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Motivation
• Path tracing can efficiently handle the majority of 

rendering problems in practice (Fascione et al. [2017])
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�4

Motivation
• What about the rest?



Difficult light transport 
outliers

�5

Motivation

Unproblematic 
light transport 



�6

Motivation

Unproblematic 
light transport 

(unguided sampling)

Difficult light transport  
(guided sampling)



�7

Recent related guiding methods
• Vorba et al. [2014], Müller et al. [2017], …

• path guiding using incident radiance information 

• Product sampling (Herholtz et al. [2016]) and application to 

participating media is not straight forward
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Path Integral

I = ∫𝒫
f(X) dX
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Monte Carlo Integration

I ≈
1
N

N

∑
i=1

f(Xi)
p(Xi)



pu
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Illustration in 1D
• Importance sampling?

f
p
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Guided Sampling in 1D
• Create samples Xi ∼ pu

f
pu
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Guided Sampling in 1D
• Keep outliers

f
pu
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Guided Sampling in 1D

f
pu

• Place a Gaussian around each outlier
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Guided Sampling in 1D
• Define guided PDF as sum over all Gaussians 

f
pu
pg
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Guided Sampling in 1D
• Iterate by sampling      and pu pg

f
pu
pg
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Guided Sampling in 1D
• Keep outliers wrt.      and

f
pu
pg

pu pg
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Guided Sampling in 1D
• Update pg

f
pu
pg
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Guiding Overview
• In each iteration, sample paths from     and pu pg



• Keep outliers with highest contribution
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Guiding Overview
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• Add paths to the set of guide paths

• Compute Gaussians using neighbourhood 

information

Guiding Overview
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• Guided sampling:

• Choose guide path randomly and

• Sample Gaussians incrementally

Guiding Overview

• Guided and unguided 
sampling combined 
with multiple 
importance sampling
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Guiding Behaviour
Reference



Path tracing
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Guided path tracing

Guiding Behaviour
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Reference

Guiding Behaviour



Guiding Behaviour

�25

Guided path tracingPath tracing
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Path Correlation

Specular/glossy Rough/diffuse
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Gaussians
• Compute Gaussians for sampling 

using nearest neighbours

Guide path

Nearest neighbours
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x

Gaussians

Guide path

Nearest neighbours

New path

• Compute Gaussians for sampling 
using nearest neighbours
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x

Gaussians

Guide path

Nearest neighbours

New path

• Sample 3D Gaussian at next vertex?



• Sample 3D Gaussian at next vertex?
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x

Gaussians

Guide path

Nearest neighbours

New path



Gaussians
• Compute 6D covariance matrix 

for path segments
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Guide path

Nearest neighbours

New path
x



Gaussians
• Compute 6D covariance matrix 

for path segments

• And conditional Gaussian using
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Guide path

Nearest neighbours

New path
x

x



Gaussians

�33

Guide path

Nearest neighbours

New path

• Compute 6D covariance matrix 
for path segments


• And conditional Gaussian using x



Gaussians
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Guide path

Nearest neighbours

New path

• Compute 6D covariance matrix 
for path segments


• And conditional Gaussian using x
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Sampling next vertex
Next vertex in volume Next vertex on surface

Sampling

of


Gaussian

Sampling
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BSDF
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Sampling next vertex
Next vertex in volume Next vertex on surface

Sampling

of


Gaussian

Sampling

of


BSDF



• Many guide paths could sample the same 
path X

• We have to sum up all individual probability densities


• For fast evaluation, we truncate 
Gaussians (         )


• Acceleration structure for fast pruning
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Guided PDF

≈ 3σ

Guide paths 

Path

Xl

X
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Selecting Guide Paths
• Outliers      samples with high contribution 

• Outliers classification: Density based outlier rejection      

(DBOR, Zirr et al. [2018])

≠



• Outliers contribute fully to the image

• We remove outliers with DBOR to get clean images 
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Remaining outliers

Outliers

removed
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Pool
Reference
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PTPath tracing

Pool - 30min
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PT Guided PTGuided path tracing

Pool - 30min

104k guide paths (   310MB)≈
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PT Guided PT

Guided PT+DBOR

Guided path tracing + DBOR

Pool - 30min

104k guide paths (   310MB)≈
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PT guided PT

PT + DBOR guided PT+DBOR

Path tracing + DBOR

Pool - 30min
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Dragon
Reference
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PTPath tracing

Dragon - 10h
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PT Guided PTGuided path tracing

Dragon - 10h

69k guide paths (   207MB)≈
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PT Guided PT

Guided PT+DBOR

Guided path tracing + DBOR

Dragon - 10h

69k guide paths (   207MB)≈
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PT Guided PT

PT + DBOR Guided PT+DBOR

Path tracing + DBOR

Dragon - 10h
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Results
• More results in the paper/supplemental document
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Limitations & Future Work

• When every path is an outlier, no path is an outlier  🤔


• Impossible to cover all of path space with guide paths

path tracing guided path tracing

7921spp, RMSE 0.75 4405spp, RMSE 1.30
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Limitations & Future Work
• Temporal stability is challenging
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Limitations & Future Work
• Temporal stability is challenging

• Improvement: Resample guide paths from previous frame

independent guide path cache resampled guide path cache
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Conclusion
• Data driven path sampling with local exploration 

behaviour

• Path construction using information of multiple 

existing paths

• Other Monte Carlo samplers possible as the 

unguided sampler

• Similarities to Sequential Monte Carlo

• Guide paths could be hand picked (artist) or from 

Markov Chain without detailed balance
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Thank you!
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• Constant Kernel

• Repeated 3D search for NN

• Metropolis Hastings to resample guide paths

• Relaxation of guide paths (photon map-style)
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Discarded Ideas
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guided PT PT HSLT MMLT

VCMKMLTBDPTguided BDPT
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Recent Guiding Methods
Vorba et al. [2014] Vorba et al. [2014] ours

cache points
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Recent Guiding Methods
Müller et al. [2017] ours256spp 260spp
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Illustration in 1D
• Uniform sampling



�65

Illustration in 1D
• Importance sampling
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Guided path tracing - iteration 1

Guiding Behaviour



�67

Guided path tracing - iteration 2

Guiding Behaviour
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Guided path tracing - iteration 3

Guiding Behaviour
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Guided path tracing - iteration 4

Guiding Behaviour
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Guided path tracing - iteration 8

Guiding Behaviour
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Guided path tracing - iteration 16

Guiding Behaviour
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Recent related guiding methods
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Recent related guiding methods
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xΣx = Σ |x

μx = μ |x

(Σx, μx)
Conditional Gaussians

(Σ11, μ1)

(Σ22, μ2)

Σ = (Σ11Σ12
Σ21Σ22)

μ = (μ1
μ2)



μx = μ1 + Σ12Σ−1
22 (x − μ2)

Σx = Σ11 − Σ12Σ−1
22 Σ21
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x

(Σx, μx)
Conditional Gaussians
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Selecting Guide Paths
• DBOR: DeCoro et al. [2010] / Zirr et al. [2018]

• Framebuffer cascade with histogram 

• Samples split according to throughput

C ∈ [0,81] C ∈ [81,82] C ∈ [82,83] C ∈ [83, ∞)



• Either: stop adding, clear the framebuffer and restart rendering.  

• Outliers possible because of yet unexplored lighting features or gaps between 
guide paths. 

• Or: keep adding, don’t clear the framebuffer 

• Outliers will remain in the framebuffer and won’t converge away in reasonable time. 
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Remaining outliers
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Dining Room - 30min
reference
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Dining Room - 30min
path tracing RMSE 0.0435
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guided path tracing

Dining Room - 30min
RMSE 0.0435 RMSE 0.0345
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guided path tracing + DBOR

Dining Room - 30min
RMSE 0.0435

RMSE 0.0231

RMSE 0.0345
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path tracing + DBOR RMSE 0.0435

RMSE 0.0231

RMSE 0.0345

RMSE 0.1170

Dining Room - 30min



Pool - 30min
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guided path tracing + DBOR

RMSE 0.0499RMSE 0.1238

RMSE 0.2550 RMSE 0.3162
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Dragon - 10h
guided path tracing + DBOR RMSE 0.5012

RMSE 0.2198

RMSE 0.2121

RMSE 0.6143
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Convergence
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Difference

Reference

Guided path  
tracing  

+ 
DBOR
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Difference

Scene

Learning time

Number of 
guide paths

3min 3min 3min

33k 104k (   300MB) 69k≈
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Pool DBOR Cascade
path tracing

guided path tracing
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Guided path tracing - iteration 1

Guiding Behaviour
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Guided path tracing - iteration 2

Guiding Behaviour
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Guided path tracing - iteration 3

Guiding Behaviour
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Guided path tracing - iteration 4

Guiding Behaviour
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Guided path tracing - iteration 8

Guiding Behaviour
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Guided path tracing - iteration 16

Guiding Behaviour
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Limitations & Future Work
• Temporal stability is challenging
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Limitations & Future Work
• Temporal stability is challenging



• Pick guide path      randomly using weights     


• Then in iteration   : 
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Guide path sampling
wjXj

k

wk
j =

Ck(Xj)
∑l Ck(Xl)

pk
g(X) = ∑

l

wk
j pk

g(X |Xl)

• Choosing                           

with                        Ck(Xi) =
f(Xi)

αpu(Xi) + (1 − α)pk
g(Xi)

circular 

dependency
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Guide path sampling
• Pick guide path      randomly using weights     


• Then in iteration   : 

wjXj

k pk
g(X) = ∑

l

wk
j pk

g(X |Xl)

wk
j =

Ck−1(Xj)
∑l Ck−1(Xl)

• Therefore                           

with                        Ck(Xi) =
f(Xi)

αpu(Xi) + (1 − α)pk
g(Xi)

oscillation
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Guide path sampling
• Pick guide path      randomly using weights     


• Then in iteration   : 

wjXj

k pk
g(X) = ∑

l

wk
j pk

g(X |Xl)

wk
j = t ⋅

Ck−1(Xj)
∑l Ck−1(Xl)

+(1 − t) ⋅ wk−1
j• Therefore                           

with                        Ck(Xi) =
f(Xi)

αpu(Xi) + (1 − α)pk
g(Xi)


