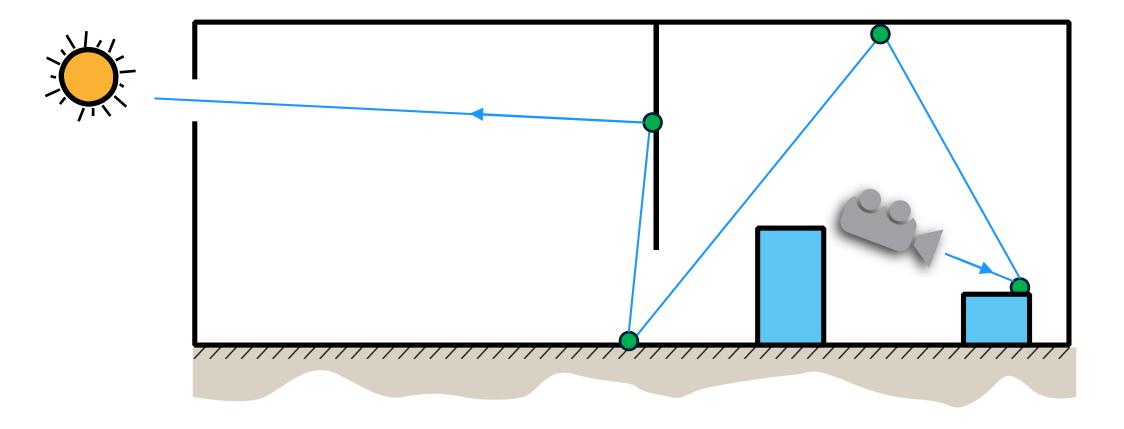


PATH GUIDING BY MACHINE LEARNING

Jaroslav Křivánek Charles University – Render Legion | Chaos Group

LIGHT TRANSPORT



TODAYS' RENDERING IS OLD NEWS

GENERATIONS / VANCOUVER SIGGRAPH2018

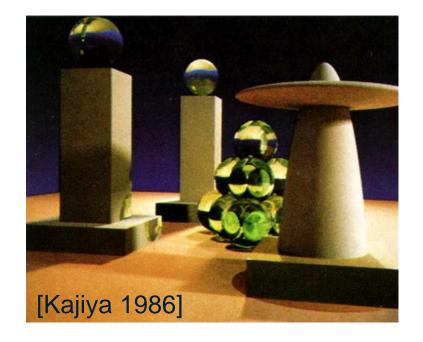
• From Matt Pharr's editorial to ACM TOG special issue on production rendering [Pharr 2018]:

"Today ... renderers are ... based on ... path tracing. Introduced ... by Jim Kajiya (1986)."

"Many advancements were made ... including

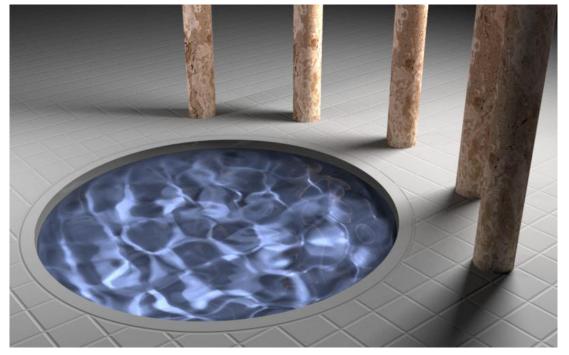
- more effective light sampling algorithms (Shirley et al. 1996),
- high-quality sampling patterns (Kollig and Keller 2002), and
- multiple importance sampling (Veach and Guibas 1995),"

"... the core ray tracing [got] more efficient (Wald et al. 2001)."



ADVANCED LIGHT TRANSPORT

• Why are advanced light transport algorithms not used in practice?



Metropolis Light Transport [Veach and Guibas 1997]

A GOOD LIGHT TRANSPORT ALGORITHM ...

GENERATIONS / VANCOUVER SIGGRAPH2018

• ... has to be

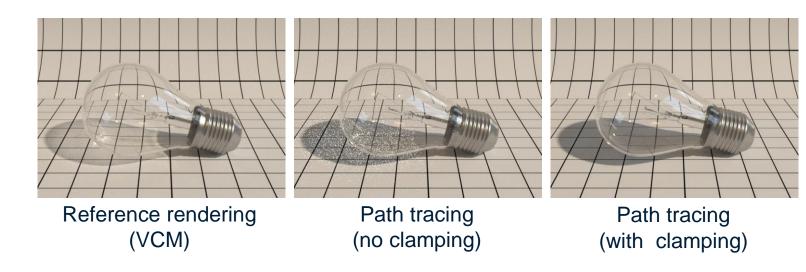
. . .

- Fast in common scenes
- Robust & reliable
- Easy-to-use (no parameters)
- Interactive & progressive

THE GOOD ALGORITHM CHECKLIST

- Fast in common scenes
- Robust & reliable
- Easy-to-use (no parameters)
- Interactive & progressive

• [Kajiya 1986, Veach and Guibas 1995, Shirley 1996,...]



- Fast in common scenes
- Robust & reliable
- Easy-to-use (no parameters)
- Interactive & progressive

THE LIGHT TRANSPORT CHALLENGE

GENERATIONS / VANCOUVER SIGGRAPH2018

Algorithm that can renders this at least as fast as a path tracer... ... and it can also render this.

BIDIR / VCM

- [Lafortune and Willems 1993, Veach and Guibas 1995]
- [Georgiev et al. 2012, Hachisuka et al. 2012]

- VCM = Photon mapping + Bidir
- "Brute-force robustness" Overhead

Fast in common scenes

- Robust & reliable
- Easy-to-use (no parameters)
- Interactive & progressive

METROPOLIS LIGHT TRANSPORT

MLT + Manifold exploration [Jakob and Marschner 2012]

Reference

METROPOLIS LIGHT TRANSPORT

- [Veach and Guibas 1997, ...]
- Uneven convergence, temporal instability

- Fast in common scenes
- Robust & reliable
- Easy-to-use (no parameters)
- Interactive & progressive

DESIGNING THE ULTIMATE PRACTICAL ALGORITHM

THE ULTIMATE LIGHT TRANSPORT ALGORITHM GENERATIONS / VANCOUVER SIGGRAPH 2018

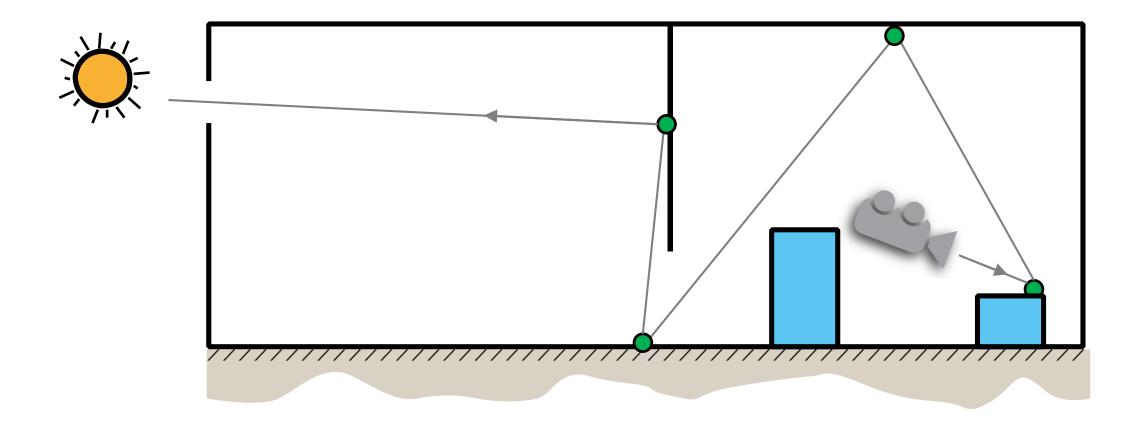
- Start off from PT
 - because it ticks most of the boxes

Address its problems

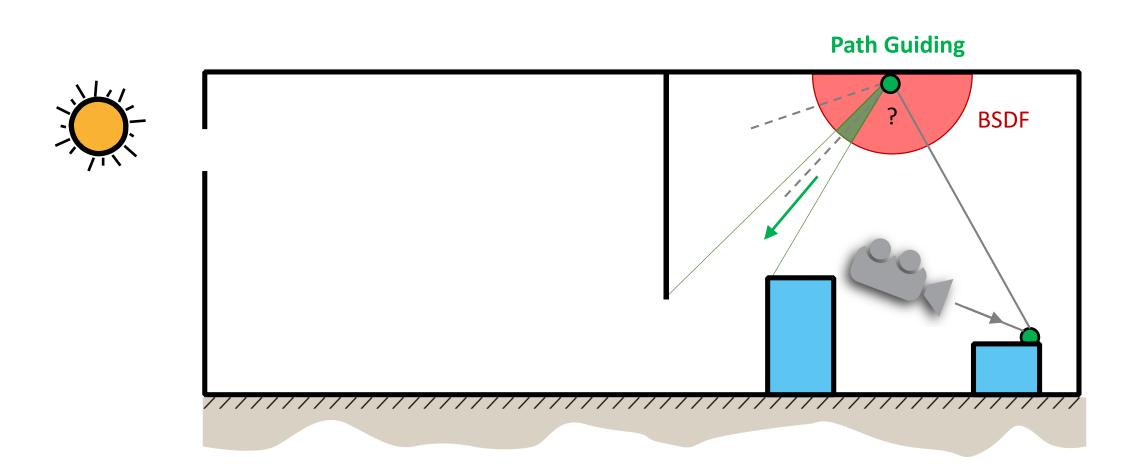
• Root of the problem: lack of information in sampling decisions

- Fast in common scenes
- Robust & reliable
- Easy-to-use (no parameters)
- Interactive & progressive

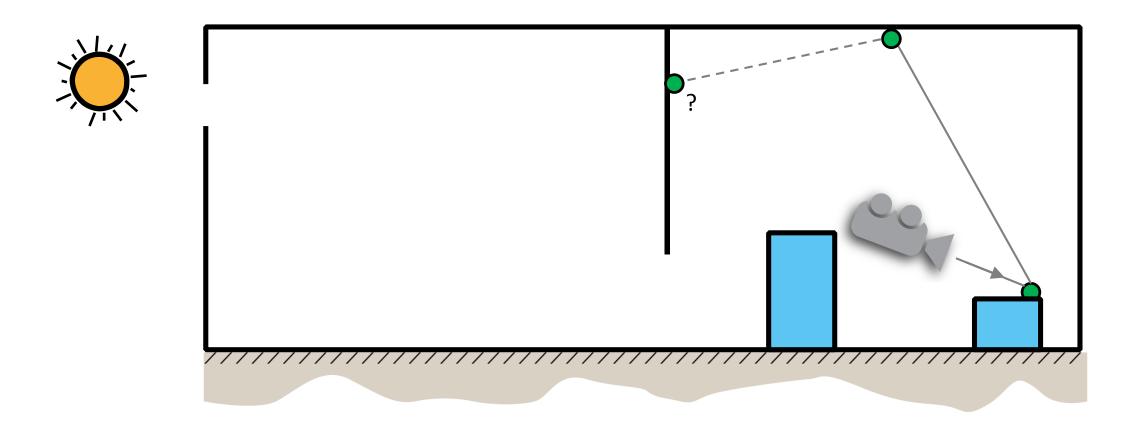
Path sampling in unidirectional path tracing



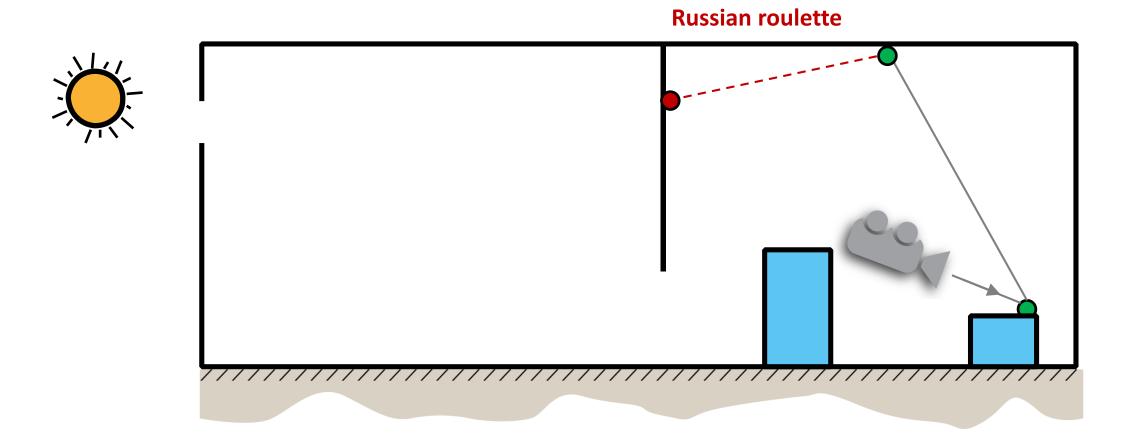
Directional sampling

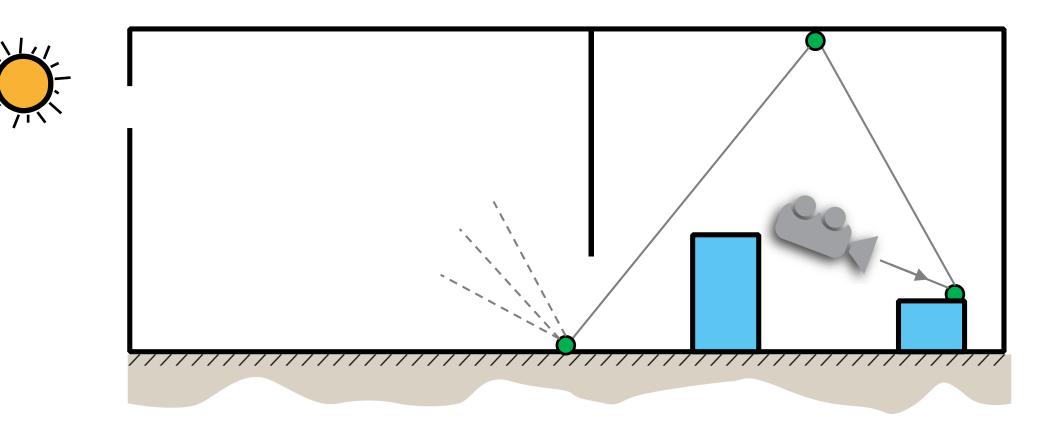


Path termination (Russian roulette)



Path termination (Russian roulette)





• Give path tracing extra information

Chicken-and-egg problem

Adaptive sampling

• How to make it **robust** when there's so much **uncertainty**? – **Machine learning methods**

- Path guiding through online mixture model training [Vorba et al. 2014]
 - Guided Russian roulette and splitting [Vorba and Křivánek 2016]
 - Path guiding in volumes [TOG, conditionally accepted]

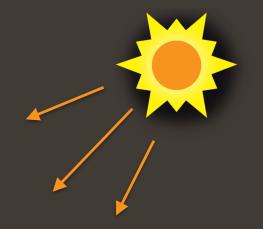
Robust adaptive direct illumination through online Bayesian regression
[Vévoda et al. 2018]

PATH GUIDING

Vorba et al. – ACM SIGGRAPH 2014

• Jensen [1995]

photon tracing

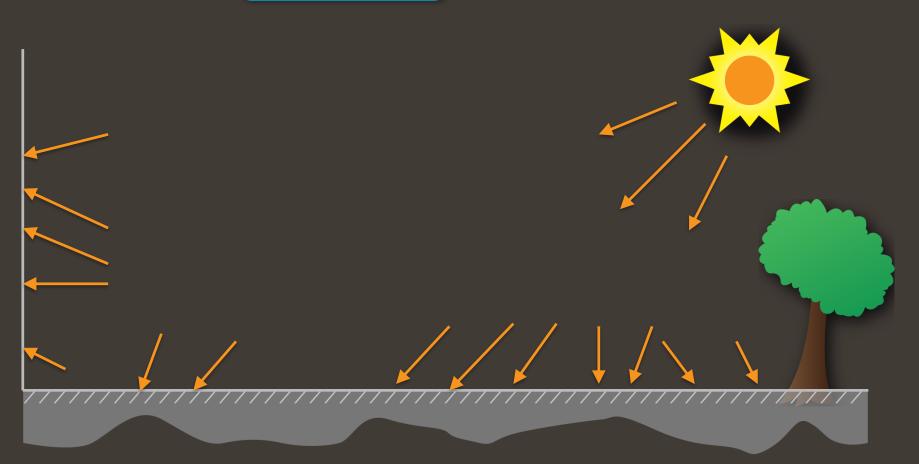


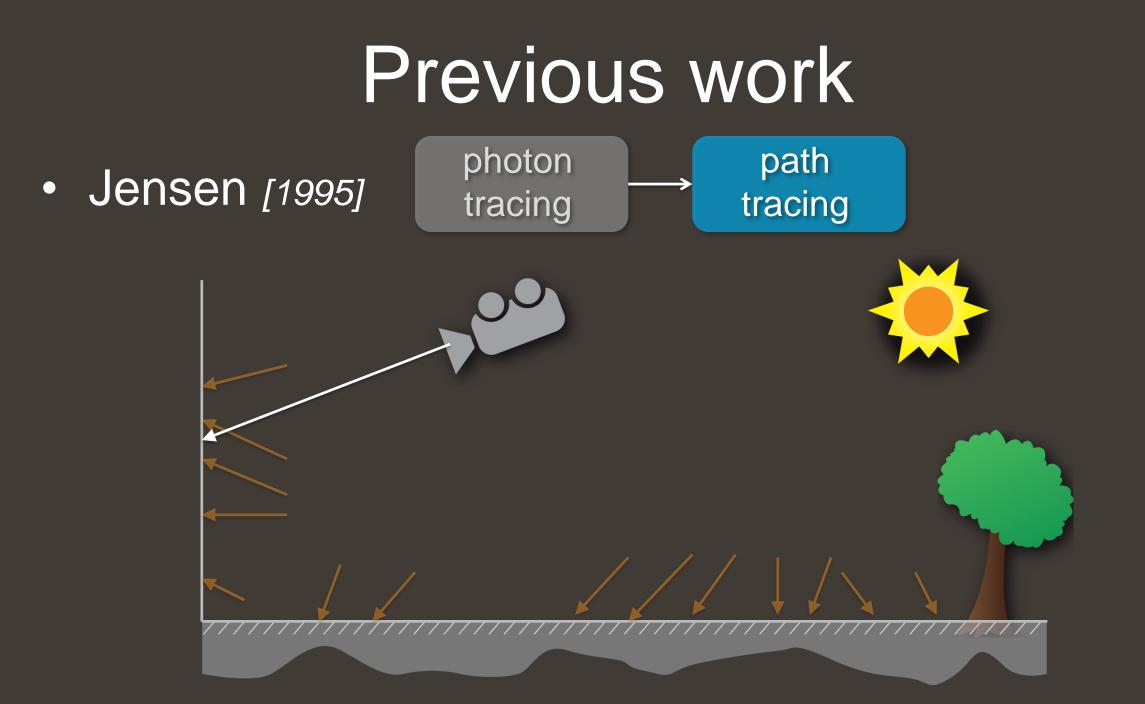
• Jensen [1995]

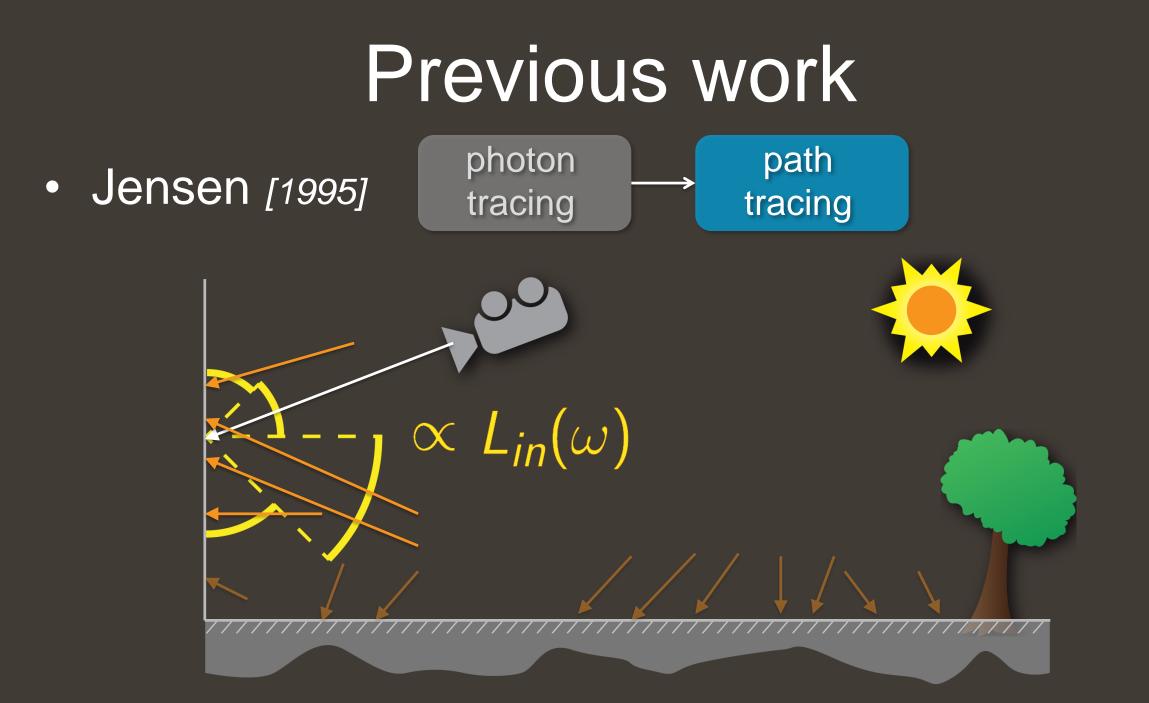
photon tracing

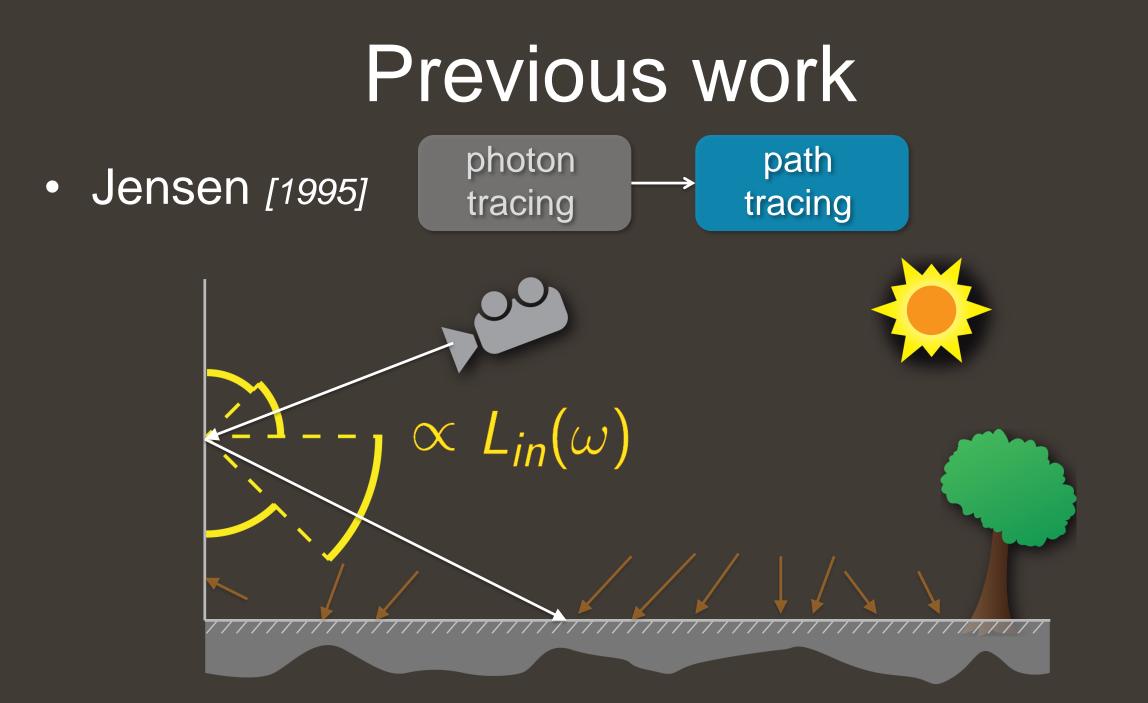
• Jensen [1995]

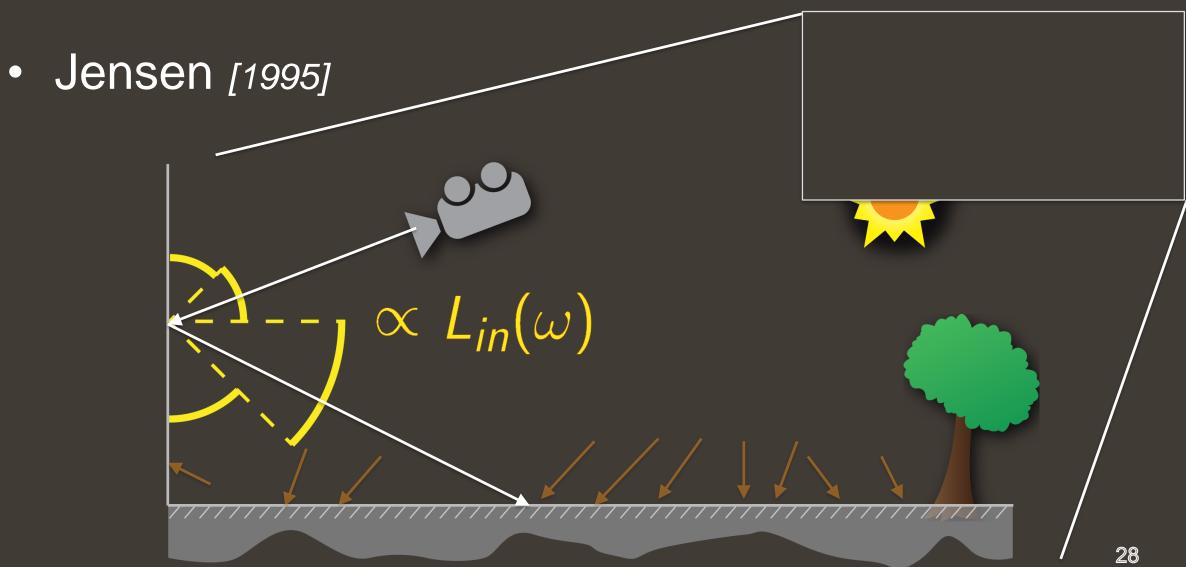
photon tracing



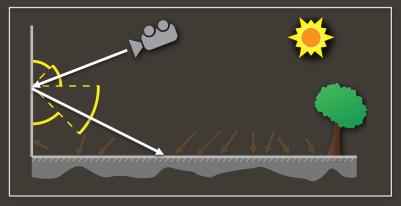


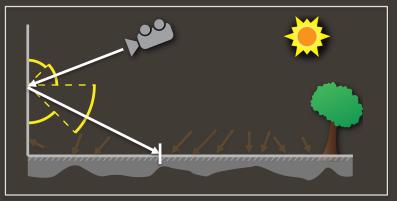






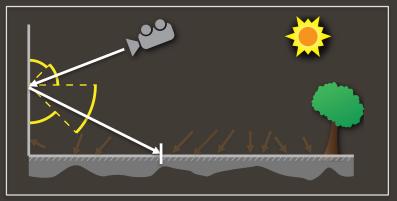
• Jensen [1995]

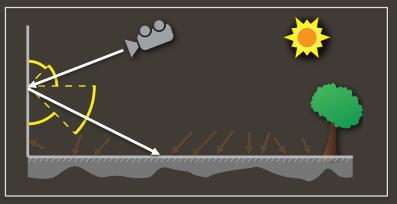


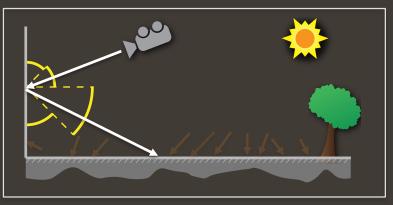


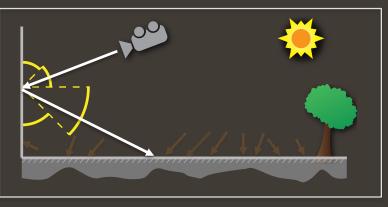
Jensen [1995]: reconstruction

K-N





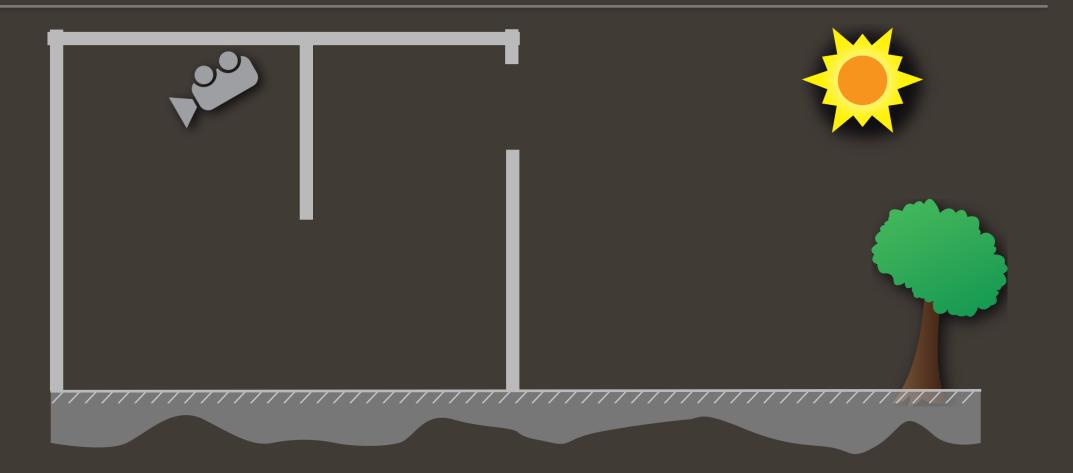


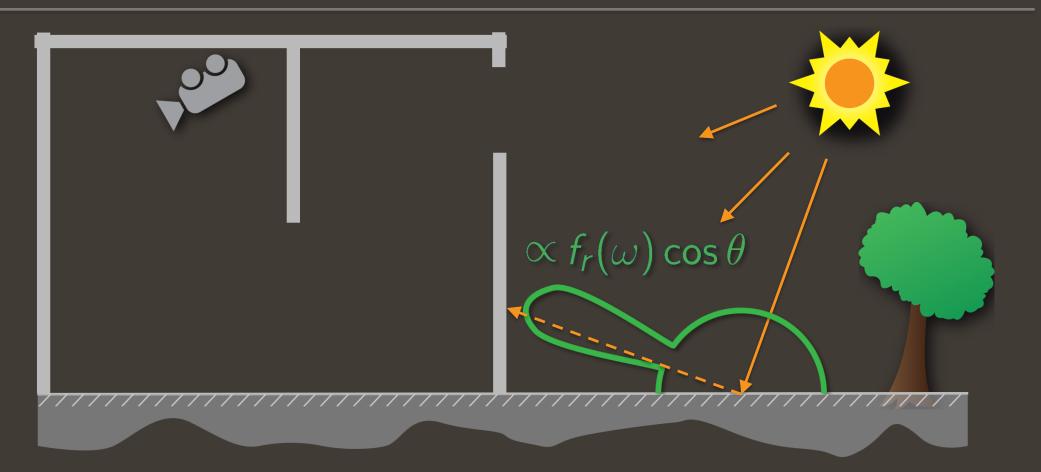


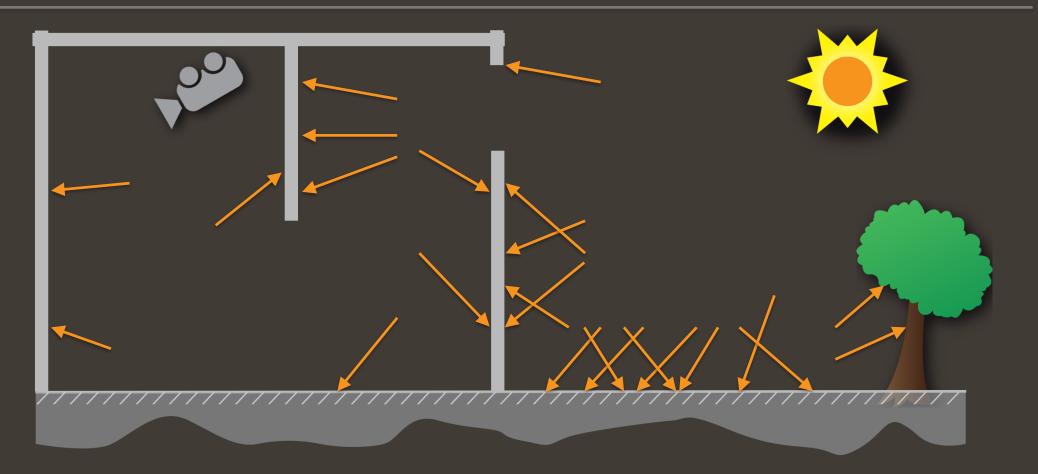
Limitations of previous work

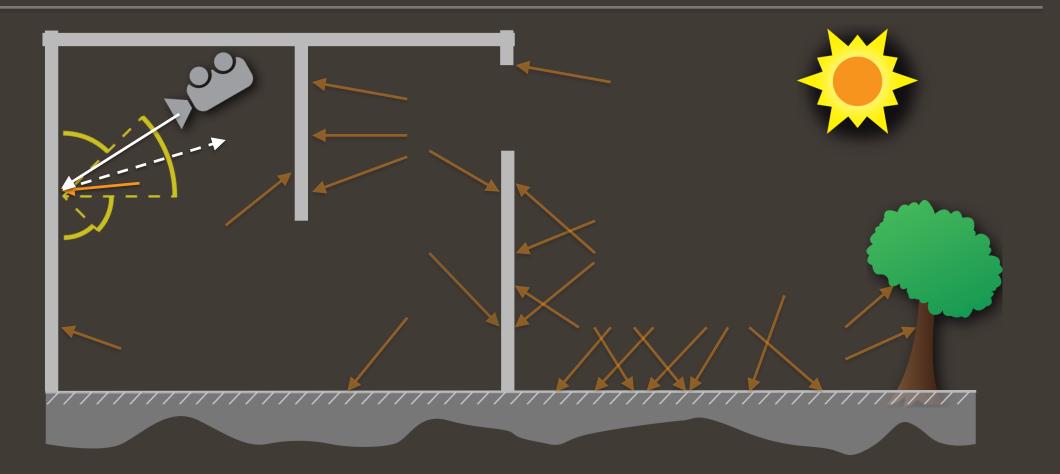
• Bad approximation of $L_{in}(\omega)$ in complex scenes

• Bad approximation of $L_{in}(\omega)$ in complex scenes

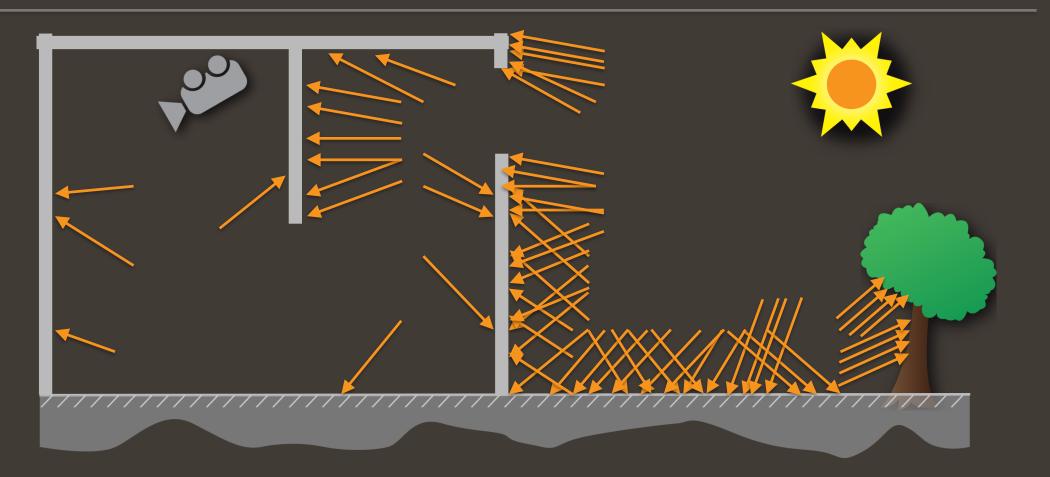








Not enough memory!



Our solution

• The Gaussian mixture model (GMM)

Our solution

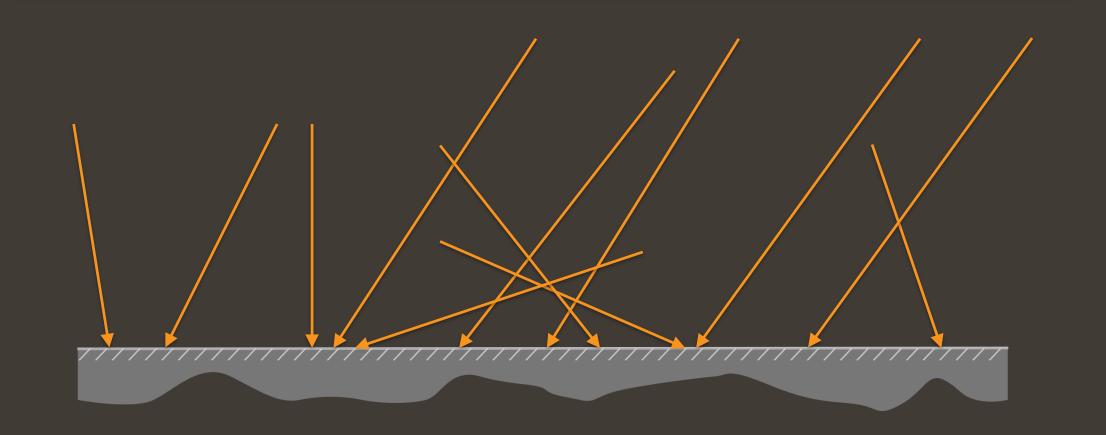
$\begin{array}{ccc} \mathsf{GMM} & \Rightarrow & \begin{array}{c} \mathsf{on-line} \\ \mathsf{learning} \end{array} \end{array}$

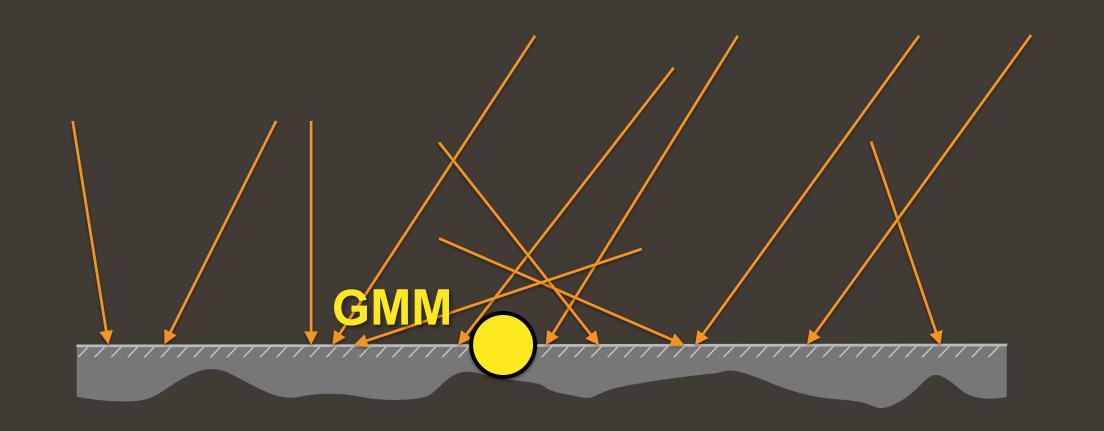
The Gaussian mixture model (GMM)

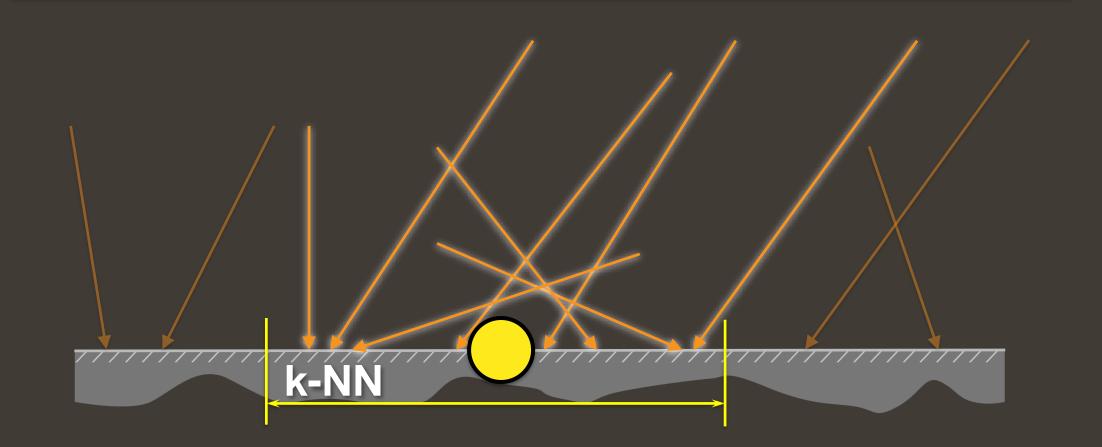
Our solution

The Gaussian mixture model (GMM)

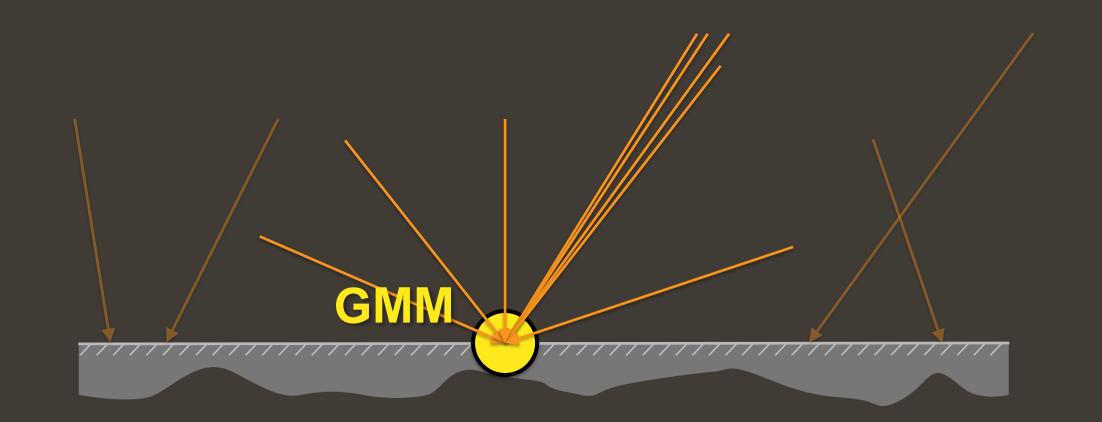
Overcoming the memory constraint

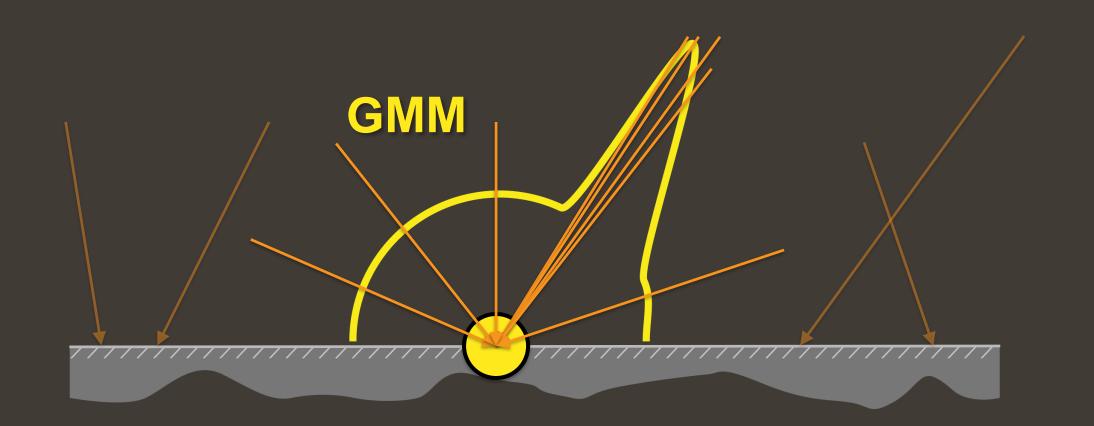


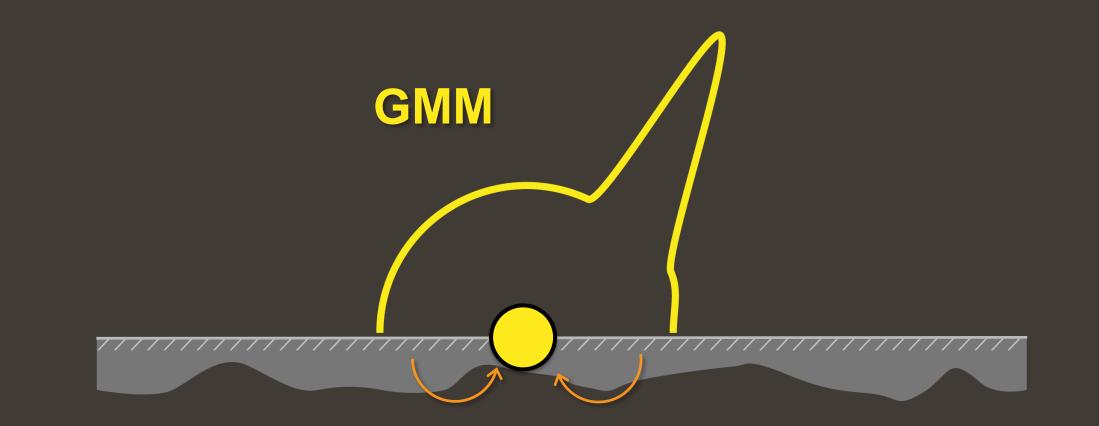




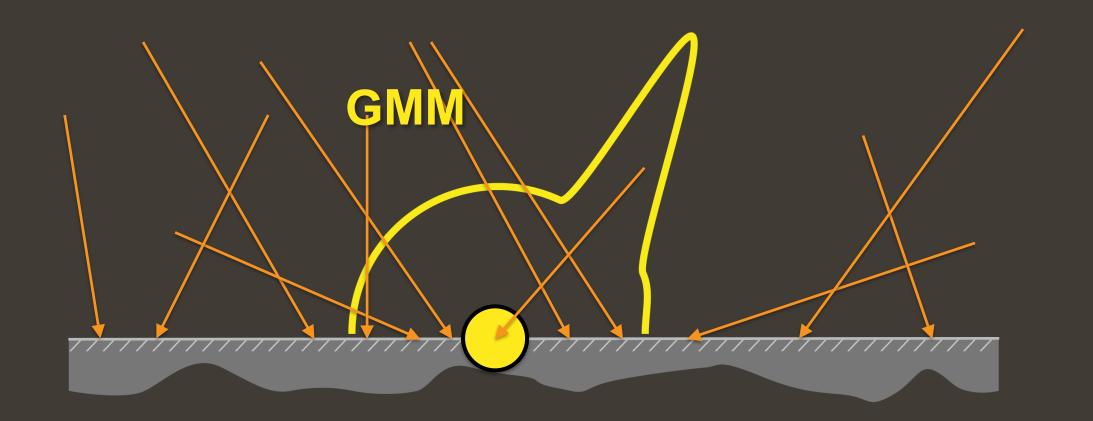
Overcoming the memory constraint

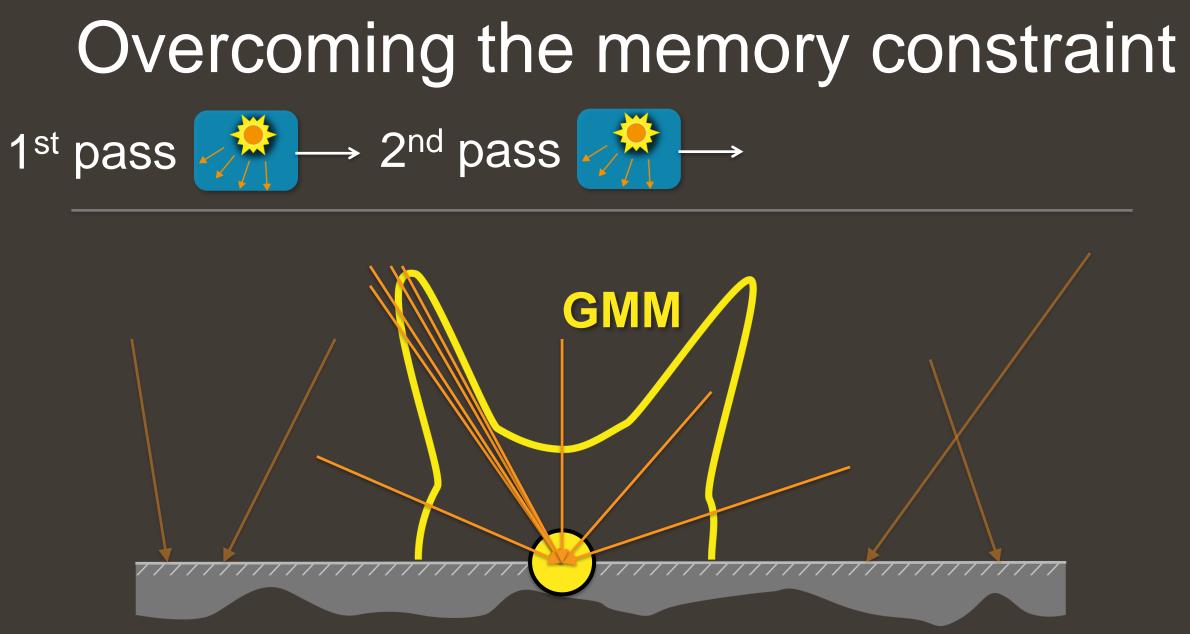


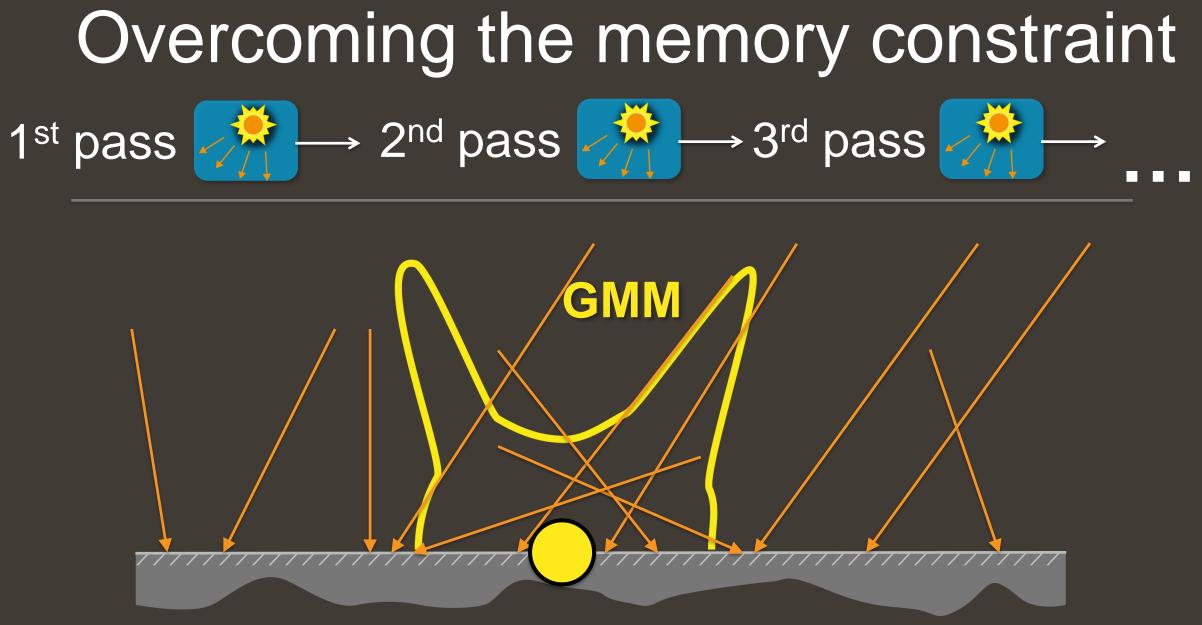


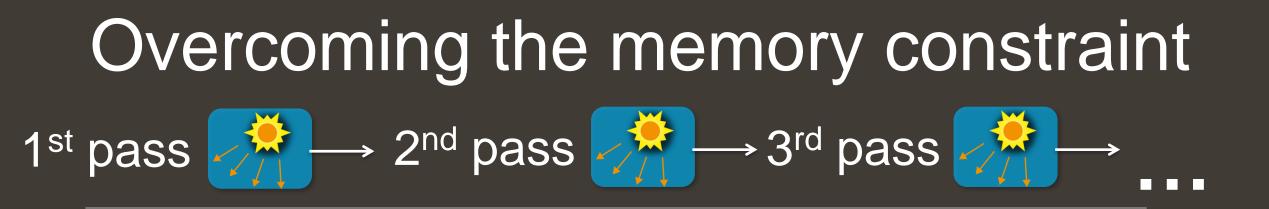


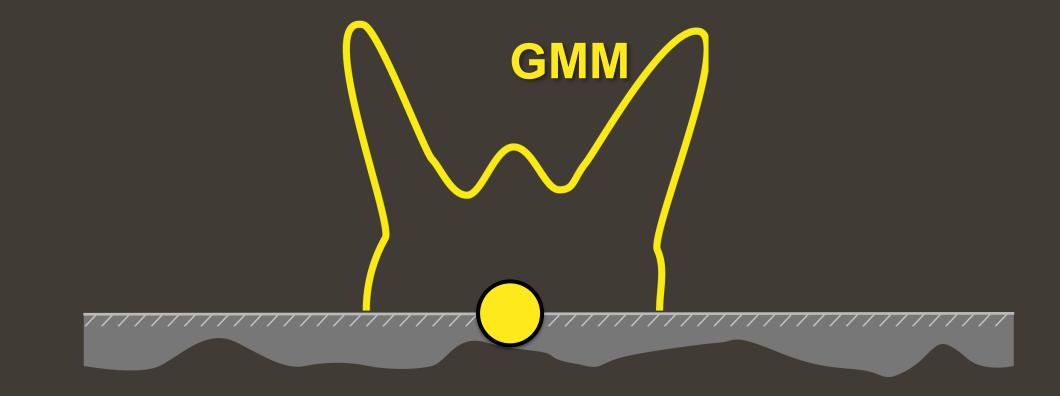
Overcoming the memory constraint 1st pass 2^{nd} pass 3^{rd}



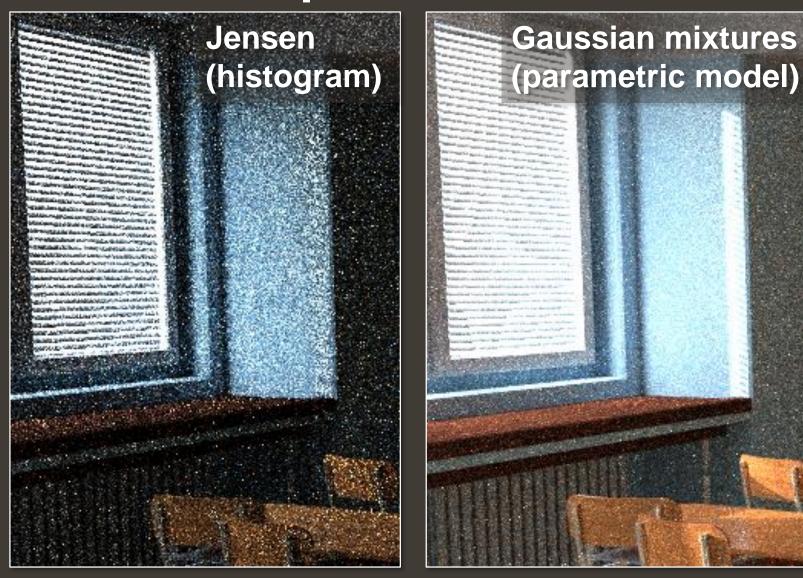








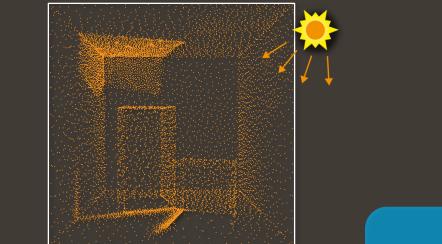
GM: superior estimate



On-line stepwise Expectation-Maximization [Cappé & Moulines 2009]

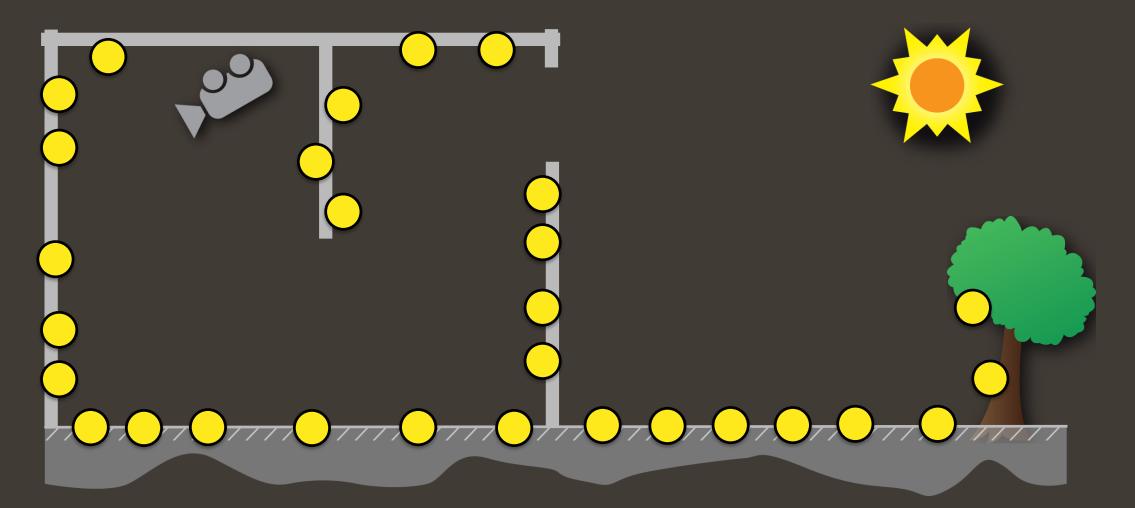
Input: an infinite stream of particles

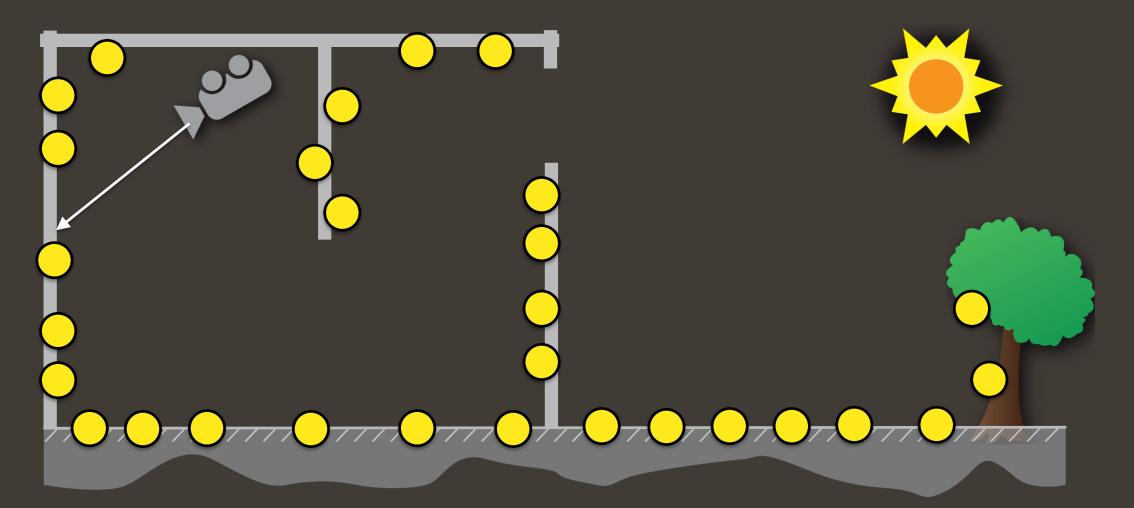
Method outline

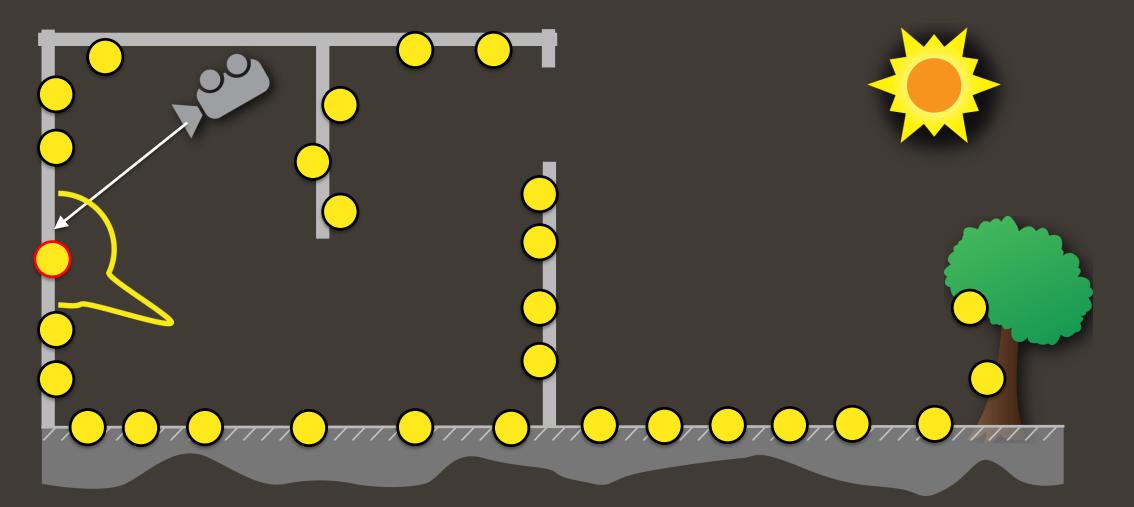


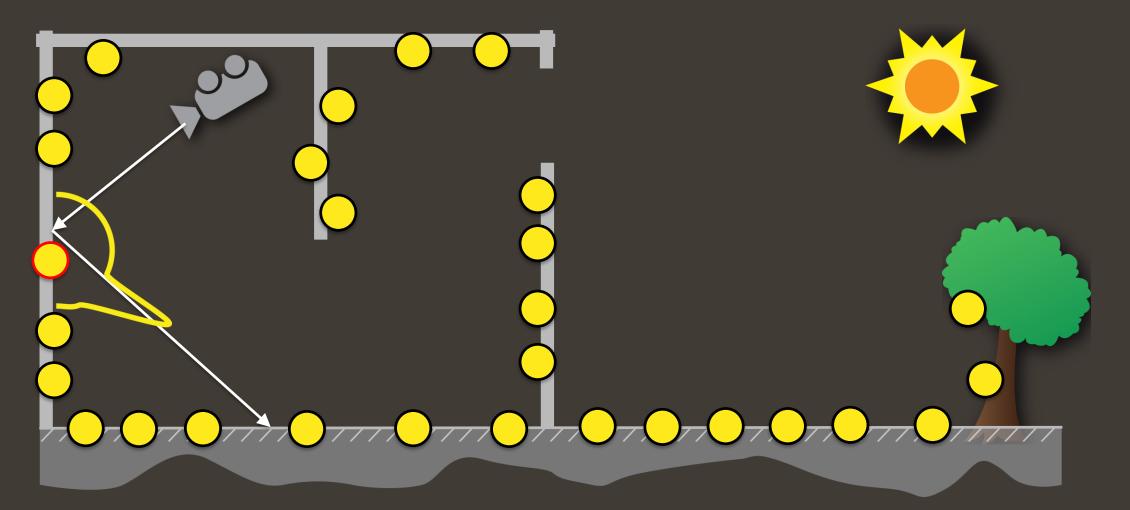
training

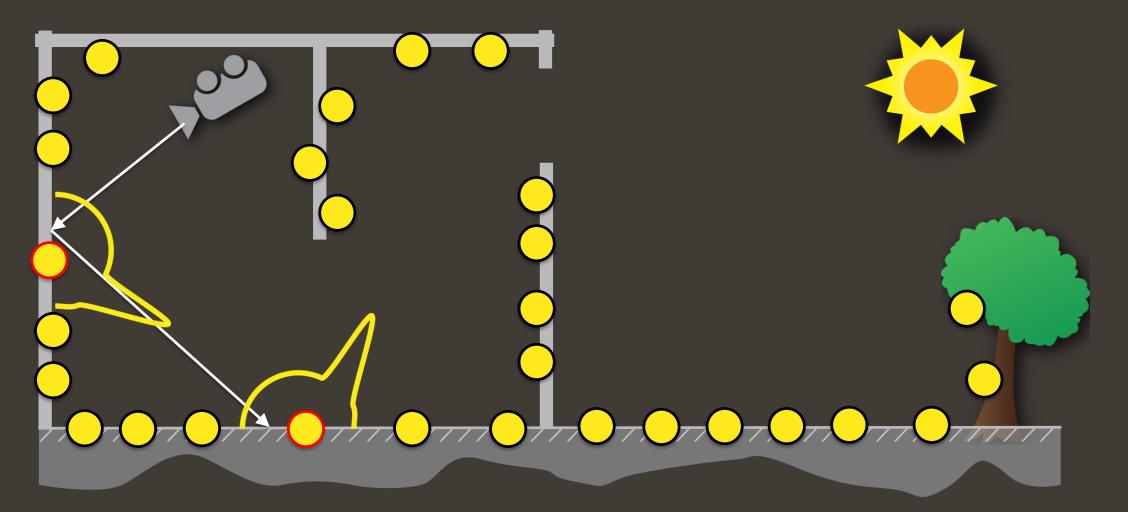
rendering

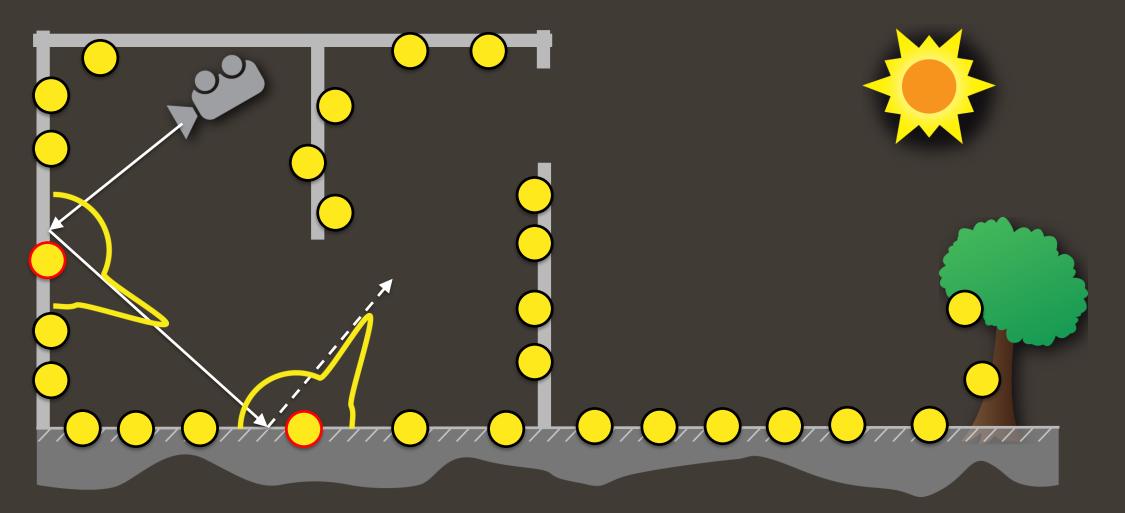








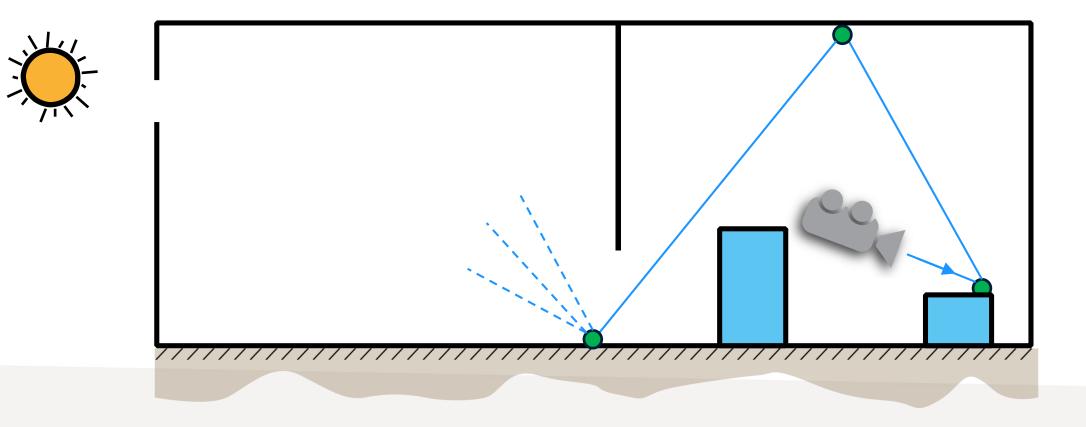




Russian roulette //////

GUIDED PATH TERMINATION (RUSSIAN ROULETTE)

GENERATIONS / VANCOUVER SIGGRAPH2018



Path tracing (1h)

Guided path tracing (1h)

Path tracing (1h)

Guided path tracing (1h)

Path tracing (1h)

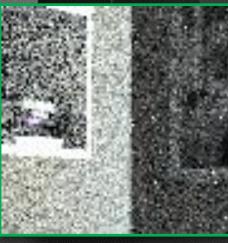
Guided path tracing (1h)

Reference

-

Path tracing

Plain



Path tracing

Plain

guided RRS

Path tracing

Plain

+ our ADRRS Path guiding

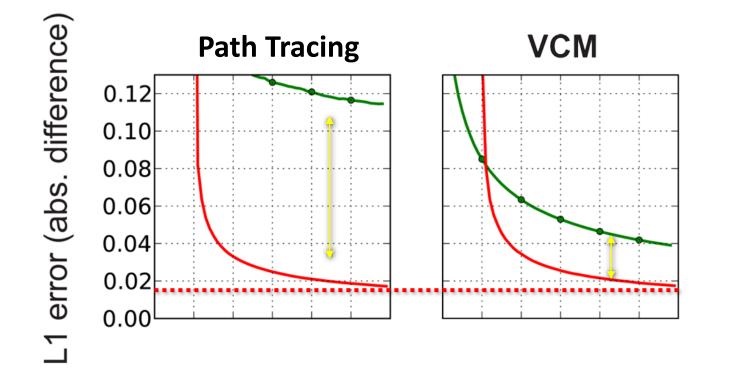
Path tracing

+ our ADRRS Path guiding + guided RRS

Plain

Complex Bidirectional Methods (VCM)

Guided path tracing can match complex methods



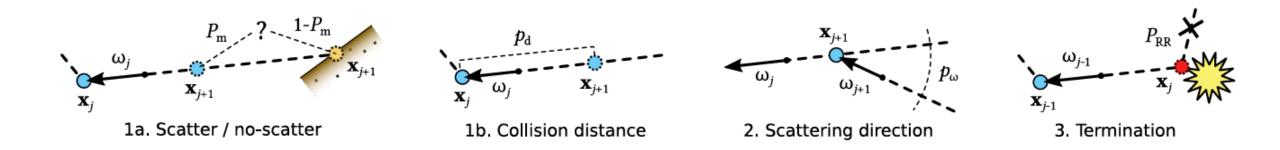
Practical Implication

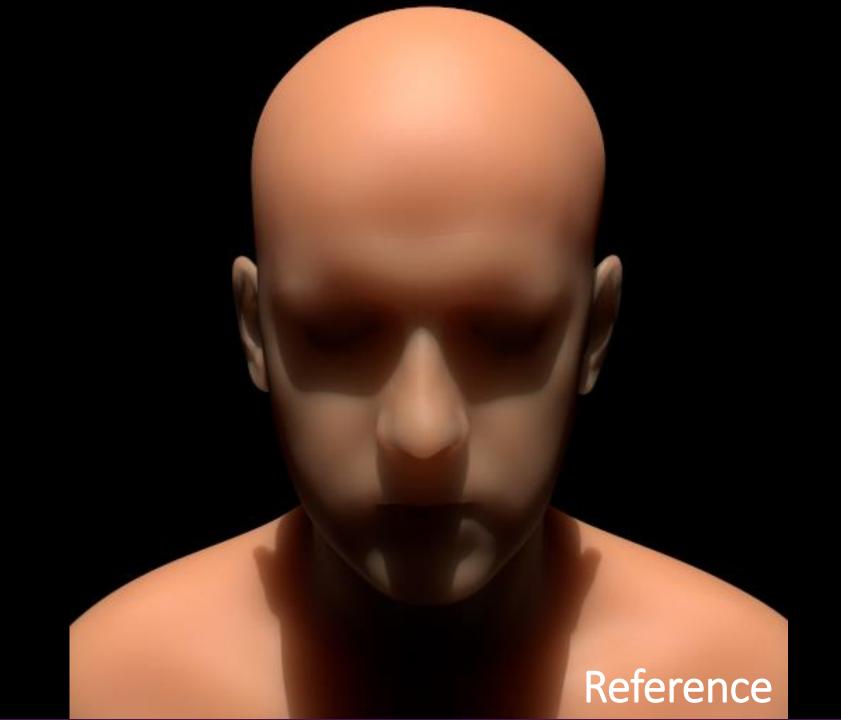
- Providing path tracer with information makes it much more robust
 - Machine learning is the key (online step-wise EM formulation)
- Step towards a simpler ultimate algorithm
- Path guiding applicable in production

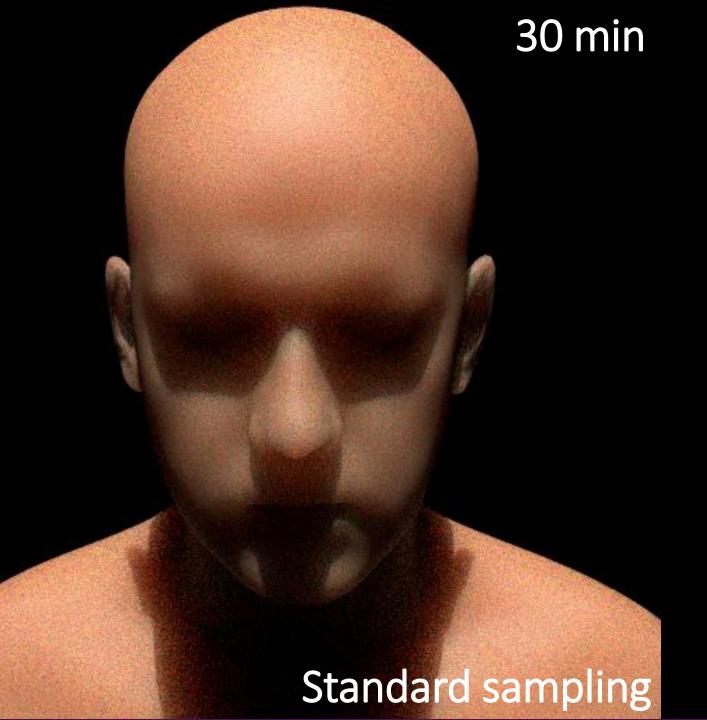
GUIDED VOLUMETRIC TRANSPORT

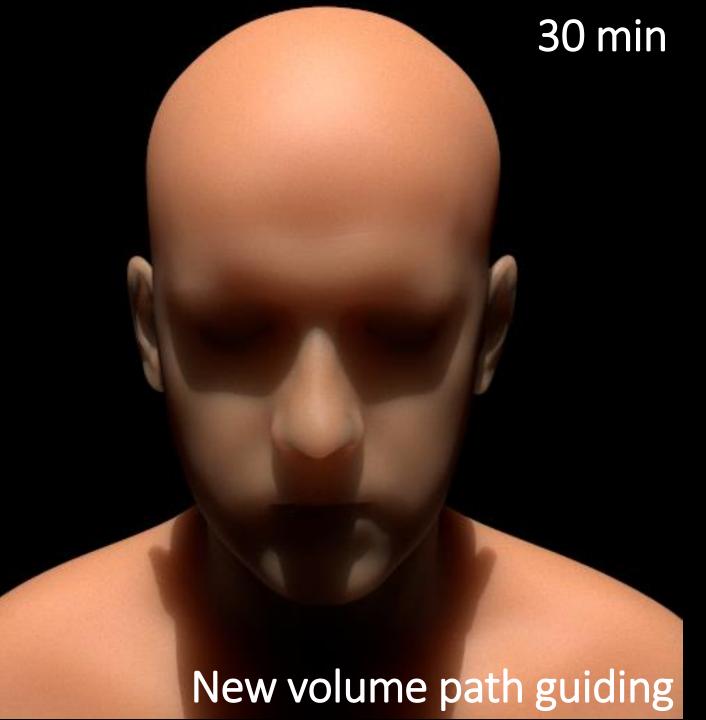
Volume path guiding

- All events importance sampled
- Product sampling for collision distance









Standard sampling

Dist. + dir. guiding

RR + splitting

SPP: 1580 relMSE: 6.458 SPP: 1288 relMSE: 1.354 SPP: 1660 relMSE: 0.401

Reference

New volumetric path guiding

45 min

Standard sampling

Dist. + dir. guiding

RR + splitting

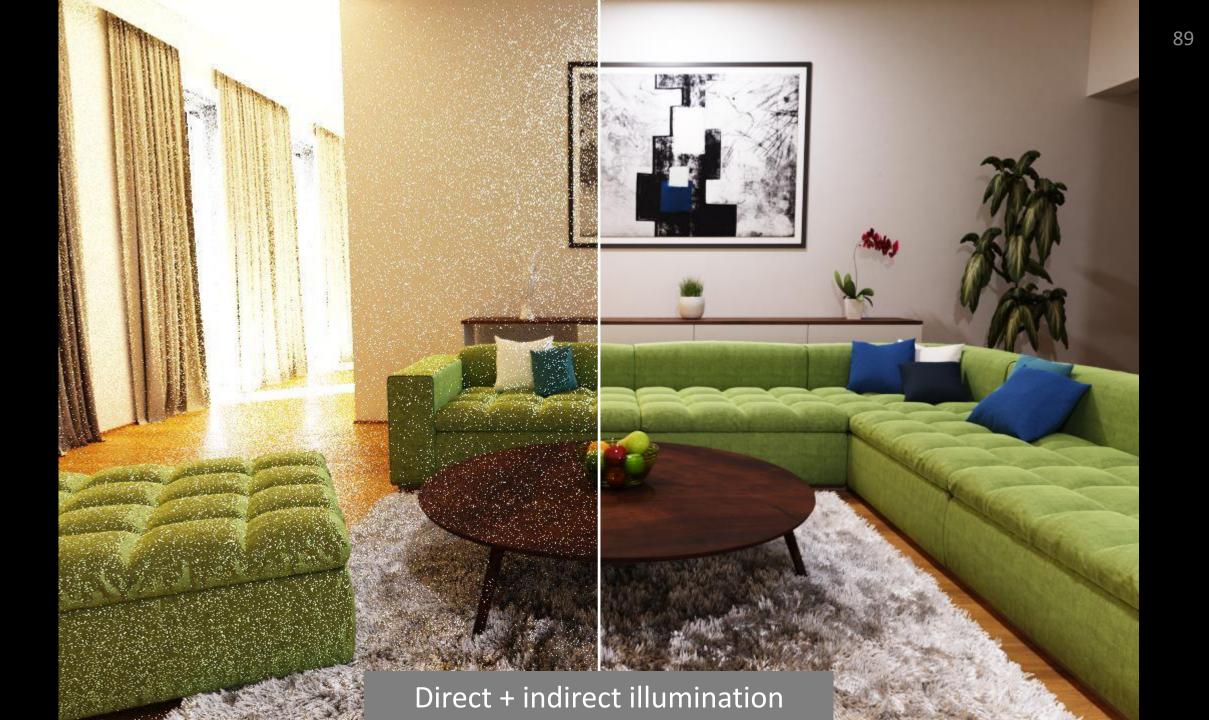
SPP: 796 relMSE: 1.725 SPP: 392 relMSE: 0.747 SPP: 1068 relMSE: 0.123

Bayesian online regression for adaptive direct illumination sampling

Petr Vévoda, Ivo Kondapaneni, and Jaroslav Křivánek

Render Legion, a.s. Charles University, Prague

Computer Graphics Charles University



Non-adaptive sampling [Wang et al. 2009]

Non-adaptive sampling [Wang et al. 2009]

Adaptive sampling [Donikian et al. 2006]

Direct illumination only

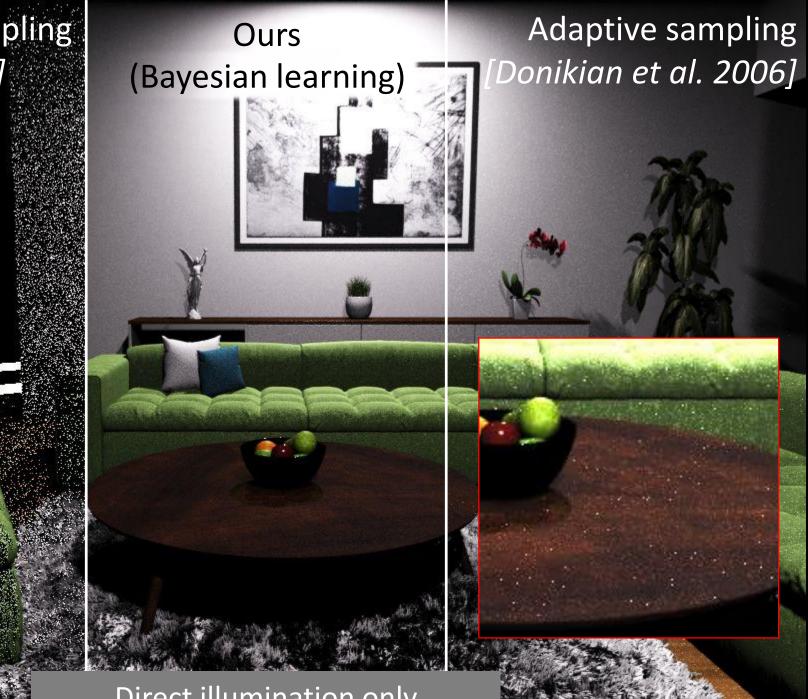
Non-adaptive sampling [Wang et al. 2009]

Adaptive sampling [Donikian et al. 2006]

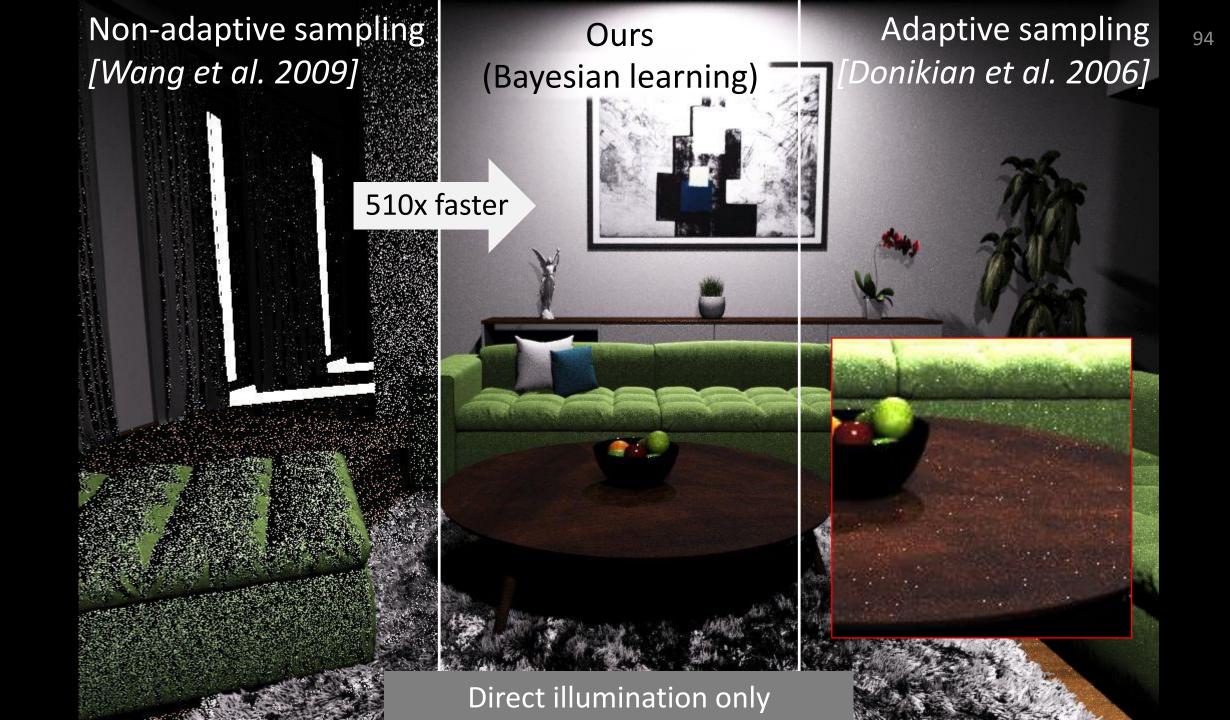
92

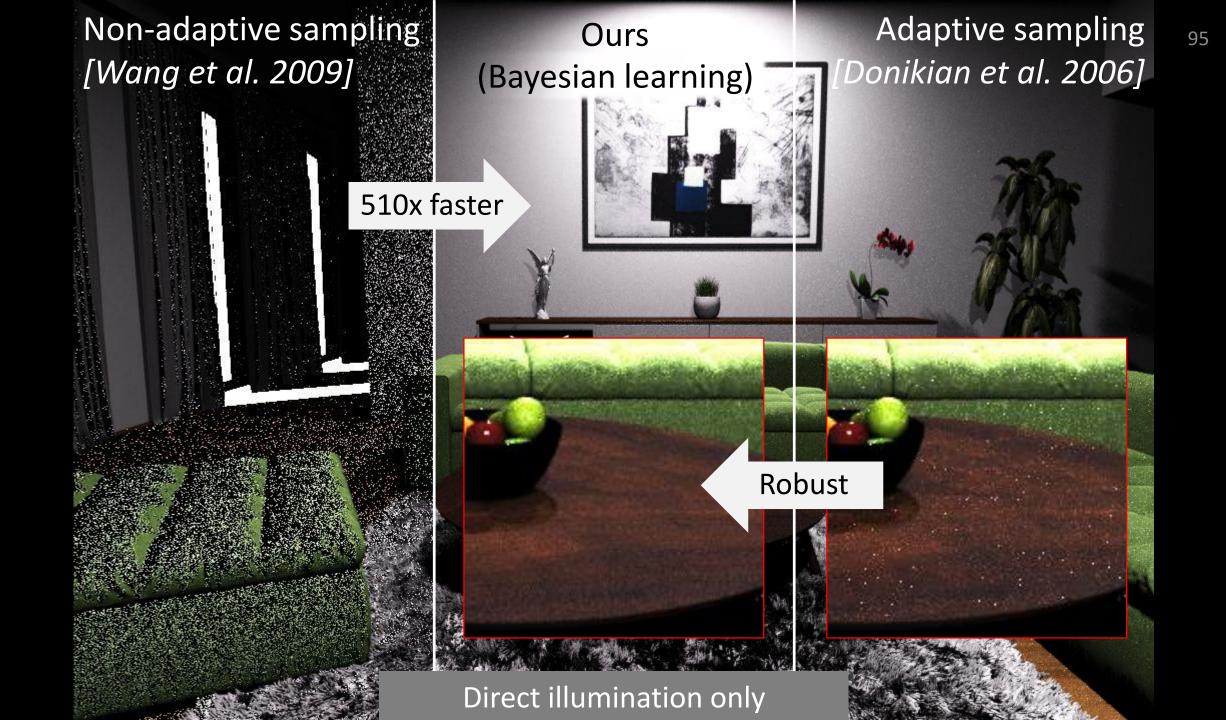
Direct illumination only

Non-adaptive sampling [Wang et al. 2009]



Direct illumination only





Previous work

Vévoda, Kondapaneni, Křivánek - Bayesian online regression for adaptive illumination sampling

Computer Graphics Charles University

Adaptive sampling

- General Monte Carlo
 - Vegas algorithm
 - [Lepage 1980]
 - Population MC
 - [Cappé et al. 2004, ...]
- Rendering
 - Image sampling
 - [Mitchell 1987, ...]
 - Indirect illumination (path guiding)
 - [Dutre and Willems 1995, Jensen 1995, Lafortune et al. 1995, ...]
 - [Vorba et al. 2014, Muller et al. 2017]
 - Direct illumination
 - [Shirley et al. 1996, Donikian et al. 2006, Wang et al. 2009]

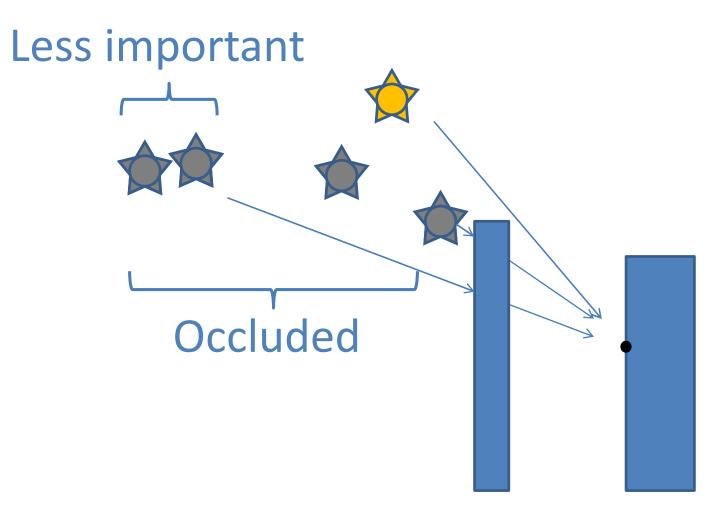
Bayesian methods in rendering

- Filtering
 - NonLocal Bayes [*Boughida and Boubekeur 2017*]
- Global illumination
 - Bayesian Monte Carlo [Brouilat et al. 2009, Marques et al. 2013]
 - Path guiding [Vorba et al. 2014]

Background

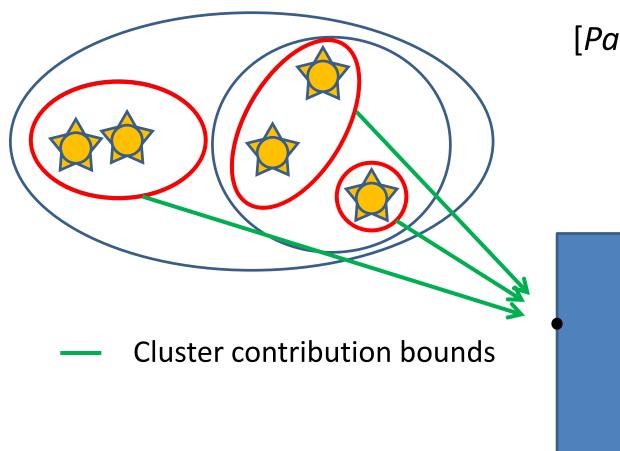
Vévoda, Kondapaneni, Křivánek - Bayesian online regression for adaptive illumination sampling

Direct illumination



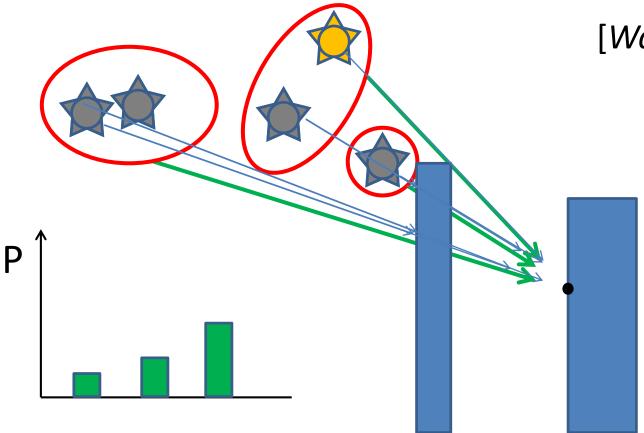
Vévoda, Kondapaneni, Křivánek - Bayesian online regression for adaptive illumination sampling

Clustering (Lightcuts)



[Paquette et al. 1998, Walter et al. 2006]

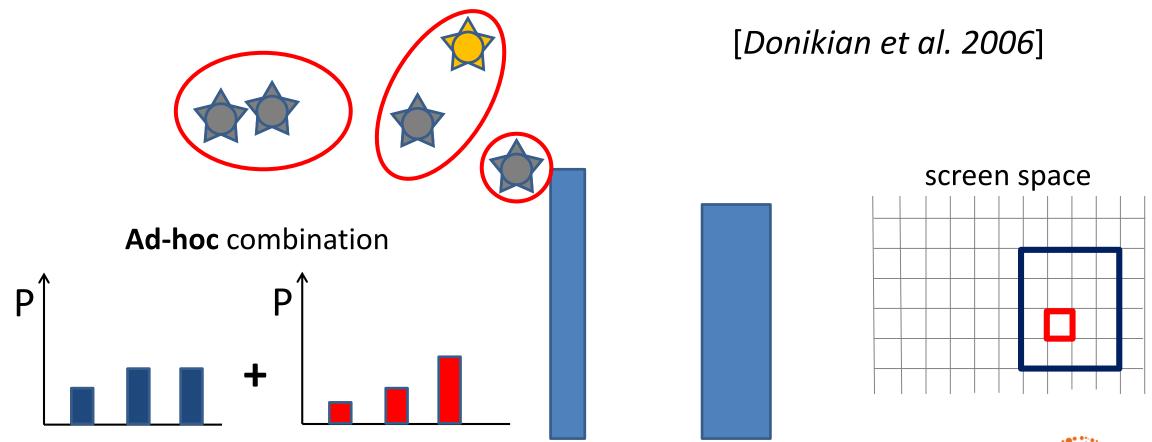
Cluster sampling



[Wang and Akerlung 2009]

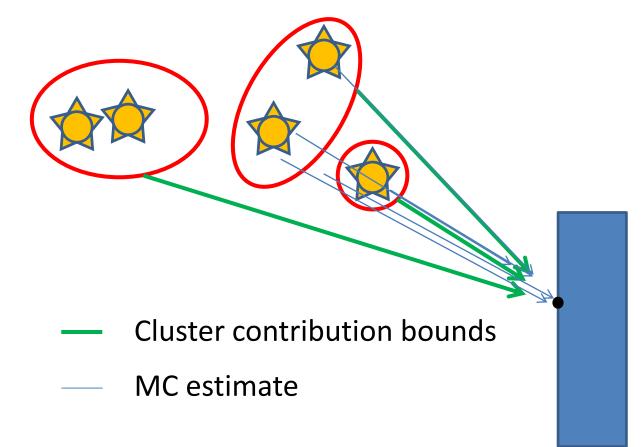
Vévoda, Kondapaneni, Křivánek - Bayesian online regression for adaptive illumination sampling

Adaptive light sampling



Vévoda, Kondapaneni, Křivánek - Bayesian online regression for adaptive illumination sampling

Problem summary



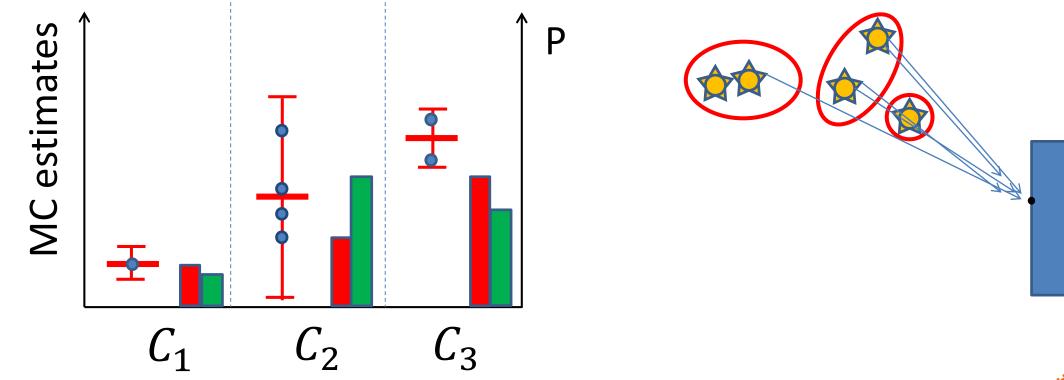
Our approach

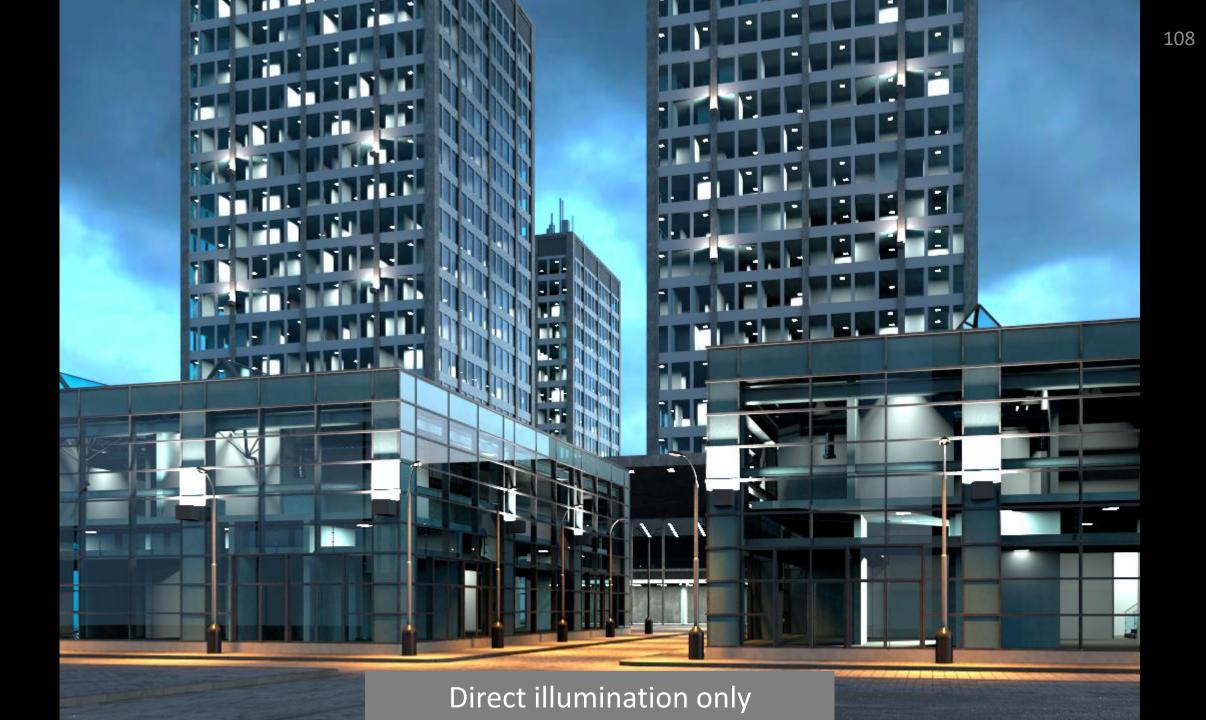
Contributions

- Optimal sampling of clusters
- Adaptive sampling by Bayesian inference

Optimal cluster sampling

 $P(C) \propto \sqrt{\text{mean}^2 + \text{variance}}$





Mean only (Previous)

-

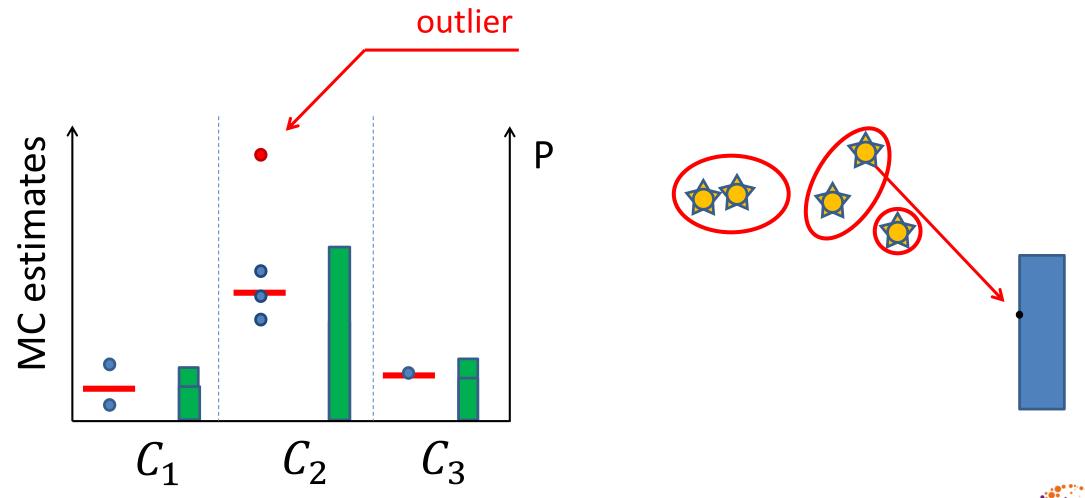
Mean + Variance (Ours)

Direct illumination only

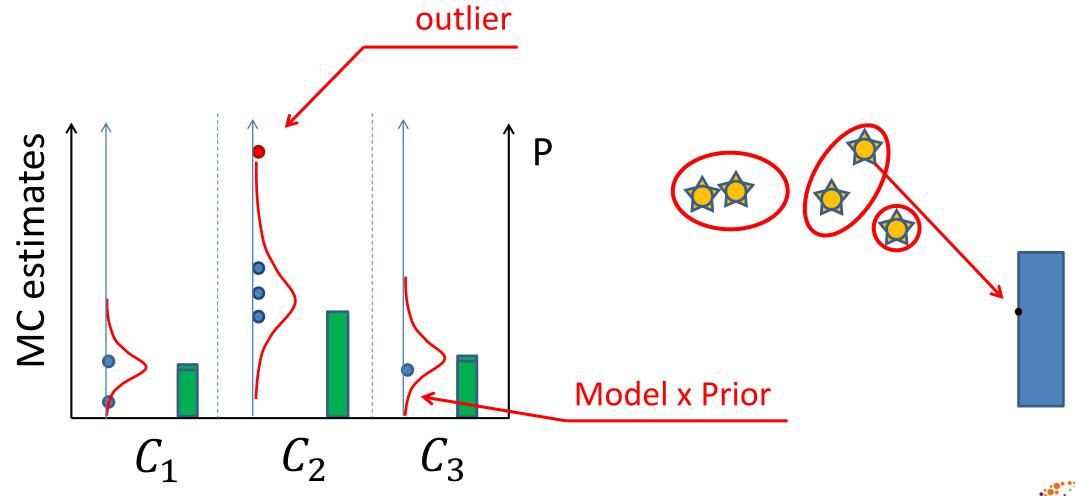
Contributions

- Optimal sampling of clusters
- Adaptive sampling by Bayesian inference

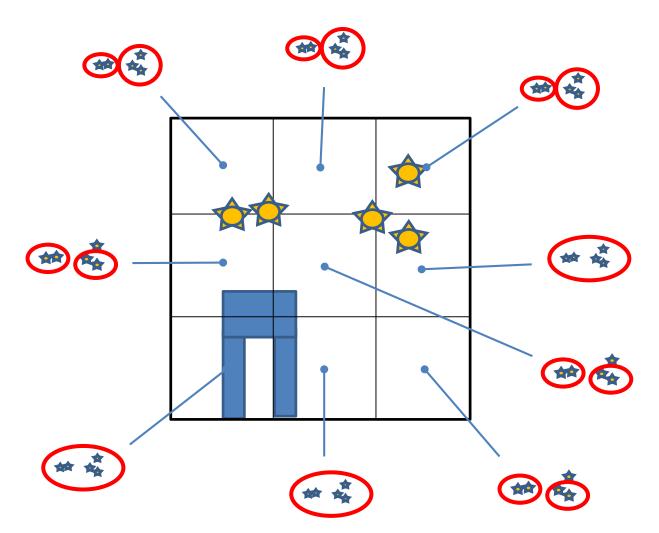
Naive adaptive cluster sampling



Bayes cluster adaptive sampling

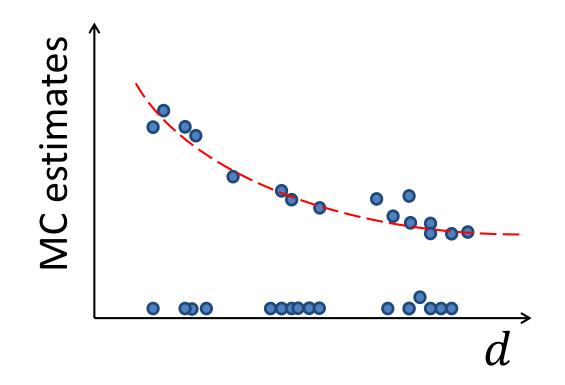


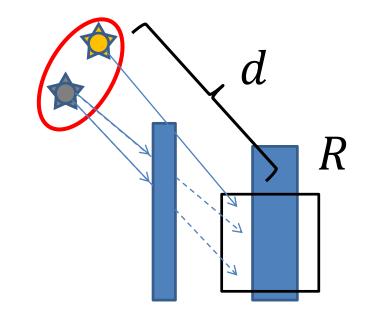
Cluster-region pairs



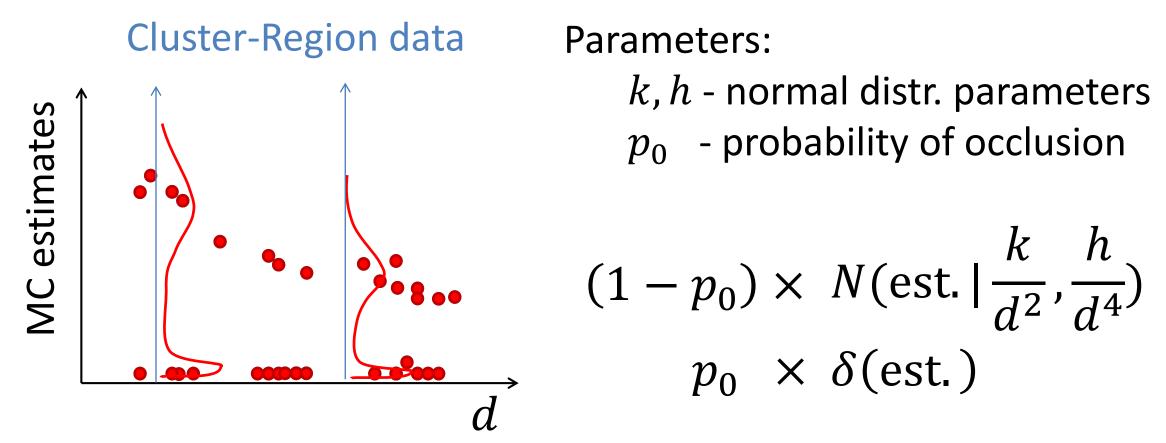
Vévoda, Kondapaneni, Křivánek - Bayesian online regression for adaptive illumination sampling

Cluster-Region data





Regresion Data model



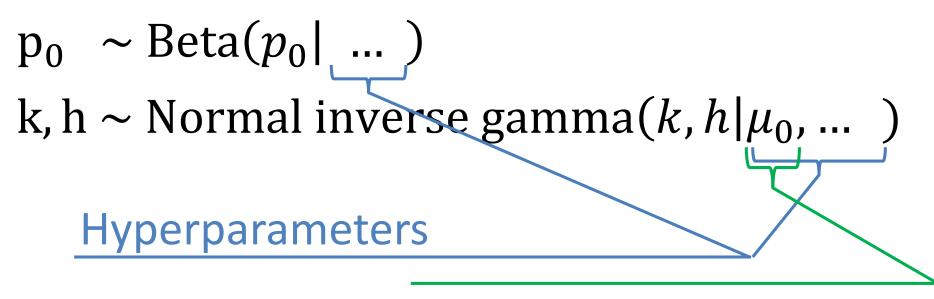
Conjugate prior

posterior \propto likelihood \times **prior**

Same functional form

Vévoda, Kondapaneni, Křivánek - Bayesian online regression for adaptive illumination sampling

Our (conjugate) Priors

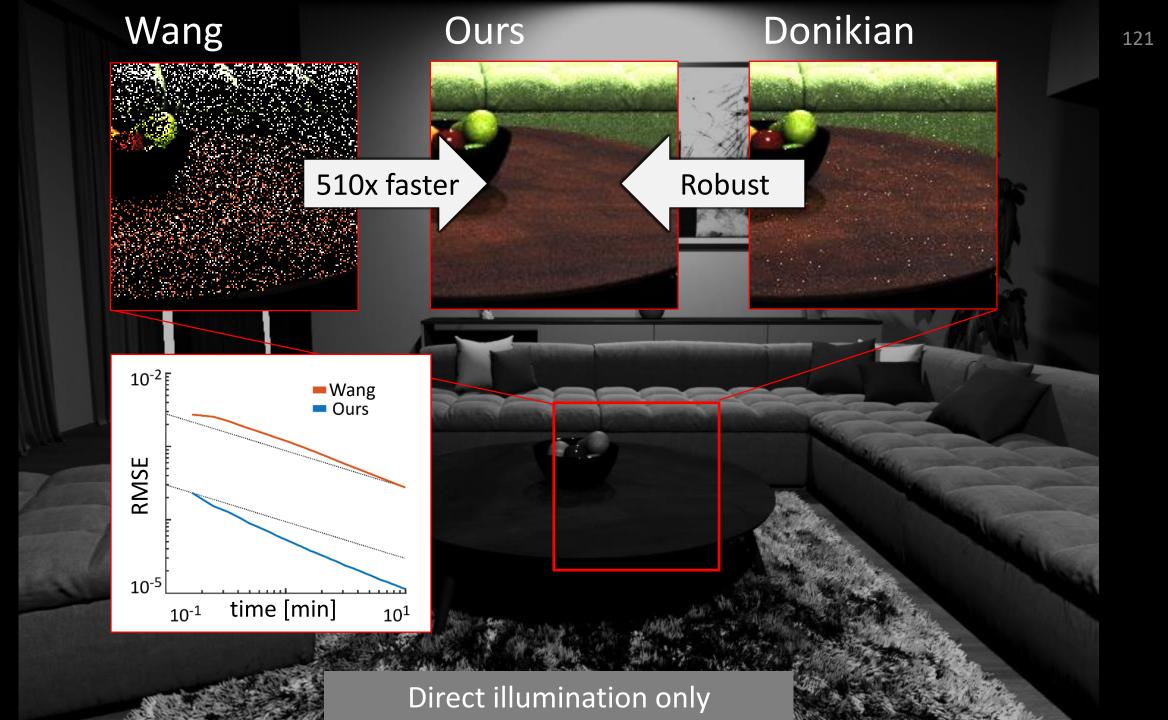


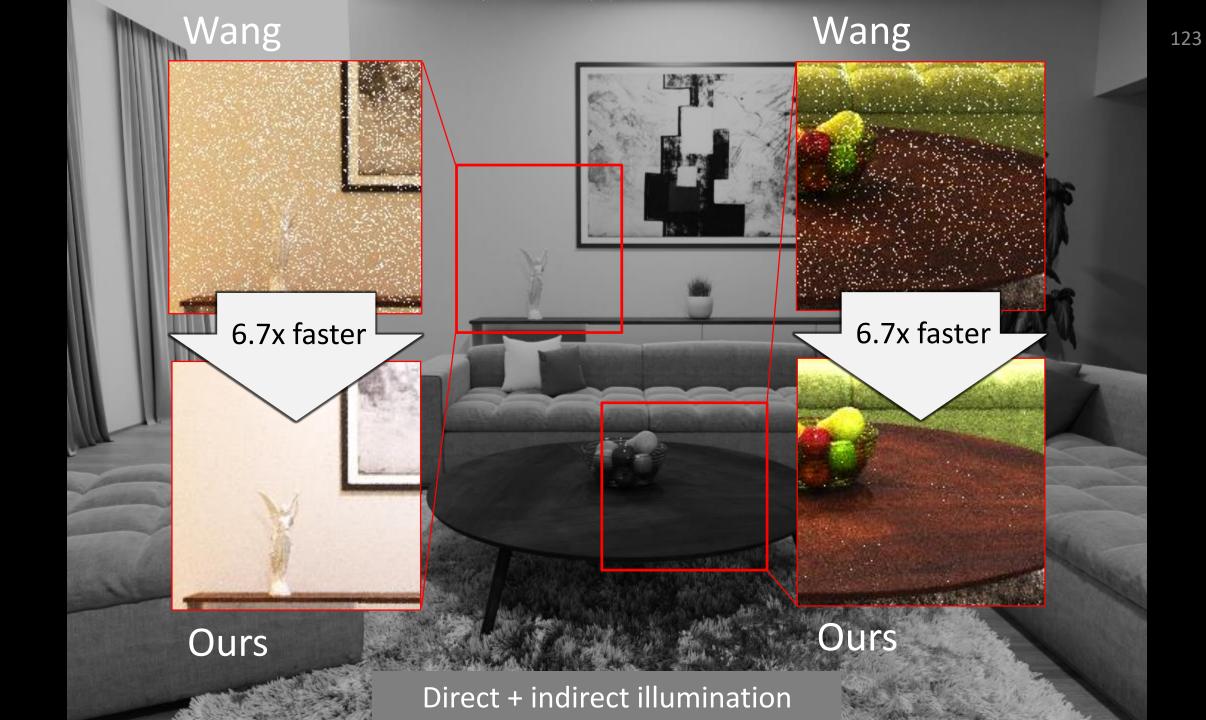
Cluster contrib. estimate

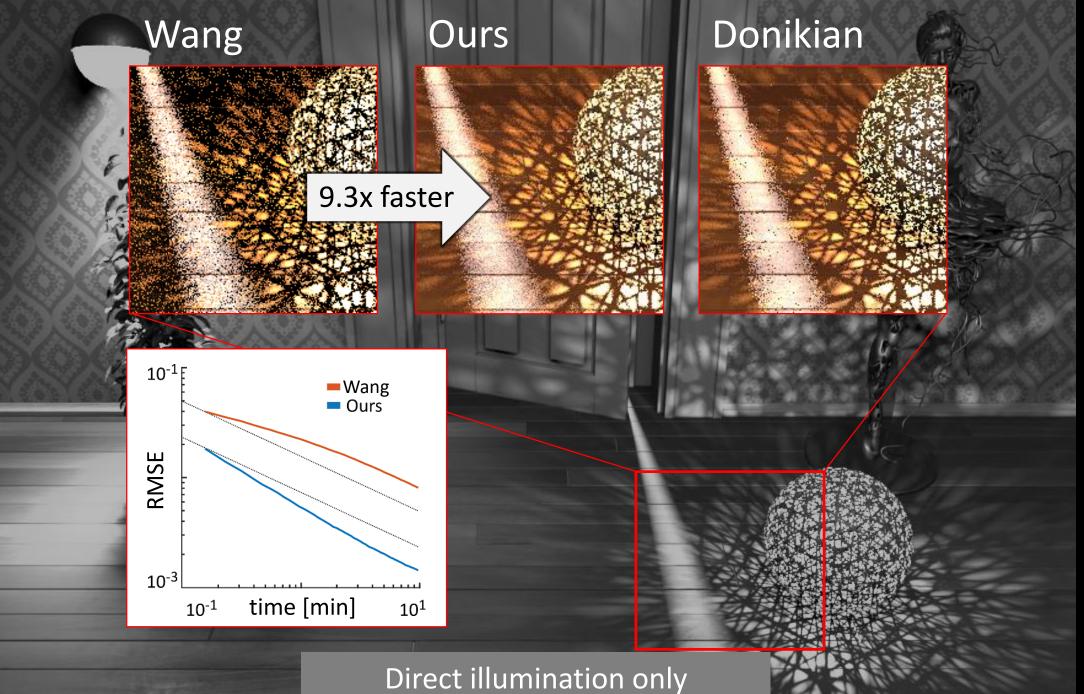
Algorithm summary

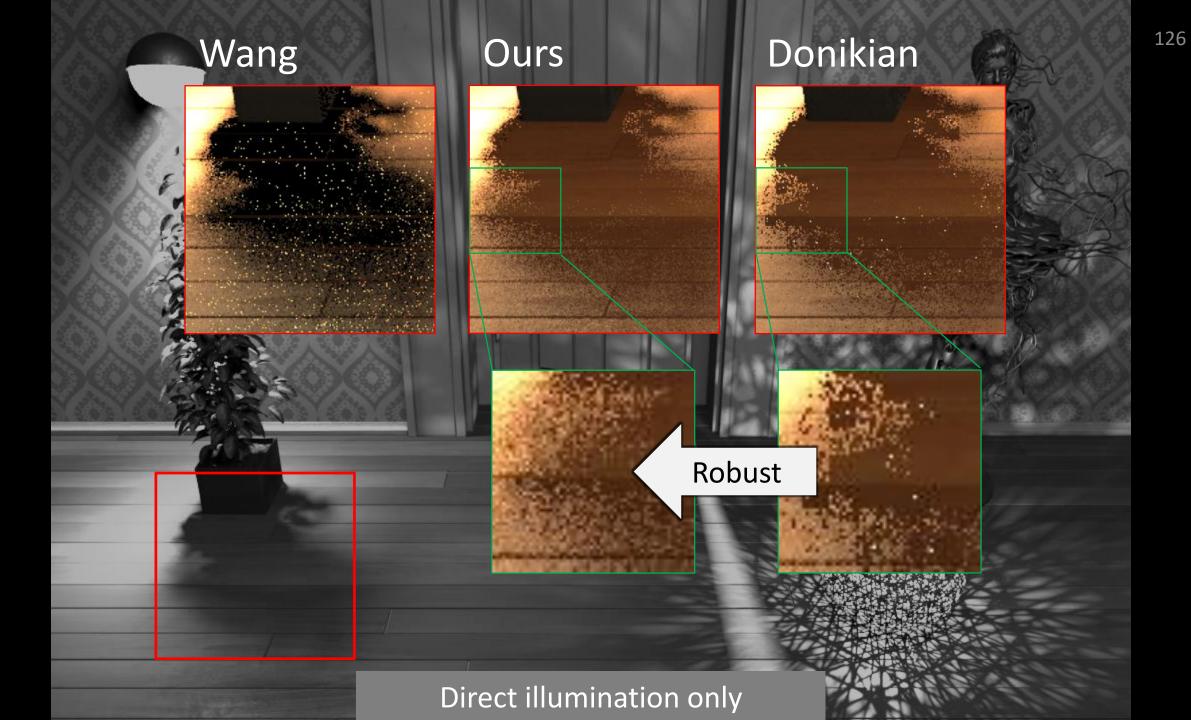
- Light preprocess (clustering)
- During each Next event estimation:
 - Obtain clustering (Cut) cached in a region
 - Compute distributions of estimates for each cluster in Cut
 -> mean, variance
 - Build distribution over clusters
 - Sample direct illumination
 - Record new data for sampled cluster

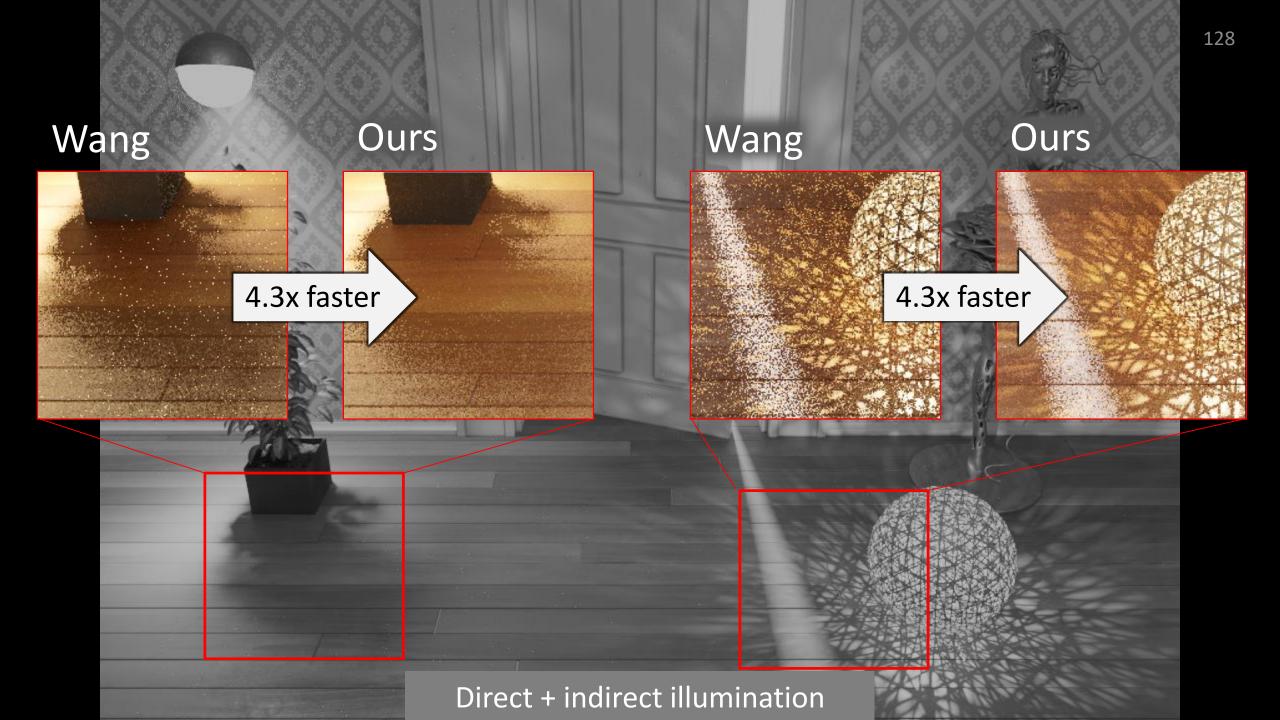
Results

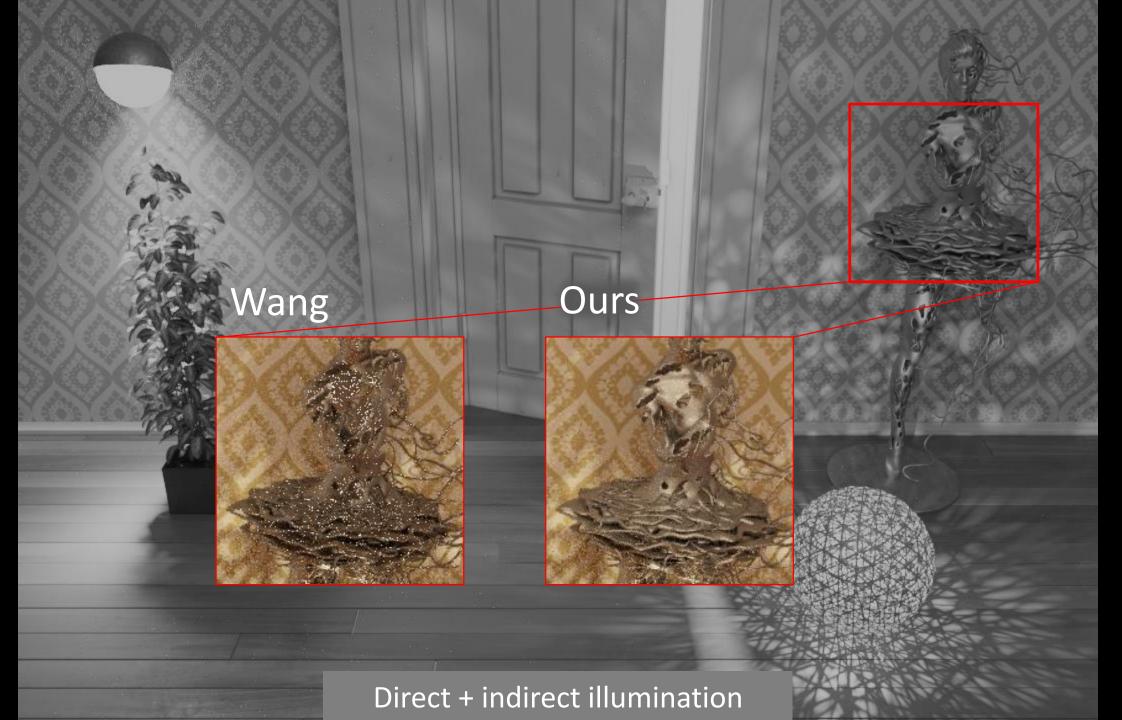


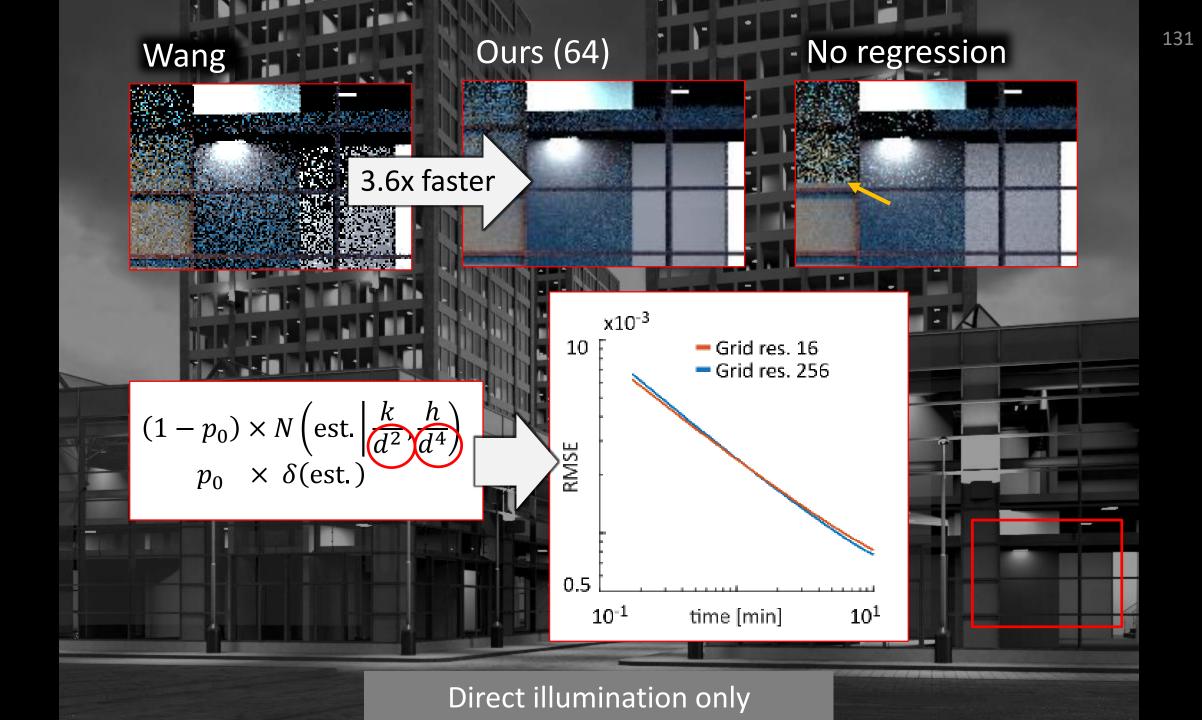












Contribution

- Bayesian framework for robust adaptivity
- Optimal cluster sampling
- Algorithm for direct illumination
 - Unbiased, adaptive, robust
 - Easy to integrate into a path tracer

CONCLUSION

Path guiding

- Makes complex bidirectional method unnecessary
- Potential for wide adoption practice
- Machine learning methods = principled way to achieve robust, online adaptive sampling
 - Path guiding online learning of parametric mixture models
 - Direct illumination sampling Bayesian online regression
- Online learning methods compatible interactive rendering workflows & progressivity
- Bayesian methodology can provide the necessary robustness

- Bayesian model selection
- Full Bayesian inference Variational Bayes?
- Adaptive decision based on reinforcement learning
- Deep learning for light field reconstruction for path guiding
- Can this be that one missing piece to make MCMC methods useful in practice?

THANK YOU!

Acknowledgments

- Colleagues and students from Charles university & Corona
- Funding: Czech Science Foundation (16-18964S), Charles University Grant Agency project GAUK 1172416, by the grant SVV-2017-260452
- While you may think that rendering is science, remember that first and foremost, rendering is magic.

