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Fig. 1. Equal-time comparison (60 s) of path-traced global illumination solutions computed using our learning-based direct illumination sampling method (right)
and a baseline sampling method without learning (left). While both methods start off by sampling lights proportionally to rough estimates of their unoccluded
contribution, our method progressively incorporates information about their actual contributions, including visibility, dramatically reducing image variance.

Direct illumination calculation is an important component of any physically-
based renderer with a substantial impact on the overall performance. We
present a novel adaptive solution for unbiased Monte Carlo direct illumi-
nation sampling, based on online learning of the light selection probability
distributions. Our main contribution is a formulation of the learning pro-
cess as Bayesian regression, based on a new, specifically designed statistical
model of direct illumination. The net result is a set of regularization strate-
gies to prevent over-fitting and ensure robustness even in early stages of
calculation, when the observed information is sparse. The regression model
captures spatial variation of illumination, which enables aggregating statis-
tics over relatively large scene regions and, in turn, ensures a fast learning
rate. We make the method scalable by adopting a light clustering strategy
from the Lightcuts method, and further reduce variance through the use of
control variates. As a main design feature, the resulting algorithm is virtually
free of any preprocessing, which enables its use for interactive progressive
rendering, while the online learning still enables super-linear convergence.
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1 INTRODUCTION
Realistic rendering today is almost entirely based on Monte Carlo
(MC) methods. The indirect illumination component has tradition-
ally been held responsible for the undesirable image noise produced
by such algorithms, which is probably why the direct illumination
has received disproportionately less attention in research. However,
many scenes in digital production feature complex lighting setups,
and practical experience shows that it is often direct illumination
that is responsible for the majority of image noise.
In this paper, we aim at unbiased direct illumination estimation

for MC renderers. Specifically, we address the problem of randomly
choosing an appropriate light source for a given scene location, so
that variance of the direct illumination estimator is minimized. This
could be achieved by choosing lights with probability proportional
to their respective contributions, but these are unknown at the
outset, they are costly to evaluate and difficult to predict. This is
true especially due to the visibility, since it can be discontinuous
and its evaluation involves expensive ray casting.
One possible solution would involve constructing the light sam-

pling distributions in a preprocessing step [Georgiev et al. 2012].
However, long preprocessing disqualifies any form of interactive
rendering – a crucial feature of any modern progressive renderer, a
feature that we consider a hard constraint in our work. Such pre-
processing can be avoided by learning from the observed samples
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during rendering, and our work follows this path. This is hardly a
new idea in the general MC context and it has been used for direct
illumination sampling [Donikian et al. 2006]. Unresolved challenges
remain, though, such as how to ensure robustness, especially in the
early stages of rendering, when the collected data is sparse.
The above concerns are common to most adaptive MC meth-

ods, and we address them through a systematic treatment based on
Bayesian modeling. We formulate the learning process as maximum
a posteriori (MAP) regression based on a new statistical model of
direct illumination that explicitly models the effect of visibility. The
prior distribution is modeled using estimates of lights’ unoccluded
contributions computed at a small cost. The net result of this for-
mulation are regularization strategies that prevent overfitting and
enable meaningful use of the collected samples even in early stages
of rendering. Our regression model captures spatial variation of
illumination, which enables aggregating statistics over relatively
large spatial regions, and, in turn, ensures a fast learning rate.

Our second main contribution consists in showing that sampling
lights proportionately to their expected contribution can in fact
be far from optimal. The reason is the additional variance due to
computing illumination from each individual light source, once it
has been selected. We derive the optimal sampling strategy for such
nested estimators and apply it to the light selection problem.
Finally, to achieve a scalable solution we build upon the light

clustering strategies from previous work [Walter et al. 2005; Wang
and Akerlund 2009], and we further reduce variance by using the
gathered statistics to construct a control variate [Kalos andWhitlock
1986]. The resulting algorithm is virtually free of any preprocessing,
which enables its use in an interactive progressive renderer, while
the online learning enables superlinear convergence, especially in
the early stages of rendering. Fig. 1 shows an example result.

2 PREVIOUS WORK
Direct illumination computation. Different ways to improve the

performance of direct illumination computation have been explored.
One idea is to speed up the evaluation of a single light’s contribution,
the cost of which is often dominated by determining its visibility.
This could be achieved by skipping visibility tests for lights that
contribute weakly [Ward 1994], clipping polygonal area lights [Hart
et al. 1999], using a visibility oracle based on a photon map [Jensen
and Christensen 1995] or learning during rendering [Fernandez et al.
2002]. Wald and Benthin [2003] cull lights based on a path tracing
prepass. Random skipping of visibility tests [Billen et al. 2013] or
their caching [Popov et al. 2013] have been likewise explored.
Reducing the cost of a single light evaluation cannot reduce the

linear complexity of direct illumination computation, which be-
comes a bottleneck when lights are many. Paquette et al. [1998] and
Walter et al. [2005] propose to hierarchically cluster lights into a
tree and then use adaptively constructed tree cuts to approximate
direct illumination. Both methods scale well but this comes at the
expense of some bias. As a follow-up, methods byWalter et al. [2006]
and Bus et al. [2015] further reduce the number of scene shading
points for which the direct illumination computation is carried out
by additionally clustering the shading points.

We address random light selection in a MC renderer. In this con-
text, Shirley et al. [1996] pioneered the idea of designing light selec-
tion probabilities based on expected lights’ contributions, though
they only used a rather crude classification into ‘important’ and
‘unimportant’ lights. Wang and Akerlund [2009] sample lights pro-
portionally to the product of a contribution estimate and surface
reflectance. The method handles many lights by clustering, an idea
we use in our work and extend it with online optimization of sam-
pling distributions. Sampling distributions can also be obtained in
a preprocess [Georgiev et al. 2012; Wu and Chuang 2013], but this
approach disqualifies any form of interactive rendering. Finally,
Donikian et al. [2006] learn a sampling distribution from samples
obtained during the rendering, just as we do. The method combines
several distributions in an ad hoc manner, which limits its robust-
ness and reliability, as we demonstrate in our results. We show that a
theoretically funded Bayesian treatment of adaptive sampling yields
substantial improvements in robustness and overall efficiency.

Bayesian modeling in rendering. Bayesian modeling is a wide-
spread methodology in computer vision and graphics, so we only
review works closely related to MC rendering. Boughida and Boube-
keur [2017] use NL-Bayes image denoising [Lebrun et al. 2013] in
the context of MC simulation as a post-processing filter. Brouil-
lat et al. [2009] and Marques et al. [2013] pioneered the use of
Bayesian Monte Carlo (BMC) [Rasmussen and Ghahramani 2003]
in light transport simulation. While theoretically sound, the BMC
methodology comes with some important computational overhead.
In contrast, we keep the efficient classic, frequentist MC approach
and apply Bayesian modeling to optimize our sampling distributions.
This approach was also taken by Vorba et al. [2014], who employ
a maximum a posteriori (MAP) formulation to regularize training
of parametric mixture models for optimized indirect illumination
sampling. Our work uses a MAP formulation of spatial regression
so as to obtain robust direct illumination estimates across the scene.

Adaptive sampling. Literature on adaptive sampling in both gen-
eral MC [Kalos and Whitlock 1986] and in rendering is wide and
we only mention some more recent work. One impactful theoretical
idea has been population Monte Carlo (PMC) [Cappé et al. 2004],
which can, among other, be used to optimize sampling distribu-
tions represented by mixture models [Cappé et al. 2008; Douc and
Guillin 2007]. Adaptive multiple importance sampling (AMIS) [Cor-
nuet et al. 2009] extends the adaptation idea to multiple importance
sampling [Veach 1997], whereas adaptive population importance
sampling (APIS) [Martino et al. 2015] attempts to exploit the strong
points of PMC or AMIS. PMC has been applied in rendering [Fan
et al. 2007; Lai et al. 2007], but the benefits are not large. Our work
differs from PMC by the lack of any resampling step which would
require storing individual samples.

Path guiding. Methods that buildmodels of incoming illumination
specific to a one particular scene and use them for importance sam-
pling have become known as path guiding. These methods perform
either density estimation from particles obtained in a preprocessing
step [Budge et al. 2008; Hey and Purgathofer 2002; Jensen 1995;
Vorba et al. 2014] or they derive the importance density through re-
gression modeling [Lafortune and Willems 1995; Müller et al. 2017;
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Pegoraro et al. 2008]. Our method is orthogonal to guiding methods
since it addresses sampling of direct illumination. In fact, it could be
incorporated into existing guiding approaches based on regression.

3 OVERVIEW
Direct illumination estimator. Our goal is to compute the reflected

radiance L due to direct illumination at a shading point x as seen
from a direction ω. It is defined as an integral over all points y on
the surface A of all scene light sources

L(x,ω) =
∫
A
F (y→x→ω) dy, (1)

where the integrand equals

F (y→x→ω) = Le (y→x)B (y→x→ω)V (y↔x)G (y↔x). (2)

Le (y→x) is the radiance emitted from y toward x, B (y→x→ω) is
the BRDF describing the surface reflectance at x, and V (y↔x) is
the binary visibility function returning 1 if y is visible from x and
0 otherwise. The geometry factor G (y↔ x) equals to cos θy cos θx

d2 (y,x) ,
whered (y, x) is the Euclidean distance between x and y and cosθy =
ny ·

x−y
d (y,x) , cosθx = nx ·

y−x
d (y,x) with ny, nx being the unit surface

normal at y and x, respectively.
A Monte Carlo estimator for the integral (1) is given by

⟨L(x,ω)⟩ =
F (y→x→ω)

p (y|x,ω)
, (3)

where p (y|x,ω) denotes the pdf of sampling the light point y from
the shading point x given the viewing direction ω. The better the
pdf approximates the integrand, the lower the variance, with the
pdf directly proportional to the integrand yielding zero variance.

Light sampling. We seek a practical approximation to the ideal
pdf described above. We follow a standard approach for generating
a light sample y, where one first selects a light source, and then
samples a point on that light [Pharr et al. 2016]. To ensure good
scalability with many lights, we additionally employ adaptive light
clustering: each point x in the scene has an associated set C of light
clusters c . In this setup, sampling the light point y in the estimator
(3) breaks down into the following three steps:

(1) Select a light cluster c ∈ C with the probability P (c |x),1
(2) Select a light l ∈ c with the probability P (l |c ) proportional to

its flux, i.e. P (l |c ) = Φl /
∑
l ′∈c Φl ′ ,

(3) Select a point y ∈ l with the pdf p (y|l ,ω) using standard
techniques [Pharr et al. 2016; Shirley et al. 1996].

The resulting pdfp (y|x,ω) is then obtained as P (c |x) P (l |c ) p (y|l ,ω).

Adaptive cluster sampling. Our main contribution consists in a
new adaptive method for constructing the cluster sampling distri-
bution P (c |x) used in Step (1). To this end, we first derive, in Sec. 4,
the optimal distribution for cluster selection in presence of vari-
ance due to nested MC estimation, i.e. illumination evaluation within
each cluster corresponding to Steps (2) and (3). Second, we devise
a Bayesian methodology to learn such a distribution in a progres-
sive manner (Sec. 5). For that purpose, we design a statistical MAP
regression model of cluster contribution and visibility. The model
1Probabilities are denoted by the capital P while probability densities are lower-case p .

is initialized by conservative cluster contribution estimates, which
embody our prior knowledge. It is then updated on the fly during
rendering using the calculated (observed) light contributions.

We do not use learning for sampling the point y on an individual
light in Step (3), since techniques tailored to different kinds of light
geometries provide close-to-optimal solutions [Gamito 2016; Shirley
et al. 1996]. Furthermore, we design our cluster sampling distribu-
tions to be view independent: we omit the BRDF factor and we drop
the dependency on the view direction ω in most equations. This
is motivated by practical considerations of a production renderer,
where reflectance can be defined by arbitrarily complex shaders,
often given as a black-box. We discuss the above decisions in Sec. 8.

Light clustering and scene partitioning. Our light clustering ap-
proach is inspired by Lightcuts [Walter et al. 2005]. Similar to Wang
and Akerlund [2009], we use the clusters for light selection, as op-
posed to using them directly as illumination estimates. As a result,
the clustering affects the estimator variance, not a systematic image
error, and hence it can be rather coarse.
In a preprocessing step, we first hierarchically cluster the lights

into a binary light tree in a similar way to Lightcuts. During ren-
dering, the light tree then serves for finding light clusterings C,
represented as a cut in the light tree. Unlike in the original Lightcuts
algorithm, where lights are clustered for each shading point on-the-
fly, we generate and cache light clusterings for entire scene regions.
Such persistent clusterings are necessary to keep the statistics for
updating the cluster sampling distributions. The scene is therefore
divided into disjoint spatial regions, and each region has an associ-
ated light clustering, represented as a light cut. The light cut for a
scene region is created on demand, the first time direct illumination
calculation is carried out in that region. In scenes with a moderate
light count, the clusters usually correspond to the individual lights,
and our adaptive algorithm then samples the lights themselves.

As in Lighcuts, the cut construction starts at the root and repeat-
edly replaces the cluster with the highest estimated contribution by
its two children, until the estimated cluster contribution falls below
ϵ-fraction of the estimated contribution of the entire cut (we use
ϵ = 0.1 and limit the cut size to 100 in all our results). Calculation
of the cluster contribution estimates is described in Appendix A.

Baseline scalable method. An algorithm based on the above light
clustering, where cluster sampling probability P (c |x) is proportional
to the cluster contribution estimates (Appendix A) and is not adapted
during calculation, serves as a baseline for comparisons in Sec. 7.
We call it the Scalable method.

4 WHAT WE LEARN: OPTIMAL CLUSTER SELECTION
We now discuss the optimal cluster selection probabilities P (c |x)
in Step (1) of our three-step light sampling procedure (Sec. 3). The
conventional way to shape P (c |x) would be to select cluster c propor-
tionally to its true expected contribution, denoted Lc (x). However,
as we show below, this choice would be optimal only if the cluster
contributions could be evaluated with no variance. This is rarely the
case in practice, since the nested MC estimator ⟨Lc (x)⟩ of the cluster
contribution is itself subject to additional variance. Intuitively, one
would want to sample more frequently clusters that contribute more
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Fig. 2. Illustration of optimal sampling probabilities on a synthetic dataset.
The gray bars represent the expected cluster contributions and the error bars
show standard deviation of the nested cluster contribution estimators. The
orange distribution shows the conventional cluster selection probabilities
directly proportional to the cluster contributions, while the blue one corre-
spond to our provably optimal sampling probabilities promoting sampling
of clusters that contribute more variance.

variance to the overall result, but the simple selection proportional
to the contribution does not do this (Fig. 2). We now derive the
optimal cluster selection probabilities conforming to this intuition.
We seek optimal cluster sampling probabilities Popt (c |x) mini-

mizing the overall variance of estimator (3). Given our three-step
sampling, we have p (y|x) = P (c |x)P (l |c )p (y|l ), and the variance
can be written as:

Var[⟨L(x)⟩] = −L(x)2 +
∑
c ∈C

1
P (c |x)

∫
Ac

(F (y→x))2

P (l |c )p (y|l )
dy︸                    ︷︷                    ︸

m2,c

.
(4)

Note thatm2,c is the second moment of the nested MC estimator
⟨Lc (x)⟩ =

F (y→x)
P (l |c )p (y |l ) of the cluster contribution.

We find Popt (c |x) as a solution to a constrained optimization
problem, as described in Appendix B, with the result that the optimal
cluster selection probabilities are proportional to the square root of the
second momentm2,c . Given that Var[⟨Lc (x)⟩] = m2,c − L2

c (x), we
obtain the final result:

Popt (c |x) ∝
√
L2
c (x) + Var[⟨Lc (x)⟩]. (5)

Note that Popt (c |x) is not proportional just to Lc (x), but it takes
into account also the variance of the nested estimator, i.e., variance
due to sampling of light areas and complex visibility. This is crucial
for the robustness of our method as it prevents excessive noise by
focusing on problematic areas in the cases when the nested sampling
according to the pdf P (l |c )p (y|l ) is far from ideal (see Fig. 5).

A derivation similar to ours appears in thework by Pantaleoni and
Heitz [2017], but in a different context: seeking an optimal piecewise
constant approximation to a given sampling probability density.

5 HOWWE LEARN: BAYESIAN ONLINE REGRESSION
In the previous section we have shown that optimal cluster selection
probability P (c |x), given by Eq. (5), depends both on the expected
cluster contribution Lc (x) and the variance of the nested cluster
contribution estimator Var[⟨Lc (x)⟩]. These quantities are, however,
unknown up front, and have to be approximated.
We have two types of information available for that: a) Unbi-

ased, but noisy MC direct illumination samples taken during ren-
dering. b) Noise-free, but biased, estimates of unoccluded cluster
contribution (see Appendix A). Both are useful, but insufficient by
themselves: The MC samples converge to the exact solution, but are

extremely unreliable in early stages of computation. The contribu-
tion estimates are more reliable early on, but they do not get any
more accurate over time and provide no information on visibility or
the nested estimator’s variance. A principled approach to exploiting
such uncertain information and fusing different sources of information
for adaptive MC sampling is the primary contribution of this paper.

Intuitively, we understand the contribution estimates as our prior
knowledge and the MC samples as observations. This view naturally
leads to Bayesian modeling. While MC quadrature has traditionally
served as a tool for Bayesian inference [Bishop 2006], we employ
Bayesian inference as a tool for robust adaptive MC sampling. The
general idea of the Bayesian approach is to create a probability
model describing the likelihood (occurrence probability density) of
observed data, impose some prior probability over parameters of
that model and then, infer the posterior probability of the model pa-
rameters after seeing the data. From the posterior, we can determine
the quantity of interest. In our case, bymodeling the likelihood of the
MC samples and constructing the prior distribution using the con-
tribution estimates, we can find the most probable approximations
to Lc (x) and Var[⟨Lc (x)⟩] given both these sources of information.

5.1 Model
We start with a standard statistical learning setup. First, we define
our training data D based on the MC samples observed during ren-
dering. Second, we derive a model p (D|θ ) describing the likelihood
of the data given parameters θ . Mean and variance of this model
provide the Lc (x) and Var[⟨Lc (x)⟩] we are looking for.
These statistics depend on the parameters θ that are initially

unknown.We could find them by direct maximization ofp (D|θ ), i.e.,
use the maximum likelihood (ML) estimate. However, ML is prone
to overfitting when data is scarce and provides poor approximations
in early stages of rendering as shown in Fig. 5. Since robustness is a
major concern in adaptive MC, we employ the Bayesian treatment:
Impose prior probability p (θ ), and infer the posterior probability
p (θ |D) ∝ p (D|θ )p (θ ) after seeing the data. By its maximization we
get a robustmaximum a posteriori (MAP) estimate of the parameters.

Data. Each scene region is associated with a set of light clusters
(the light cut). We collect the data and learn the model independently
for each region–cluster pair. Consider one such pair. Sampling of
lights in the cluster yields MC illumination samples, ⟨Lc (x)⟩ =

F (y→x)
P (l |c )p (y |l ) , where y is a sampled point on light l , and x is a shading
point inside the region. Our goal is to use the MC samples collected
for the region-cluster pair to build a model that accurately predicts
Lc (x) and Var[⟨Lc (x)⟩] over the different positions x in the region.

A major cause of spatial variations of illumination is the cosine
term cosθx changing due to varying surface normal. While this
effect would be difficult to capture by statistical modeling, it is
trivial to compute when needed, so we drop it from our model. We
therefore define two quantities

ê =
Le (y→x)V (y↔x) cosθy/d2 (x, y)

P (l |c ) p (y|l )
and êx = ê cosθx. (6)

The former quantity, ê , represents the MC sample of the cluster
contribution, ⟨Lc (x)⟩ =

F (y→x)
P (l |c )p (y |l ) , with the surface cosine term

cosθx dropped. In the latter quantity, êx, we replace the cosine term
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Fig. 3. Left: Histogram of direct illumination samples for three region-cluster
pairs. The area of each column corresponds to the overall occurrence in
the dataset. Note that zeros (in red) are frequent due to complex occlusion.
Right: Scatter plot of sample contribution êx vs sample distance d̂ for two
clusters distinguished by colors. Note the inverse-squared-distance falloff.

by its upper bound over the entire cluster cosθx (see Appendix A).
Our region statistics are based on ê , while êx is used at a specific
shading point x to inject surface normal dependency into our model.

After the surface normal, the second important factor in illumina-
tion variation across a region is the inverse-squared-falloff with the
distance d̂ = d (x, y), as confirmed by the empirical data (Fig. 3). To
capture this dependency, we explicitly model the relation between
illumination samples and the distance d̂ using a regression model.
Therefore, our training data D consists of tuples (êx,i , d̂i ).

Model and its parameters. The next step is to define a statistical
regression model p (D|θ ) expressing the data likelihood, i.e., proba-
bility of MC samples of direct illumination. The general form of the
likelihood used to model the relation between d̂ and êx is:

p (D|θ ) =
N∏
i
p (êx,i |d̂i ,θ ). (7)

wherep (êx |d̂,θ ) represents a regressionmodel,N is the total number
of samples (for a region-cluster pair), and the model parameters θ
are discussed below.
Our regression model of direct illumination has the following

two important features:
(1) Approximation of the inverse-squared-distance falloff.
(2) Explicit modeling of occluded contributions.

Motivation for the former property has been given above and fol-
lows naturally from the form of the sample contribution êx, Eq. (6).
The second feature arises from the all-or-nothing nature of the visi-
bility function, which is difficult to model by any common smooth
distribution (Fig. 3). We, therefore, design our regression model as
a mixture of a delta function δ (describing zero, i.e., occluded con-
tributions) and a Gaussian N with mean and variance decreasing
with the second and fourth power of the distance term (describing
non-zero, i.e., visible contributions):

p (êx |d̂,θ ) = δ (êx)po + (1 − po )N *
,
êx

������

k

d̂2
,
h

d̂4
+
-
. (8)

The model parameters θ = (po ,k,h) are respectively the probability
of occlusion, average visible contribution coming from a cluster
omitting the distance, and the variance of this contribution. As
each sample êx,i shows inverse-squared-distance falloff of its mean,
sample’s variance changes as well, but with 1/d̂4. The benefit of
explicit visibility modeling is illustrated in Fig. 5.
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Fig. 4. Evolution of the posterior distribution for the parameters po (beta
distribution, left), and k and h (normal-inverse-gamma, right) after seeing
0 (prior), 10 and 100 (synthetic) samples, with hyperparameters set as de-
scribed in the main text, and the hyperparameter µ0 set to 1.5. The visible
samples’ true mean and variance was 0.8 and 0.25, respectively, and is
marked by the red dot (right). Note that the N -Γ-1 prior is almost zero
everywhere except near the x -axis, due to β = 1e−6.

Prior distribution. To make the inference step tractable, we seek
a conjugate prior, i.e., prior distribution which yields a posterior of
the same function type. The conjugate prior for our model, derived
in Appendix C, has po distributed according to the beta distribu-
tion B and the pair (k,h) according to the normal-inverse-gamma
distribution N -Γ-1. Our prior distribution for parameters θ is then:

p (θ ) = B(po |N̂o , N̂v ) N -Γ-1 (k,h ��� µ0, N̂ , N̂α , β ). (9)

The various hyperparameters in the above equation can be under-
stood as statistics of hypothetical prior observations before the first
actual sample has been taken. N̂o and N̂v denote the number of
occluded and visible prior observations, µ0 is the mean of N̂ prior
visible observations and β is the sum of squares of 2N̂α prior visible
observations. Note that these hyperparameters do not necessarily
describe a consisitent set of virtual prior observations (i.e., in gen-
eral N̂ , N̂v and 2N̂α , N̂ ). Intuitively, N̂o , N̂v , N̂ and N̂α express
the strength of the priors and larger values will cause slower, but
potentially more robust learning.
To obtain the prior parameter µ0, we use our second source of

information, unoccluded cluster contribution estimate L̃c (x) (Ap-
pendix A). To make the prior more robust to occasional gross errors
in these estimates, we blend the L̃c (x)-proportional distributionwith
a defensive uniform distribution over the clusters [Veach 1997]. Fi-
nally, L̃c (x) contains a division by the squared-distance d2 (ctr(c ), x)
to the cluster center ctr(c ). But µ0 is a prior on the parameter k ,
which gets divided by the distance in our model, Eq. (8). We counter
double division by the distance by pre-multiplying by d2 (ctr(c ), x).
In summary, our informed prior mean reads

µ0 =
1
2

*
,
L̃c (x) +

∑
c ′∈C L̃c ′ (x)
|C|

+
-
d2 (ctr(c ), x). (10)

Good hyperparameter values should strike a good tradeoff be-
tween the learning rate and robustness to noisy samples. We found
the following values to work robustly across all our tests: N̂o =

2, N̂v = 2, N̂ = 1, N̂α = 1, β = 1e−6. Refer to Fig. 4 for an illustra-
tion how posterior distributions of parameters θ evolve with the
number of observed samples.

5.2 Inference
With both the likelihood and prior defined, we now infer the most
probable parameters’ values after seeing the data. We maximize the

ACM Transactions on Graphics, Vol. 37, No. 4, Article 125. Publication date: August 2018.



125:6 • Vévoda et al.

logarithm of the posterior distribution with respect to the param-
eters to obtain the MAP point estimate for θ . That boils down to
finding the solution to ∇θ log(p (D|θ )p (θ ) ) = 0, which expands to:

∇θp (θ )

p (θ )
+

N∑
i

∇θp (êx,i |d̂i ,θ )

p (êx,i |d̂i ,θ )
= 0. (11)

Plugging our model, Eq. (8) and (9), into Eq. (11) we get the following
MAP estimate of the θ parameters (see Appendix D):

po =
−1 + N̂o + No

−2 + N̂o + N̂v + N
, (12)

k =
s1,x + N̂ µ0

N̂ + Nv
, (13)

h =
−2N̂ µ0s1,x − s2

1,x + (s2,x + 2β ) (N̂ + Nv ) + N̂Nv µ
2
0

(2N̂α + Nv − 1) (N̂ + Nv )
(14)

where s1 =
∑Nv
i d̂2

i êi , s1,x = s1cosθx and s2 =
∑Nv
i d̂4

i ê
2
i , s2,x =

s2cosθ2
x represent statistics over visible samples, No and Nv are the

number of occluded and visible samples, and N = No + Nv is the
overall number of samples (for the considered region-cluster pair).

With these parameters, the expectation and variance of our model
in Eq. (8), approximating Lc (x) and Var[⟨Lc (x)⟩], respectively, are:

Lc (x) ≈ (1 − po )k/d̂2, (15)

Var[⟨Lc (x)⟩] ≈ (1 − po ) (pok2 + h)/d̂4. (16)

We set d̂ = d (ctr(c ), x) to approximate the not yet known distance
for x, where ctr(c ) denotes the cluster center.

5.3 Summary
Let us now summarize the steps involved in direct illumination com-
putation at a shading point x. We take the cut C stored in region
R containing x and for each of its clusters c we compute the unoc-
cluded contribution estimates L̃c (x) and cosθx (Appendix A), and
we set d̂ = d (ctr(c ), x). We cull clusters with L̃c (x) = 0, i.e., which
have provably zero contribution to x, from any further processing.

For the remaining clusters, we compute µ0 using Eq. (10), retrieve
the region-cluster statistics s1, s2,No ,Nv , and compute the MAP pa-
rameters (po ,k,h). Finally, we get the sampling probability P∗ (c |x)
by plugging Equations (15) and (16) into (5):

P∗ (c |x) ∝
1
d̂2

√
(1 − po )2k2 + (1 − po ) (pok2 + h). (17)

Using these probabilities we select a cluster c∗, then we select a
light l∗ ∈ c∗ with probability P (l∗ |c∗) = Φl ∗/

∑
l ′∈c∗ Φl ′ and finally,

sample a point y∗ ∈ Al ∗ using the standard techniques [Pharr et al.
2016; Shirley et al. 1996]. Contribution of this sample is then used to
update statistics s1, s2,No ,Nv stored for the cluster c∗ in the region.

6 CONTROL VARIATES
Inspired by the successes of control variates (CV) documented in
previous work [Clarberg and Akenine-Möller 2008; Owen and Zhou
2000; Pegoraro et al. 2008; Rousselle et al. 2016], we exploit our
accumulated statistics as a CV for further variance reduction. We
keep the nested MC estimator ⟨Lc (x)⟩ of cluster contribution as

before (i.e. Steps (2) and (3) in Sec. 3), and apply the CV to the MC
estimator of the sum over clusters:

⟨L(x)⟩CV =
⟨Lc (x)⟩ + H (c, x)

P (c |x)
−
∑
c ′∈C

H (c ′, x). (18)

The better the control variate H (c, x) approximates the true cluster
contribution Lc (x), the more the variance is reduced. Since this is
precisely the purpose of our Bayesian model (Eq. (15)), it would
seem natural to also use it directly as the CV. However, while we
strongly prefer overestimation to underestimation for the sampling
distribution, this is not the case for the CV. We, therefore, omit the
conservative prior in its definition, and the CV reads

H (c, x) =
1
N

s1,x
d2 (ctr(c ), x)

. (19)

Despite the CV acting as a mere empirical improvement over the
theory presented so far, it yields noticeable variance reduction at a
negligible cost (Fig. 5).

7 RESULTS
Implementation. We have implemented our method in a produc-

tion path tracer and deployed it among users. Our path tracer
combines light sampling and BRDF importance sampling using
MIS [Veach 1997] alleviating the fact that our sampling distribu-
tions do not take BRDF into account. When used in this setting, the
direct illumination samples we use for training are pre-weighted by
MIS weights. This heuristic approach works well in practice (see
Fig. 11), and a more principled analysis is left for future work.

Test setup. We show results of our tests on three different scenes:
Living room, City and Door (see Fig. 1 and 10). Living room is
a typical scene in the architectural visualization featuring a living
room lit by the sun and a few area lights on the ceiling. In contrast,
the City scene shows a street at night and contains more than
5000 light sources. Finally, Door is a rather simple scene featuring
complex shadowing.

In addition to these three main scenes, we use two another scenes
for specific comparisons: Wedge and Hall (see Fig. 9 and 11). Wedge
is a simple synthetic scene illuminated by three area lights and an
environment map. Hall features complex glossy materials illumi-
nated by the sun, an environment map and tens of area lights of
various sizes.

Exact light counts along with other statistics are summarized
in Table 1. All scenes were rendered at the resolution 1080×720
on a single machine with the Intel Core i7-5820K CPU (6 cores, 12
threads) and 32 GB of RAM.

Method components. We first demonstrate individual components
of our method in the City scene in Fig. 5. We start by sampling
proportionally to an estimate of each light’s unoccluded contribution
(a). At every shading point, this method estimates the contribution
of all scene lights (using L̃c (x) from Appendix A), and uses these
estimates to construct the sampling distribution. This procedure
becomes prohibitively expensive for the many lights as in this scene.
By subdividing the scene into regions and sampling proportion-

ally to the unoccluded contribution of light clusters in the associated

ACM Transactions on Graphics, Vol. 37, No. 4, Article 125. Publication date: August 2018.



Bayesian online regression for adaptive direct illumination sampling • 125:7

RMSE 0.0124
(a) Proportional

RMSE 0.0057
(b) Scalable

RMSE 0.0096
(c) ML (overfitting)

RMSE 0.0045
(d) MAP for mean

RMSE 0.0030, 3.6x speedup
(h) g + control variate (Ours)

RMSE 0.0031
(g) f + visibility model

RMSE 0.0035
(f) e + regression

RMSE 0.0037
(e) d + MAP for varianceReference

Fig. 5. Equal-time comparison (60 s) of different components of our direct illumination sampling method in a scene with more than 5000 lights and high
occlusion. We compare sampling proportional to (a) unoccluded light contribution computed separately for each shading point and light, (b) unoccluded
light cluster contribution incorporating our scalable solution, (c) maximum likelihood (ML) estimate of the mean cluster contribution (dark artifacts are a
consequence of overfitting), (d) maximum a posteriori (MAP) estimate of the mean cluster contribution. The remaining variants gradually add the following
components: (e) MAP estimate for variance, (f) regression to model the distance falloff, (g) explicit modeling of occluded samples, (h) control variate. The last
result corresponds to our final solution. The numbers below the method names denote the RMSE to a reference solution. The speedup is with respect to (b).

cuts, we obtain the Scalable method (b) which scales much better
with the number of lights but still neglects visibility.

Learning light sampling probabilities using a simple maximum
likelihood (ML) estimate, i.e., the mean of MC samples, (c) can easily
lead to bias: If the first observed sample is occluded (zero), the
cluster will not receive any further samples, yielding dark artifacts
highlighted by red arrows in the figure.
Such artifacts can be avoided by using a MAP estimate of the

mean (d). However, as we show in Sec. 4, optimal cluster sampling
distribution should take into account the variance of sampling in-
side each cluster. Indeed, adding a MAP estimate for this nested
estimator’s variance significantly reduces noise (e). Incorporating
regression modeling of the distance falloff (f) eliminates noise most
noticeable near region boundaries. Finally, explicit modeling of oc-
cluded samples and the use of control variates further reduces noise.
This is the complete method we use in all our further tests, and we
denote it Ours. Version (b), denoted Scalable, serves as a baseline for
the comparisons. In this scene, Ours is 3.6× faster than Scalable.

Grid resolution. Our spatial regression model makes the perfor-
mance of our algorithm rather insensitive to the division of scene
into regions. As shown in Fig. 6, a trade-off exists between the model
accuracy (the smaller the regions, the more accurate the models)
and the learning rate (the larger the regions the more samples are
available) in the City scene (though the dependence is weak) while
almost no difference is visible in the other scenes. For this reason, all
our results use a fixed-resolution uniform grid with cubical regions
with 64 regions along the shortest scene dimension.

Robustness and DI-only performance. We now demonstrate su-
perior robustness of our method over the work by Donikian et al.
[2006] (details of our reimplementation are given in the Supple-
mental). While Donikian et al.’s method also relies on learning, it is
based on heuristics that eventually fail to deliver a robust solution.
The method gathers statistics in image space and cannot be easily

integrated in a global illumination solution. For this reason, we
compare on direct illumination (DI), and take this opportunity to
provide a DI-only comparison to the Scalable method, see Fig. 7.
The sun in the Living room scene is significantly stronger than

other lights. Since the Scalable method has no notion of visibility,
it prefers sampling the sun while undersampling the other lights,
even in sun’s shadow. Our method quickly learns the sun occlusion
and avoids the excessive noise of Scalable. It converges more evenly
and more than 500× faster. Donikian et al.’s method also shows
improvement over Scalable but struggles with sampling an area
light covered by a shade letting only a small portion of the light
through. The method overfits and introduces spiky noise.

The Door scene aims at testing robustness with complex shadow
and light patterns. While Scalable struggles in shadows as before,
Donikian et al.’s method learns light occlusion quickly and it may
even outperform our method in uniformly lit areas. However, this
aggressive adaptation comes at the cost of overfitting, which is then
manifested as spiky noise and artifacts around shadow boundaries.
Notice the square holes in the penumbra of the plant in the first
inset and at intersections of the net of shadows in the second one.
Our method robustly handles all these situations while being more
than 9× faster than Scalable.

R
M

S
E

Grid res. 256 Grid res. 16

time [min]

Door

101

10

101 101

20 30
City Living room

0.5

x10-3

10-1 10-1
0.5 0.5

10-1

x10-3 x10-5

Fig. 6. RMSE evolution (10 min) for different grid resolutions. With a finer
resolution our model might learn more slowly but achieve better accuracy
(and thus lower RMSE). Nonetheless, the differences are very small.
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ScalableReference
(0.0347)

Donikian et al. Ours
(0.0119) (0.0114, 9.3x)

Door

ScalableReference
(0.0014)

Donikian et al. Ours
(0.000074) (0.000062, 510x)

Living room

Fig. 7. Equal-time comparison (60 s) of our method against Scalable and Donikian et al.’s methods in a direct illumination setting. See the main text for details.

We compared Scalable and our method in the City scene (Fig. 5)
but we had to omit Donikian et al.’s because of its vague description
of dealing with many lights. RMSE evolution plots in Fig. 8 show
that in the City scene our method maintains a stable speedup over
Scalable, while in the other two we can observe a higher empirical
convergence rate.

We want to underline that our improvement over Donikian et al.
lies mainly in the robustness, not the speed. In fact, their method can
outperform ours in uniformly lit areas, but introduces unacceptable
artifacts at shadow boundaries (Fig. 7 and 9). This lack of robustness
is an inherent property of their static strategy to prevent overfitting
(weighting distributions based on the iteration step) and cannot be
avoided by any parameter tweaking. Addressing this deficiency is
the very purpose of our Bayesian approach.

Discussion of other competing work. The method of Wang and
Akerlund [2009] is similar to the Scalable method. Unlike Wang and
Akerlund, Scalable omits the BRDF from light sampling distribution,
but that does not introduce any disadvantage on diffuse surfaces.
Furthermore, Scalable gains some performance gain by caching of
light cuts for scene regions. As a result, comparison against the
Scalable baseline can serve as a fairly good approximation to a
comparison against Wang and Akerlund.
We do not compare against methods that involve substantial

preprocessing [Georgiev et al. 2012; Wu and Chuang 2013] since
these methods address a different use case than ours. In a typical
commercial rendering workflow a vast majority of renders are in

R
M

S
E

Ours Scalable

time [min]

Door

101 101 101

City Living room

10-1 10-110-1

10-1 10-1 10-2

10-3 10-3 10-5

Fig. 8. RMSE evolution (10 min) for the direct illumination only. Our method
is compared against the Scalable method. The plots start at 10 seconds to
ensure all pixels were sampled at least once.

fact short tests, not the final images. In this context, a preprocessing
step is an obstacle that would prevent the method from being used
in the pipeline that our users rely on in their daily work.

Global illumination integration. When integrated in a global illu-
mination (GI) solution, the relative performance improvement of
our method naturally depends on the variance contribution due to
the direct and indirect components. While our DI method yields an
almost noise-free GI result in all three scenes, in the City and Door
scenes (Fig. 10) roughly half of the speedup of the DI-only solution
is retained (speedup 3.6× from Fig. 5 and 9.3× from Fig. 7 decreases
to 2.0× and 4.3× respectively). On the other hand, our 510× speedup
in the DI-only comparison in the Living room scene (Fig. 7) reduces
to 6.7× in GI (Fig. 1). This indicates that variance contribution of
the direct component in this scene is small in comparison to the
total illumination.

Memory consumption and overhead. At our grid resolution (64
regions along the shortest scene dimension), memory consumed

Reference Donikian et al. Ours
(0.0020) (0.0013)

Wedge

Fig. 9. Equal-time time comparison (10 s) of our method against Donikian et
al.’s method in a direct illumination setting. The large area light on the right
that illuminates the scene only through a narrow gap presents a difficult
situation for the Donikian et al.’s method. Many of its samples are blocked,
which increases the danger of overfitting, manifested as block artifacts
along shadow boundaries where the algorithm incorrectly decided to stop
sampling the light.
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Door

ScalableReference
(0.0198)

Ours
(0.0140, 2.0x)

City

ScalableReference
(0.0425)

Ours
(0.0206, 4.3x)

Fig. 10. Equal-time time comparison (60 s) of our method against Scalable in a global illumination setting. See the main text for more details.

by the stored light cuts and model statistics is moderate, as shown
in Table 1. These numbers are for a GI setting and less memory
is consumed when computing only DI. An empty scene region
occupies 40 B of memory. Every cluster inside a region consumes
additional 48 B in order to store: 2× 64-bit double for statistics s1, s2;
2× 32-bit integer for statistics No ,Nv ; 64-bit pointer to cluster tree
node; 32-bit integer for flags; 3× 32-bit float for RGB channels of s1
for the control variate.
Regarding computation overhead, number of pixel samples per

second decreased in our method in comparison to Scalable by no
more than 10% in all our test scenes (see Table 1). The learning
compensates for this by better sampling yielding much improved
overall result.

MIS combination. We tested our method both with and without
MIS combination with BRDF sampling. While there is almost no
difference in the Living room, City and Door scenes, in scenes with
large area lights and glossy materials, the MIS combination proves
beneficial as shown in the Hall scene in Fig. 11. Even in this scene
containing complex illumination and glossy materials, our method

performs well even though our light sampling distribution does not
take the BRDF into account nor it addresses sampling of individual
lights.

Unbiasedness. Although we use past samples to update sampling
distributions, we do not modify sample values based on the past

Table 1. Statistics gathered after 120 s of rendering of our test scenes with
global illumination. The average cut size (i.e., number of clusters per region)
is taken over non-empty regions only. Total memory consumed by the
regions and clusters is reported. The overhead expresses relative decrease
of pixel samples per second with respect to Scalable.

Light
count

Non-empty
regions

Average
cut size

Memory
(MB)

Over-
head

City 5022 39666 (4.1%) 33 101 7.2%
Door 5 24526 (1.1%) 5 97 3.6%
Living room 5 57304 (2.3%) 5 113 7.9%
Hall 78 31304 (6.6%) 39 78 9.8%
Wedge 4 10871 (0.4%) 4 101 9.0%

ACM Transactions on Graphics, Vol. 37, No. 4, Article 125. Publication date: August 2018.



125:10 • Vévoda et al.

OursScalable
(0.0753)

Ours MIS Scalable MIS
(0.0550, 1.2x) (0.0609)

Hall

(0.0820)

Fig. 11. Equal-time time comparison (60 s) of our method against Scalable
with and without MIS in a global illumination setting.

observations and our method is therefore unbiased. In Fig. 12 we
empirically demonstrate a steady convergence of our method to the
result of the (non-adaptive) Scalable method.

8 LIMITATIONS AND FUTURE WORK
Multiple Importance Sampling (MIS). We have discussed in Sec. 7

the heuristic nature of the integration of our method with MIS.
While our approach works well in practice and successfully handles
large area light sources and complex materials (Fig. 11), a more
in-depth analysis could yield further improvements.

R
M
S
E

time [min] 120

3.5

Exposure value = 2010
1

x10-1

Fig. 12. Steady convergence of our method (RMSE plot, left) to reference
solution in the Living room scene suggests that our adaptive method ac-
cumulates no bias. A 220× amplified color-coded difference image (right),
taken at the end of the measurement, shows that any remaining differences
are due to a random noise (red=positive and green=negative difference).

BRDF. Our method does not consider the BRDF factor in learning
the sampling distributions. This makes the learning more tractable
(less detailed function to learn) and practical in a production setting
(the BRDF can be a black box). But it limits the adaptability of the
sampling. Though this has not been an issue in practice thanks to
the MIS combination with BRDF sampling, incorporating the BRDF
in the learning process could still be beneficial.

Scene subdivision. Another interesting point is the trade-off be-
tween model accuracy and learning rate due to the scene division.
The graphs in Fig. 6 suggest such a trade-off exists, although the
differences are small. However, the graphs show aggregate statistics
over the entire scene, which can obscure the fact that adaptive scene
subdivision could still have an important positive local impact.

Hyperparameters. As yet another area of research we see a more
rigorous approach for hyperparameter selection. Our default choice
yields an uninformed prior distribution over the parameters, which
fits all scenes, but it might deliver suboptimal performance. Full
Bayesian treatment could yield further performance gains. See the
Supplemental for additional analysis of different hyperparameter
values.

Sampling of individual lights. Our method focuses on light selec-
tion and leaves sampling of the final point on the light unaddressed.
This is motivated by the fact that the light selection is usually re-
sponsible for most of the variance in direct illumination. But this
may not always be the case, especially when the individual lights
are large (e.g., environment maps). This is partially alleviated by the
integration with MIS (Fig. 11) but there is certainly some potential
for improvement.

Overhead. Probably the thorniest practical issue, shared with the
Scalable method, is the overhead associated with constructing the
sampling distribution at each shading point. This is amortized in
our implementation by a relatively large splitting factor (16 samples
taken from one distribution) but it could be an issue in a simple path
tracer without splitting.

Relation to path guiding. As mentioned in Sec. 2, path guiding
and our method share the idea of sampling according to a priori
unknown illumination estimates. But while path guiding usually
focuses on indirect illumination, we address specifically light source
selection for direct illumination computation. In fact, our work is a
component that could be integrated into a path guiding solution.
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9 CONCLUSION
We proposed an unbiased adaptive direct illumination algorithm
with online learning of light sampling distributions. The distribu-
tions are continually improved based on the contribution of the
direct illumination samples taken during rendering, including the
visibility factor. As in any other adaptive Monte Carlo sampling
scheme, issues associated with limited reliability of the available
information threaten the robustness of the resulting algorithm. As
our main contribution, we propose a Bayesian treatment of the
learning process based on a statistical model developed specifically
for the direct illumination sampling process. This treatment results
in a robust and efficient algorithm, and we hope that the presented
methodology will find its use in other adaptive Monte Carlo schemes
both in image synthesis and other application domains.
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A CLUSTER CONTRIBUTION ESTIMATES
Our scalable method differs from Lightcuts mainly in the way the
cluster contribution estimates are calculated. We use two kinds of
estimates. First, L̃c (x) denotes an estimate of the contribution of
cluster c to a particular shading point x. It is used as a prior distribu-
tion in our Bayesian learning model. Second, since we construct one
cut per entire scene region, the cut construction needs an estimate
L̃c (R) valid for all points in the respective region R.

We first discuss the point estimate L̃c (x). Unlike Lightcuts, we do
not desire an upper bound, since it often drastically overestimates
the actual contribution. Instead, we use less conservative estimates,
so that our prior better matches actual contributions. We seek to
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estimate the radiance due to direct illumination from cluster c:

Lc (x) =
∫
Ac

Le (y→x)V (y↔x) cosθy cosθx
d2 (y, x)

dy. (20)

As in Lightcuts we use the same trivial bound for visibility V = 1
and upper bound cosθx on the cosine at surface. We use also the
original upper bound for the cosine at the light cluster, but only if
the cluster center is further than 1.5 times the cluster diameter. For
nearby clusters this bound would become too conservative and yield
poor priors, so we average it with the cosine at the cluster center
ctr(c ), i.e., the cosine between the direction x−ctr(c ) and the axis of
the cluster’s normal cone. We denote the resulting cosine estimate
as cosθc . For the distance factor, we use a distance to the cluster
center d (ctr(c ), x). And finally for each light l ∈ c we conservatively
estimate radiance Le it can emit to x and denote it Le,l . For instance,
for cosine lights with emission defined as I0 (cosθy)α this estimate
can be obtained as I0 (cosθc )α . Together we have:

L̃c (x) =
cosθc cosθx
d2 (ctr(c ), x)

∑
l ∈c

|Al |Le,l . (21)

On the other hand, the region-wide estimate L̃c (R) is more con-
servative so as to produce better cuts (it is less prone to a premature
stop of the cut construction because of underestimating parent clus-
ters). We construct it as an upper bound of L̃c (x) over all points
in region R by bounding its individual factors. A trivial bound is
used for the cosine at surface since the surface normal in the region
may be arbitrary. To bound the cluster cosine with respect to the
entire region, we enlarge the cluster bounding box by the region
box [Walter et al. 2006]. The distance between the cluster and the
region is bounded from below. Finally, emitted radiance is bounded
using maximum radiance a cluster light can contribute to any point
in the region (similarly as in L̃c (x) but using the region-wide bound
on the cluster cosine).

See the Supplemental for discussion of importance of L̃c (x) accu-
racy and analysis of impact of the clustering on the method perfor-
mance.

B OPTIMAL CLUSTER SAMPLING PROBABILITIES
In this section we derive the optimal cluster sampling distribution
Popt (c |x) from Sec. 4. To achieve that, we minimize the variance
Var[⟨L(x)⟩] given by Eq. (4) with respect to the cluster sampling
probabilities P (c |x), subject to

∑
c ∈C P (c |x) = 1.

Let us denotewc = P (c |x), c ∈ C, where C is the set of clusters.
We further define w = (wc1 , . . . ,wc |C| ) andm2,c as in Eq. (4). Next,
we set up a lagrangian L(w, λ)

L(w, λ) = −L(x)2 + *.
,

∑
c ∈C

1
wc

m2,c
+/
-
+ λ *.

,

∑
c ∈C

wc − 1+/
-
, (22)

where λ ∈ R andwe seek a solutionw, λ of the equation ∇L|w,λ = 0,
yielding the following set of equations:

d

dwc
L(w, λ) = −

1
w2
c
m2,c + λ = 0,

d

dλ
L(w, λ) =

∑
c ∈C

wc − 1 = 0.
(23)

The solution is wc =
√

1
λm2,c and λ =

(∑
c ∈C
√
m2,c
)2
, where λ

serves as a normalization factor making thewc sum up to one. In
other words, the optimal cluster sampling probability Popt (c |x) is
proportional to the square root of the second momentm2,c .

C CONJUGATE PRIORS FOR OUR MODEL
Setting p (θ ) = p (po )p (k,h) in the relation p (θ |D) ∝ p (D|θ )p (θ ),
the posterior p (θ |D) will be proportional to:

p (po )p (k,h)
*.
,

No∏
i
δ (êx,i )po

+/
-

*.
,

Nv∏
i
(1 − po )N *

,
êx,i

������

k

d̂2
i

,
h

d̂4
i

+
-

+/
-
. (24)

Beta prior. To get the posterior distribution of po , we need to di-
vide the above expression (24) by themarginal distributionp (D,k,h)
which we get by integrating out po from (24). By doing so we get
the posterior in the form:

p (po |D,k,h) = K p (po ) (1 − po )NvpNo
o , (25)

where K is some normalization factor depending only on the data
D and our choice of the prior p (po ). We see that (1 − po )NvpNo

o
is of the same form as the Beta distribution. Therefore by setting
p (po ) = B(po |N̂o , N̂v ) we are now able to evaluate K from (25) and
we get the posterior distribution

p (po |D,k,h) = B(po |N̂o + No , N̂v + Nv ). (26)

We see that the Beta distribution is indeed a conjugate prior of our
model from Eq. (8).

Normal-inverse-gamma prior. To find a conjugate prior for the k
and h parameters, we proceed similarly as before with po . We get
the posterior distribution of the form:

p (k,h |D,po ) = K d̂2
i p (k,h)

Nv∏
i
N
(
êx,i d̂

2
i |k,h

)
, (27)

where K is again some normalization constant and we used the
relation N (êx,i |k/d̂

2
i ,h/d̂

4
i ) = d̂2

iN (êx,i d̂
2
i |k,h). Normal-inverse-

gammaN -Γ-1 distribution is a conjugate prior for such a case [Bishop
2006]. Therefore it is a conjugate prior for our model (8).

D MAP FOR DIRECT ILLUMINATION SAMPLING
Plugging Eq. (8) and (9) into Eq. (11) yields the following system of
equations.

(N̂o − 1) (1 − po ) − po (N̂v − 1)
po (1 − po )

−
No
po
−

Nv
1 − po

= 0

s1,x − k (N̂ + Nv ) + N̂ µ0
h

= 0

−2ks1,x + s2,x − 2N̂αh + 2β + N̂ (µ0 − k )2 + Nv (k2 − h) + h

h
= 0.

The solution to this system gives us the MAP solution in Eq. (12),
(13) and (14).
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