
IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 1

Survey of Markov Chain Monte Carlo Methods in
Light Transport Simulation:

Supplemental Material
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1 INTRODUCTION

In this supplemental material we discuss how to break
detailed balance condition (see Sec. 2.3 in the main text)
and still ensure that MCMC algorithm converges (Sec. 2).
We also discuss details of some algorithms that did not
fit into the main text, more specifically the general Hamil-
tonian Monte Carlo [1] (Sec. 3) and general Multiple-try
Metropolis [2] (Sec. 4). In Sec. 5 we provide our personal
recommendations as to which algorithm converges faster in
which scene.

Besides this, we list (Tab. 1 and Tab. 2) all the light trans-
port algorithms discussed in the main text, while pointing
out their main features. For readers interested in testing
different MCMC algorithms themselves, we have compiled
a list of publicly available implementations (Tab. 3).

2 BREAKING DETAILED BALANCE CONDITION

While the detailed balance condition (Eq. (8) in the main
text) ensures that a Markov chain is invariant to a given
distribution, the condition is not necessary [3], [35]. It is
sufficient to satisfy a less strict global balance condition,
which states that for all u, v ∈ U :∫
U
π(u)q(u→ v)α(u→ v)dv =

∫
U
π(v)q(v → u)α(v → u)dv

(1)
The above equation can be translated as how much energy
(i.e. target function value) flows out of any u ∈ U must also
flow back from all v ∈ U . It is straightforward to see that the
detailed balance (Eq. (8) in the main text) implies the above
balance condition.

Breaking detailed balance may potentially result in more
efficient mutations [3], [4], however it is then also more
challenging to ensure Eq. (1) holds. Most methods therefore
rather ensure that the detailed balance holds.
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3 HAMILTONIAN MONTE CARLO

In this section we discuss Hamiltonian Monte Carlo (HMC) [1]
in more detail. We first describe the general HMC algorithm
and then we describe the details of Hessian-Hamiltonian
Monte Carlo light transport algorithm [5] that were left out
from the main text.

3.1 General Hamiltonian Monte Carlo
HMC generates a new proposal by simulating Hamiltonian
dynamics over the landscape of the graph of the target
function. Hamiltonian dynamics is a system of differential
equations defined on Hamiltonian energy E(u,m). Here u
represents the position of a point mass and HMC interprets
it as the Markov Chain state, while m is the mass momen-
tum. The Hamiltonian energy is the sum of potential energy
(gravity) EU (u) and kinetic energy EK(m)

E(u,m) = EU (u) + EK(m). (2)

In HMC, the potential energy is defined using the target
function π as

EU (u) = − log(π(u)). (3)

The negative sign ensures that the point mass will be pulled
by the gravity towards peaks of the target function π, while
log better captures the high dynamic range of π and allows
for simpler derivatives of EU . The kinetic energy is equal
to 1

2mAm
T , where the matrix A transforms the shape of

the HMC proposal distribution (A should be optimally set
to the covariance of the target function [6]).

To generate a proposal using HMC, we first consider
the current state as the position of a point mass and
randomly assign to it a momentum m from a Gaussian
distribution exp(−EK(m)) (note thatEK(m) is quadratic in
m, hence the previous formula is a Gaussian). Hamiltonian
dynamics are then simulated for a fixed time and a new po-
sition v and momentum l is obtained. Note that simulating
Hamiltonian dynamics for arbitrary target function usually
requires time consuming numerical integration. The new
state equal to the new position v is then accepted with
the probability

α(u→ v) =

(
π(v) exp(−EK(l))

π(u) exp(−EK(m))
, 1

)
. (4)
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Fig. 1: In Hamiltonian Monte Carlo (Sec. 3), the potential
energy EU (left) is equal to negative logarithm of the tar-
get function π (right). Given a current position (state) u
and a randomly sampled momentum m of a point mass,
Hamiltonian dynamics are simulated and a new position
(proposal) v is obtained. The gravity defined by EU pulls
the point mass downwards, thus the proposal v is pulled
towards the peaks of the target function.

Here we have just plugged exp(−EK(m)) as the mutation
kernel into the acceptance probability (Eq. (2) in the main
text). Now from Eq. (2) and Eq. (3) we directly see that
π(u) exp(−EK(m)) = exp(−E(u,m)) and thus if Hamilto-
nian dynamics are simulated accurately, the energy remains
constant and the proposed v will be always accepted. Due
to the potential energy definition in Eq. (3), Hamiltonian
dynamics will create more proposals at places with higher
target function value (Fig. 1) and thus effectively explore
local neighborhood of a current sample. For a more com-
prehensive description of HMC we refer readers to other
sources [6].

3.2 Approximating target function in Hessian-
Hamiltonian Monte Carlo

As described in the main text (Sec. 5.3.2) Hessian-Hamiltonian
Monte Carlo (H2MC) by Li et al. [5] does not apply HMC
directly to avoid the costly integration, which is required
to simulate Hamiltonian dynamics. Instead H2MC locally
approximates the target function using a Taylor series

log(π(v)) ≈ 1

2
vTHv +Gv + log(π(u)). (5)

Here u is the current state and v is a proposal. The Hessian
matrix H and the gradient vector G of log(π(u)) are com-
puted using automatic differentiation [7]. This approxima-
tion allows Hamiltonian dynamics to be solved analytically.

The authors show that the analytical solution of Hamil-
tonian dynamics for a new position is actually a linear
mapping from momentum m sampled from a Gaussian
distribution. Thus a new position (new proposal) is also
distributed according to a Gaussian distribution (Fig. 2).

Fig. 2: In Hessian-Hamiltonian Monte Carlo (H2MC,
Sec. 3.2), the positions generated using Hamiltonian dy-
namics (left) from the same position u with a momentum
sampled from a Gaussian distribution are also distributed
according to a Gaussian distribution (green). This distribu-
tion is used to generate proposals v in H2MC (right).

1: Select u0
2: for i = 0 to the number of samples do
3: Generate k proposals V = {v1, . . . , vk}
4: Sample a proposal v ∈ V according to ŵ(ui → v)
5: Mutate v to k − 1 competitors u∗1, . . . , u

∗
k−1

6: Set: U∗ = {u∗1, . . . , u∗k−1, u∗k = ui}
7: Compute acceptance probability α̂(U∗→V )
8: Generate random number ξ ∼ U(0, 1)
9: if α̂(U∗→V ) > ξ then

10: Accept proposal: set ui+1 = v
11: else
12: Reject proposal: set ui+1 = ui

Fig. 3: Mutliple-try Metropolis algorithm.

4 MULTIPLE-TRY METROPOLIS

In this section we describe the general Multiple-try
Metropolis (MTM) [2] algorithm in more detail. Note that
unlike standard Metropolis-Hastings (MH) [8], the Multiple-
try Metropolis algorithm tries several proposals before ac-
cepting or rejecting a single one of them. The selected pro-
posal should have theoretically higher chance of acceptance
compared to MH and thus should decrease the chance of
the chain getting stuck in a local maximum.

As in the standard Metropolis-Hastings algorithm, all
proposals v are sampled using a mutation Q with the con-
ditional probability q(u → v). Given a target function π we
define the proposal importance weight ŵ

ŵ(u→ v) = π(v)q(v → u)λ̂(v ↔ u), (6)

where λ̂(v ↔ u) is a non-negative symmetric function,
which can be chosen by the user. The only requirement
is that λ̂(v ↔ u) > 0 whenever q(v → u) > 0. λ̂
influences the probability of accepting a proposed state,
however the authors show that its impact is minimal.

The pseudo-code of MTM is outlined in Fig. 3. The al-
gorithm starts as MH with an initial sample (line 1) from
which it generates a Markov chain. Given a sample ui
the algorithm generates k proposals V = {v1, . . . , vk} with
probability q(ui → vj) (line 3). The final proposal v is then
sampled from V with probability proportional to ŵ(ui → v)
(line 4). Next, from the proposal v we sample k − 1 competi-
tors u∗1, . . . , u

∗
k−1 with probability q(v → u∗j ) (line 5). We

complete the set of competitors U∗ with the current sample
u∗k = ui (line 6). The acceptance probability with which we
will accept the proposal (line 7) is defined as

α̂(U∗→V ) = min

(
1,
ŵ(ui → v1) + . . .+ ŵ(ui → vk)

ŵ(v → u∗1) + . . .+ ŵ(v → u∗k)

)
(7)

Then the proposal is either accepted (line 10) or rejected
(line 12) as in standard MH.

From the algorithm description one can immediately
observe that for generating a single sample from the Markov
chain, 2k − 1 tentative samples must be generated. Thus
the better distribution of samples is payed for by far more
expensive sample generation. MTM is therefore mainly
useful in applications, where generating fewer but better
distributed samples is more advantageous.
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5 RECOMMENDATIONS

In this section we briefly discuss which of the existing
algorithms is better at handling a given scene. Note that this
discussion is based purely on our personal experience when
using these algorithms and not on a thorough analysis. We
discuss here only the algorithms that generate full light
transport and thus we do not include here algorithms based
on stochastic progressive photon mapping (they do not
generate pure specular/highly glossy paths).

The original Metropolis Light Transport (MLT, see
Sec. 3.3 in the main paper) is, according to our own experi-
ence, the best choice when one wants to render a scene with
only diffuse materials. MLT can generate paths very quickly
and due to absence of glossy/specular transport it can easily
sample all paths and efficiently reconnect mutated sub-path
to the existing paths. MLT also handles well scenes with
difficult visibility (where light has to bounce several times
before reaching the camera).

For scenes that contain difficult specular/highly glossy
transport and where this difficult transport is not separated
to too many individual peaks (i.e. there is not a prob-
lem with global exploration), we recommend using either
MLT with mutations from both Manifold Exploration Light
Transport (MELT, see Sec. 5.2 in the main paper) and Half-
vector Space Light Transport (HLST, see Sec. 5.2 in the main
paper) or using Hessian-Hamiltonian Monte Carlo (H2MC
see Sec. 5.3 in the main paper). While H2MC has better
global exploration due to its inherent importance sampling
(H2MC uses the primary sample space), MELT/HSLT can
better utilize geometry features of the scene and also does
not require computation of target function differentials (and
thus it maybe more practical to implement in a production
renderer).

For scenes that feature specular/highly glossy transport
separated to many individual peaks (and/or contain diffi-
cult visibility), we recommend using Metropolised Bidirec-
tional Estimators (MBE, see Sec. 10.2 in the main paper).
While MBE seems to converge rather slowly compared to
algorithms like HSLT, it discovers all the peaks due to its
better global exploration and is able to efficiently sample
them due to its use of brute-force path reusal with spatial
regularization. However, MBE is also very costly in terms
of memory (it requires storing all camera subpaths in each
iteration). In the case when this is an issue we recommend
using algorithms that can utilize both primary sample space
and path space mutations (see Sec. 4.3 in the main paper)
while enhancing these algorithm with Replica exchange to
achieve better global exploration.

For a very special case of a scene, which contains mainly
pure specular paths, the best solution seems to be using
just Primary sample Space MLT (PSSMLT, see Sec. 4.1 in the
main paper) with a single mapping which corresponds to
unidirectional path tracing. While this algorithm is simple,
it can generate paths very fast and thus handle such scenes
by brute-force.
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Name or acronym Section Based on State space MCMC algorithm Description
MLT [9] 3.1 N/A Path space Metropolis-Hastings Introduced MCMC to light transport

Simplified state space: simplifying the algorithm, improving local exploitation/global exploration via importance sampling
Name or acronym Section Based on State space MCMC algorithm Description
PSSMLT [10] 4.1 N/A Primary sample space Metropolis-Hastings Introduced primary sample space
MMLT [11] 4.2 PSSMLT Primary sample space Metropolis-Hastings Improves PSSMLT by sampling one map-

ping to the path space.
Fusing state spaces
[12] [13] [14]

4.3 MMLT Primary sample space
+ Path space

Metropolis-Hastings Introduced framework for using mutations
from both spaces

Differential methods: improving local exploitation by utilizing geometry/target function differentials
Name or acronym Section Based on State space MCMC algorithm Description
MELT [15] 5.1 MLT Path space Metropolis-Hastings Efficiently samples specular manifolds
HSLT [16] 5.2 MLT Path space + Natural

constraints space
Metropolis-Hastings Introduced the natural constraints space

that allows for efficient mutation of
glossy/specular paths

Improved
HSLT [17]

5.2.3 HSLT Path space + Natural
constraints space

Metropolis-Hastings Improves the efficiency of the HSLT muta-
tion

H2MC [5] 5.3 MMLT Primary sample space Metropolis-Hastings Applies ideas from Hamiltonian Monte
Carlo to compute Gaussian proposal distri-
bution for superior local exploitation.

Adaptive Markov chain Monte Carlo: allows for adaptive tuning of mutation parameters
Name or acronym Section Based on State space MCMC algorithm Description
Robust Adaptive
Photon
Tracing [18]

6.2 PSSMLT Primary sample space Replica exchange +
Adaptivity

Introduced adaptive MCMC to light trans-
port, improves stochastic progressive pho-
ton sampling by generating photons based
on visibility target function

Tempering and Replica exchange: improves global exploration by applying Replica exchange algorithm or tempering/regularization
Name or acronym Section Based on State space MCMC algorithm Description
RELT [19] 7.3 PSSMLT Primary sample space Replica exchange Introduced Replica exchange to light trans-

port, different chains use different mappings
to the path space

Path space
regularization [20]

7.4 N/A Any Any Discusses the idea of path space regular-
ization that enables sampling of previously
impossible to sample paths

Tempering of path
contribution [21]

7.5 MMLT Primary sample space Replica exchange +
Adaptivity

Combines the idea of regularization with
Replica exchange, introduces new replica ex-
change moves

Multiple-try Metropolis: improves global exploration by applying Multiple-try Metropolis
Name or acronym Section Based on State space MCMC algorithm Description
MIR [22] 8.1 MLT Path space Multiple-try

Metropolis
Introduced Multiple-try Metropolis to light
transport, uses it to generate good distri-
bution of virtual point lights (for instant
radiosity [23])

Coherent MLT [24] 8.2 MLT Path space Multiple-try
Metropolis

Does not improve global exploration, uses
Multiple-try Metropolis to generate coherent
paths in parallel

Modifying target function for uniform image error I: algorithms with full light transport
Name or acronym Section Based on State space MCMC algorithm Description
Two-stage MLT
[25]

9.1 MLT Path space Metropolis-Hastings Introduced the concept of modifying target
function to achieve uniform image error

Multi-stage
MLT [26]

9.1.1 MLT Path space Metropolis-Hastings Improves two-stage MLT by using more
stages and perceptual error metric

GDMLT [27] 9.2 MELT Path space Metropolis-Hastings Apart from the main image, GDMLT sam-
ples also difference images (of neighboring
paths contributions) and constructs the final
image using Poisson reconstruction

Improved
GDMLT [28]

9.2.3 GDMLT Path space Metropolis-Hastings Improves global exploration of GDMLT by
reducing the target function variation

TABLE 1: A list of MCMC algorithms used in light transport simulation (continues on the next page).
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Modifying target function for uniform image error II: algorithms based on stochastic progressive photon mapping [29]
Name or acronym Section Based on State space MCMC algorithm Description
Metropolis photon
sampling [30]

9.3 MLT Path space Metropolis-Hastings Uses vertices of paths generated by MLT as
photons

Improved SPPM
[31]

9.3 PSSMLT Primary sample space Metropolis-Hastings Target function is based on the approximate
density of photons contributing to each im-
age pixel.

Visual importance
SPPM [32]

9.3 PSSMLT Primary sample space Replica exchange Utilizes precomputed visual importance [33]
as a target function to guide the photons.

Spatial Target
Function [34]

9.3.1 PSSMLT Primary sample space Replica exchange +
Adaptivity

Derives a target function that achieves uni-
form error (under simplifying conditions)
based on probability of a uniformly gener-
ated photon contributing to the image pixel.

Improving stratification: ensuring better global exploration by improving stratification of MCMC samples
Name or acronym Section Based on State space MCMC algorithm Description
ERPT [35] 10.1 MLT Path space Metropolis-Hastings Runs several independent chains (each ini-

tialized by stratified path tracer) per each
pixel using MLT local perturbations

MBE [36] 10.2 PSSMLT Primary sample space Replica exchange +
Adaptivity

Combines camera subpaths generated by
stratified path tracer with light subpaths
generated by MCMC, while utilizing all path
sampling techniques from vertex connection
and merging [37], [38]

TABLE 2: A list of MCMC algorithms used in light transport simulation (starts on the previous page).

Algorithms Renderer Author Url
MLT, PSSMLT, ERPT, MELT, HSLT Mitsuba W. Jakob https://www.mitsuba-renderer.org
HSLT Mitsuba A. S. Kaplanyan,

J. Hanika
https://www.mitsuba-renderer.org

H2MC dpt T.-M. Li https://github.com/BachiLi/dpt
Fusing state spaces, MMLT, PSSMLT,
MLT, MELT

Lightmetrica H. Otsu http://lightmetrica.org

RELT xyz renderer S. Kitaoka https://github.com/skitaoka/xyz
Spatial target function, Improved
SPPM, Robust Adaptive Photon
Tracing, Two-stage/Multi-stage MLT

Mitsuba (branch) A. Gruson, M. Šik,
J. Vorba

https://github.com/beltegeuse/spatialTF code

MBE Mitsuba (branch) M. Šik http://cgg.mff.cuni.cz/∼sik/meb/index.html

TABLE 3: A list of publicly available implementations of MCMC algorithms that are known to us.
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