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| Motivation o Y
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* Path tracing can efficiently handle the majority of

rendering problems in practice (Fascione et al. [2017])
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e \What about the rest?
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Motivation

Difficult light transport
(guided sampling)
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I Recent related guiding methods ﬁ%‘sﬁ.ﬁ‘%ﬂﬁﬂ

* \Jorba et al. [2014], Mduller et al. [2017], ...
e path guiding using incident radiance information

* Product sampling (Herholtz et al. [2016]) and application to
participating media is not straight forward
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I Monte Carlo Integration

1 g fX)
N = p(X;)
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I llustration in 1D

* Importance sampling?
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IGuided Sampling in 1D

* Create samples X, ~ p,,
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IGuided Sampling in 1D

e Keep outliers
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IGuided Sampling in 1D

e Place a (Gaussian around each outlier

ANAL
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IGuided Sampling in 1D

* Define guided PDF as sum over all Gaussians
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IGuided Sampling in 1D

* Iterate by sampling p, and p,
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IGuided Sampling in 1D

* Keep outliers wrt. p, and p,
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IGuided Sampling in 1D

* Update p,
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IGuiding Overview

* In each iteration, sample paths from p, and P,
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IGuiding Overview

e Keep outliers with highest contribution
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IGuiding Overview

* Add paths to the set of guide paths

 Compute Gaussians using neighbourhood
iInformation

<7
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IGuiding Overview

* Guided sampling:
» Choose guide path randomly and

» Sample Gaussians incrementally

e Guided and unguided V
sampling combined
with multiple
Importance sampling
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IGuiding Behaviour

Reference
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| Guiding Behaviour

Path tracing

s
"ﬁ\:{f,'é;

>

SKIT

Karlsruhe Institute of Technology




RARH

| Guiding Behaviour

Reference

Karlsruhe Institute of Technology




RARH

2018
K'Y O

>0

| Guiding Behaviour

Path tracing
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I Path Correlation o> Jargial
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IGaussians

e Compute Gaussians for sampling
using nearest neighbours

= (Guide path

- Nearest neighbours
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IGaussians

e Compute Gaussians for sampling
using nearest neighbours

= (Guide path

- Nearest neighbours

Ny
X §~§~§

- New path
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IGaussians

e Sample 3D Gaussian at next vertex”?

= (Guide path

- Nearest neighbours

- New path
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IGaussians

e Sample 3D Gaussian at next vertex”?

= (Guide path

- Nearest neighbours

- New path
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IGaussians

 Compute 6D covariance matrix
for path segments

= (Guide path

- Nearest neighbours

- New path
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IGaussians

 Compute 6D covariance matrix
for path segments

 And conditional Gaussian using x

e

= (Guide path
- Nearest neighbours

- New path

SKIT

llllllllllllllllllllllllllllll




IGaussians

 Compute 6D covariance matrix
for path segments

 And conditional Gaussian using x

= (Guide path

- Nearest neighbours

- New path

SKIT

llllllllllllllllllllllllllllll




IGaussians

 Compute 6D covariance matrix
for path segments

 And conditional Gaussian using x
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I Sampling next vertex

Next vertex In volume Next vertex on surface

Sampling
of
(Gaussian

Sampling
of
BSDF
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I Sampling next vertex

Next vertex in volume Next vertex on surface
Sampling >
of A
(Gaussian
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IGuided PDF

* Many guide paths could sample the same
path X

» We have to sum up all individual probability densities

 For fast evaluation, we truncate
Gaussians (=~ 30)
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* Acceleration structure for fast pruning

- Guide paths X
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| Selecting Guide Paths

e Outliers # samples with high contribution

* Outliers classification: Density based outlier rejection
DBOR, Zirr et al. [2018]
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I Remaining outliers

» QOutliers contribute fully to the image

* We remove outliers with DBOR to get clean images

Outliers
removed
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I Pool

Reference
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| Pool - 30min

Path tracing
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Pool - 30min

Guided path tracing

104k guide paths (~310MB)
IT
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Pool - 30min
Guided path tracing + DBOR
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Guided PT+DBOR
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Pool - 30min
Path tracing + DBOR

PT + DBOR guided PT+DBOR
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Dragon - 10h

Guided path tracing

69k guide paths (~207MB)
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Dragon - 10h

Guided path tracing + DBOR

69k guide paths (~207MB) Guided PT+DBOR
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Dragon - 10h

Path tracing + DBOR

PT + DBOR Guided PT+DBOR
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I Results

* More results in the paper/supplemental document
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I Limitations & Future Work

 \When every path Is an outlier, no path is an outlier

* Impossible to cover all of path space with guide paths

path tracing guided path tracin

7921spp, RMSE 0.75 4405spp, RMSE 1.30
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I Limitations & Future Work

* [emporal stabllity is challenging

gulided per frame
-~y -1 30720 S SSRIE/ARENC 1B nin

density based outlier rejection active




Limitations & Future Work o Y
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* [emporal stabllity is challenging

* Improvement: Resample guide paths from previous frame

_ gulded per frame Jogs gulded + reuse
.3 13~130/120spp Learn/render ~15min -u i;.130/120spp Learn/render ~15min

density based outlier rejection active density based outlier rejection active

iIndependent guide path cache resampled guide path cache m
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ICOnCIusion

» Data driven path sampling with local exploration
behaviour

» Path construction using information of multiple
existing paths

« Other Monte Carlo samplers possible as the
unguided sampler

» Similarities to Sequential Monte Carlo

» Guide paths could be hand picked (artist) or from
Markov Chain without detailed balance

Karlsruhe Institute of Technology
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I Discarded ldeas

* Constant Kernel
 Repeated 3D search for NN
* Metropolis Hastings to resample guide paths

* Relaxation of guide paths (photon map-style)
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guided PT

guided PN 152 spp | PT

guided BDPT
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I Recent Guiding Methods

Vorba et al. [2014] Vorba et al. [2014] ours

® cache points




Recent Guiding Methods

Muller et al. [2017] 256spp
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I llustration in 1D

* Uniform sampling
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I llustration in 1D

* Importance sampling
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| Guiding Behaviour

Guided path tracing  teration

LS Ay
» oyt p
N S o .
3 r . A
a 2 Sy

o
)tz s

ﬁ:b'_.)
R

SKIT

Karlsruhe Institute of Technology




@ SIGGRAPH
ASIA 26€18
TOKY O

ion 3

terati

SR
s g
A e Y e

, w@m.,%uw

;..
= o
-~

L

B
-

G
3

8

.

ded path traci

Behaviour
Gu

IGui INQ

>
1<)
o
o
c
=
3
K
o
3
o
@
S|
=
=]
7
=
- o
iz
3
2
&
=
©
M



9 SIGGERAPH
ASI|A 20138
TOKYO

| Guiding Behaviour

uided path tracing - iteration 4
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| Guiding Behaviour

Guided path tracing - iteration 8
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TOKYO

I Recent related guiding methods ﬁ%‘sﬁ.ﬁ‘%ﬁﬁﬂ
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I Recent related guiding methods ﬁ%‘sﬁﬁ%‘i@
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| Selecting Guide Paths

* DBOR: DeCoro et al. [2010] / Zirr et al. [2018]

* Framebuffer cascade with histogram

e« Samples split according to throughput

C € [0,8]



I Remaining outliers

e Either: stop adding, clear the framebutfer and restart rendering.

* Qutliers possible because of yet unexplored lighting features or gaps between
guide paths.

e Or: keep adding, don'’t clear the framebuffer

e Qutliers will remain in the framebuffer and won't converge away in reasonable time.
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| Dining Room - 30min

reference
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| Dining Room - 30min

path tracing RMSE 0.0435
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| Dining Room - 30min

guided path tracing RMSE 0.0435

SKIT

llllllllllllllllllllllllllllll




Dining Room - 30min

guided path tracing + DBOR RMSE 0.0435

RMSE 0.0231
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Dining Room - 30min o Y

TOKYO

path tracing + DBOR RMSE 0.0435 RMSE 0.0345

RMSE 0.1170 RMSE 0.0231
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Pool - 30min o Y

guided path tracing + DBOR RMSE 0.2550 RMSE 0.3162

RMSE 0.1238 RMSE 0.0499
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Dragon - 10h

guided path tracing + DBOR

RMSE 0.6143 RMSE 0.2198

SKIT 84



MEGRAPH
ASIA 26€18
TOKY O

«m_

INng Room - 30min
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IPool - 30min

removed by DBO
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I Dragon - 10h

removed by DBOR

reference
path tracing

ours
guided path tracing
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I Convergence

Dining Room Swimming Pool
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Difference

Reference

Guided path
tracing
+

DBOR
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I Difference

Scene
Learning time 3min 3min 3min
Number of
. 33k 104k (~300MB) 69k
guide paths
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Pool DBOR Cascade

path tracing

uided path tracing
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| Guiding Behaviour

Guided path tracing - iteration
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| Guiding Behaviour

Guided path tracing - iteration 2
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| Guiding Behaviour

Guided path tracing - iteration 3
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| Guiding Behaviour

uided path tracing - iteration 4
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| Guiding Behaviour

Guided path tracing - iteration 8
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| Guiding Behaviour

Guided path tracing - iteration 16
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I Limitations & Future Work

* [emporal stabllity is challenging

gulided per frame
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I Limitations & Future Work

* [emporal stabllity is challenging

path tracing s gulded per frame
1850spp/~15min -a :;~130/120spp Learn/render ~15min

density based outlier rejection active density based outlier rejection active




IGuide path sampling

* Pick guide path X] randomly using weights w;

 Then in iteration k:  pk(X) = )" wipk(X| X))
[

k
. X \
e Choosing w,' = ——

] ck(x) ——m circular
Zl (%) dependency

(X)) o

with Ck(Xi) B ———————————————
ap,(X;) + (1 — a)ps(X;)
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IGuide path sampling

* Pick guide path X] randomly using weights w;

 Then in iteration k:  pk(X) = )" wipk(X| X))
[

Ck—l(X})
e Therefore wjk RN
2, C1(X) oscillation
(0.6

with Ck(Xi) B ———————————————
ap,(X;) + (1 — a)ps(X;)
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IGuide path sampling

* Pick guide path X] randomly using weights w;

 Then in iteration k:  pk(X) = )" wipk(X| X))
[

Ck—l()(}) 1
e Therefore ij =1 T_l_(l — 1) - ij—
Zl Cr= (Xl)
J(X))

with Ck(Xi) B ———————————————
ap,(X;) + (1 — a)ps(X;)
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