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Fig. 1. Extended version of Fig. 2 from the main paper with cutoff (d) and maximum (e) heuristic weights included. a) depicts an integration problem where
the integral of a function f is estimated via MIS. Three sampling techniques, p1, p2, and p3, are used, and one sample is taken from each. The two rows differ
solely in the sampling technique p2: while p2 closely matches f in the first row, in the second row it is fairly different. b) - e) plot, respectively, the balance,
power, cutoff, and maximum heuristic weights as defined by Veach [1997]. f) and g) depict, respectively, the best-technique heuristic and the optimal weights
as defined in the paper.

This supplemental document provides several additional results to

complete the main article.

1 WEIGHTS COMPARISON FOR TWO SIMPLE 1D
INTEGRATION PROBLEMS

In Fig. 1 we provide an extended version of Fig. 2 from the paper. It

compares different MIS combination strategies on two simple 1D

integration problems.

We also provide the Mathematica notebook used for its produc-

tion (figure2/Figure2.nb). Running the notebook requires the

Mathematica software (version 11.0 or newer)
1
with the MaTex

package (version 1.7.4 or newer)
2
. Label positions in the produced

image were tweaked manually.

2 LIGHT SAMPLING TECHNIQUES FORMULAS
In Sec. 8.3 and Fig. 7b in the paper we discuss different light sampling

techniques. Here we provide a derivation of the quantities illustrated

in Fig. 7b. If expressed in the solid angle measure, the integrand and

1
http://www.wolfram.com/mathematica/

2
http://library.wolfram.com/infocenter/MathSource/9355/

probability density functions of the techniques read:
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The quantities used in the formulas are shown in Fig. 2. As dis-

cussed in Sec. 8.3 in the main paper, linear combination of the

Uniform area and Spherical techniques is a good approximation for

the integrand as long as the lit surface is parallel to the light source.

For that case it holds cos
−3 θ = cos

−3 l(θ ), but that relation breaks

for points on differently oriented surfaces, and the linear combina-

tion of the Uniform area and Spherical techniques on such surfaces

can no longer approximate the integrand well.

http://www.wolfram.com/mathematica/
http://library.wolfram.com/infocenter/MathSource/9355/
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The above problem does not occur with the Parallel technique,
which first projects the light onto a plane parallel to the shaded sur-

face, and then samples that projection. Therefore, a linear combina-

tion of its sampling density (∝ cos
−3 θ ) with the Spherical technique

(∝ 1) better approximates f irrespective of the light orientation.
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Fig. 2. Illustration of the quantities used in formulas in Sec. 2.A denotes sur-
face area of the sampled light/projection, θ angle at the surface, l (θ ) angle
at the light/projection, d (θ ) distance between the point on the surface and
on the light/projection, d⊥ perpendicular distance of the light/projection.

3 RELATIONSHIP TO OWEN AND ZHOU
Approximating α in Eq. (16) in the paper can be viewed as a re-

gression problem, as Owen and Zhou [2000] did. To explain their

approach, we denote parts of (16) using the following notation

fi j = f (Xi j )/pc(Xi j ), di jk = pk (Xi j )/pc(Xi j ), (S2)

where pc(x)=
∑N
k=1 nkpk (x)/M and M =

∑N
k=1 nk . Let us uniquely

map an index pair (i, j), i = 1, . . . ,N , j = 1, . . . ,ni to an index

l = 1, . . . ,M and denote quantities from (S2) as fl and dlk in the

following text. Owen and Zhou approximate the optimal coefficients

α by multiple linear regression of observations fl on regressors dlk
along with an intercept term ⟨α0⟩, i.e.,

⟨α0⟩ +
∑N
k=1⟨αk ⟩dlk ≈ fl , l = 1, . . . ,M . (S3)

In matrix form,

Dh ≈ f, (S4)

where each row corresponds to (S3) for a particular index l . There-
fore D is a matrixM × (N + 1) with the first column composed of

ones and the (k + 1)-th column being (d
1k , . . . ,dMk )

⊺
, f is a col-

umn vector (f1, . . . , fM )
⊺
, and h is a column vector of length N + 1

representing the terms ⟨α0⟩ and ⟨αk ⟩,k = 1, . . . ,N . Note that the

above regression problem can be composed from several MIS sample

batches by concatenating the corresponding matrices and vectors.

To solve the regression problem (S4), Owen and Zhou minimize

∥Dh − f ∥2
2
in terms of h, which leads to the normal equation for h

D⊺Dh = D⊺f . (S5)

The above equation is singular, because the first column of ones in

D is a linear combination of the others, i.e.,

∑N
k=1 nkdlk/M = 1, l =

1, . . . ,M . Let h0 be a solution of (S5), and v = (−M,n1, . . . ,nN )⊺ ∈
Null(D⊺D). Then each h ∈ {h0 + sv|s ∈ IR} solves (S5). Because the
sum of elements of v equals 0, it holds for all h that the sum of

their elements equals the same number, and we show in the next

paragraph that it must be an estimate of the integral F . We also

show that an alpha estimator extracted from any h estimates some

α̃ , which belongs to the full solution for alphas (see Appendix C of

the paper).

We can find a solution to (S5) by SVD applied directly (preferred

by Owen and Zhou), but we can also solve a truncated system

D̂⊺D̂ˆh = D̂⊺f , where D̂ is obtained by dropping one column from

D. That yields a truncated solution vector
ˆh, and it is equivalent to

finding a solution h which has the element corresponding to the

skipped column equal to zero. Therefore, summing up the elements

of such a truncated vector gives the same estimate of F . Dropping
the first column from D related to ⟨α0⟩ makes the truncated system
even the same (up to a scaling factor) as our system estimated by the
balance heuristic (21) described in Sec. 7.1, because then

D̂⊺D̂ = M2⟨A⟩, and D̂⊺f = M2⟨b⟩. (S6)

The truncated vector
ˆh solving such a system is then equal to the ⟨α ⟩

estimate described in Sec. 7.2, and there exists an h0, with the first

component equal to zero, corresponding to such a truncated vector.

Therefore, using n = (n1, . . . ,nN )⊺, an alpha estimate represented

by h = h0 + sv, s ∈ IR equals to ⟨α ⟩ + sn, which is an estimate of

α̃ = α + sn from the full solution for alphas. It follows that the sum

of elements of any such h must be equal to the sum of elements

of ⟨α ⟩ and therefore it is an estimator of F . In other words, the

solutions given by Owen and Zhou’s approach are equivalent to the

solution of the system from Theorem 5.2 as long as the system parts

A and b are estimated by the balance heuristic. Our result is more

general, and it suggests the existence of some alternative strategies

how to approximate A, b, and α .

4 PSEUDOCODE OF FAN ET AL.
Here we present pseudocode of our adaptation of the method by Fan

et al. [2006] who modified Owen and Zhou’s approach by using reg-

ularization and applied it in rendering (see the previous section for

details of Owen and Zhou’s method). The computation is performed

in batches. In each batch, ni samples are drawn from each of the N
sampling techniques pi , i = 1, . . . ,N (we use N = 2,n1 = n2 = 4,

ALGORITHM 3: Fan et al.

1 M ←
∑N
i=1 ni ; // batch size

2 r esult ← 0;

3 for batch ← 1 tomaxBatches do
4 D← 0

M×(N+1)
; f ← 0

M×1
; l ← 0;

5 for i ← 1 to N do
6 for j ← 1 to ni do
7 Xi j ← draw j-th sample from technique pi ;
8 l ← l + 1;
9 Dl0 ← 1; // intercept term

10 for k ← 1 to N do
11 Dlk ← di jk ; // (S2)

12 end
13 fl ← fi j ; // (S2)

14 end
15 end
16 D̂← drop one column of D;
17 ˆh← solve regularized linear system (D̂⊺D̂ + λI)ˆh = D̂⊺f ;
18 r esult ← r esult +

∑N
i=1

ˆhi
19 end
20 return r esult/maxBatches
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each batch therefore consists of M = 8 samples, the same total

number of samples as 4 iterations of our Direct estimator). For each

sample one row of the data matrix D and vector f is computed ac-

cording to (S2). After all samples in one batch are processed, one

column of D, corresponding to ⟨αk ⟩,k = 1, . . . ,N , is dropped. Then

the regularized truncated system (D̂⊺D̂ + λI)ˆh = D̂⊺f is solved,

where I is the identity matrix and λ is the weight of the regulariza-

tion (we use λ = 1 as suggested by Fan et al.). Finally, the sum of

the elements of the solution
ˆh is added to the final result and the

algorithm proceeds to the next batch.

Note that in practice this algorithm can be implemented to directly

compute D̂⊺D̂ and D̂⊺f instead of first computing D̂ and f and

then multiplying by D̂⊺
. Such an implementation has the same

computational complexity but smaller memory requirements. Fan

et al. do not mention this optimization but our implementation of

this algorithm applies it. This optimized implementation is included

in the provided source code.

5 IMPLEMENTATION SOURCE CODE
We implemented the optimal MIS weights as a new integrator in

pbrt-v3. Its source code including our changes can be found in

the folder implementation/src/integrators. Our integrator is
called optmis. It computes direct illumination only, and it has sev-

eral parameters (described in implementation/Params.html) for
specifying light selection/light sampling techniques, combination

strategies, switching to the method of Fan et al., etc.

6 ADDITIONAL RESULTS
We provide additional results for scenes in the paper accessible

through the html file Supplemental_Results.html.
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