
Fast Depth of Field Rendering with Surface Splatting

Jaroslav Křivánek1,2

e-mail: xkrivanj@fel.cvut.cz

Jiřı́ Žára1

e-mail: zara@fel.cvut.cz

Kadi Bouatouch2

e-mail: kadi@irisa.fr

1Department of Computer Science and Engineering,
Czech Technical University in Prague,

Karlovo náměstı́ 13, 121 35 Praha 2, Czech Republic

2IRISA - INRIA Rennes,
Campus de Beaulieu,

35042 Rennes Cedex, France

Abstract

We present a new fast algorithm for rendering the depth-
of-field effect for point-based surfaces. The algorithm han-
dles partial occlusion correctly, it does not suffer from in-
tensity leakage and it renders depth-of-field in presence of
transparent surfaces. The algorithm is new in that it exploits
the level-of-detail to select the surface detail according to
the amount of depth-blur applied. This makes the speed
of the algorithm practically independent of the amount of
depth-blur. The proposed algorithm is an extension of the
Elliptical Weighted Average (EWA) surface splatting. We
present a mathematical analysis that extends the screen
space EWA surface splatting to handle depth-of-field ren-
dering with level-of-detail, and we demonstrate the algo-
rithm on example renderings.

Keywords point-based rendering, EWA surface splat-
ting, depth-of-field, lens effect, level-of-detail, LOD.

1. Introduction

The ability to render the depth-of-field (DOF) effect is an
important feature of any image synthesis algorithm. DOF
makes the image look more natural and it is also an im-
portant depth cue that helps humans to perceive the spatial
configuration of a scene [17]. The effect of DOF is that out-
of-focus points in 3D space form circular patterns (circle of
confusion, CoC) in the image plane. Algorithms for DOF
rendering can be divided into two groups: post-filtering and
multi-pass algorithms. The post-filtering algorithms work
as follows. First the image is computed using a pinhole
camera model, then the image is sent to the focus processor
which turns every pixel into a CoC according to its depth.
Potmesil and Chakravarty [13] have given formulas for ra-
dius of the CoC and described the light intensity distribution
within the CoC by Lommel functions. Chen [2] simplify the
distribution to uniform. The post-filtering algorithms suffer
from intensity leakage (blurred background leaks into a fo-
cused object in the foreground) and they do not take into

account the partial occlusion (visibility of objects change
for different points on the lens). Some approaches to par-
tially solve those problems are given in [9, 19]. Other post-
filtering algorithms are presented in [16, 4, 17, 5, 10]. Multi-
pass algorithms [11, 3] are more general, can handle the
partial occlusion, but are slower.

We present a new fast algorithm which renders DOF
for point-based surfaces. Our algorithm is similar to post-
filtering algorithms, but unlike them it does not involve a
separate focus processor. Instead, the individual points are
blurred before they form the final image. This allows to
handle the partial occlusion and avoids intensity leakage.
The algorithm can also render DOF in presence of transpar-
ent surfaces (Figure 1). The presented algorithm builds on
top of the Elliptical Weighted Average (EWA) surface splat-
ting proposed by Zwicker et al. [20, 21]. The related work
on splatting include [8, 15, 14]. Namely Räsänen [14] pro-
pose a point rendering pipeline that handles DOF rendering.
His method is based on stochastic sampling, it requires high
number of samples to produce noise-free images and thus it
is somewhat slow.

The basic idea of our algorithm is to blur the individual
splats by convolving them with a Gaussian low-pass filter
instead of blurring the image itself. It essentially means that
each splat is enlarged proportionally to the amount of depth-
blur appertaining to its depth. To accelerate DOF rendering,
we use coarser level-of-detail (LOD) for blurred surfaces.
This makes the speed of the algorithm independent of the
amount of depth-blur.

The contributions of this paper are consist in a mathe-
matical analysis extending the EWA surface splatting with
DOF rendering, an analysis allowing the use of the LOD as
a means for DOF rendering, an implementation of the algo-
rithm, and a discussion of practical implementation issues.

The paper is organized as follows: Section 2 reviews the
screen-space EWA surface splatting algorithm, Section 3
contains the mathematical analysis of our DOF rendering
algorithm, Section 4 presents its implementation, Section 5
gives the results, and Section 6 concludes the work.

Figure 1. Example of DOF rendering with semitransparent surface. Left: no DOF. Middle: DOF is on
and the transparent mask is in focus. Right: the male body is in focus, the mask is out of focus.

2. Screen Space EWA Surface Splatting

This section briefly reviews the EWA surface splatting
framework as described by Zwicker et al. [20].

The definition of the texture function on the surface of
a point-based object is illustrated in Figure 2. The point-
based object is represented as a set of irregularly spaced
points {Pk}, each associated with a basis function rk and
coefficients wr

k, wg
k, wb

k for color channels (we proceed with
the discussion using a single channel wk). Local surface
parametrization is sufficient to define the texture function
since the support of functions rk is local. Given a point
Q on the surface with local coordinates u, the value of the
continuous texture function is expressed as

fc(u) =
∑

k∈N

wkrk(u − uk), (1)

where uk are the local coordinates of the point Pk. The
value fc(u) gives the color of the point Q.

To render a point-based object, the texture function
fc is mapped to the screen-space with Heckbert’s resam-
pling framework [6]. It involves the following conceptual
steps: first, the continuous texture function fc is recon-
structed from sample points using Equation (1), second, fc

u3

u1
u2

u

0u

1u

Q

P3

P1

P2

Q’s neighbourhood support of the basis function rk

3D object space 2D parametrization
local parametrization

Figure 2. Texture function on the surface of a
point-based object (after Zwicker et al. [20]).

is warped to screen-space using the affine approximation
of the object-to-screen mapping m, third, the warped fc is
convolved in screen-space with the prefilter h, yielding the
band-limited output function gc(x), lastly gc is sampled to
produce alias-free pixel colors. Concatenating the first three
steps, the output function gc is

gc(x) =
∑

k∈N

wkρk(x), (2)

where ρk(x) = (r′k ⊗ h)(x − muk
(uk)), (3)

r′k is the warped basis function rk, h is the prefilter, muk

is the affine approximation of the object-to-screen mapping
around point uk. Function ρk is the warped filtered basis
function rk and is called the resampling kernel.

EWA framework uses elliptical Gaussians as the basis
functions rk and the prefilter h. With Gaussians it is pos-
sible to express the resampling kernel in a closed form as a
single elliptical Gaussian. An elliptical Gaussian in 2D with
the variance matrix V is GV(x) = 1

2π
√

|V|
e−

1

2
x

T
V
−1

x.

Matrix V−1 is so called conic matrix and xT V−1x =
const are the isocontours of the Gaussian GV, that are el-
lipses iff V is positive definite [6]. The variance matrices
for basis function rk and the prefilter h are denoted Vr

k and
Vh respectively. Usually Vh = I (the identity matrix).
With Gaussians, Equation (3) becomes

ρk(x) =
1

|J−1
k |

GJkVr
k
JT

k
+I(x − m(uk)), (4)

where Jk is the Jacobian of the object-to-screen mapping
m evaluated at uk. In this formulation ρk is a Gaussian
and is called the screen space EWA resampling kernel. It
has an infinite support in theory. In practice it is truncated
and is evaluated only for limited range of exponent β(x) =
xT (JkV

r
kJ

T
k + I)−1x , for which β(x) < c, where c is a

cutoff radius.

The surface splatting algorithm takes the points {Pk},
for each point it computes the resampling kernel ρk, raster-
izes it and accumulates the fragments in the accumulation
buffer.

3. DOF in the EWA Splatting Framework

In this section we augment the screen space EWA surface
splatting with DOF rendering. First, we describe how DOF
can be obtained by blurring individual resampling kernels,
then we extend the DOF rendering to exploit the LOD.

3.1. DOF as a resampling kernel convolution

Neglecting the occlusion we can express the depth-
blurred continuous screen space signal gdof

c as

gdof
c (x) =

∫

R2

I(coc(z(ζ)),x − ζ) gc(ζ) dζ,

where gc is the unblurred continuous screen space signal,
z(x) is the depth at x, coc(d) is the CoC radius for depth
d and I(r,x) is the intensity distribution function for CoC
of radius r at point x. I is circularly symmetric and is cen-
tered at origin. It is applied to gc as a spatially variant filter.
Expanding this equation using (2) we get

gdof
c (x) =

∫

R2

(

I(coc(z(ζ)),x − ζ)
∑

k∈N

wkρk(ζ)
)

dζ =

=
∑

k∈N

wkρdof
k (ζ),

where ρdof
k (x) =

∫

R2

I(coc(z(ζ)),x − ζ)ρk(ζ)dζ. (5)

This means that we can get the depth-blurred screen space
function gdof

c by first depth-blurring the individual kernels
ρk and then summing up the blurred kernels.

We assume that the depth z(x) does not change within
the support of ρk and can be replaced by a constant zk

which is the z-coordinate of the point Pk in the camera-
space. Therefore the function I(coc(z(ζ)),x − ζ) can be
replaced by the spatially invariant function Icoc(zk)(x − ζ)
and Equation (5) becomes the convolution

ρdof
k (x) = (Icoc(zk) ⊗ ρk)(x). (6)

For compatibility with the EWA framework we choose
circular Gaussians for I . If we denote the variance matrix
for Icoc(zk) by VI

k, then Icoczk
= GVI

k
. We now plug (4)

into (6) and we get ρdof
k in the form

ρdof
k (x) =

1

|J−1
k |

GJkVr
k
JT

k
+I+VI

k
(x − m(uk)). (7)

This formulation means that we can get the depth-blurred
resampling kernel easily: for each splatted point Pk we

-2 -1 0 1 2

0.2

0.4

-2 -1 0 1 2

0.2

0.4
uni

IC

G
V

3-3

G

truncated +
normalized

a) b)

G

I
k

r

Figure 3. a) Gaussian approximation of the
uniform intensity distribution. b) Normaliza-
tion of a truncated Gaussian.

compute the variance matrix VI
k and we add it to the vari-

ance matrix of the unblurred resampling kernel ρk. We
show how to compute VI

k in the next section. By blurring
the resampling kernels individually, we get the correct DOF
for the whole image.

3.2. Variance matrix of the Intensity Distribution
Function

Having the depth value zk we compute the CoC radius
Cr [7, 13]. Now we want to find such a variance ma-
trix VI

k that brings the Gaussian GVI
k

as close as possi-
ble (by the L2 norm) to the uniform intensity distribution
within the CoC of radius Cr (Figure 3a). The uniform
distribution is Iuni

Cr
(x) = 1/πC2

r if ‖x‖ < Cr and zero
otherwise. Gaussian GVI

k
is circular and thus VI

k = aI
where I is the identity matrix and a is a scalar. Hence
our problem reduces to finding a suitable a for any given
Cr. We are minimizing the functional F (a) = ‖Iuni

Cr
−

GVI
k
‖L2

= ‖Iuni
Cr

− 1
2πa

e−
1

2

x
T

x

a ‖L2
. We derived the so-

lution a = 1
2 ln 4C2

r , yielding the variance matrix VI
k =

(

1
2 ln 4C2

r 0
0 1

2 ln 4C2
r

)

. Why are we trying to find the

best Gaussian approximation of the uniform intensity dis-
tribution which is in turn just an approximation of what the
intensity distribution really is (the Lommel function [13])?
The reason is that the mathematical intractability of the
Lommel intensity distribution function did not allow us to
express a in a closed form.

3.3. DOF Rendering with Level-of-Detail

The DOF rendering without LOD is slow because of the
high number of fragments generated by the rasterization
of the blurred resampling kernels. To accelerate rendering
we use coarser LOD to render blurred parts of the objects.
This yields some blur in the image, since the texture in the
LOD hierarchy is typically low-pass filtered on coarser lev-
els [12, 18]. To steer precisely the amount of blur we need
to quantify the blurring produced by the coarser LOD and
eventually add an additional filtering in screen-space. To
express those intuitions more rigorously, we slightly change

object spacescreen space

Pk

r
k

r
k r

k
l

r
k
l

r
k
dof

r
k

l = 0

l = 1

r
k
dof

r
k
l G

V
diff
k

I =Gcoc(z) VI
kk

Figure 4. DOF rendering with different LODs.

the definition of the texture function (1) to take into account
the LOD hierarchy.

Extended Surface Texture Definition. We assume for
this discussion that there are distinct levels in the LOD hi-
erarchy identified by integers, where level 0 are leaves. The
continuous texture function f l

c at level l is represented by
basis functions rl

k. This representation is created by low-
pass filtering and subsampling the texture function fc from
level 0. The basis function rl

k is assumed to be created by
convolving rk (basis function for level 0) with a low-pass
filter ql

k, i.e. rl
k(u) = (rk ⊗ ql

k)(u). The continuous texture
function f l

c is then

f l
c(u) =

∑

k∈N

wkrl
k(u − uk) =

∑

k∈N

wk(rk ⊗ ql
k)(u − uk).

Application to Depth-Blurring. Now we focus on trans-
forming the filters ql

k to the screen-space and using them
for depth-blurring. We assume that the basis functions rl

k

and the low-pass filters ql
k are Gaussians, rl

k = G
Vrl

k

and

ql
k = G

V
ql

k

. Recall that Vr
k is the variance matrix of the ba-

sis function rk from level 0. We then have Vrl

k = Vr
k +V

ql

k

(because rl
k = rk⊗ql

k) and the resampling kernel ρl
k for the

basis function rl
k is

ρl
k(x) =

1

|J−1
k |

G
Jk(Vr

k
+V

ql

k
)JT

k
+I

(x − m(uk)). (8)

The variance matrix of this Gaussian is Vl
k =

Jk(Vr
k + V

ql

k)JT
k + I = JkV

r
kJ

T
k + I + JkV

ql

k JT
k .

Figure 5. Example of LOD selection for DOF
rendering.

Therefore we can consider the resampling kernel ρl
k to be

the resampling kernel ρk convolved in screen space with
the Gaussian G

JkV
ql

k
JT

k

. In other words, by selecting the

hierarchy level l to render the surface around point Pk, we
get the blurring in screen space by the Gaussian G

JkV
ql

k
JT

k

.

If we now look at Equation (7), we see that to get the
blurred resampling kernel ρdof

k from ρk, ρk has to be con-
volved with the Gaussian GVI

k
. Thus, to get ρdof

k from ρl
k,

we have to convolve ρl
k with the Gaussian GVdiff

k
, where the

variance matrix Vdiff
k is given by VI

k = JkV
ql

k JT
k + Vdiff

k .
Convolution with Gaussian GVdiff

k
can be regarded as an

additional blurring needed to produce the required screen-
space blur after we have selected the hierarchy level l.

The idea of using the LOD to speed-up depth-blurring
is to select such a hierarchy level l that Gaussian G

JkV
ql

k
JT

k

is “smaller” than Gaussian GVI
k

but Gaussian GVdiff

k
is “as

small as possible”, i.e. G
JkV

ql

k
JT

k

is “just a bit smaller” than

GVI
k
. This means that the amount of blur that needs to be

added by GVdiff

k
is very small and therefore the blurring does

not significantly slow down the rendering. This concept is
illustrated in Figure 4.

4. Implementation

In this section we describe the implementation of the
DOF rendering in the screen space EWA surface splatter.

DOF rendering without LOD. For every splat we com-
pute the matrix VI

k (Section 3.2) and add it to the variance
matrix of ρk (Equation 4) to get the blurred resampling ker-
nel ρdof

k (Equation 7). It is then rasterized as in normal sur-
face splatting.

LOD selection for DOF rendering. We adopted the QS-
plat hierarchy [18] and add one new criterion to stop the
traversal. We stop if the projected size of the node is smaller
than the CoC radius for that node. Figure 5 shows an exam-
ple of LOD selection for DOF rendering. The left image
visualizes the points used to render the image on the right.
The size of the points corresponds to the LOD.

LOD augmented DOF rendering. For each splatted
point Pl

k we determine the low-pass filter ql
k (it is given by

the hierarchy level l) and we then compute the matrix Vdiff
k

for additional screen-space blurring with following steps:

Vdiff
k := circumellipse(JkV

ql

k JT
k , VI

k)
W := JkV

r
kJ

T
k + I + Vdiff

k

W is the resulting matrix of the resampling kernel. The
function circumellipse(A,B) returns the variance matrix
for an ellipse that circumscribes ellipses defined by conic
matrices A−1 and B−1 (implementation is given in [7]).
According to how the LOD selection algorithm was de-
signed, the most common case is that GVI

k
is “bigger” than

G
JkV

ql

k
JT

k

. In this case circumellipse() simply returns VI
k.

However, sometimes the relation between the “sizes” of
GVI

k
and G

JkV
ql

k
JT

k

can be inverse, e.g. example if the LOD

hierarchy traversal is finished by some other criterion than
the one used for depth-blurring.

Surface Reconstruction. We use A-buffer [1] to accumu-
late splats as described by Zwicker et al. [20]. They use an
extended depth test based on z-threshold — if the depth of
two fragments is smaller than a threshold, they are assumed
to come from a single surface and they are merged, other-
wise they are kept separated in the A-buffer. Z-thresholding
is prone to errors since the depth values gets extrapolated
if splat support is enlarged by some screen space filtering
(e.g. prefiltering, depth of field filtering). We use a depth
test based on z-ranges [8, 14] that is more robust especially
near silhouettes.

Normalization. The splat weights generally do not sum
to 1 everywhere in screen-space which leads to varying tex-
ture intensity in the resulting image. Zwicker et al. [20]
solves this by a per-pixel normalization after splatting all
points. We cannot use this post-normalization, since we use
the weights as an estimate for partial coverage which needs
to be precise in case of DOF rendering. We perform a per-
point normalization in preprocess as described by Ren et
al. [15]. Unlike Ren et al. we do not bind the normalization
to a particular choice of the cutoff radius c. To compute
the normalization we use a large support of the reconstruc-
tion filters (c = 3.5 − 4) so that the influence of truncation
becomes negligible. This allows us to use the normalized
model for any value of c without having to re-normalize it.
To take a smaller c into account during rendering we divide
the weights by the compensation factor 1− e−c (Figure 3b)
which makes every truncated splat integrate to 1 and keeps
the sum of splats close to 1. For a visually pleasing DOF
effect the value of c must be slightly higher than for surface
splatting without DOF: we use c = 2 − 3.

Data Aperture LOD #FRAG #PTS time

Plane 0 - 5 685 262 144 0.76 s
0.5 YES 8 521 178 696 0.97 s
2 YES 7 246 54 385 0.75 s

0.5 NO 17 630 262 144 1.79 s
2 NO 196 752 262 144 20.2 s

Lion 0 - 2 266 81 458 0.43 s
0.01 YES 4 036 53 629 0.56 s
0.04 YES 5 318 17 271 0.56 s
0.01 NO 7 771 81 458 0.91 s
0.04 NO 90 219 81 458 8.93 s

Table 1. Rendering performance

Shading. Shading can be done per-splat or per-pixel [14].
We use per-splat shading. This is needed if view-dependent
shading, such as specular highlights, is used. If we used
per-pixel shading, the highlights wouldn’t appear blurred.

5. Results

We have implemented the DOF rendering algorithm in a
software EWA surface splatter. Figure 1 illustrates the DOF
rendering with a semitransparent surfaces. Figure 6 com-
pares the results of our rendering algorithm (left column)
with those of the multisampling algorithm [11] (right col-
umn) that is taken as a reference. The number of images av-
eraged to produce the reference images was 200. From top
to bottom the aperture is increased. For flat objects like the
plane the difference is hardly perceptible, however, for com-
plex objects like the lion our algorithm produces some arti-
facts. They are mainly due to the incorrect merge/separate
decisions in the A-buffer. Another reason is the irregularity
of points on coarser LOD levels. Since we blur the splats
individually and the surface reconstruction is applied after
blurring, we avoid intensity leakage and we can handle par-
tial occlusion. The A-buffer moreover allows for transpar-
ent surfaces. For surfaces that are close to each other or for
intersecting surfaces, artifacts cannot be avoided, because
of incorrect merge/separate decisions.

Rendering performance is summarized in Table 1. It was
measured for 512× 512 frames with a cutoff radius c = 2.5
on a 1.4 GHz Pentium 4, 512 MB RAM, GCC 3.1 com-
piler with optimization set to Pentium 4 architecture. The
table shows the number of generated fragments (#FRAG -
in thousands), number of points (#PTS) and rendering time
for objects in Figure 6. The table also compares the DOF
rendering speed with and without LOD. The rendering time
is determined by the number of fragments, since the ren-
dering pipeline is fill-limited. The timings also show that
thanks to LOD the speed is practically independent of the
amount of depth-blur. The time for computing the refer-
ence images was 147 sec. (plane, 200 images) and 83 sec.
(lion, 200 images).

6. Conclusions and Future Work

We have presented an efficient algorithm for DOF ren-
dering for point-based objects which is a modification of the
EWA surface splatting and requires minimal implementa-
tion efforts once the EWA splatter is ready. It renders DOF
correctly in presence of semitransparent surfaces, handles
the partial occlusion and does not suffer from intensity leak-
age. It is to our knowledge the first algorithm that uses LOD
for DOF rendering and whose speed is independent of the
amount of depth-blur. The main drawbacks of the algorithm
are high sensitivity to the regularity of sample positions on
the surface of point-based objects and occasional artifacts
due to the incorrect surface reconstruction in the A-buffer.

In the future we would like to implement the DOF ren-
dering algorithm for EWA volume rendering. We would
also like to develop a tool for the normalization of point-
based objects.

Acknowledgments

This work has been supported by the grant number
2159/2002 from the Grant Agency of the Ministry of Ed-
ucation of the Czech Republic. Thanks to Jiřı́ Bittner and
Vlastimil Havran for proofreading the paper and providing
many hints on how to improve it.

References

[1] L. Carpenter. The A-buffer, an antialiased hidden surface
method. In Siggraph 1984 Proceedings, 1984.

[2] Y. C. Chen. Lens effect on synthetic image generation based
on light particle theory. The Visual Computer, 3(3), 1987.

[3] R. L. Cook, T. Porter, and L. Carpenter. Distributed ray
tracing. In Siggraph 1984 Proceedings, 1984.

[4] K. Dudkiewicz. Real-time depth of field algorithm. In Image
Processing for Broadcast and Video Production, 1994.

[5] P. Fearing. Importance ordering for real-time depth of field.
In Proceedings of the Third International Conference on
Computer Science, pages 372–380, 1996.

[6] P. Heckbert. Fundamentals of texture mapping and image
warping. Master’s thesis, University of California, 1989.

[7] J. Křivánek and J. Žára. Rendering depth-of-field with sur-
face splatting. Technical Report DC-2003-02, Dept. of Com-
puter Science, CTU Prague, 2003.

[8] M. Levoy and T. Whitted. The use of points as a display
primitive. Technical Report TR 85-022, University of North
Carolina at Chapel Hill, 1985.

[9] S. D. Matthews. Analyzing and improving depth-of-field
simulation in digital image synthesis. Master’s thesis, Uni-
versity of California, Santa Cruz, December 1998.

[10] J. D. Mulder and R. van Liere. Fast perception-based depth
of field rendering. In VRST 2000, pages 129–133, 2000.

[11] J. Neider, T. Davis, and M. Woo. OpenGL Programming
Guide: The Official Guide to Learning OpenGL. Addison-
Wesley, Reading Mass., first edition, 1993.

[12] H. Pfister, M. Zwicker, J. van Baar, and M. Gross. Surfels:
Surface elements as rendering primitives. In Siggraph 2000
Proceedings, pages 335–342, 2000.

[13] M. Potmesil and I. Chakravarty. A lens and aperture cam-
era model for synthetic image generation. In Siggraph ’81
Proceedings, 1981.

[14] J. Räsänen. Surface splatting: Theory, extensions and im-
plementation. Master’s thesis, Helsinki University of Tech-
nology, May 2002.

[15] L. Ren, H. Pfister, and M. Zwicker. Object space EWA
surface splatting: A hardware accelerated approach to high
quality point rendering. EUROGRAPHICS 2002 Proceed-
ings, 2002.

[16] P. Rokita. Fast generation of depth of field effects in com-
puter graphics. Computers & Graphics, 17(5), 1993.

[17] P. Rokita. Generating depth-of-field effects in virtual reality
applications. IEEE Computer Graphics and Applications,
16(2):18–21, 1996.

[18] S. Rusinkiewicz and M. Levoy. QSplat: A multiresolution
point rendering system for large meshes. In Siggraph 2000
Proceedings, pages 343–352, 2000.

[19] M. Shinya. Post-filtering for depth of field simulation with
ray distribution buffer. In Graphics Interface, 1994.

[20] M. Zwicker, H. Pfister, J. van Baar, and M. Gross. Surface
splatting. In Siggraph 2001 Proceedings, 2001.

[21] M. Zwicker, H. Pfister, J. van Baar, and M. Gross. EWA
splatting. IEEE TVCG, 8(3):223–238, 2002.

Figure 6. Comparison of our algorithm (left)
with reference solution (right).

