, respectively.

First you can observe how our adaptive sampling produces much cleaner images for 
the same time.
Here the baseline algorithm is BRDF sampling and environment map sampling 
combined with MIS.
And our approach is BRDF sampling and our adaptive sampling procedure, also 
combined with MIS.

In the red band you can see the effective speedup of our algorithm for the same noise 
levels for both CPU and GPU.



Results

CPU: x2.2 GPU: x1.6

CPU: x1.9 GPU: x1.6

CPU: x3.8 GPU: x3.0

HDR “Day”

HDR “Sunset”

HDR “Night”

HDR images courtesy of NoEmotion

More results: the “Living room scene” lit by three different HDRs. The effective 
speedups are shown on the right side.



Exterior and participating medium

CPU: x2.3 GPU: x1.8 CPU: x3.4 GPU: x2.6

Two more important experiments. Partially occluded exterior with and without 
participating medium. You can see that our algorithm improves the rendering 
substantially. 
The right image with the fog showcases the scenario when many distant points map 
to the same Light Grid cell.



Implementation details

● CPU and GPU
● 10% - 700% speedup
● 10MB memory
● Learning:

○ 106 camera paths 
○ ~ 1% of the render time
○ accumulation with fetch-and-add instructions

● Summed Area Table for sampling

Now I will share some implementation details:

- We integrated our algorithm in two production renderers - one CPU and one GPU.
- We measured between 10 and 700 % speedup on user scenes.
- Our algorithm consumes 10MB of memory, regardless of scene complexity

- Our default rendering pipeline starts with an irradiance caching solution 
which traces 1 million camera paths by default. We reuse this computation to 
accumulate the visibility information in the Light Grid.

- The learning phase usually takes about 1% of the total rendering time.
- Learning is computed efficiently in parallel using fetch-and-add instructions

- Our algorithm requires a procedure to importance sample the whole environment 
map during learning and the individual tiles during rendering. For this purpose we use 
SAT.



Summed-area table (SAT)

A

The Summed-area Table of the environment map is a 2D cumulative distribution 
function. 
Each element is the sum of all previous elements in both directions.



SAT for sampling

A

A + D - B - C

C

B

D

Every subregion of the SAT is monotonic, so bounds for binary search can be 
computed. In this way SAT can be used to importance sample arbitrary subregion of 
the map.



Hallway HDR image (10000x5000)

HDR image courtesy of Wouter Wynen (Aversis 3D)

Here’s one example of a very large HDR image. 



Sampling reconstruction - 32-bit Float SAT

HDR image courtesy of Wouter Wynen (Aversis 3D)

Large SAT are notorious for being prone to numerical error.
In this example, we see sampling reconstruction using 32-bit float-valued SAT.
Moving to the bottom right end, the error accumulates and the quality of the sampling 
deteriorates, because of the increasing SAT values. This is best seen at the light 
sources.

One way to solve this problem is to use double precision, but this means twice more 
memory and twice slower queries.



Sampling reconstruction - 32-bit Integer SAT

HDR image courtesy of Wouter Wynen (Aversis 3D)

We take different approach. We build the table in double precision and then remap it 
to 32-bit unsigned integer. In this way the error is uniformly distributed and the 
sampling looks visually much better.



Integer-valued SAT vs. float-valued SAT

HDR image Resolution Int MSE Float MSE

Hallway 10000x5000 1.0x10-5 3.8x10-1

Day 15000x7500 4.9x10-7 8.6x10-3

Night 3000x1500 1.4x10-8 4.1x10-4

Sunset 3000x1500 1.1x10-8 3.6x10-4

We measured the MSE for sampling reconstruction of four large HDRs.



Integer-valued SAT vs. float-valued SAT

HDR image Resolution Int MSE Float MSE

Hallway 10000x5000 1.0x10-5 3.8x10-1

Day 15000x7500 4.9x10-7 8.6x10-3

Night 3000x1500 1.4x10-8 4.1x10-4

Sunset 3000x1500 1.1x10-8 3.6x10-4

You can see that our Integer-valued SAT improves the error with 3 to 4 orders of 
magnitude, compared to the float-valued SAT!



Q & A

Thank you for your attention and I’m ready to take questions!


