
- In this part of the course, I will focus on guiding in direct illumination sampling.
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- However, I would like to go beyond the specific problem of direct illumination and 

really focus on the fundamental methodology we used to address this problem, since 

it is applicable in a wider context in guiding and adaptive sampling.

- As we have seen in the course introduction, any guided sampling requires some 

information about the radiance distribution in the scene.

- The radiance is not available upfront, so we must resort to approximations.

- The approximations can be obtained by learning from the Monte Carlo samples 

themselves – but these provide noisy and unreliable estimates, especially early in the 

computation.

- So the general question we are striving to address is how to obtain reliable 

information from unreliable, noisy samples.

- Our proposition is that machine learning, and specifically Bayesian statistics, provide 

some excellent tools to tackle exactly this problem.

- This was the underlying idea both in our 2014 direction guiding work [Vorba et al. 

2014] mentioned earlier, and also in the direct illumination guiding work by Petr 

Vévoda and Ivo Kondapaneni that I will present now [Vévoda et al. 2018].
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- I will now describe our guided direct illumination solver build around these ideas. 

- It is the default direct illumination solver used in Corona Renderer since version 3.
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- Let us first motivate our work.

- MC rendering algorithms are currently getting more and more popular, but they 

suffer from noise.
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- Traditionally, the indirect illumination component has been considered as the main 

source of noise, and it’s been subject to lot of research.

- But in this, as well as in many other production scenes, it is the direct component that 

causes the trouble.
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- In this image with only direct illumination we can clearly see the problem.

- A non-adaptive direct illumination sampling method that samples lights 

proportionately to the a conservative estimate of their unconcluded contribution is 

shown on the left.

- It struggles to work efficiently, because it wastes lot of samples on the strong but 

completely occluded sun. 
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- One possible solution is to use previous adaptive methods which try to improve 

sampling based on past samples.

- But while they can decrease the amount of noise significantly, …

8



- … they can also introduce various artifacts and spiky noise because they are based on 

adhoc solutions and they tend to overfit to the input noisy data.

- This lack of robustness is a consequence of adhoc solutions to crucial questions in 

adaptive sampling: 

- When is it safe to rely on the noisy samples?

- How should the noisy samples be combined with any previous, a priori 

knowledge?
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- We propose a solid theoretical framework based on Bayesian learning that addresses 

the above questions, and thanks to that enables robust adaptive sampling in 

rendering.
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- In this scene, our solution is more than 500 times faster than the non-adaptive 

solution…
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- … and we can achieve much better robustness than the previous adaptive sampling 

method by Donikian et al. [2006].

- The Bayesian framework we introduce here is not limited to guided direct 

illumination. Other guiding / adaptive sampling methods can benefit from it as well.
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- Much existing work is related to ours.
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• Adaptivity in Monte Carlo simulation is not a new concept.

• There is much work in general Monte Carlo as well as in rendering: for example works 

dealing with image sampling, indirect illumination sampling, and direct illumination 

sampling as well.

• A classic adaptive algorithm for general Monte Carlo estimation is the Vegas 

algorithm by Lepage [1980], which works by histogramming (stratifying) the integrand 

and using these histograms for better sampling in subsequent steps.

• Another example is Population Monte Carlo [Cappé et al. 2004], which uses a 

population of simulation particles and tracks how well they sample the integrand. 

Based on that, they keep the best individuals for subsequent sampling rounds.

• A lot of adaptive sampling work exists in rendering. 

• Of the many works, we mention Mitchell [1987] which deals with allocation of 

samples into image parts with high-frequency content. 

• In adaptive indirect illumination computation, some of the early works were done by 

Dutre and Willems [1995], where the authors adaptively trace particles from lights; 

Jensen [1995] who used photon maps to construct path sampling distributions (this is 

probably the first work in graphics on direction guiding); and Lafortune et al. [1995] 

who applied a Vegas-like approach in Monte Carlo light transport simulation.

• The ongoing renewed interest in path guiding / adaptive path space sampling could 

be attributed to our work [Vorba et al. 2014], which proposes online learning of 

Gaussian mixtures for direction guiding. The direction sampling algorithm by Muller 
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et al. [2017] is a version of the Vegas-style algorithm by Lafortune from 1995.

• As for direct illumination, we mention the pioneering work by Shirley et al. [1996] who 

adaptively classified lights into important and unimportant ones. 

• The most closely related is the work by Donikian et al. [2006] that we describe in more 

detail later. 

• Wang et al. [2009] sample lights adaptively based on surface reflectance and 

estimates of lights' contributions.

• None of these works deal with a problem of determining when and how to 

incorporate all the information into a robust, reliable ‘trained’ sampling distributions.
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• Bayesian methodology has so far not been widely applied in rendering.

• The few Bayesian methods in image filtering and global illumination are listed on the 

slide.
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• Let me now provide some background related to the direct illumination problem.
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• Consider a scene with several light sources (yellow stars) and geometry (blue blocks).

• The goal is to calculate the direct contribution of all lights toward any given point in 

the scene.  

• That is a complex task due the potentially high number of light sources, their highly 

uneven contributions, and due to occlusion

• We assume that the sampling problem is broken down to two stages: 

• A) pick a light at random

• B) randomly sample a position on the chosen light

• While much previous work has addressed optimal choices in the step B, we focus 

solely on step A: the random choice of a light source.
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• One common strategy for light sampling considers conservative bounds on the un-

occluded light contribution to the surface point. 

• We can use the bounds to build a sampling distribution over the lights and then use it 

for choosing the lights at random (step A on the previous slide).

• But this non-adaptive approach cannot approximate the true light contributions well 

especially when the individual lights are large and have complex emission 

distributions, and when of them many are (partially) occluded.
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• Donikian et al. [2006] propose an adaptive direct illumination sampling algorithm, 

which however suffers from limited robustness.

• They gather statistics about true light contributions in screen space for each pixel.

• But the per-pixel statics are too noisy, so they additionally gather average stats over 

entire blocks of pixels.

• Then they mix both the per-pixel and per-block statistics to obtain the final sampling 

distributions: early on, the blocks are given more weight and as more samples arrive, 

the per-pixel statistics are given more weight.

• But the mixing is done in an ad-hoc way, which often results in overfitting of the 

sampling distribution to the samples, and consequently produces image artifacts, 

especially in the complex illuminations cases that we with to be handled by the 

adaptive sampling in the first place.
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• Let us now summarize the problem at hand.

• Our goal is to compute direct illumination by means of Monte Carlo sampling, and for 

that we need to find optimal discrete sampling distribution over individual lights.

• We choose to use adaptive sampling (i.e. guiding) so that we can deal with (partial) 

light occlusion, but we strive for a robust, 100% reliable solution, even in complex 

edge cases.

• We have two kinds of information at our disposal:

• First, the bounds of light contribution towards a point, which are conservative 

and noise-free. These can be computed on the fly, so they are available for 

the start. As such, they can serve as our prior belief about the lights’ real 

contribution to any given scene point. 

• Second, the Monte Carlo estimates of direct illumination (i.e. lights’ real 

contribution). These are noisy at the start, but as more samples are taken, 

their average eventually converges to the correct answer - over time, they 

become more accurate than the conservative bounds.

• We propose a well-founded approach to combining these two sources of information 

in a robust way based on Bayesian inference, as we explain shortly.
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• Let us now introduce our approach ...
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• We make two main contributions:

• First, we show what should be the optimal discrete probability distribution 

for choosing the lights, given the statistics of light contributions.

• Our second and main contribution is the use of Bayesian inference to learn 

these sampling distributions. This gives us a robust solution and allows us to 

combine Monte Carlo samples with light contribution bounds in a principled 

manner.

• Let us start with the first point.
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• Given a point in the scene, we want to sum up contributions from all lights.

• When the lights are too many, summing all the contributions would take too much 

time, so we randomly pick one or just a few. So far nothing new, this is a standard 

way to go about computing direct illumination in a Monte Carlo renderer.

• Choosing a few lights at random - instead of summing the contribution of all of them 

– can vastly increase efficiency, but it also introduces variance.

• The question is: What is the discrete probability mass function (PMF) for picking the 

lights at random that provides the lowest possible variance?

• The usual approach in Monte Carlo sampling would be to make the lights’ sampling 

probabilities proportional to their expected (or mean) contribution to a given point. 

• We show in the paper that this traditional choice may in fact be far from optimal, and 

we derive the optimal solution.

• To arrive at the optimal solution, it is important to realize that once we pick a light, 

another random decision follows, which selects a particular sample location on the 

light. The contributions from these sample locations will generally vary: usually the 

larger the light and/or the sharper the surface BRDF, the more variance in the 

individual sample contributions. Since this variance eventually creeps into the overall 

direct illumination estimator over all lights, we need to reduce it - by allocating more 

samples to those lights that yields samples with highly varying contributions.

• The final optimal sampling should therefore take into account both the mean 

contribution but also the variance of the contributions for each light. 

• The specific formula is given on the slide. It is equivalent to making the light selection 

probability proportional to the square root of the second moment of the samples 
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from that given light.
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• Let me show a practical example
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• On the left we see an inset showing how sampling according to a mean performs. It 

under-samples some tricky light which leads to spiky noise.

• And on the right we see that sampling according to both the mean and variance 

eliminates this issue.
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• Having explained the target optimal sampling distribution that we strive to achieve, 

we now show how to learn this desired distribution using Bayesian regression.

• The issue is that the mean and the variance needed for the optimal sampling are not 

known upfront and need to be learned during rendering.
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• To motivate our approach, let us first see how a naive adaptive approach would 

behave.

• Suppose we have already taken some samples from lights (blue dots) and obtained 

some light sampling probabilities (green bars).

• Now suppose we have taken a direct illumination sample which happens to be an 

outlier. For instance, the sample may lie on the light extremely close to the 

illuminated point.

• If we estimated the sample means directly, our estimates would change abruptly due 

to the outlier sample.

• That would have a disproportionately strong effect on further light sampling: one 

light would get sampled very often at the expense of other lights, leading to 

increased image noise or even strong fireflies.
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• We propose to estimate the means (and variances) in a Bayesian manner: We model 

the distributions of MC estimates seen so far, while we also have some prior 

information about parameters of that distribution.

• As a result, when we get a new – possibly outlier – sample, our distribution is 

affected less abruptly and so do the cluster sampling probabilities derived from it.

• Resiliency to outlier samples without compromising the ability to learn from the 

new samples is the basis of our robust solution.
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• Before explaining how we model the data (i.e. lights’ direct illumination 

contributions), let us explain the basic set up.

• We split the scene into fixed spatial Regions (we use a regular grid, but that is not so 

important – any space subdivision could be used).
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• Now we focus on samples collected from one light in a single scene region, and we 

keep track of the distance d in the geometry factor in each estimate.

• We can now then plot the data (i.e. MC direct illumination estimates) for a light in a 

region. This reveals the nature of the relation of illumination estimates to the 

distance. 

• One may observe the inverse squared falloff with the distance, and a number of zero-

valued (occluded) samples.
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• Now that we understand the general characteristics of the gathered direct 

illumination samples (i.e. data), we proceed to establish a model for the data.

• Our model is a parametric regression model, which - for a given distance d - yields a 

distribution of direct illumination sample values. We design our data model as 

follows:

• Non-zero samples are modeled by a normal distribution (i.e. a Gaussian) with 

mean and variance being a function of the distance associated with direct 

illumination samples. This part of the model has two parameters, k and h.

• The zero valued samples are incorporated by mixing the inverse-square 

distance falloff model with a delta function, and it is controlled by the 

parameter p
0
, which has the meaning of occlusion probability.

• Having designed our data model, we proceed to define the prior distribution for all 

three model parameters, k, h, and p
0
.
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• The model we have just defined has parameters k, h and p
0
. In the Bayesian 

treatment, these are viewed as random variables governed by a certain probability 

distribution.

• The “prior” is a specific probability distribution that we believe these parameters 

follow, without observing any data at all.

• A “conjugate prior” is a convenience construction: we choose the prior to have a 

functional form that will be preserved when multiplied by the likelihood of observed 

data.
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• The mathematical form of the likelihood function is that of our data model (recall 

that the data likelihood is calculated simply by plugging our data samples into the 

data model).

• We show in the paper that the conjugate prior in our case takes form of the Beta 

distribution for p
0

and the normal-inverse-gamma distribution for the parameters k

and h.

• There are various hyperparameters in the equations, but one parameter which 

stands out is µυ
0
, for which we use the conservative light contribution bound.

• This hyperparameter expresses our a priori belief about the mean of our data: That 

is, the light contribution bounds provide a prior information about the expected 

contribution each light will make to each scene region. This belief is then continually 

refined as we observe the actual direct illumination contributions made by sampling 

the lights.
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• To wrap it up, our algorithm is as described on the slide.
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• We see from the algorithm described on the previous slide that the overall 

complexity of calculating direct illumination at a given scene point is still linear with 

respect to the total number of lights. 

• This is because our probabilistic model has to be evaluated for each light, the 

sampling distribution has to be constructed, turned to a cumulative distribution to 

facilitate the sampling, and properly normalized.

• This linear complexity can be a bottleneck in scenes with many lights.

• For this reason, we apply a classic solution: the lights are clustered such that all lights 

in a cluster have similar contribution to a given scene region. The light clustering is 

generally different for each scene region. These clusterings are constructed up front, 

before the rendering starts.

• To apply the Bayesian approach described so far to this more general case, simply 

replace “a light” by a “cluster of lights” on all previous slides: We are learning discrete 

distributions to randomly select a light cluster. A light from the cluster is then 

selected in a non-adaptive way (e.g. proportionately to the total emitted light power), 

and finally a sample is selected in the light.

• With respect to our take-home idea (i.e. the use of Bayesian learning in adaptive 

sampling), the light clustering is really just a technical detail. (Though most of the 

code actually deals with handling the clusterings.)
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- Let us now demonstrate our solution in practice.
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- This is a list of all comparisons you will see.

- Let me start with performance testing in a scene with simple occlusion in direct 

illumination only setting. 
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- This is the living room scene from the beginning of our presentation.

- It is lit mostly by a few small area lights on the ceiling, only in the left part sunlight 

can enter the room through the windows.
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- As you could already see, the non-adaptive sampling of Wang at al. does not perform 

well in this scene. Why is that? The sun is much stronger than the ceiling lights and is 

therefore sampled much more often even though it is actually occluded - and so 

most of the samples are wasted.

- Donikan et al.’s algorithm improves the result significantly, as it quickly learns the sun 

occlusion. On the other hand, it struggles with the ceiling lights. They are covered by 

shades which block some of the samples. The method believes these lights are 

actually completely occluded, and consequently undersamples these lights and 

introduces spiky noise.

- Our method can also quickly learn the sun occlusion and converges more than 500×

faster than the non-adaptive method of Wang et al.

- Interestingly, we can even observe a higher empirical convergence rate.

- At the same time, thanks to the Bayesian treatment, our method is robust, does not 

get confused by the occluded samples and avoids the spiky noise.
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- So, that was the direct illumination.

- But in practice one is usually more interested in images containing both direct and 

indirect components…. 
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- … like this one.
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- We can see that the strong direct illumination noise of Wang et al. dominates also in 

the complete image. The direct component is definitely the main source of noise in 

this scene.

- By using our method in the next event estimation in path tracing, we are able to 

improve the light sampling on every path vertex and get more than 6x overall 

speedup.

- Note that the remaining noise at the bottom right of the image is caused solely by 

the indirect component and cannot be remedied by our method.
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- Now it is time to stress-test robustness of our method in a scene with complex 

occlusion.
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- This scene presents a real challenge due to its highly structured illumination plus there 

are high-intensity lights in the other room behind the door.
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- In this part Wang et al.’s method produces a lot of noise again, as it wastes samples 

on the lights behind the door.

- On the other hand, our method performs well.

- It is more than 9 times faster, and again we can observe higher empirical convergence 

rate. And all that without introducing any artifacts in such a complicated illumination 

setting.

- Donikian et al.’s method at first also seems to perform well but further inspection 

would discover small blocky artifacts in the shadows.
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- In this inset, the non-adaptive sampling of Wang et al. again does not perform well.

- But this time also the Donikian et al.’s method fails badly:  The illumination coming 

through the plant leaves is too complex for the ad-hoc learning to handle it well, the 

method overfits and produces square-shaped artifacts. 

- This is exactly the problem of essentially all previous adaptive methods: While they 

can sometime provide substantial speedup, they do not fail gracefully, and one 

cannot rely on them.

- Our Bayesian learning makes our method much more robust and artifact-free.
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- Finally, let’s test the complex occlusion also with the indirect component.
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- If we take a look at the same scene…
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- …we see the direct illumination noise again dominates the complete image.

- Our method eliminates it and renders the complete image more than four times 

faster and without any artifacts.
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- There is one more interesting area in this scene: The statue is made of glossy metal, 

and even though our method does not take the surface BRDF into account, it 

performs significantly better even there.
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- Recall that we divide the scene into regions by a uniform grid of a fixed resolution. 

We now test how this resolution affects the algorithm’s performance.
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- For that purpose we use this relatively large scene containing a many lights.
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- With our default choice of 64 regions per the shortest grid dimension, our method 

performs more than three times faster than the method of Wang et al.

- So what about other grid resolutions?

- As it turns out, our method rather insensitive to the actual grid resolution. And so 

even much smaller as well as much higher resolutions all perform roughly the same.

- We hypothesize that this is due to the regression modeling of the distance falloff.

- Without the regression model we would have to use a much higher grid resolution, 

otherwise we would see sudden noise transitions between regions.
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- Ok, so our method works well in all our static scenes.

- Now to our final test. It will verify temporal coherence in animations.
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- We now show a short animation of this scene. The only thing that changes is the 

position of the sun. It starts behind the scene and will go towards the camera. 

- Notice on the right that the non-adaptive method of Wang et al. works well on the 

back wall because the sun is behind it, so it is culled and no samples are wasted. As 

the sun moves towards the camera, it starts contributing to the back wall, cannot be 

culled anymore, numerous samples are allocated to it because if its high intensity, 

resulting in severe undersampling of the interior lights

- On the other hand, our method works well all the time without any artifacts or 

blinking.
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• To conclude, the main contribution of our work is a Bayesian framework for 

adaptive/guided Monte Carlo quadrature. 

• It enables exploiting the large potential of the adaptive sampling approach in 

Monte Carlo methods, while avoiding the biggest weakness of previous 

attempts – the lack of robustness.

• We applied this framework on the problem of direct illumination sampling.

• In the process we derived the optimal sampling distribution, taking variance 

into account, and developed an unbiased adaptive direct illumination 

algorithm with online learning of light sampling distributions. It is easily to 

integrate into a path tracer and suitable for interactive rendering (the up front 

cost is minimized as all learning happens on the fly during rendering).

• Our new framework is not limited to the direct illumination though and we are 

certain that other applications of adaptive sampling will benefit from it as well and it 

opens the path for many other tools of statistical machine learning (such as 

full Bayes or variational Bayes).
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And that’s all. Thank you for your attention.
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