Overview

- VIZ exists
- It is important
- Rendering requirements for different industries
- Some thoughts on the future
WE ARE CHAOS GROUP

We create powerful rendering and simulation technology to help you visualize anything imaginable.

- Global leader in computer graphics, over 20 years experience
- V-Ray is the industry standard for top design studios, architectural firms, advertising agencies, and visual effects companies
- 92 out of the top 100 architecture firms use V-Ray
- V-Ray portfolio includes V-Ray for 3ds Max, Maya, MODO, Nuke, Katana, Rhino, SketchUp and Revit, Corona
- Other products include VRscans, photoreal scanning technology and material library, Phoenix FD for fluid dynamics and PDPlayer
- Our R&D division is shaping the future of creative storytelling, virtual reality and digital design

chaosgroup.com
Our mission

Solving hard problems so you don’t have to

- Includes constantly looking into new technologies that may help our customers
- Also searching for hard problems that need solutions
When I mention computer graphics, students typically imagine
- Games
- Visual effects for film and TV

These are the most famous applications of CG
- They are great!

However most of our users render visualization projects
- Interior design
- Arch Viz
- Product Viz
Why visualization is important?

- Architecture is important
 - You literally live your life in it
- Product design is important
 - You use those products every day
Many products, especially renderers, are specialized
- Realtime renderers for games
- Renderers for film VFX/TV work
- Renderers for arch viz
- Renderers for product viz

The different applications have [slightly] different requirements
- These requirements are very starting to converge somewhat
V-Ray is unique because it is used in all areas

- V-Ray as a renderer, has been widely used in all areas of CG
 - And even in newer areas like training AI
- We've had the opportunity to observe the different requirements and attitudes of users in all CG areas
- Being based exclusively on raytracing is what made it all possible
 - Even for realtime - project Lavina
DCCs and different integrations

- VFX-oriented DCCs
 - Maya, Houdini, Katana, 3ds Max
- ArchVIZ-oriented DCCs
 - SketchUp, 3ds Max, ArchiCAD
- Others
 - Cinema4D, Rhino, etc
Rendering requirements

- Different industries have slightly different rendering requirements
- It is interesting to explore them in a bit more detail
Data size

- **Film renderers**
 - Large amounts of geometry (often subdivided/displaced)
 - Large amounts of textures (usually tiled .tx files) - thousands of files
 - Generating large amounts of textures is very easy these days, even if it is not strictly necessary for the project
 - Data resides on a network location to be consumed by the render farm
 - Could be a large bottleneck

- **ArchViz renderers**
 - Relatively less textures
 - Varying file formats (JPG, PNG etc)
 - Data is often local on artists’ workstation

- **Proxies turned out to be particularly useful for both areas**
 - A way for the renderer to directly load geometry bypassing the DCC
Scene organization

- **Film renderers**
 - Tightly controlled pipeline, mostly split into different stages
 - Modeling, texturing, lighting, compositing are done by different people
 - The renderer must allow data to come in and out of the renderer
 - Support for common and standard file formats - Alembic, .tx, OpenEXR etc
 - Object properties, overrides, shader controls based on scene data is important
 - Often different versions of the same shot need to be rendered - for masks/holdouts, shadow extraction etc.
 - It is useful to be able to do those overrides without changing materials - e.g. through object properties

- **ArchViz renderers**
 - Scenes can be built from publicly available models
 - Varying model quality
 - Varying input texture file format and shaders
 - Materials specifically used to be a problem before because of material quality settings (sampling) embedded in materials instead of being handled automatically by the renderer
 - Not much need to move data in and out of the renderer, in fact staying in the renderer even for post
Project duration

- **Film renderers**
 - Projects take a longer period of time, usually months
 - There is time to research how to solve specific problems or issues (usually, less so nowadays)

- **ArchViz renderers**
 - Projects usually have a relatively quick turnaround
 - There isn’t a whole lot of time to spend on rendering itself
Film renderers
- Sequences of frames (shots)
 - Lots of animated stuff going on in each shot - characters, explosions, vehicles, destruction etc
- Many thousands of frames in a project
- Render elements to separate various components of the scene for adjustment/compositing in post
 - World positions, extra textures etc.
- Deep output support might be needed
- Usually post-processing happens in a dedicated compositing application like Nuke or Fusion

ArchViz renderers
- Sometimes there are animations
 - Usually walk-throughs or other presentation formats, not a whole lot of moving things
 - Animations are increasingly moving over to realtime engines these days
- Mostly the results are still images
 - Sometimes very large stills - distributed rendering is useful
- Render elements to adjust scene in post
 - Usually masks
- Post-processing happens either in the frame buffer, or in PhotoShop
Additional tools

- A renderer is sometimes expected to provide additional tools
 - Scattering tools
 - Variation tools (texture randomization etc)
- Landscaping is a large part of ArchVIZ
 - Creating the natural environment around a building
 - Trees, grass, flowers
Lighting

- **Lighting in VFX**
 - The goal is often to match the look of a given background plate as a reference
 - IBL is used all the time
 - More artistic control required in order to match a given background plate or to achieve a specific look
 - Separate control over diffuse and specular contributions, light linking, light filters/blockers
 - Artistic light units (f-stops and exposure)

- **ArchVIZ requires more exact tools**
 - There is no reference - the renderer must say what the scene looks like, without any references
 - Sun & Sky system for daylight scenes
 - IES lights and area lights with prescribed intensity
 - Physical light units (lumen, lux, candela etc)
Global illumination

- **GI in VFX**
 - Was avoided for a long time due to restrictions of the tools
 - Only relatively recently VFX moved to raytracing exclusively
 - Usually one or two bounces are enough when you render a character against a plate
 - Tricks to suppress fireflies are allowed with less regard for physical accuracy
 - Brute force strategies work well

- **ArchVIZ**
 - ArchVIZ users were pioneers here
 - Starting with radiosity solutions for lighting analysis
 - Moving to raytraced GI in the beginning of the 21st century
 - Accurate light distribution is important - one or two bounces are not enough
 - Specialized algorithms must be used to handle large number of bounces efficiently
 - Light cache in V-Ray
 - UHD cache in Corona
Materials

- **Materials in VFX**
 - Skin, hair materials are important
 - Programmable shaders might be important (OSL, shading SDK)
 - Could be a burden to the performance, or the development (keeping compatibility), but very helpful to customize the renderer
 - Artistic control might be important
 - Shading networks can be very complicated
 - Lots of blend materials, masks, color correction textures etc
 - Driving shaders through scene data or metadata is important
 - User attributes, bitmap file name tags etc

- **Materials in ArchVIZ**
 - Physical accuracy is important
 - Materials for vegetation (foliage, grass), curtains etc
 - Prebuilt material libraries might be important
 - Programmable shading is not important
 - Procedural shading, variations might be important
Some features are used differently

- **Hair primitives**
 - Used for characters in VFX - hair, facial hair, peach fuzz, animal fur
 - Used for carpets, rugs, blankets, grass in ArchViz

- **2D displacement**
 - Used for skin and fine character detail in VFX
 - Used for stone and brick walls, roof tiles, pavement etc

- **Frame buffer**
 - Used for previewing the output and explore render elements on VFX
 - In ArchVIZ, also used as a post-processing tool, sometimes final post-processing is done there without post
 - Sometimes this leads to concept clashes like LUT files
Renderer setup

- A bit more time is available in VFX for setting up a renderer
 - Different settings per shot might be required
 - There are multiple iterations over a shot that allow settings to be fine-tuned
 - Non-adaptive (fixed) sampling is acceptable, with manual control over every sample
 - Takes a while to find the right settings, but the time is amortized over hundreds of animation frames

- There is less time available in ArchVIZ
 - The renderer must be able to handle many different types of projects with minimal settings
 - Automatic/adaptive sampling is preferable, with only quality/max time specified as input
Render farm resources

- In VFX, usually whole frames are distributed
 - Hundreds or thousands of machines
 - Render farm can spill to the cloud if needed
 - Occasionally DR is used for iterations during lighting
 - Software for render farm management is used

- In ArchVIZ, often a single frame is distributed
 - DR is often used for final results (stills)
 - A few machines only available, sometimes office workstations (no dedicated render farm)
 - Commercial render farm services handle the rest
 - Cloud is less used because of complicated setup
 - V-Ray Cloud aims to change that
Workflows move between industries

- VFX workflows leaking into ArchVIZ
 - OpenEXR
 - Cryptomatte
 - LUTs and post-processing
 - Lots of research is done initially for VFX and then trickles down to ArchVIZ
 - Accurate BRDFs (f.e. GGX)
 - Volume rendering
 - Hair/fur shading
 - PBR-style materials

- And the other way round
 - Scattering tools for environments
 - Global illumination
 - Physical materials/lighting
Real time rendering

- Real time rendering in VFX
 - Previz, playblasts
 - Occasionally for final frames or parts of final frames
 - Recently entire short films/TV series are rendered in real time engines

- Real time rendering in ArchVIZ
 - Walk-throughs
 - Space exploration/VR
 - Interactive experiences

- Real time engines
 - Game engines repurposed for specific workflows
 - Game-specific workflows might get in the way
 - Specialized real time engines for arch VIZ
Virtual reality

- Doesn’t work too well for entertainment
 - Difficult to keep the attention of the viewer at the right spot
 - Not very comfortable for longer viewing

- Very popular for ArchVIZ
 - Shows off a space much better
 - Still images - stereo panoramas
 - Walk-throughs
 - Interactive experiences
Final thoughts

- Can one rendering solution cover everything?
 - VFX
 - ArchVIZ
 - Realtime
Questions?